1
|
Reza MT, Alam MGR, Rahman R, Dipto SM. Domain affiliated distilled knowledge transfer for improved convergence of Ph-negative MPN identifier. PLoS One 2024; 19:e0303541. [PMID: 39331624 PMCID: PMC11433141 DOI: 10.1371/journal.pone.0303541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 09/29/2024] Open
Abstract
Ph-negative Myeloproliferative Neoplasm is a rare yet dangerous disease that can turn into more severe forms of disorders later on. Clinical diagnosis of the disease exists but often requires collecting multiple types of pathologies which can be tedious and time-consuming. Meanwhile, studies on deep learning-based research are rare and often need to rely on a small amount of pathological data due to the rarity of the disease. In addition, the existing research works do not address the data scarcity issue apart from using common techniques like data augmentation, which leaves room for performance improvement. To tackle the issue, the proposed research aims to utilize distilled knowledge learned from a larger dataset to boost the performance of a lightweight model trained on a small MPN dataset. Firstly, a 50-layer ResNet model is trained on a large lymph node image dataset of 3,27,680 images, followed by the trained knowledge being distilled to a small 4-layer CNN model. Afterward, the CNN model is initialized with the pre-trained weights to further train on a small MPN dataset of 300 images. Empirical analysis showcases that the CNN with distilled knowledge achieves 97% accuracy compared to 89.67% accuracy achieved by a clone CNN trained from scratch. The distilled knowledge transfer approach also proves to be more effective than more simple data scarcity handling approaches such as augmentation and manual feature extraction. Overall, the research affirms the effectiveness of transferring distilled knowledge to address the data scarcity issue and achieves better convergence when training on a Ph-Negative MPN image dataset with a lightweight model.
Collapse
|
2
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
3
|
Murphy AJ, Dragoljevic D, Natarajan P, Wang N. Hematopoiesis of Indeterminate Potential and Atherothrombotic Risk. Thromb Haemost 2022; 122:1435-1442. [PMID: 35445383 PMCID: PMC9420552 DOI: 10.1055/a-1830-2147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Hematopoiesis is the process of blood production, essential for the continued supply of immune cells and red blood cells. However, the proliferative nature of hematopoietic stem cells (HSCs) renders them susceptible to developing somatic mutations. HSCs carrying a mutation can gain a selective advantage over normal HSCs and result in hematological disorders. One such disorder is termed clonal hematopoiesis of indeterminate potential (CHIP), a premalignant state associated with aging, where the mutant HSCs are responsible for producing a small portion of mature immune cells in the circulation and subsequently in tissues. People with CHIP have been shown to have an increased risk of mortality due to cardiovascular disease (CVD). Why this occurs is under rigorous investigation, but the majority of the studies to date have suggested that increased atherosclerosis is due to heightened inflammatory cytokine release from mutant lesional macrophages. However, given CHIP is driven by several mutations, other hematopoietic lineages can be altered to promote CVD. In this review we explore the relationship between mutations in genes causing CHIP and atherothrombotic disorders, along with potential mechanisms of enhanced clonal outgrowth and potential therapies and strategies to slow CHIP progression.
Collapse
Grants
- National Heart, Lung, and Blood Institute R01HL148071
- National Health and Medical Research Council APP1194329
- National Heart, Lung, and Blood Institute R01HL142711
- National Heart, Lung, and Blood Institute R01HL148050
- National Heart, Lung, and Blood Institute R01HL151283
- National Heart, Lung, and Blood Institute R01HL127564
- National Institute of Diabetes and Digestive and Kidney Diseases R01DK125782
- National Heart, Lung, and Blood Institute R01HL118567
- Fondation Leducq TNE-18CVD04
- National Heart, Lung, and Blood Institute R01HL135242
- National Heart, Lung, and Blood Institute R01HL151152
- R01 HL148050 NHLBI NIH HHS
- National Heart, Lung, and Blood Institute R01HL148565
- National Health and Medical Research Council APP1142938
Collapse
Affiliation(s)
- Andrew J. Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Dragana Dragoljevic
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Pradeep Natarajan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, United States
| |
Collapse
|
4
|
JAK2S523L, a novel gain-of-function mutation in a critical autoregulatory residue in JAK2V617F- MPNs. Blood Adv 2021; 4:4554-4559. [PMID: 32956452 DOI: 10.1182/bloodadvances.2019001283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The SH2-JH2 linker domain of JAK2 has been implicated in the negative regulation of JAK2 activity. In 2 patients with myeloproliferative neoplasms (MPNs), we identified and characterized the novel JAK2 mutation S523L, which occurs in a key residue in the linker region. In 1 case, acquisition of JAK2S523L was associated with thrombocytosis and bone marrow megakaryocytic hyperplasia, and there were no other somatic alterations in this patient. The second patient with JAK2S523Lmutation presented with increased hematocrit and had concurrent mutations in RUNX1 and BCORL1. Consistent with the genetic and clinical data, expression of JAK2S523L causes interleukin-3-independent growth in Ba/F3 cells transduced with the erythropoietin receptor by constitutively active Jak2/Stat5 signaling.
