1
|
Lamberti G, Soroush F, Smith A, Kiani MF, Prabhakarpandian B, Pant K. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Microvasc Res 2015; 99:19-25. [PMID: 25708050 DOI: 10.1016/j.mvr.2015.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 01/16/2023]
Abstract
Particle adhesion in vivo is highly dependent on the microvascular environment comprising of unique anatomical, geometrical, physiological fluid flow conditions and cell-particle and cell-cell interactions. Hence, proper design of vascular-targeted drug carriers that efficiently deliver therapeutics to the targeted cells or tissue at effective concentrations must account for these complex conditions observed in vivo. In this study, we build upon our previous results with the goal of characterizing the effects of bifurcations and their corresponding angle on adhesion of functionalized particles and neutrophils to activated endothelium. Our hypothesis is that adhesion is significantly affected by the type of biochemical interactions between particles and vessel wall as well as the presence of bifurcations and their corresponding angle. Here, we investigate adhesion of functionalized particles (2 μm and 7 μm microparticles) to protein coated channels as well as adhesion of human neutrophils to human endothelial cells under various physiological flow conditions in microfluidic bifurcating channels comprising of different contained angles (30°, 60°, 90°, or 120°). Our findings indicate that both functionalized particle and neutrophil adhesion propensity increase with a larger bifurcation angle. Moreover, the difference in the adhesion patterns of neutrophils and rigid, similar sized (7 μm) particles is more apparent in the junction regions with a larger contained angle. By selecting the right particle size range, enhanced targeted binding of vascular drug carriers can be achieved along with a higher efficacy at optimal drug dosage. Hence, vascular drug particle design needs to be tailored to account for higher binding propensity at larger bifurcation angles.
Collapse
Affiliation(s)
- Giuseppina Lamberti
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA
| | - Fariborz Soroush
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA
| | - Ashley Smith
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way, Huntsville, AL 35806, USA
| | - Mohammad F Kiani
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA; Department of Radiation Oncology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | | | - Kapil Pant
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way, Huntsville, AL 35806, USA
| |
Collapse
|
2
|
Yuan Y, Lee SH, Wu S. The role of ROS in ionizing radiation-induced VLA-4 mediated adhesion of RAW264.7 cells to VCAM-1 under flow conditions. Radiat Res 2012. [PMID: 23181590 DOI: 10.1667/rr3119.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alteration of adhesion molecule expression on endothelial cells has a direct connection with ionizing radiation-induced atherosclerosis, which is an adverse effect observed after radiotherapy. However, minimal attention has been given to monocytes/macrophages role in atherosclerosis development, which are exposed to the radiation at the same time. Under flow conditions using a parallel plate flow chamber to mimic physiological shear stress, we demonstrate here that the avidity between very late antigen-4 (VLA-4) of RAW264.7 cells and its ligand vascular cell adhesion molecule-1 (VCAM-1), was increased after low dose (0.5 Gy) irradiation, but was reduced after higher dose (5 Gy) treatment of ionizing radiation despite the fact that the surface expression of VLA-4 was up-regulated at 5 Gy of ionizing radiation. Treating the cells with free radical scavenger N-acetylcysteine had no effect on VLA-4 expression, but did reduce the avidity between RAW264.7 cells and VCAM-1 to a similar level, independent of ionizing radiation dose. The effect of H(2)O(2) treatment (from 1-100 μM) on RAW264.7 cell adhesion to VCAM-1 generated a similar bell-shaped graph as ionizing radiation. These results suggest that ionizing radiation regulates adhesive interactions between VLA-4 and VCAM-1, and that reactive oxygen species might function as a regulator, for this increased adhesiveness but with altered expression of integrin not play a major role.
