1
|
Raja A, Ganta V. Synthetic Antiangiogenic Vascular Endothelial Growth Factor-A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease. J Am Heart Assoc 2024; 13:e034304. [PMID: 39392159 DOI: 10.1161/jaha.124.034304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alternative splicing in the eighth exon C-terminus of VEGF-A (vascular endothelial growth factor-A) results in the formation of proangiogenic VEGF165a and antiangiogenic VEGF165b isoforms. The only known difference between these 2 isoform families is a 6-amino acid switch from CDKPRR (in VEGF165a) to SLTRKD (in VEGF165b). We have recently shown that VEGF165b can induce VEGFR2-activation but fails to induce VEGFR1 (VEGF receptor 1)-activation. The molecular mechanisms that regulate VEGF165b's ability toward differential VEGFR2 versus VEGFR1 activation/inhibition are not yet clear. METHODS AND RESULTS Hypoxia serum starvation was used as an in vitro peripheral artery disease model. Unilateral single ligation of the femoral artery was used as a preclinical peripheral artery disease model. VEGFR1 activating ligands have 2 arginine (RR) residues in their eighth exon C-terminus, that were replaced by lysine-aspartic acid (KD) in VEGF165b. A synthetic anti-angiogenic VEGF165b splice variant in which the KD residues were switched to RR (VEGF165bKD→RR) activated both VEGFR1- and VEGFR2-signaling pathways to induce ischemic-endothelial cell angiogenic capacity in vitro and enhance perfusion recovery in a severe experimental-peripheral artery disease model significantly higher than VEGF165a. Phosphoproteome arrays showed that the therapeutic efficacy of VEGF165bKD→RR over VEGF165a is due to its ability to induce P38-activation in ischemic endothelial cells. CONCLUSIONS Our data shows that the KD residues regulate VEGF165b's VEGFR1 inhibitory property but not VEGFR2. Switching these KD residues to RR resulted in the formation of a synthetic/recombinant VEGF165bKD→RR isoform that has the ability to activate both VEGFR1- and VEGFR2-signaling and induce ischemic-endothelial cell angiogenic and proliferative capacity that matched the angiogenic requirement necessary to achieve perfusion recovery in a severe experimental-peripheral artery disease model.
Collapse
Affiliation(s)
- Adarshini Raja
- Medical College of Georgia Augusta University Augusta GA USA
| | - Vijay Ganta
- Vascular Biology Center and Department of Medicine Augusta University Augusta GA USA
| |
Collapse
|
2
|
Raja Xavier JP, Rianna C, Hellwich E, Nikolou I, Lankapalli AK, Brucker SY, Singh Y, Lang F, Schäffer TE, Salker MS. Excessive endometrial PlGF- Rac1 signalling underlies endometrial cell stiffness linked to pre-eclampsia. Commun Biol 2024; 7:530. [PMID: 38704457 PMCID: PMC11069541 DOI: 10.1038/s42003-024-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).
Collapse
Affiliation(s)
| | - Carmela Rianna
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Emily Hellwich
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Iliana Nikolou
- Department of Women's Health, University of Tübingen, Tübingen, Germany
| | | | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Ostini A, Mourtada-Maarabouni M. Investigation into the Role of Long-Non-Coding RNA MIAT in Leukemia. Noncoding RNA 2023; 9:47. [PMID: 37624039 PMCID: PMC10459085 DOI: 10.3390/ncrna9040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a nuclear long non-coding RNA (LncRNA) with four different splicing variants. MIAT dysregulation is associated with carcinogenesis, mainly acting as an oncogene regulating cellular growth, invasion, and metastasis. The aim of the current study is to investigate the role of MIAT in the regulation of T and chronic myeloid leukemic cell survival. To this end, MIAT was silenced using MIAT-specific siRNAs in leukemic cell lines, and functional assays were performed thereafter. This investigation also aims to investigate the effects of MIAT silencing on the expression of core genes involved in cancer. Functional studies and gene expression determination confirm that MIAT knockdown not only affects short- and long-term survival and the apoptosis of leukemic cells but also plays a pivotal role in the alteration of key genes involved in cancer, including c-MYC and HIF-1A. Our observations suggest that MIAT could act as an oncogene and it has the potential to be used not only as a reliable biomarker for leukemia, but also be employed for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
| | - Mirna Mourtada-Maarabouni
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
4
|
Jiang Y, Chen A, Kline D, Liu Q, Ma J, Wang Y, Zhang T, Qian J, Nelson L, Prasadan K, Hu B, Gittes GK, Xiao X. Polarized macrophages promote gestational beta cell growth through extracellular signal-regulated kinase 5 signalling. Diabetes Obes Metab 2022; 24:1721-1733. [PMID: 35546452 DOI: 10.1111/dom.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022]
Abstract
AIM To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Diana Kline
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qun Liu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jie Ma
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jieqi Qian
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura Nelson
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Yang J, Huang J, Wang H, Liu Y, Tang Y, Lin C, Zhou Q, Chen C. Expression of the Cavin Family in Childhood Leukemia and Its Implications in Subtype Diagnosis and Prognosis Evaluation. Front Pediatr 2022; 10:815421. [PMID: 35722492 PMCID: PMC9203855 DOI: 10.3389/fped.2022.815421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Caveolae are plasma membrane subdomains of many mammalian cells that play critical roles in cellular processes, including endocytosis, signal transduction and tumorigenesis. Cavin proteins are essential for caveola formation, structure and function and are reported to be involved in various human diseases, but little is known about their expression and prognostic value in leukemia. METHODS We performed a detailed analysis of Cavin family mRNA expression levels in different cancer tissues vs. normal tissues via the ONCOMINE, Gene Expression Profiling Interactive Analysis (GEPIA) and Cancer Cell Line Encyclopedia (CCLE) databases. Then, we used qRT-PCR and Western blotting to validate Cavin1-4 expression in 10 fresh leukemia samples. Moreover, we estimated their prognostic value in leukemia with the R programming language and GEPIA database. RESULTS The expression of Cavin members is low in most human cancers, especially in leukemia. Cavin-1 and Cavin-2 are often more expressed in myeloid leukemia than lymphoblastic leukemia, but Cavin-4 has the opposite pattern. Interestingly, low expression of CAVIN1 and CAVIN4 is correlated with poorer outcome but low CAVIN2 expression is associated with a significantly better leukemia prognosis in leukemia. CONCLUSION The Cavin family showed significant expression differences between leukemia and normal cells. High Cavin-2 and low Cavin-4 levels predict poor survival and could be promising subtype diagnosis and prognosis biomarkers for leukemia.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junbin Huang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huabin Wang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Liu