Collapse
|
5
|
Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia 2021; 35:2592-2601. [PMID: 33654206 DOI: 10.1038/s41375-021-01183-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/12/2023]
Abstract
Interferon-alpha (rIFNα) is the only disease-modifying treatment for polycythemia vera (PV), but whether or not it prolongs survival is unknown. This large single center retrospective study of 470 PV patients compares the myelofibrosis-free survival (MFS) and overall survival (OS) with rIFNα to two other primary treatments, hydroxyurea (HU) and phlebotomy-only (PHL-O). The median age at diagnosis was 54 years (range 20-94) and the median follow-up was 10 years (range 0-45). Two hundred and twenty-nine patients were women (49%) and 208 were high-risk (44%). The primary treatment was rIFNα in 93 (20%), HU in 189 (40%), PHL-O in 133 (28%) and other cytoreductive drugs in 55 (12%). The treatment groups differed by ELN risk score (p < 0.001). In low-risk patients, 20-year MFS for rIFNα, HU, and PHL-O was 84%, 65% and 55% respectively (p < 0.001) and 20-year OS was 100%, 85% and 80% respectively (p = 0.44). In high-risk patients, 20-year MFS for rIFNα, HU, and PHL-O was 89%, 41% and 36% respectively (p = 0.19) and 20-year OS was 66%, 40%, 14% respectively (p = 0.016). In multivariable analysis, longer time on rIFNα was associated with a lower risk of myelofibrosis (HR: 0.91, p < 0.001) and lower mortality (HR: 0.94, p = 0.012). In conclusion, this study supports treatment of PV with rIFNα to prevent myelofibrosis and potentially prolong survival.
Collapse
|
6
|
La Rocca F, Grieco V, Ruggieri V, Zifarone E, Villani O, Zoppoli P, Russi S, Laurino S, Falco G, Calice G, Marinaccio A, Natalicchio MI, Albano F, Musto P. Superiority of Droplet Digital PCR Over Real-Time Quantitative PCR for JAK2 V617F Allele Mutational Burden Assessment in Myeloproliferative Neoplasms: A Retrospective Study. Diagnostics (Basel) 2020; 10:diagnostics10030143. [PMID: 32150880 PMCID: PMC7151190 DOI: 10.3390/diagnostics10030143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
JAK2V617F mutational status is an essential diagnostic index in myeloproliferative neoplasms (MPNs). Although widely used for detection of JAK2 V617F mutation in peripheral blood (PB), sensitive real-time quantitative PCR (qPCR) presents some methodological limitations. Recently, emerging alternative technologies, like digital droplet PCR (ddPCR), have been reported to overcome some of qPCR’s technical drawbacks. The purpose of this study was to compare the diagnostic utility of ddPCR to qPCR for JAK2 V617F detection and quantification in samples from MPNs patients. Sensitivity and specificity of qPCR and ddPCR in the detection of the mutation were assessed by using a calibrator panel of mutated DNA on 195 JAK2 positive MPN samples. Based on our results, ddPCR proved to be a suitable, precise, and sensitive method for detection and quantification of the JAK2 V617F mutation.
Collapse
Affiliation(s)
- Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy; (F.L.R.); (V.G.)
| | - Vitina Grieco
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy; (F.L.R.); (V.G.)
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
- Correspondence:
| | - Emanuela Zifarone
- Trial Office, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy;
| | - Oreste Villani
- Hematology and Stem Cell Transplantation Unit, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy;
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy;
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Anna Marinaccio
- Section of Clinic Pathology, OO.RR., 71122 Foggia, Italy; (A.M.); (M.I.N.)
| | | | - Francesco Albano
- Unit of Hematology and Stem Cell Transplantation, AOU Policlinico Consorziale “Giovanni XXIII”, “Aldo Moro” University, 70124 Bari, Italy; (F.A.); (P.M.)
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, AOU Policlinico Consorziale “Giovanni XXIII”, “Aldo Moro” University, 70124 Bari, Italy; (F.A.); (P.M.)
| |
Collapse
|
7
|
Yoo EH, Park KJ, Won HH, Park JH, Park JH, Lee ST, Kim HJ, Bang SM, Chi HS, Jung CW, Kim SH, Yun H, Sun CH, Park I, Lee S, Lee C, Merriman B, Luo R, Tan EHH, Park KJ, Yoo NK, Kang JJ, Kim JW. Genetic Characteristics of Polycythemia Vera and Essential Thrombocythemia in Korean Patients. J Clin Lab Anal 2016; 30:1061-1070. [PMID: 27132877 DOI: 10.1002/jcla.21981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/09/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Despite recent advances in the investigation of myeloproliferative neoplasms (MPN), the impact of genetic heterogeneity on its molecular pathogenesis has not been fully elucidated. Thus, in this study, we aim to characterize the genetic complexity in Korean patients with polycythemia vera (PV) and essential thrombocythemia (ET). METHODS We conducted association studies using 84 single-nucleotide polymorphisms (SNPs) in 229 patients (96 with PV and 133 with ET) and 170 controls. Further, whole-genome sequencing was performed in six patients (two with JAK2 V617F and four with wild-type JAK2), and putative somatic mutations were validated in a further 69 ET patients. Clinical and laboratory characteristics were also analyzed. RESULTS Several germline SNPs and the 46 haplotype were significantly associated with PV and ET. Three somatic mutations in MPDZ, IQCH, and CALR genes were selected and validated. The frequency of the CALR mutation was 58.0% (40/69) in ET patients, who did not carry JAK2/MPL mutations. Moreover, compared with JAK2 V617F-positive patients, those with CALR mutations showed lower hemoglobin and hematocrit levels (P = 0.004 and P = 0.002, respectively), higher platelet counts (P =0.008), and a lower frequency of cytoreductive therapy (P = 0.014). CONCLUSION This study was the first comprehensive investigation of the genetic characteristics of Korean patients with PV and ET. We found that somatic mutations and the 46 haplotype contribute to PV and ET pathogenesis in Korean patients.