Collapse
Affiliation(s)
- Ye Yuan
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
| | | | | |
Collapse
|
3
|
Tada T, Fukuta K. Expression of cell adhesion molecules at the collapse and recovery of haematopoiesis in bone marrow of mouse. Anat Histol Embryol 2012; 39:403-10. [PMID: 20545639 DOI: 10.1111/j.1439-0264.2010.01009.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After bone marrow transplantation (BMT) and lethal irradiation, vascular endothelial cells play an important role in the homing of haematopoietic cells and recovery of haematopoiesis. We investigated the expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1) and fibronectin in the endothelial cells of bone marrow in a collapsed state after lethal irradiation and in a recovery state after BMT in mice. After lethal irradiation, the expression of MAdCAM-1, VCAM-1 and fibronectin increased on the luminal surface of endothelial cells. In the recovery state, the expression of MAdCAM-1 and VCAM-1 was increased from 2 to 4 days after BMT, but fibronectin levels remained constant, except for a temporary increase at 4 days after BMT. The number of homing cells, however, was markedly decreased in parallel with the reduction in the haematopoietic compartment at 2 and 4 days after lethal irradiation. Next, to analyse the influence of fibronectin expression after BMT on homing activity, we performed double BMT experiment. The number of homing cells in double BMT experiment maintained high level from 2 h to 2 days after secondary BMT. Our data suggest that homing of bone marrow cells is activated until fibronectin-mediated endothelial cell repair and that transplanted haematopoietic stem/progenitor cells inhibit fibronectin expression for endothelial cell repair until the homing is completed. Therefore, the homing of haematopoietic cells in bone marrow depends on the condition of the bone marrow endothelial cells, as well as the cell adhesion molecules.
Collapse
Affiliation(s)
- T Tada
- Laboratory of Animal Morphology and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan.
| | | |
Collapse
|
4
|
Liu S, Sammons V, Fairhall J, Reddy R, Tu J, Hong Duong T, Stoodley M. Molecular responses of brain endothelial cells to radiation in a mouse model. J Clin Neurosci 2012; 19:1154-8. [DOI: 10.1016/j.jocn.2011.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 12/17/2011] [Indexed: 11/30/2022]
|
5
|
Prabhakarpandian B, Wang Y, Rea-Ramsey A, Sundaram S, Kiani MF, Pant K. Bifurcations: focal points of particle adhesion in microvascular networks. Microcirculation 2011; 18:380-9. [PMID: 21418388 DOI: 10.1111/j.1549-8719.2011.00099.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Particle adhesion in vivo is dependent on the microcirculation environment, which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called SMN, for characterizing particle adhesion patterns in the microcirculation. METHODS SMNs were fabricated using soft-lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD-based modeling. RESULTS Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5×) near bifurcations compared with the branches of the microvascular networks. CONCLUSION Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. SMNs provide an in vitro framework for understanding particle adhesion.
Collapse
|
6
|
Prabhakarpandian B, Shen MC, Pant K, Kiani MF. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Microvasc Res 2011; 82:210-20. [PMID: 21763328 DOI: 10.1016/j.mvr.2011.06.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 01/02/2023]
Abstract
Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, developing of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and computational fluid dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature is highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place is discussed.
Collapse
|
7
|
Wu KL, Tu B, Li YQ, Wong CS. Role of intercellular adhesion molecule-1 in radiation-induced brain injury. Int J Radiat Oncol Biol Phys 2010; 76:220-8. [PMID: 20005455 DOI: 10.1016/j.ijrobp.2009.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/10/2009] [Accepted: 08/13/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). METHODS AND MATERIALS We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. RESULTS There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. CONCLUSION There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.
Collapse
Affiliation(s)
- Kai-Liang Wu
- Discipline of Molecular and Cell Biology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Baeten CIM, Castermans K, Lammering G, Hillen F, Wouters BG, Hillen HFP, Griffioen AW, Baeten CGMI. Effects of radiotherapy and chemotherapy on angiogenesis and leukocyte infiltration in rectal cancer. Int J Radiat Oncol Biol Phys 2007; 66:1219-27. [PMID: 17145537 DOI: 10.1016/j.ijrobp.2006.07.1362] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 07/11/2006] [Accepted: 07/26/2006] [Indexed: 12/17/2022]
Abstract
BACKGROUND We and others have shown that angiogenesis and leukocyte infiltration are important prognostic factors in rectal cancer. However, little is known about its possible changes in response to radiotherapy (RTX), which is frequently given to rectal tumors as a neoadjuvant treatment to improve the prognosis. We therefore investigated the biologic effects of RTX on these parameters using fresh-frozen biopsy samples of tumor and normal mucosa tissue before and after RTX. METHODS Biopsy samples were taken from a total of 34 patients before and after either a short course or long course of RTX combined with chemotherapy. The following parameters were analyzed by immunohistochemistry, flow cytometry, or quantitative real-time polymerase chain reaction: Microvessel density, leukocyte infiltration, proliferating epithelial and tumor cells, proliferating endothelial cells, adhesion molecule expression on endothelial cells, and the angiogenic mRNA profile. RESULTS The tumor biopsy samples taken after RTX treatment demonstrated a significant decrease in microvessel density and the number of proliferating tumor cells and proliferating endothelial cells (p < 0.001). In contrast, the leukocyte infiltration, the levels of basic fibroblast growth factor in carcinoma tissue, and the adhesion molecule expression on endothelial cells in normal as well as carcinoma tissue increased significantly (p < 0.05). CONCLUSION Our data show that together with an overall decrease in tumor cell and endothelial cell proliferation, RTX results in an increase in the expression of adhesion molecules that stimulate leukocyte infiltration. This suggests the possibility that, in addition to its direct cytotoxic effect, radiation may also stimulate an immunologic tumor response that could contribute to the documented improvement in local tumor control and distal failure rate of rectal cancers.