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Lin
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qin Zhou
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Khan R, Palo A, Dixit M. Role of FRG1 in predicting the overall survivability in cancers using multivariate based optimal model. Sci Rep 2021; 11:22505. [PMID: 34795329 PMCID: PMC8602605 DOI: 10.1038/s41598-021-01665-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
FRG1 has a role in tumorigenesis and angiogenesis. Our preliminary analysis showed that FRG1 mRNA expression is associated with overall survival (OS) in certain cancers, but the effect varies. In cervix and gastric cancers, we found a clear difference in the OS between the low and high FRG1 mRNA expression groups, but the difference was not prominent in breast, lung, and liver cancers. We hypothesized that FRG1 expression level could affect the functionality of the correlated genes or vice versa, which might mask the effect of a single gene on the OS analysis in cancer patients. We used the multivariate Cox regression, risk score, and Kaplan Meier analyses to determine OS in a multigene model. STRING, Cytoscape, HIPPIE, Gene Ontology, and DAVID (KEGG) were used to deduce FRG1 associated pathways. In breast, lung, and liver cancers, we found a distinct difference in the OS between the low and high FRG1 mRNA expression groups in the multigene model, suggesting an independent role of FRG1 in survival. Risk scores were calculated based upon regression coefficients in the multigene model. Low and high-risk score groups showed a significant difference in the FRG1 mRNA expression level and OS. HPF1, RPL34, and EXOSC9 were the most common genes present in FRG1 associated pathways across the cancer types. Validation of the effect of FRG1 mRNA expression level on these genes by qRT-PCR supports that FRG1 might be an upstream regulator of their expression. These genes may have multiple regulators, which also affect their expression, leading to the masking effect in the survival analysis. In conclusion, our study highlights the role of FRG1 in the survivability of cancer patients in tissue-specific manner and the use of multigene models in prognosis.
Collapse
Affiliation(s)
- Rehan Khan
- grid.419643.d0000 0004 1764 227XSchool of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, P.O. Jatni, Khurda, 752050 Odisha India
| | - Ananya Palo
- grid.419643.d0000 0004 1764 227XSchool of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, P.O. Jatni, Khurda, 752050 Odisha India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, P.O. Jatni, Khurda, 752050, Odisha, India. .,School of Biological Sciences, NISER, Room No.- 203, P.O. Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
7
|
Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 Signaling and its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models. Int J Mol Sci 2020; 21:E1388. [PMID: 32085654 PMCID: PMC7073125 DOI: 10.3390/ijms21041388] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family members, VEGF-A, placenta growth factor (PlGF), and to a lesser extent VEGF-B, play an essential role in tumor-associated angiogenesis, tissue infiltration, and metastasis formation. Although VEGF-A can activate both VEGFR-1 and VEGFR-2 membrane receptors, PlGF and VEGF-B exclusively interact with VEGFR-1. Differently from VEGFR-2, which is involved both in physiological and pathological angiogenesis, in the adult VEGFR-1 is required only for pathological angiogenesis. Besides this role in tumor endothelium, ligand-mediated stimulation of VEGFR-1 expressed in tumor cells may directly induce cell chemotaxis and extracellular matrix invasion. Furthermore, VEGFR-1 activation in myeloid progenitors and tumor-associated macrophages favors cancer immune escape through the release of immunosuppressive cytokines. These properties have prompted a number of preclinical and clinical studies to analyze VEGFR-1 involvement in the metastatic process. The aim of the present review is to highlight the contribution of VEGFs/VEGFR-1 signaling in the progression of different tumor types and to provide an overview of the therapeutic approaches targeting VEGFR-1 currently under investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, “Istituto Dermopatico dell’Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico”, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| |
Collapse
|
8
|
Kim SH, Pei QM, Jiang P, Liu J, Sun RF, Qian XJ, Liu JB. Effects of dexamethasone on VEGF-induced MUC5AC expression in human primary bronchial epithelial cells: Implications for asthma. Exp Cell Res 2020; 389:111897. [PMID: 32035951 DOI: 10.1016/j.yexcr.2020.111897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
Mucins are major macromolecular components of lung mucus that are mainly responsible for the viscoelastic property of mucus. MUC5AC is a major mucin glycoprotein that is hypersecreted in asthmatic individuals. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Our previous studies indicate that VEGF upregulates MUC5AC expression by interacting with VEGF receptor 2 (VEGFR2). It has been shown that dexamethasone (Dex) downregulates MUC5AC expression; however, the underlying mechanisms have not been completely elucidated. Therefore, we sought to investigate the effect of Dex on MUC5AC expression induced by VEGF and study the underlying mechanisms. We tested the effects of Dex on VEGFR2 and RhoA activation, caveolin-1 expression, and the association of caveolin-1 and VEGFR2 in primary bronchial epithelial cells. Dex downregulated MUC5AC mRNA and protein levels in a dose- and time-dependent manner, and suppressed the activation of VEGFR2 and RhoA induced by VEGF. Additionally, Dex upregulated caveolin-1 protein levels in a dose- and time-dependent manner. Furthermore, phospho-VEGFR2 expression was decreased through overexpression of caveolin-1 and increased after caveolin-1 knockdown. Dex treatment attenuated the VEGF-decreased association of caveolin-1 and VEGFR2. Collectively, our findings suggest that Dex downregulates VEGF-induced MUC5AC expression by inactivating VEGFR2 and RhoA. Furthermore, decreased MUC5AC expression by Dex was related to the increased association of caveolin-1 with VEGFR2. Further studies characterizing these mechanisms are required to facilitate the development of improved treatment strategies for asthma.