Collapse
Affiliation(s)
- Eun-Hyung Yoo
- Department of Laboratory Medicine, Konyang University Hospital, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| | - Kyung-Jin Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hong-Hee Won
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Jun-Hee Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Jong-Ho Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyun-Sook Chi
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | - Raymond Luo
- Thermo Fisher Scientific, Singapore, Singapore
| | | | | | | | | | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Saeidi K. Myeloproliferative neoplasms: Current molecular biology and genetics. Crit Rev Oncol Hematol 2015; 98:375-89. [PMID: 26697989 DOI: 10.1016/j.critrevonc.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by increased production of mature blood cells. Philadelphia chromosome-negative MPNs (Ph-MPNs) consist of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). A number of stem cell derived mutations have been identified in the past 10 years. These findings showed that JAK2V617F, as a diagnostic marker involving JAK2 exon 14 with a high frequency, is the best molecular characterization of Ph-MPNs. Somatic mutations in an endoplasmic reticulum chaperone, named calreticulin (CALR), is the second most common mutation in patients with ET and PMF after JAK2 V617F mutation. Discovery of CALR mutations led to the increased molecular diagnostic of ET and PMF up to 90%. It has been shown that JAK2V617F is not the unique event in disease pathogenesis. Some other genes' location such as TET oncogene family member 2 (TET2), additional sex combs-like 1 (ASXL1), casitas B-lineage lymphoma proto-oncogene (CBL), isocitrate dehydrogenase 1/2 (IDH1/IDH2), IKAROS family zinc finger 1 (IKZF1), DNA methyltransferase 3A (DNMT3A), suppressor of cytokine signaling (SOCS), enhancer of zeste homolog 2 (EZH2), tumor protein p53 (TP53), runt-related transcription factor 1 (RUNX1) and high mobility group AT-hook 2 (HMGA2) have also identified to be involved in MPNs phenotypes. Here, current molecular biology and genetic mechanisms involved in MNPs with a focus on the aforementioned factors is presented.
Collapse
Affiliation(s)
- Kolsoum Saeidi
- Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Patnaik MM, Tefferi A. Molecular diagnosis of myeloproliferative neoplasms. Expert Rev Mol Diagn 2014; 9:481-92. [DOI: 10.1586/erm.09.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Abstract
The idiopathic erythrocytosis (IE) group of disorders is defined by an absolute increase in red cell mass and hematocrit without elevation of the megakaryocytic or granulocytic lineages. It is associated with a wide range of serum erythropoietin (Epo) levels and broadly falls into groups of raised/inappropriately normal or low/undetectable Epo levels. A spectrum of molecular defects has been described in association with IE, which reflects the heterogeneity of this disorder. To date the most common identified cause of IE has been mutations in the von Hippel Landau (VHL) protein, which results in aberrant oxygen sensing and dysregulated Epo production. Studying the molecular basis of IE will provide insights into the control of Epo synthesis and Epo-induced signaling pathways.
Collapse
Affiliation(s)
- M J Percy
- Department of Haematology, Belfast City Hospital, Floor C, Lisburn Road, Belfast, Northern Ireland, UK
| |
Collapse
|
11
|
Abstract
We prospectively evaluated the accuracy of the 2007 World Health Organization (WHO) criteria for diagnosing polycythemia vera (PV), especially in "early-stage" patients. A total of 28 of 30 patients were diagnosed as PV owing to an elevated Cr-51 red cell mass (RCM), JAK2 positivity, and at least 1 minor criterion. A total of 18 PV patients did not meet the WHO criterion for an increased hemoglobin value and 8 did not meet the WHO criterion for an increased hematocrit value. Bone marrow morphology was very valuable for diagnosis. Low serum erythropoietin (EPO) values were specific for PV, but normal EPO values were found at presentation (20%). We recommend revision of the WHO criteria, especially to distinguish early-stage PV from essential thrombocythemia. Major criteria remain JAK2 positivity and increased red cell volume, but Cr-51 RCM is mandatory for patients who do not meet the defined elevated hemoglobin or hematocrit value (>18.5 g/dL and 60% in men and >16.5 g/dL and 56% in women, respectively). Minor criteria remain bone marrow histology or a low serum EPO value. For patients with a normal EPO value, marrow examination is mandatory for diagnostic confirmation. Because the therapies for myeloproliferative disorders differ, our data have major clinical implications.