Collapse
Affiliation(s)
- Coen I M Baeten
- Angiogenesis Laboratory, Research Institute for Growth and Development (GROW), Department of Internal Medicine, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ansari R, Gaber MW, Wang B, Pattillo CB, Miyamoto C, Kiani MF. Anti-TNFA (TNF-alpha) treatment abrogates radiation-induced changes in vacular density and tissue oxygenation. Radiat Res 2007; 167:80-6. [PMID: 17243316 DOI: 10.1667/rr0616.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation significantly alters the structure and function of microvasculature, which regulates delivery of oxygen to brain tissue. Previous experimental and modeling studies have shown that tissue oxygenation patterns are significantly different in irradiated normal tissue compared to age-matched controls, and the differences are apparent as early as 3 days postirradiation. However, oxygen delivery to irradiated tissue recovers within 6 months postirradiation. Changes in perfusion and oxygenation were studied in a bilaterally (both cerebral hemispheres) and unilaterally (only one hemisphere) irradiated mouse brain model at 6 and 24 h as well as 3, 7, 30, 60 and 120 days postirradiation. The results indicate that significant changes in the number of perfused vessels (as measured by fluorescent DiOC(7) staining) and anatomical vessels (as indicated by CD31 immunohistochemical staining) and tissue oxygenation (by immunohistochemical detection of a fluorescently conjugated monoclonal antibody to EF5) are most pronounced at 3 days postirradiation, while a degree of recovery is observed at later times. However, in the unilaterally irradiated animals, both irradiated and unirradiated (out-of-field) cerebral hemispheres showed similarly significant changes in oxygenation and/or perfusion compared to unirradiated controls. Anti-TNFA treatment inhibited radiation-induced local as well as abscopal effects in the brain tissue.
Collapse
Affiliation(s)
- Ramin Ansari
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | |
Collapse
|
10
|
Baluna RG, Eng TY, Thomas CR. Adhesion molecules in radiotherapy. Radiat Res 2007; 166:819-31. [PMID: 17149971 DOI: 10.1667/rr0380.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 06/27/2006] [Indexed: 11/03/2022]
Abstract
Recent studies have documented changes in adhesion molecule expression and function after exposure to ionizing radiation. Adhesion molecules mediate cell-cell and cell-matrix interactions and are essential for a variety of physiological and pathological processes including maintenance of normal tissue integrity as well as tumor development and progression. Consequently, modulation of adhesion molecules by radiation may have a role in radiation-induced tumor control and normal tissue damage by interfering with cell signaling, radioresistance, metastasis, angiogenesis, carcinogenesis, immune response, inflammation and fibrosis. In addition, the interactions of radiation with adhesion molecules could have a major impact in developing new strategies to increase the efficacy of radiation therapy. Remarkable progress has been made in recent years to design targeted drug delivery to radiation-up-regulated adhesion molecules. Furthermore, the inhibition of adhesion, migration, invasion and angiogenesis by blocking adhesion receptors may represent a new therapeutic approach to improve tumor control and decrease radiation toxicity. This review is focused on current data concerning the mechanistic interactions of radiation with adhesion molecules and the possible clinical-pathological implications in radiotherapy.