Collapse
Affiliation(s)
- Sung-Ho Kim
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Qing-Mei Pei
- Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China.
| | - Ping Jiang
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Juan Liu
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Rong-Fei Sun
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Xue-Jiao Qian
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Jiang-Bo Liu
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
9
|
Kim SH, Pei QM, Jiang P, Liu J, Sun RF, Qian XJ, Liu JB. Upregulation of MUC5AC by VEGF in human primary bronchial epithelial cells: implications for asthma. Respir Res 2019; 20:282. [PMID: 31831011 PMCID: PMC6909599 DOI: 10.1186/s12931-019-1245-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Airway mucus hypersecretion is an important pathophysiological feature in asthma. Mucins are glycoproteins that are mainly responsible for the viscoelastic property of mucus, and MUC5AC is a major mucin glycoprotein that is overproduced in asthma. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Therefore, we sought to investigate the effect of VEGF on MUC5AC expression and study the underlying mechanisms. Methods In order to elucidate the precise mechanism underlying the effect of VEGF on MUC5AC expression, we tested the effects of VEGF on RhoA activation and the association of caveolin-1 and VEGFR2 in Primary Bronchial Epithelial Cells. Results VEGF up-regulated MUC5AC mRNA and protein levels in a dose- and time-dependent manner, and activated RhoA. Additionally, VEGF-induced MUC5AC expression and RhoA activation were enhanced by disrupting caveolae with cholesterol depletion and reversed by cholesterol repletion, and inhibited by a selective VEGF receptor 2 (VEGFR2) inhibitor SU1498. Furthermore, phospho-VEGFR2 expression was decreased via overexpression of caveolin-1. VEGF treatment reduced the association of caveolin-1 and VEGFR2. Conclusion Collectively, our findings suggest that VEGF up-regulates MUC5AC expression and RhoA activation by interaction with VEGFR2, and this phenomenon was related with the association of caveolin-1 and VEGFR2. Further studies on these mechanisms are needed to facilitate the development of treatments for asthma.
Collapse
Affiliation(s)
- Sung-Ho Kim
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China.
| | - Qing-Mei Pei
- Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Ping Jiang
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Juan Liu
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Rong-Fei Sun
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Xue-Jiao Qian
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Jiang-Bo Liu
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| |
Collapse
|
10
|
Tiwari A, Mukherjee B, Hassan MK, Pattanaik N, Jaiswal AM, Dixit M. Reduced FRG1 expression promotes prostate cancer progression and affects prostate cancer cell migration and invasion. BMC Cancer 2019; 19:346. [PMID: 30975102 PMCID: PMC6458714 DOI: 10.1186/s12885-019-5509-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prostate cancer is the most common form of cancer in males and accounts for high cancer related deaths. Therapeutic advancement in prostate cancer has not been able to reduce the mortality burden of prostate cancer, which warrants further research. FRG1 which affects angiogenesis and cell migration in Xenopus, can be a potential player in tumorigenesis. In this study, we investigated the role of FRG1 in prostate cancer progression. METHODS Immunohistochemistry was performed to determine FRG1 expression in patient samples. FRG1 expression perturbation was done to investigate the effect of FRG1 on cell proliferation, migration and invasion, in DU145, PC3 and LNCaP cells. To understand the mechanism, we checked expression of various cytokines and MMPs by q-RT PCR, signaling molecules by western blot, in FRG1 perturbation sets. Results were validated by use of pharmacological inhibitor and activator and, western blot. RESULTS In prostate cancer tissue, FRG1 levels were significantly reduced, compared to the uninvolved counterpart. FRG1 expression showed variable effect on PC3 and DU145 cell proliferation. FRG1 levels consistently affected cell migration and invasion, in both DU145 and PC3 cells. Ectopic expression of FRG1 led to significant reduction in cell migration and invasion in both DU145 and PC3 cells, reverse trends were observed with FRG1 knockdown. In androgen receptor positive cell line LNCaP, FRG1 doesn't affect any of the cell properties. FRG1 knockdown led to significantly enhanced expression of GM-CSF, MMP1, PDGFA and CXCL1, in PC3 cells and, in DU145, it led to higher expression of GM-CSF, MMP1 and PLGF. Interestingly, FRG1 knockdown in both the cell lines led to activation of p38 MAPK. Pharmacological activation of p38 MAPK led to increase in the expression of GM-CSF and PLGF in DU145 whereas in PC3 it led to enhanced expression of GM-CSF, MMP1 and CXCL1. On the other hand, inhibition of p38 MAPK led to reduction in the expression of above mentioned cytokines. CONCLUSION FRG1 expression is reduced in prostate adenocarcinoma tissue. FRG1 expression affects migration and invasion in AR negative prostate cancer cells through known MMPs and cytokines, which may be mediated primarily via p38 MAPK activation.
Collapse
Affiliation(s)
- Ankit Tiwari
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, PO: Bhimpur-Padanpur, Via: Jatni, Odisha, 752050, India
| | - Bratati Mukherjee
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, PO: Bhimpur-Padanpur, Via: Jatni, Odisha, 752050, India
| | - Md Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, PO: Bhimpur-Padanpur, Via: Jatni, Odisha, 752050, India
| | - Niharika Pattanaik
- SRL Diagnostics Ltd, Plot 2084, Hall Plot 339/4820, Goutam Nagar Unit no. 28, Bhubaneswar, Odisha, 751014, India
| | - Archita Mohanty Jaiswal
- SRL Diagnostics Ltd, Plot 2084, Hall Plot 339/4820, Goutam Nagar Unit no. 28, Bhubaneswar, Odisha, 751014, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, PO: Bhimpur-Padanpur, Via: Jatni, Odisha, 752050, India.