Collapse
|
12
|
Barcelos MM, Santos-Silva MC. Molecular approach to diagnose BCR/ABL negative chronic myeloproliferative neoplasms. Rev Bras Hematol Hemoter 2012; 33:290-6. [PMID: 23049320 PMCID: PMC3415756 DOI: 10.5581/1516-8484.20110079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/01/2011] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloproliferative neoplasms arise from clonal proliferation of hematopoietic stem cells. According to the World Health Organization myeloproliferative neoplasms are classified as: chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, primary myelofibrosis, chronic neutrophilic leukemia, chronic eosinophilic leukemia, hypereosinophilic syndrome, mast cell disease, and unclassifiable myeloproliferative neoplasms. In the revised 2008 WHO diagnostic criteria for myeloproliferative neoplasms, mutation screening for JAK2V617F is considered a major criterion for polycythemia vera diagnosis and also for essential thrombocythemia and primary myelofibrosis, the presence of this mutation represents a clonal marker. There are currently two hypotheses explaining the role of the JAK2V617F mutation in chronic myeloproliferative neoplasms. According to these theories, the mutation plays either a primary or secondary role in disease development. The discovery of the JAK2V617F mutation has been essential in understanding the genetic basis of chronic myeloproliferative neoplasms, providing some idea on how a single mutation can result in three different chronic myeloproliferative neoplasm phenotypes. But there are still some issues to be clarified. Thus, studies are still needed to determine specific molecular markers for each subtype of chronic myeloproliferative neoplasm.
Collapse
|
13
|
Wu Z, Yuan H, Zhang X, Liu W, Xu J, Zhang W, Guan M. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera. PLoS One 2011; 6:e26534. [PMID: 22028900 PMCID: PMC3197667 DOI: 10.1371/journal.pone.0026534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. METHODOLOGY/PRINCIPAL FINDINGS Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. CONCLUSIONS With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hong Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Weiwei Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen-PKU-HKUST Medical Center, Shenzhen, People's Republic of China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Central Laboratory, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Dermatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
14
|
Scott LM. The JAK2 exon 12 mutations: a comprehensive review. Am J Hematol 2011; 86:668-76. [PMID: 21674578 DOI: 10.1002/ajh.22063] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/12/2022]
Abstract
A variety of acquired mutations targeting JAK2 exon 12 are present in those patients with the myeloproliferative neoplasm, polycythemia vera, that lack the more common JAK2V617F mutation. Both mutation types perturb erythropoiesis, with individuals presenting with a raised hematocrit, reduced serum erythropoietin levels, and erythropoietin-independent erythroid progenitor cells. However, there are also phenotypic differences that, until recently, precluded a significant proportion of patients with a JAK2 exon 12 mutation from receiving an appropriate diagnosis. Here, we review the literature published on the JAK2 exon 12 mutations and compare the biology associated with these mutations with that of JAK2V617F.
Collapse
Affiliation(s)
- Linda M Scott
- Greehey Children's Cancer Research Institute, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78229, USA.
| |
Collapse
|
15
|
Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies. Clin Epigenetics 2011; 2:197-212. [PMID: 22704337 PMCID: PMC3365400 DOI: 10.1007/s13148-011-0050-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/29/2011] [Indexed: 12/13/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs.
Collapse
|
16
|
BCR-ABL1--negative myeloproliferative neoplasms: a review of molecular biology, diagnosis, and treatment. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2011; 11 Suppl 1:S37-45. [PMID: 22035746 DOI: 10.1016/j.clml.2011.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
In 2008, the World Health Organization expanded the classification of myeloproliferative disorders based on increasing amounts of molecular and cytogenetic data. Myeloproliferative neoplasms (MPN) that do not contain the BCR-ABL1 mutation include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). JAK2V617F is the best characterized mutation in BCR-ABL1-negative neoplasms, with an estimated prevalence of more than 95% in PV, 50% in ET, and 50% in PMF. Current diagnostic strategies are increasingly reliant on molecular markers, and their prognostic value continues to be investigated. The use of aspirin, hydroxyurea, and phlebotomy for PV and ET, and the use of androgens, steroids, chemotherapy, and radiation therapy for PMF continues to be the mainstay of therapy. The only potentially curative therapy is allogeneic hematopoietic stem cell transplantation, but treatment-related mortality remains high. There have been promising results from clinical trials that involve the JAK tyrosine kinase inhibitors TG101384 and INCB018424, but their role in future therapy is yet to be established. Despite the optimism, it is increasingly apparent that pathogenicity in BCR-ABL1-negative MPN is more complex than for chronic myeloid leukemia, and a pathognomonic mutation may not be forthcoming.
Collapse
|
17
|
Means RT. JAK2 V617F and the evolving paradigm of polycythemia vera. THE KOREAN JOURNAL OF HEMATOLOGY 2010; 45:90-4. [PMID: 21120186 PMCID: PMC2983020 DOI: 10.5045/kjh.2010.45.2.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/04/2023]
Abstract
Polycythemia vera (PV) was first described nearly 120 years ago. In the subsequent century, the clinical syndrome of PV, its natural history, its treatment, and many critical pathogenetic features of the disease were characterized. The discovery of the Janus-associated kinase - 2 mutation JAK2 V617F and the characterization of its role in myeloproliferative neoplasms have substantially changed the diagnostic paradigm for PV, and have potential to lead to new therapy and new pathogenetic insights.