Collapse
Affiliation(s)
- Roxana G Baluna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
11
|
Ahmad M, Khurana NR, Jaberi JE. Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc Res 2006; 73:14-9. [PMID: 17028041 DOI: 10.1016/j.mvr.2006.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/22/2006] [Accepted: 08/25/2006] [Indexed: 11/30/2022]
Abstract
For successful tissue engineering in surgical radiotherapy patients, irradiated endothelial cells (EC) must form new blood vessels to nourish and build connections with the engineered segment. Therefore, it is critical to understand neovasculogenesis by irradiated EC. The objective of this study was to determine the effects of ionizing radiation on endothelial cell proliferation and capillary-like structures (CLS) formation. Human Umbilical Vein Endothelial Cells (HUVEC) were irradiated with single or fractionated doses of radiation. Proliferation was determined by counting cells. CLS morphology was analyzed from photomicrographs. A single dose of 8 Gy radiation was highly lethal to HUVEC compared to lower dosage. A single dose had more of an inhibitory effect on cell proliferation compared to the same dose delivered in a fractionated manner. CLS formation began after cells reached confluency. To form a CLS, a single cell expanded, and a number of cells rearranged around its periphery in an oval fashion (mimicking a vessel wall). The central cell later disintegrated leaving a void, mimicking the lumen. Irradiated EC can form CLS, although they are fewer and smaller compared to those by sham cells. By disrupting the peripheral cells, >or=4 Gy doses significantly reduced the number of CLS. The disruptive affect was seen more with large CLS compared to small CLS. At different doses, the shapes of CLS were not significantly different.
Collapse
Affiliation(s)
- Mansur Ahmad
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
12
|
Nallamothu R, Wood GC, Pattillo CB, Scott RC, Kiani MF, Moore BM, Thoma LA. A tumor vasculature targeted liposome delivery system for combretastatin A4: design, characterization, and in vitro evaluation. AAPS PharmSciTech 2006; 7:E32. [PMID: 16796350 DOI: 10.1208/pt070232] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to develop an efficient tumor vasculature targeted liposome delivery system for combretastatin A4, a novel antivascular agent. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG), and DSPE-PEG-maleimide were prepared by the lipid film hydration and extrusion process. Cyclic RGD (Arg-Gly-Asp) peptides with affinity for alphavbeta3-integrins expressed on tumor vascular endothelial cells were coupled to the distal end of PEG on the liposomes sterically stabilized with PEG (long circulating liposomes, LCL). The liposome delivery system was characterized in terms of size, lamellarity, ligand density, drug loading, and leakage properties. Targeting nature of the delivery system was evaluated in vitro using cultured human umbilical vein endothelial cells (HUVEC). Electron microscopic observations of the formulations revealed presence of small unilamellar liposomes of approximately 120 nm in diameter. High performance liquid chromatography determination of ligand coupling to the liposome surface indicated that more than 99% of the RGD peptides were reacted with maleimide groups on the liposome surface. Up to 3 mg/mL of stable liposomal combretastatin A4 loading was achieved with approximately 80% of this being entrapped within the liposomes. In the in vitro cell culture studies, targeted liposomes showed significantly higher binding to their target cells than nontargeted liposomes, presumably through specific interaction of the RGD with its receptors on the cell surface. It was concluded that the targeting properties of the prepared delivery system would potentially improve the therapeutic benefits of combretastatin A4 compared with nontargeted liposomes or solution dosage forms.
Collapse
Affiliation(s)
- Ramakrishna Nallamothu
- Parenteral Medications Laboratories, Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wood K, Jawahar A, Smelley C, Mullapudi S, DeLaune A, Nanda A, Granger DN. Exposure of Brain to High-Dose, Focused Gamma Rays Irradiation Produces Increase in Leukocytes-Adhesion and Pavementing in Small Intracerebral Blood Vessels. Neurosurgery 2005; 57:1282-8; discussion 1282-8. [PMID: 16331177 DOI: 10.1227/01.neu.0000187318.17832.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Radiosurgery is used to destroy a predetermined target within the brain, with minimal radiation injury to the surrounding tissue. We hereby present our in vivo model to study the effects of single-session, high-dose radiation on the cerebral vessels that are targeted with radiosurgery using the Leksell Gamma Knife. METHODS The study was conducted in 29 adult male WT C57BL/6J mice weighing 21 to 28 g (6-8 wk old). The animals were exposed to 100 Gy single-session focused gamma ray irradiation using the Leksell Gamma Knife, and subsequently underwent intravital microscopy at different time intervals to study leukocytes and platelets adhesion patterns to the endothelium of the irradiated cerebral micro-vessels. RESULTS The leukocyte adhesion response showed a bell-shaped curve upon quantitative analysis with a steady increase in the number of adherent cells during the first four hours and a subsequent plateau response that was maintained during the next 24 hours. The platelet adhesion response did not demonstrate any particular pattern similar to the leukocyte response. CONCLUSION The experiment was able to establish in vivo increased leukocyte adhesion to the cerebral vascular endothelial cells in response to radiation injury and elaborate the time frame within which the leukocyte adhesion response increases, reaches a peak and then starts decreasing.