| |
Collapse
|
11
|
Lacal PM, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res 2018; 136:97-107. [PMID: 30170190 DOI: 10.1016/j.phrs.2018.08.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
The vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase receptor for VEGF-A, VEGF-B, and placental growth factor (PlGF) ligands that is expressed in endothelial, myelomonocytic and tumor cells. VEGF-B and PlGF exclusively bind to VEGFR-1, whereas VEGF-A also binds to VEGFR-2. At variance with VEGFR-2, VEGFR-1 does not play a relevant role in physiological angiogenesis in the adult, while it is important in tumor-associated angiogenesis. VEGFR-1 and PlGF are expressed in a variety of tumors, promote invasiveness and contribute to resistance to anti-VEGF-A therapy. The currently approved antiangiogenic therapies for the treatment of a variety of solid tumors hamper VEGF-A signaling mediated by both VEGFR-2 and VEGFR-1 [i.e., the monoclonal antibody (mAb) anti-VEGF-A bevacizumab, the chimeric molecule aflibercept and several small molecule tyrosine kinase inhibitors] or exclusively by VEGFR-2 (i.e., the mAb anti-VEGFR-2 ramucirumab). However, molecules that interfere with VEGF-A/VEGFR-2 signaling determine severe adverse effects due to inhibition of physiological angiogenesis and their efficacy is hampered by tumor infiltration of protumoral myeloid cells. Blockade of VEGFR-1 may exert anti-tumor activity by multiple mechanisms: a) inhibition of tumor-associated angiogenesis; b) reduction of myeloid progenitor mobilization and tumor infiltration by VEGFR-1 expressing M2 macrophages, which contribute to tumor progression and spreading; c) inhibition of invasiveness, vasculogenic mimicry and survival of VEGFR-1 positive tumor cells. As a consequence of these properties, molecules targeting VEGFR-1 are expected to produce less adverse effects and to counteract resistance towards anti-VEGF-A therapies. More interestingly, selective VEGFR-1 inhibition might enhance the efficacy of immunotherapy with immune checkpoint inhibitors. In this review, we will examine the experimental evidence available so far that supports targeting VEGFR-1 signal transduction pathway for cancer treatment by competitive inhibitors that prevent growth factor interaction with the receptor and non-competitive inhibitors that hamper receptor activation without affecting ligand binding.
Collapse
Affiliation(s)
- Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
12
|
Dai Z, Tang H, Pan Y, Chen J, Li Y, Zhu J. Gene expression profiles and pathway enrichment analysis of human osteosarcoma cells exposed to sorafenib. FEBS Open Bio 2018; 8:860-867. [PMID: 29744300 PMCID: PMC5929930 DOI: 10.1002/2211-5463.12428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022] Open
Abstract
Sorafenib is an inhibitor of a variety of tyrosine kinase receptors used to treat various cancers including hepatocellular, renal cell and thyroid carcinoma. It has been shown to change various targets associated with osteosarcoma, but the detailed mechanism remains unclear. In order to identify key genes, enriched pathways and important modules during the exposure of human osteosarcoma cells to sorafenib, data for gene expression profiles (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53155) were downloaded from the GEO database. In total, 61 differentially expressed genes (DEGs) were identified by the R bioconductor packages. Functional and enrichment analyses of DEGs were performed using the DAVID database. These revealed that DEGs were enriched in biological processes, molecular function and KEGG pathway of inflammatory immune response and angiogenesis. A protein-protein interaction network was constructed by string and visualized in cytoscape, and eight genes were selected as hubs: IL8,CXCL2,PTGS2,FOS,CXCL1, C3,EHMT2 and PGF. Subsequently, only one cluster was identified by mcode, which consisted of six nodes (CXCL1,CXCL2,PTGS2,FOS, C3 and PGF) and nine edges. PGF was the seed gene in this cluster. In conclusion, the results of this data mining and integration should help in revealing new mechanisms and targets of sorafenib in inhibiting osteosarcoma.
Collapse
Affiliation(s)
- Zhehao Dai
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Haoyu Tang
- Department of Minimally Invasive OrthopaedicFirst People's Hospital of HuaihuaJishou University of the Fourth Affiliated HospitalHuaihuaChina
| | - Yue Pan
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Junquan Chen
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yongping Li
- Department of Minimally Invasive OrthopaedicFirst People's Hospital of HuaihuaJishou University of the Fourth Affiliated HospitalHuaihuaChina
| | - Jun Zhu
- Department of Minimally Invasive OrthopaedicFirst People's Hospital of HuaihuaJishou University of the Fourth Affiliated HospitalHuaihuaChina
| |
Collapse
|
13
|
Yan F, Shen N, Pang JX, Zhao N, Zhang YW, Bode AM, Al-Kali A, Litzow MR, Li B, Liu SJ. A vicious loop of fatty acid-binding protein 4 and DNA methyltransferase 1 promotes acute myeloid leukemia and acts as a therapeutic target. Leukemia 2018; 32:865-873. [PMID: 28993705 PMCID: PMC5871544 DOI: 10.1038/leu.2017.307] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/27/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
Aberrant DNA methylation mediated by deregulation of DNA methyltransferases (DNMT) is a key hallmark of acute myeloid leukemia (AML), yet efforts to target DNMT deregulation for drug development have lagged. We previously demonstrated that upregulation of fatty acid-binding protein 4 (FABP4) promotes AML aggressiveness through enhanced DNMT1-dependent DNA methylation. Here, we demonstrate that FABP4 upregulation in AML cells occurs through vascular endothelial growth factor (VEGF) signaling, thus elucidating a crucial FABP4-DNMT1 regulatory feedback loop in AML biology. We show that FABP4 dysfunction by its selective inhibitor BMS309403 leads to downregulation of DNMT1, decrease of global DNA methylation and re-expression of p15INK4B tumor suppressor gene by promoter DNA hypomethylation in vitro, ex vivo and in vivo. Functionally, BMS309403 suppresses cell colony formation, induces cell differentiation, and, importantly, impairs leukemic disease progression in mouse models of leukemia. Our findings highlight AML-promoting properties of the FABP4-DNMT1 vicious loop, and identify an attractive class of therapeutic agents with a high potential for clinical use in AML patients. The results will also assist in establishing the FABP4-DNMT1 loop as a target for therapeutic discovery to enhance the index of current epigenetic therapies.