Collapse
Affiliation(s)
- Robert T. Means
- Department of Internal Medicine and Markey Cancer Center, University of Kentucky, Lexington KY, USA
| |
Collapse
|
18
|
Patnaik MM, Knudson RA, Gangat N, Hanson CA, Pardanani A, Tefferi A, Ketterling RP. Chromosome 9p24 abnormalities: prevalence, description of novel JAK2 translocations, JAK2V617F mutation analysis and clinicopathologic correlates. Eur J Haematol 2010; 84:518-24. [DOI: 10.1111/j.1600-0609.2010.01428.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Wadleigh M, Tefferi A. Classification and diagnosis of myeloproliferative neoplasms according to the 2008 World Health Organization criteria. Int J Hematol 2010; 91:174-9. [PMID: 20191332 DOI: 10.1007/s12185-010-0529-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/07/2010] [Indexed: 01/21/2023]
Abstract
The myeloproliferative neoplasms (MPNs) were first recognized by William Dameshek in 1951. The classic MPNs were polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) and chronic myelogenous leukemia. They were originally grouped together based on their shared phenotype of myeloproliferation. Since then, important discoveries have been made, identifying a central role of protein tyrosine kinases in the pathogenesis of these disorders. As such, the 2008 WHO diagnostic classification for myeloproliferative neoplasms has incorporated molecular markers with histologic, clinical and laboratory information into the diagnostic algorithms for the MPNs. Important changes include (1) the change of nomenclature of myeloproliferative disorder to myeloproliferative neoplasm emphasizing the clonal nature of these disorders; (2) the classification of mast cell disease as an MPN; (3) the reorganization of the eosinophilic disorders into a molecularly defined category of PDGFRA, PDGFRB and FGFR1-associated myeloid and lymphoid neoplasms with eosinophilia and chronic eosinophilic leukemia, not otherwise specified; and (4) refinement of the diagnostic criteria for PV, ET and PMF incorporating recently described molecular markers, JAK2V617F, JAK2 exon 12 mutations and MPL mutations. This review focuses upon the important changes of the 2008 WHO diagnostic criteria for MPNs.
Collapse
Affiliation(s)
- Martha Wadleigh
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
| | | |
Collapse
|
20
|
Merker JD, Jones CD, Oh ST, Schrijver I, Gotlib J, Zehnder JL. Design and evaluation of a real-time PCR assay for quantification of JAK2 V617F and wild-type JAK2 transcript levels in the clinical laboratory. J Mol Diagn 2009; 12:58-64. [PMID: 19959796 DOI: 10.2353/jmoldx.2010.090068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The somatic mutation JAK2 V617F is associated with BCR-ABL1-negative myeloproliferative neoplasms. Detection of this mutation aids diagnosis of these neoplasms, and quantification of JAK2 V617F may provide a method to monitor response to therapy. For these reasons, we designed a clinical assay that uses allele-specific PCR and real-time detection with hydrolysis probes for the quantification of JAK2 V617F, wild-type JAK2, and GAPDH transcripts. Mutant and wild-type JAK2 were quantified by using external plasmid standards that contain the relevant JAK2 V617F or JAK2 sequence, respectively. We tested 55 peripheral blood specimens from patients with suspected myeloproliferative neoplasms and 55 peripheral blood specimens from patients not known to have myeloproliferative neoplasms. Low-level, nonspecific amplification was detected in reactions containing a high copy number of plasmid standards and in specimens from patients not known to have myeloproliferative neoplasms, necessitating the use of a laboratory-established mutant to wild-type cutoff. The limit of detection established by using cell line dilutions is 0.1%, and this method identified three JAK2 V617F-positive patients who were not detected by a less sensitive method. The assay characteristics and our initial evaluation indicate this method can be used for the detection and quantification of JAK2 V617F, which should be useful for diagnosis of myeloproliferative neoplasms and potentially for monitoring minimal residual disease in future trials of therapies targeted to myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Jason D Merker
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Dr, L235, Stanford, CA 94305-5324, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abdel-Wahab OI, Levine RL. Primary myelofibrosis: update on definition, pathogenesis, and treatment. Annu Rev Med 2009; 60:233-45. [PMID: 18947294 DOI: 10.1146/annurev.med.60.041707.160528] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Primary myelofibrosis (PMF) is a clonal stem cell disorder that manifests clinically as anemia, splenomegaly due to extramedullary hematopoiesis, leukoerythroblastosis, and constitutional symptoms, which are the clinical hallmarks of PMF. Within the past three years it has been determined that a single, recurrent, somatic mutation in the gene encoding the cytoplasmic tyrosine kinase Janus kinase 2 (JAK2) occurs in the majority of patients with PMF, and more recently, activating mutations in the gene encoding the thrombopoietin receptor MPL have also been identified in a subset of PMF patients. These discoveries have yielded important insights into the pathogenesis of PMF and have brought about the first opportunity for rationally targeted therapy for this disorder. Here we present an updated review of the pathogenesis, definition, and treatment of PMF in light of the discovery of JAK2 and MPL mutations, as well as other recent work in the myeloproliferative neoplasm field.