Collapse
Affiliation(s)
- F Yan
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - N Shen
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - JX Pang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - N Zhao
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - YW Zhang
- Department of Microbiology and Immunology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - AM Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - A Al-Kali
- Hematology Division, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - MR Litzow
- Hematology Division, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - B Li
- Department of Microbiology and Immunology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - SJ Liu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| |
Collapse
|
14
|
Placental growth factor: A review of literature and future applications. Pregnancy Hypertens 2018; 14:260-264. [PMID: 29555222 DOI: 10.1016/j.preghy.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
|
15
|
Newell LF, Holtan SG. Placental growth factor: What hematologists need to know. Blood Rev 2017; 31:57-62. [PMID: 27608972 PMCID: PMC5916812 DOI: 10.1016/j.blre.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
Abstract
Although first identified in placenta, the angiogenic factor known as placental growth factor (PlGF) can be widely expressed in ischemic or damaged tissues. Recent studies have indicated that PlGF is a relevant factor in the pathobiology of blood diseases including hemoglobinopathies and hematologic malignancies. Therapies for such blood diseases may one day be based upon these and ongoing investigations into the role of PlGF in sickle cell disease, acute and chronic leukemias, and complications related to hematopoietic cell transplantation. In this review, we summarize recent studies regarding the potential role of PlGF in blood disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Laura F Newell
- Oregon Health and Science University, Center for Hematologic Malignancies, Portland, OR, USA.
| | - Shernan G Holtan
- University of Minnesota, Blood and Marrow Transplant Program, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Akrami H, Mahmoodi F, Havasi S, Sharifi A. PlGF knockdown inhibited tumor survival and migration in gastric cancer cell via PI3K/Akt and p38MAPK pathways. Cell Biochem Funct 2016; 34:173-80. [PMID: 26968576 DOI: 10.1002/cbf.3176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/24/2016] [Accepted: 02/16/2016] [Indexed: 11/10/2022]
Abstract
The molecular signalling of placental growth factor (PlGF), a member of the vascular endothelial growth factor family, was not uncovered in human adenocarcinoma gastric cell line (AGS). The purpose of this study was to examine the inhibitory effects of PlGF knockdown on cell proliferation, apoptosis and migration through p38 mitogen-activated protein kinase (p38MAPK) and PI3K pathways in human adenocarcinoma gastric cell line (AGS). To study PlGF knockdown effect, AGS cells were treated with 40 pmol of small interfering RNA (siRNA) related to PlGF gene and also a scrambled siRNA as control. Trypan Blue and Anexin V staining of AGS cells treated with PlGF-specific siRNA showed induction of apoptosis. Wound healing assay and zymography indicated that cellular migration and matrix metalloproteinases activities were reduced in response to PlGF knockdown. Phosphorylation of Akt and p38MAPK was reduced in AGS cells treated with PlGF-specific siRNA. PlGF knockdown decreased transcripts of PI3K, Akt, p38MAPK, PCNA, Caspase-3, OCT3/OCT4 and CD44, but elevated p53 and SOX2 transcripts. Our results indicated that PlGF knockdown decreased migration and induced apoptosis through PI3K/Akt1 and p38MAPK signal transduction in AGS cells.
Collapse
Affiliation(s)
- Hassan Akrami
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Fatemeh Mahmoodi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Somaye Havasi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Amene Sharifi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
17
|
Zhang L, Song K, Zhou L, Xie Z, Zhou P, Zhao Y, Han Y, Xu X, Li P. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3B1 (HS3ST3B1) promotes angiogenesis and proliferation by induction of VEGF in acute myeloid leukemia cells. J Cell Biochem 2016; 116:1101-12. [PMID: 25536282 DOI: 10.1002/jcb.25066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 12/18/2014] [Indexed: 01/01/2023]
Abstract
Heparan sulfate (HS) are complex polysaccharides that reside on the plasma membrane of almost all mammalian cells, and play an important role in physiological and pathological conditions. Heparan sulfate D-glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1) participates in the last biosynthetic steps of HS and transfers sulfate to the 3-O-position of glucosamine residues to yield mature sugar chains. To date very few biological processes or proteins have been described that are modulated by HS3ST3B1. In this study, we observed that HS3ST3B1 positively contributed to acute myeloid leukemia (AML) progression in vitro and in vivo, and these activities were associated with an induction of the proangiogenic factor VEGF expression and shedding. Moreover, the effects of HS3ST3B1 on VEGF release can be attenuated after treatment of heparanase inhibitor suramin, which prevented VEGF secretion and subsequently blocked VEGF-induced activation of ERK and AKT, suggesting that 3-O-sulfation of HS by HS3ST3B1 facilitated VEGF shedding; the effects of HS3ST3B1 on activation of ERK and AKT can also be blocked by VEGFR inhibitor axitinib, suggestive of a relationship between 3-O-sulfation of HS and VEGF-activated signaling pathways. Taken together, our findings support that VEGF is an important functional target of HS3ST3B1 and provide a new mechanism of HS3ST3B1 in AML.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kameritsch P, Kiemer F, Beck H, Pohl U, Pogoda K. Cx43 increases serum induced filopodia formation via activation of p21-activated protein kinase 1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2907-17. [PMID: 26255026 DOI: 10.1016/j.bbamcr.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 01/02/2023]
Abstract
In a previous study we could show that connexin 43 (Cx43) expression increased the migration of cells in a channel-independent manner involving the MAPK p38. We analyzed here the mechanism by which Cx43 enhanced p38 activation and migration related changes of the actin cytoskeleton. HeLa cells were used as a model system for the controlled expression of Cx43 and truncated Cx43 proteins. The expression of Cx43 altered the actin cytoskeleton organization in response to serum stimulation. Cx43 expressing HeLa cells had significantly more filopodial protrusions per cell than empty-vector transfected control cells. The expression of the channel incompetent carboxyl tail of Cx43 was sufficient to enhance the filopodia formation whereas the N-terminal, channel-building part, had no such effect. The enhanced filopodia formation was p38 dependent since the p38 blocker SB203580 significantly diminished it. Immunoprecipitation revealed an interaction of the upstream regulator of p38, p21-activated protein kinase 1 (PAK1), with Cx43 resulting in an enhanced phosphorylation of PAK1. Moreover, p38 activation, filopodia formation and cell migration were significantly reduced by blocking the PAK1 activity with its pharmacological inhibitor, IPA-3. The p38 target Hsp27, which favors the actin polymerization in its phosphorylated form, was significantly more phosphorylated characterizing it as a potential candidate molecule to enhance the serum-induced actin polymerization in Cx43 expressing cells. Our results provide a novel mechanism by which Cx43 can modify actin cytoskeletal dynamics and may thereby enhance cell migration.