Collapse
Affiliation(s)
- Omar I Abdel-Wahab
- The Leukemia Service, Department of Medicine, and the Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
22
|
Vannucchi AM, Guglielmelli P, Rambaldi A, Bogani C, Barbui T. Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives. J Cell Mol Med 2009; 13:1437-50. [PMID: 19522842 PMCID: PMC3828857 DOI: 10.1111/j.1582-4934.2009.00827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 06/03/2009] [Indexed: 12/18/2022] Open
Abstract
The classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), which include polycythaemia vera, essential thrombocythaemia and primary myelofibrosis, originate from a stem cell-derived clonal myeloproliferation that manifests itself with variable haematopoietic cell lineage involvement; they are characterized by a high degree of similarities and the chance to transform each to the other and to evolve into acute leukaemia. Their molecular pathogenesis has been associated with recurrent acquired mutations in janus kinase 2 (JAK2) and myeloproliferative leukemia virus oncogene (MPL). These discoveries have simplified the diagnostic approach and provided a number of clues to understanding the phenotypic expression of MPNs; furthermore, they represented a framework for developing and/or testing in clinical trials small molecules acting as tyrosine kinase inhibitors. On the other hand, evidence of abnormal epigenetic gene regulation as a mechanism potentially contributing to the pathogenesis and the phenotypic diversity of MPNs is still scanty; however, study of epigenetics in MPNs represents an active field of research. The first clinical trials with epigenetic drugs have been completed recently, whereas others are still ongoing; results have been variable and at present do not allow any firm conclusion. Novel basic and translational information concerning epigenetic gene regulation in MPNs and the perspectives for therapy will be critically addressed in this review.
Collapse
Affiliation(s)
- Alessandro M Vannucchi
- UF di Ematologia, Dip. Area Critica Medico-Chirugica, Università di Firenze, Firenze, Italy.
| | | | | | | | | |
Collapse
|
23
|
Nussenzveig RH, Cortes J, Sever M, Quintás-Cardama A, Ault P, Manshouri T, Bueso-Ramos C, Prchal JT, Kantarjian H, Verstovsek S. Imatinib mesylate therapy for polycythemia vera: final result of a phase II study initiated in 2001. Int J Hematol 2009; 90:58-63. [PMID: 19484334 DOI: 10.1007/s12185-009-0345-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/27/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm (MPN) characterized by excessive production of red blood cells. Patients with PV are at a risk of thrombosis, bleeding, and transformation to myelofibrosis or acute myeloid leukemia. Therapy for PV is based on the use of phlebotomy, aspirin, and in high-risk patients, cytoreductive agents such as hydroxyurea. Anecdotal evidence suggests that imatinib mesylate, a selective tyrosine kinase inhibitor of ABL1, ARG, PDGFR, and KIT kinases has activity in PV. We conducted an open-label phase II clinical trial of imatinib at the standard dose of 400 mg daily in 24 patients with PV. The median duration of imatinib therapy was 5.1 months (range 0.2-86.4). Overall, 4 (17%) patients responded: one had a complete and three partial hematological response. The median time to response was 17.5 months (range 6-28), and the median duration of response was 17 months (range 9-68). No significant changes in JAK2(V617F) mutation burden were noted during imatinib therapy when compared with pretreatment values (P = 0.46). Therapy with imatinib was generally well tolerated. Our data indicate that imatinib has minimal clinical activity in PV.
Collapse
Affiliation(s)
- Roberto H Nussenzveig
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - Jorge Cortes
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Matjaz Sever
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Alfonso Quintás-Cardama
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Pat Ault
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Taghi Manshouri
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Josef T Prchal
- Division of Hematology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hagop Kantarjian
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, M.D. Anderson Cancer Center, Box 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Tefferi A, Levine RL, Kantarjian H. Oncogenic Signals as Treatment Targets in Classic Myeloproliferative Neoplasms. Biol Blood Marrow Transplant 2009; 15:114-9. [DOI: 10.1016/j.bbmt.2008.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med 2008; 13:215-37. [PMID: 19175693 PMCID: PMC3823350 DOI: 10.1111/j.1582-4934.2008.00559.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
26
|
JAK2 V617F Mutation Testing in Polycythemia Vera: Use and Impact in an Academic Practice. Am J Med Sci 2008; 336:327-9. [DOI: 10.1097/maj.0b013e3181695687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
|
28
|
Tefferi A. Essential thrombocythemia, polycythemia vera, and myelofibrosis: current management and the prospect of targeted therapy. Am J Hematol 2008; 83:491-7. [PMID: 18429051 DOI: 10.1002/ajh.21183] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent discovery of JAK2 and/or MPL mutations in polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) has had a major impact on how we diagnose and treat these disorders. For instance, the presence of a JAK2 mutation is now considered conditio sine qua non for the diagnosis of PV and the World Health Organization classification system has recently revised its diagnostic criteria for PV, ET, and PMF to include JAK2 and MPL mutations as clonal markers. From the standpoint of treatment, JAK-STAT is now identified as a legitimate target pathway for drug development in myeloproliferative neoplasms. Herein, I will first outline my views regarding current management in ET, PV, and PMF and then discuss emerging data on preclinical and clinical activity of anti-JAK2 small molecule drugs. Am. J. Hematol., 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota55905., USA.
| |
Collapse
|
29
|
Abstract
The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22:708-22. [PMID: 18337766 DOI: 10.1038/leu.2008.27] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are frequently activated in leukemia and other hematopoietic disorders by upstream mutations in cytokine receptors, aberrant chromosomal translocations as well as other genetic mechanisms. The Jak2 kinase is frequently mutated in many myeloproliferative disorders. Effective targeting of these pathways may result in suppression of cell growth and death of leukemic cells. Furthermore it may be possible to combine various chemotherapeutic and antibody-based therapies with low molecular weight, cell membrane-permeable inhibitors which target the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to ultimately suppress the survival pathways, induce apoptosis and inhibit leukemic growth. In this review, we summarize how suppression of these pathways may inhibit key survival networks important in leukemogenesis and leukemia therapy as well as the treatment of other hematopoietic disorders. Targeting of these and additional cascades may also improve the therapy of chronic myelogenous leukemia, which are resistant to BCR-ABL inhibitors. Furthermore, we discuss how targeting of the leukemia microenvironment and the leukemia stem cell are emerging fields and challenges in targeted therapies.
Collapse
|
31
|
Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22:686-707. [DOI: 10.1038/leu.2008.26] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Abstract
With the discovery in the last 3 years of novel Janus kinase 2 (JAK2) and thrombopoietin receptor (MPL) mutations, the pathogenetic understanding of and clinical practice for myeloproliferative neoplasms (MPNs) have entered a new era. Each one of these newly discovered mutations, including JAK2V617F, MPLW515L, and a JAK2 exon 12 mutation, has been shown to result in constitutive activation of JAK-STAT signaling and also induce a MPN phenotype in mice. Thus, JAK2 is now considered to be a legitimate target for drug development in MPNs, and small molecule JAK2 inhibitors have already gone through successful preclinical testing, and early-phase human trials in primary myelofibrosis have already begun. Furthermore, JAK2 mutation screening has now become a front-line diagnostic test in the evaluation of both "erythrocytosis" and thrombocytosis and the 2001 World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis have now been revised to incorporate JAK2V617F mutation screening.
Collapse
|
33
|
Ohyashiki K, Hori K, Makino T, Ohyashiki JH. Automated JAK2V617F quantification using a magnetic filtration system and sequence-specific primer-single molecule fluorescence detection. ACTA ACUST UNITED AC 2008; 179:19-24. [PMID: 17981210 DOI: 10.1016/j.cancergencyto.2007.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
Abstract
We established an automated mutational analysis detection system using magnetic filtration and the sequence-specific primer-single molecule fluorescence detection (SSP-SMFD) assay to identify the janus activating kinase-2 (JAK2)(V617F). DNA was extracted from 100 microL of whole blood automatically by a magnetic filtration system. The JAK2 1849G-->T mutation occurs in chronic myeloproliferative disorder (CMPD), and the detection of this change has diagnostic potential. To detect and semiquantitate this mutation, we used two artificial oligonucleotides (wild-type specific and mutated-type specific) and performed the SSP-SMFD assay using an automated fluorescence cell sorter measuring device. The SSP-SMFD assay can detect the presence of a minimum of 5% of the mutated artificial oligonucleotide, thus indicating that this technique is available in detecting contamination of at least 5% cells with the homozygous JAK2(V617F) mutation. Based on this technique, we analyzed 94 patients with CMPD and compared with the results obtained by the polymerase chain reaction (PCR)-direct sequence. Two homozygous JAK2(V617F) patients were identified as heterozygous JAK2(V617F) by the PCR-direct sequence, and four patients judged as wild-type JAK2 by the PCR-direct sequence were identified as heterozygous JAK2(V617F) by the SSP-SMFD method. Our automated system is simple and suitable for high-throughput analysis in detecting JAK2(V617F) with a threshold detection limit of 5%.
Collapse
Affiliation(s)
- Kazuma Ohyashiki
- First Department of Internal Medicine, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 169-0023, Japan
| | | | | | | |
Collapse
|
34
|
Wang YL, Vandris K, Jones A, Cross NCP, Christos P, Adriano F, Silver RT. JAK2 Mutations are present in all cases of polycythemia vera. Leukemia 2007; 22:1289. [PMID: 18079740 DOI: 10.1038/sj.leu.2405047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Abstract
In 1951, William Dameshek described the concept of 'myeloproliferative disorders (MPDs)' by grouping together chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) and erythroleukemia; he reasoned that a self-perpetuating trilineage myeloproliferation underlined their pathogenesis. Pre-Dameshek luminaries who laid the foundation for this unifying concept include Bennett, Virchow, Heuck, Vaquez, Osler, Di Guglielmo and Epstein. In 1960, Nowell and Hungerford discovered the Philadelphia (Ph) chromosome in CML. In 1967, Fialkow and colleagues used X-linked polymorphisms to establish CML as a clonal stem cell disease. Also in 1967, the PV Study Group was summoned by Louis Wasserman to study the natural history of PV and conduct large-scale clinical trials. In 1972, Janet Rowley deciphered the Ph chromosome as a reciprocal translocation between chromosomes 9 and 22, thus paving the way for its subsequent characterization as an oncogenic BCR-ABL mutation. In 1996, Brian Druker discovered imatinib-a small molecule ABL inhibitor with exceptional therapeutic activity in CML. In 2005, a gain-of-function JAK2 mutation (JAK2V617F) was described in BCR-ABL-negative MPDs, raising the prospect of a CML-like treatment strategy in PV, ET and PMF. The current review considers these and other landmark events in the history of MPDs.