Collapse
Affiliation(s)
- Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| | - Felizitas Kiemer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany.
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany.
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 München, Germany.
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| |
Collapse
|
19
|
Kupsa T, Horacek JM, Jebavy L. The role of adhesion molecules in acute myeloid leukemia and (hemato)oncology: A systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:1-11. [DOI: 10.5507/bp.2014.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022] Open
|
20
|
Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857504. [PMID: 24738074 PMCID: PMC3967716 DOI: 10.1155/2014/857504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/02/2022]
Abstract
Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets.
Collapse
|
21
|
Yu Y, Wu Z, Zhang J, Zhai Y, Yuan Y, Liu S, Wang H, Shi J. Clustered precursors in bone marrow sections predict early relapse in patients with acute myeloid leukemia within hematologic remission. J Transl Med 2014; 12:18. [PMID: 24447607 PMCID: PMC3901753 DOI: 10.1186/1479-5876-12-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/17/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bone marrow (BM) aspiration is largely used for relapse assessment in acute myeloid leukemia (AML). It remains unclear what roles that BM trephine biopsy plays on relapse assessment. METHODS Bone marrow (BM) sections during complete remission (CR) from 60 acute myeloid leukemia (AML) patients were retrospectively analyzed. Computer image processing technology was performed for detection of the distance between precursors and endosteum, and density of precursors was also calculated under light microscopic image. Immunohistochemistry was used to identify the immunophenotype of clustered precursors. RESULTS Except for single and double precursors, there existed clustered precursors of 3-5 cells during CR. Here, we demonstrated that clustered precursors, but not single and double precursors, were useful in risk factor of relapse. Area under the receiving operator curve (ROC) was of 0.007 (CI 95%, from 0.572 to 0.851). Using a standard cut-off value of >4.0/mm² for cluster density, early relapse was detected with a sensitivity of 51.5% and a specificity of 85.7%.Multivariate Cox regression analysis revealed that clustered precursor is an independent risk factor for early relapse (Adjusted HR: 0.325, 95% CI: 0.156-0.679, p = 0.003). CONCLUSIONS Cumulatively, clustered precursors in BM sections during CR may serve as an independent risk factor of early relapse and poor outcome for AML patients in cluster density > 4.0/mm² in sections. Early aggressive interventions are needed to prevent hematologic relapse.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
22
|
Wei SC, Tsao PN, Weng MT, Cao Z, Wong JM. Flt-1 in colorectal cancer cells is required for the tumor invasive effect of placental growth factor through a p38-MMP9 pathway. J Biomed Sci 2013; 20:39. [PMID: 23799978 PMCID: PMC3704813 DOI: 10.1186/1423-0127-20-39] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/04/2013] [Indexed: 02/08/2023] Open
Abstract
Background Placenta growth factor (PlGF), a dimeric glycoprotein with 53% homology to VEGF, binds to VEGF receptor-1 (Flt-1), but not to VEGF receptor-2 (Flk-1), and may function by modulating VEGF activity. We previously have showed that PlGF displays prognostic value in colorectal cancer (CRC) but the mechanism remains elucidated. Results Overexpression of PlGF increased the invasive/migration ability and decreased apoptosis in CRC cells showing Flt-1 expression. Increased migration was associated with increasing MMP9 via p38 MAPK activation. Tumors grew faster, larger; with higher vascularity from PlGF over-expression cells in xenograft assay. In two independent human CRC tissue cohorts, PlGF, MMP9, and Flt-1 expressions were higher in the advanced than the localized disease group. PlGF expression correlated with MMP9, and Flt-1 expression. CRC patients with high PlGF and high Flt-1 expression in tissue had poor prognosis. Conclusion PlGF/Flt-1 signaling plays an important role in CRC progression, blocking PlGF/Flt-1 signaling maybe an alternative therapy for CRC.