Collapse
Affiliation(s)
- A Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2007; 22:14-22. [PMID: 17882280 DOI: 10.1038/sj.leu.2404955] [Citation(s) in RCA: 766] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 2001 World Health Organization (WHO) treatise on the classification of hematopoietic tumors lists chronic myeloproliferative diseases (CMPDs) as a subdivision of myeloid neoplasms that includes the four classic myeloproliferative disorders (MPDs)-chronic myelogenous leukemia, polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)-as well as chronic neutrophilic leukemia (CNL), chronic eosinophilic leukemia/hypereosinophilic syndrome (CEL/HES) and 'CMPD, unclassifiable'. In the upcoming 4th edition of the WHO document, due out in 2008, the term 'CMPDs' is replaced by 'myeloproliferative neoplasms (MPNs)', and the MPN category now includes mast cell disease (MCD), in addition to the other subcategories mentioned above. At the same time, however, myeloid neoplasms with molecularly characterized clonal eosinophilia, previously classified under CEL/HES, are now removed from the MPN section and assembled into a new category of their own. The WHO diagnostic criteria for both the classic BCR-ABL-negative MPDs (that is PV, ET and PMF) and CEL/HES have also been revised, in the 2008 edition, by incorporating new information on their molecular pathogenesis. The current review highlights these changes and also provides diagnostic algorithms that are tailored to routine clinical practice.
Collapse
Affiliation(s)
- A Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
37
|
Pardanani A, Lasho TL, Finke C, Markovic SN, Tefferi A. Demonstration of MPLW515K, but not JAK2V617F, in in vitro expanded CD4+ T lymphocytes. Leukemia 2007; 21:2206-7. [PMID: 17507998 DOI: 10.1038/sj.leu.2404749] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Tefferi A, Vardiman JW. The diagnostic interface between histology and molecular tests in myeloproliferative disorders. Curr Opin Hematol 2007; 14:115-22. [PMID: 17255788 DOI: 10.1097/moh.0b013e32801684d9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The sighting of the Philadelphia chromosome in 1960, later shown to harbor the BCR-ABL mutation in chronic myeloid leukemia, is arguably the most seminal contribution to molecular oncology. In the decades that followed, other cytogenetic and molecular disease markers have been described and effectively incorporated into routine diagnostic tests. This review discusses how this process is unfolding in myeloproliferative disorders. RECENT FINDINGS In 2003, a karyotypically-occult FIP1L1-PDGFRA was reported in a subset of patients with blood eosinophilia and bone marrow mastocytosis; this mutation has since joined several other molecular markers for eosinophilic (e.g. PDGFRbeta- and FGFR1-rearrangements) and mast cell (e.g. KITD816V) disorders. In 2005, JAK2V617F was described in polycythemia vera and other BCR-ABL myeloproliferative disorders; the particular discovery has already had a major impact on current diagnostic approaches in polycythemia vera. These remarkable molecular discoveries are both redefining and reinforcing the diagnostic role of bone marrow histopathology. SUMMARY Recent progress in the molecular pathogenesis of myeloproliferative disorders calls for a paradigm shift in traditional diagnostics, which is based on subjective technologies or assignment to a 'consensus'-based ever-changing list of inclusionary and exclusionary criteria. Routine clinical practice might be better served by diagnostic algorithms that incorporate molecular disease markers, which complement histological impression.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.
| | | |
Collapse
|
39
|
Ohyashiki K, Aota Y, Akahane D, Gotoh A, Ohyashiki JH. JAK2(V617F) mutational status as determined by semiquantitative sequence-specific primer-single molecule fluorescence detection assay is linked to clinical features in chronic myeloproliferative disorders. Leukemia 2007; 21:1097-9. [PMID: 17315023 DOI: 10.1038/sj.leu.2404604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Tefferi A. Classification, Diagnosis and Management of Myeloproliferative Disorders in the JAK2V617F Era. Hematology 2006:240-5. [PMID: 17124067 DOI: 10.1182/asheducation-2006.1.240] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
JAK2V617F, a somatic gain-of-function mutation involving the JAK2 tyrosine kinase gene, occurs in nearly all patients with polycythemia vera (PV) but also in a variable proportion of patients with other myeloid disorders; mutational frequency is estimated at approximately 50% in both essential thrombocythemia (ET) and myelofibrosis (MF), up to 20% in certain subcategories of atypical myeloproliferative disorder (atypical MPD), less than 3% in de novo myelodysplastic syndrome (MDS) or acute myeloid leukemia, and 0% in chronic myeloid leukemia (CML). Accordingly, there is now molecular justification for grouping PV, ET, and MF together in a distinct MPD category (i.e., classic, BCR-ABL− MPD) that is separate from chronic myeloid leukemia (CML), MDS, and atypical MPD. To date, JAK2V617F has not been described in patients with reactive myeloproliferation, lymphoid disorders, or solid tumor. Therefore, the presence of JAK2V617F strongly suggests an underlying MPD and it is therefore reasonable to consider JAK2V617F-based laboratory tests for the evaluation of polycythemia, primary thrombocytosis, unexplained leukocytosis, bone marrow fibrosis, or abdominal vein thrombosis. Current information on disease-specific prognostic relevance of JAK2V617F is inconclusive and confounded by inter-study differences in the performance of mutation screening assays. Regardless, the discovery of JAK2V617F has reinforced the pathogenetic contribution of JAK-STAT signaling in MPD and identifies JAK2 as a valid drug target.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|