Collapse
Affiliation(s)
- Shu-Chen Wei
- Departments of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Wu Z, Yu Y, Zhang J, Zhai Y, Tao Y, Shi J. Clustered immature myeloid precursors in intertrabecular region during remission evolve from leukemia stem cell near endosteum and contribute to disease relapse in acute myeloid leukemia. Med Hypotheses 2013; 80:624-8. [DOI: 10.1016/j.mehy.2013.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
24
|
Wu T, Zhang B, Ye F, Xiao Z. A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src. Am J Physiol Renal Physiol 2013; 304:F820-30. [DOI: 10.1152/ajprenal.00294.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
VEGF is known to be an endothelial cell mitogen that stimulates angiogenesis by promoting endothelial cell survival, proliferation, migration, and differentiation. Recent studies have suggested that VEGF may play a pivotal role in glomerular sclerosis through extracellular matrix protein (ECM) accumulation, although the signaling mechanism is still unclear. The GTPase RhoA has been implicated in VEGF-induced type IV collagen accumulation in some settings. Here we study the role of different VEGF receptors and membrane microdomain caveolae in VEGF-induced RhoA activation and fibronectin upregulation in mesangial cells (MCs). In primary rat MC, VEGF time and dose dependently increased fibronectin production. Rho pathway inhibition blocked VEGF-induced fibronectin upregulation. VEGF-induced RhoA activation was prevented by disrupting caveolae with cholesterol depletion and rescued by cholesterol repletion. VEGF stimulation led to a markedly increased VEGFR2/caveolin-1 but failed to increase VEGFR1/caveolin-1 association. VEGF also increased caveolin-1/Src association and activated Src, and Src inhibitor blocked RhoA activation and fibronectin upregulation. Src-mediated phosphorylation of caveolin-1 on Y14 has also been implicated in signaling responses. Overexpression of nonphosphorylatable caveolin-1 Y14A prevented VEGF-induced RhoA activation and fibronectin upregulation. In vivo, although VEGFR1 and VEGFR2 protein levels were both increased in the kidney cortices of diabetic rats, VEGFR2/caveolin-1 association but not VEGFR1/caveolin-1 association was significantly increased. In conclusion, VEGF-induced RhoA activation and fibronectin upregulation require caveolae and caveolin-1 interaction with VEGFR2 and Src. Interference with caveolin/-ae signaling may provide new avenues for the treatment of fibrotic renal disease.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Baifang Zhang
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Feng Ye
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Zeling Xiao
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
25
|
Cheng SJ, Ko HH, Cheng SL, Lee JJ, Chen HM, Chang HH, Kok SH, Kuo MYP, Chiang CP. Arecoline-stimulated placenta growth factor production in gingival epithelial cells: modulation by curcumin. Oral Dis 2012; 19:513-8. [PMID: 23163860 DOI: 10.1111/odi.12034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/12/2012] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Placenta growth factor (PlGF) is associated with the progression and prognosis of oral cancer. MATERIALS AND METHODS This study used ELISA, quantitative polymerase chain reaction, and Western blotting to study the arecoline-stimulated (PlGF) protein or mRNA expression in human gingival epithelial S-G cells. RESULTS Arecoline, a major areca nut alkaloid and an oral carcinogen, could stimulate PlGF protein synthesis in S-G cells in a dose- and time-dependent manner. The levels of PlGF protein secretion increased about 3.1- and 3.8-fold after 24-h exposure to 0.4 and 0.8 mM arecoline, respectively. Pretreatment with antioxidant N-acetyl-l-cysteine (NAC) and ERK inhibitor PD98059, but not NF-κB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580, and PI3-K inhibitor LY294002, significantly reduced arecoline-induced PlGF protein synthesis. ELISA analyses demonstrated that NAC and PD98059 reduced about 43% and 38% of the arecoline-induced PlGF protein secretion, respectively. However, combined treatment with NAC and PD98059 did not show additive effect. Moreover, 10 μM curcumin and 4 mM NAC significantly inhibited arecoline-induced ERK activation. Furthermore, 10 μM curcumin completely blocked arecoline-induced PlGF mRNA expression. CONCLUSION Arecoline-induced PlGF synthesis is probably mediated by reactive oxygen species/ERK pathways, and curcumin may be an useful agent in controlling oral carcinogenesis.
Collapse
Affiliation(s)
- S-J Cheng
- Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan; School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dewerchin M, Carmeliet P. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a011056. [PMID: 22908198 DOI: 10.1101/cshperspect.a011056] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family that also comprises VEGF-A (VEGF), VEGF-B, VEGF-C, and VEGF-D. Unlike VEGF, PlGF is dispensable for development and health but has diverse nonredundant roles in tissue ischemia, malignancy, inflammation, and multiple other diseases. Genetic and pharmacological gain-of-function and loss-of-function studies have identified molecular mechanisms of this multitasking cytokine and characterized the therapeutic potential of delivering or blocking PlGF for various disorders.
Collapse
Affiliation(s)
- Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular Link, VIB Vesalius Research Center, K.U. Leuven, Leuven, Belgium
| | | |
Collapse
|
27
|
Li B, Wang C, Zhang Y, Zhao XY, Huang B, Wu PF, Li Q, Li H, Liu YS, Cao LY, Dai WM, Fang WG, Shang DS, Cao L, Zhao WD, Chen YH. Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene 2012; 32:2952-62. [DOI: 10.1038/onc.2012.313] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Naoghare PK, Tak YK, Kim MJ, Han E, Song JM. Knock-Down of Argonaute 2 (AGO2) Induces Apoptosis in Myeloid Leukaemia Cells and Inhibits siRNA-Mediated Silencing of Transfected Oncogenes in HEK-293 Cells. Basic Clin Pharmacol Toxicol 2011; 109:274-82. [DOI: 10.1111/j.1742-7843.2011.00716.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Casalou C, Costa A, Carvalho T, Gomes AL, Zhu Z, Wu Y, Dias S. Cholesterol regulates VEGFR-1 (FLT-1) expression and signaling in acute leukemia cells. Mol Cancer Res 2011; 9:215-24. [PMID: 21209384 DOI: 10.1158/1541-7786.mcr-10-0155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
VEGF receptors 1 (FLT-1) and 2 (KDR) are expressed on subsets of acute myeloid leukemia (AML) and acute lymphoid leukemia cells, in which they induce cell survival, proliferation, and migration. However, little is known about possible cofactors that regulate VEGF receptor expression and activation on leukemia cells. Here we show that cholesterol accumulates in leukemia-rich sites within bone marrow of xenotransplanted severe combined immunodeficient (SCID) mice. Therefore, we hypothesized that cholesterol-rich domains might regulate FLT-1 signaling and chemotaxis of acute leukemias. We then showed that FLT-1 accumulates in discrete cholesterol-rich membrane domains where it associates with caveolin-1 and that placenta growth factor (PlGF)/VEGF stimulation promotes FLT-1 localization in such cholesterol-rich domains. Accordingly, FLT-1 localization and its phosphorylation are abrogated by methyl-β-cyclodextrin (MβCD), which removes cellular cholesterol, and by nystatin, an inhibitor of lipid-raft endocytosis. Mechanistically, cholesterol increases FLT-1 expression and promotes PlGF/VEGF-induced leukemia cells viability and also induces VEGF production by the leukemia cells in vitro. Taken together, we conclude that cholesterol regulates VEGF:VEGFR-1 signaling on subsets of acute leukemias, modulating cell migration, and viability, which may be crucial for disease progression. Finally, we provide evidence obtained from human AML samples that primary leukemia cells accumulate significantly more cholesterol than do normal cells and that cholesterol accumulation correlates with disease aggressiveness.
Collapse
Affiliation(s)
- Cristina Casalou
- Angiogenesis Group, Instituto Português de Oncologia Franscisco Gentil de Lisboa, EPE (CIPM/IPOLFG), Lisbon 1099-023, Portugal
| | | | | | | | | | | | | |
Collapse
|
30
|
Placental growth factor (PlGF) enhances breast cancer cell motility by mobilising ERK1/2 phosphorylation and cytoskeletal rearrangement. Br J Cancer 2010; 103:82-9. [PMID: 20551949 PMCID: PMC2905300 DOI: 10.1038/sj.bjc.6605746] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: During metastasis, cancer cells migrate away from the primary tumour and invade the circulatory system and distal tissues. The stimulatory effect of growth factors has been implicated in the migration process. Placental growth factor (PlGF), expressed by 30–50% of primary breast cancers, stimulates measurable breast cancer cell motility in vitro within 3 h. This implies that PlGF activates intracellular signalling kinases and cytoskeletal remodelling necessary for cellular migration. The PlGF-mediated motility is prevented by an Flt-1-antagonising peptide, BP-1, and anti-PlGF antibody. The purpose of this study was to determine the intracellular effects of PlGF and the inhibiting peptide, BP-1. Methods: Anti-PlGF receptor (anti-Flt-1) antibody and inhibitors of intracellular kinases were used for analysis of PlGF-delivered intracellular signals that result in motility. The effects of PlGF and BP-1 on kinase activation, intermediate filament (IF) protein stability, and the actin cytoskeleton were determined by immunohistochemistry, cellular migration assays, and immunoblots. Results: Placental growth factor stimulated phosphorylation of extracellular-regulated kinase (ERK)1/2 (pERK) in breast cancer cell lines that also increased motility. In the presence of PlGF, BP-1 decreased cellular motility, reversed ERK1/2 phosphorylation, and decreased nuclear and peripheral pERK1/2. ERK1/2 kinases are associated with rearrangements of the actin and IF components of the cellular cytoskeleton. The PlGF caused rearrangements of the actin cytoskeleton, which were blocked by BP-1. The PlGF also stabilised cytokeratin 19 and vimentin expression in MDA-MB-231 human breast cancer cells in the absence of de novo transcription and translation. Conclusions: The PlGF activates ERK1/2 kinases, which are associated with cellular motility, in breast cancer cells. Several of these activating events are blocked by BP-1, which may explain its anti-tumour activity.
Collapse
|
31
|
Saulle E, Riccioni R, Coppola S, Parolini I, Diverio D, Riti V, Mariani G, Laufer S, Sargiacomo M, Testa U. Colocalization of the VEGF-R2 and the common IL-3/GM-CSF receptor beta chain to lipid rafts leads to enhanced p38 activation. Br J Haematol 2009; 145:399-411. [DOI: 10.1111/j.1365-2141.2009.07627.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Chen J, Ye L, Zhang L, Jiang WG. Placenta growth factor, PLGF, influences the motility of lung cancer cells, the role of Rho associated kinase, Rock1. J Cell Biochem 2008; 105:313-20. [PMID: 18615591 DOI: 10.1002/jcb.21831] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Placenta growth factor (PlGF) is a member of the VEGF family and has been implicated in the aggressive capacity of solid tumours, partly via its impact on angiogenesis. The present study determined the direct biological function of endogenous PlGF in lung cancer cells. From the human non-small cell lung cancer cell line A549 which expressed good level of PlGF, we created sublines within which PlGF expression was knockdown by way of anti-PlGF ribozyme transgenes. Remarkable reductions of both PlGF mRNA and protein by the ribozyme transgenes were revealed in A549 transfectants (A549(DeltaPlGF)) using RT-PCR and Western blotting respectively. A549(DeltaPlGF) cells exhibited significantly reduced migration and adhesion compared with the wild-type (A549(WT)) and the empty plasmid control (A549(pEF/His)) cells. Immunocytochemistry and Western blotting further revealed that the expression of ROCK1, Rho associated kinase, was also reduced in A549(DeltaPlGF) cells, in comparison with wild-type and control cells. In addition, A549(DeltaPlGF) cells lost its response to a ROCK inhibitor, which otherwise strongly inhibited the motility of A549(WT) and A549(pEF/His) cells. These data indicate that PlGF directly regulates the motility of human lung cancer cells and that this regulation critically dependent on ROCK-1. The study further indicates that PlGF is a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Jinfeng Chen
- Department of Surgery, Peking University School of Oncology, Beijing Cancer Hospital, Beijing 100036, China
| | | | | | | |
Collapse
|
33
|
Thomas EK, Cancelas JA, Zheng Y, Williams DA. Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis. Leukemia 2008; 22:898-904. [PMID: 18354486 PMCID: PMC4464749 DOI: 10.1038/leu.2008.71] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 12/26/2022]
Abstract
Chronic myelogenous leukemia (CML) is a malignant disease characterized by expression of p210-BCR-ABL, the product of the Philadelphia chromosome. Survival of CML patients has been significantly improved with the introduction of tyrosine kinase inhibitors that induce long-term hematologic remissions. However, mounting evidence indicates that the use of a single tyrosine kinase inhibitor does not cure this disease due to the persistence of p210-BCR-ABL at the molecular level or the acquired resistance in the stem cell compartment to individual inhibitors. We have recently shown in a murine model that deficiency of the Rho GTPases Rac1 and Rac2 significantly reduces p210-BCR-ABL-mediated proliferation in vitro and myeloproliferative disease in vivo, suggesting Rac as a potential therapeutic target in p210-BCR-ABL-induced disease. This target has been further validated using a first-generation Rac-specific small molecule inhibitor. In this review we describe the role of Rac GTPases in p210-BCR-ABL-induced leukemogenesis and explore the possibility of combinatorial therapies that include tyrosine kinase inhibitor(s) and Rac GTPase inhibitors in the treatment of CML.
Collapse
Affiliation(s)
- EK Thomas
- Division of Experimental Hematology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - JA Cancelas
- Division of Experimental Hematology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Y Zheng
- Division of Experimental Hematology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - DA Williams
- Division of Experimental Hematology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|