Collapse
Affiliation(s)
- Katherine Wood
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Yuan H, Goetz DJ, Gaber MW, Issekutz AC, Merchant TE, Kiani MF. Radiation-induced up-regulation of adhesion molecules in brain microvasculature and their modulation by dexamethasone. Radiat Res 2005; 163:544-51. [PMID: 15850416 DOI: 10.1667/rr3361] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Little is known about the time course and magnitude of the up-regulation of endothelial cell adhesion molecules (ECAMs) in irradiated brain vasculature and the mechanisms by which dexamethasone modulates this up-regulation. We used antibody-conjugated microspheres and a rat closed cranial window model to determine the time course of functional up-regulation of radiation (20 Gy)-induced ICAM1, E-selectin and P-selectin in the pial vasculature of the rat brain and to determine the relationship between suppression of inflammation by dexamethasone and the expression of these ECAMs. The results indicate that ICAM1, E-selectin and P-selectin were up-regulated to a functional level in the microvasculature with distinct time-course patterns. The number of adherent anti-E-selectin and anti-P-selectin microspheres was 5- 12 times greater than that of IgG microspheres 3-6 h postirradiation, and their expression returned to normal at 48 h. The number of adherent anti-ICAM1 microspheres was five and nine times greater than that of IgG at 24 and 48 h, respectively, and returned to baseline by 7 days. Dexamethasone significantly reduced the number of adhering leukocytes and the number of adhering anti-ICAM1, anti-E-selectin and anti-P-selectin microspheres to background levels. Our findings partially identify a key sequence in radiation-induced inflammatory response and provide a potential means to limit radiation-induced inflammatory responses and their potential side effects in the brain.
Collapse
Affiliation(s)
- Hong Yuan
- Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
15
|
Maksan SM, Schmidt E, Ryschich E, Harms W, Schmidt J. Enhancement of leukocyte adhesion after percutaneous irradiation in rats with hepatocellular carcinoma. World J Gastroenterol 2005; 11:1991-4. [PMID: 15800992 PMCID: PMC4305723 DOI: 10.3748/wjg.v11.i13.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of percutaneous radiation on leukocyte-endothelium interaction (LEI) in experimental hepatocellular carcinoma (HCC).
METHODS: Twelve ACI rats underwent HCC-inoculation, six of which on day 12 received low-dose external radiation and six did not. After 12 h intravital microscopy was performed.
RESULTS: LEI was significantly reduced in tumor tissue. However, irradiation of liver sinusoids and tumor tissue with 6 Gy led to a significant activation of leukocyte adhesion in the tumor with a marked increase of the proinflammatory cytokine TNF-α.
CONCLUSION: The findings indicate that the immunological tumor-endothelial barrier can be overcome by external irradiation.
Collapse
|
16
|
Gaber MW, Yuan H, Killmar JT, Naimark MD, Kiani MF, Merchant TE. An intravital microscopy study of radiation-induced changes in permeability and leukocyte–endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle. ACTA ACUST UNITED AC 2004; 13:1-10. [PMID: 15063835 DOI: 10.1016/j.brainresprot.2003.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2003] [Indexed: 11/18/2022]
Abstract
Using intravital microscopy and a closed window method, we measured irradiation-induced changes in the vascular permeability and cell interactions in microcirculation networks of the rat pia mater; the same effects were monitored in the cremaster muscle as a control. The closed cranial window has many advantages, including long-term direct visualization of microcirculation. The method allows for repeated testing of the same vessel or network, thereby reducing variability. The method also allows for measurement of permeability changes and the accompanying leukocyte-endothelial cell interactions in the same network or vessel, which permits correlative studies of these phenomena. However, this method is not without challenges. The optical conditions are difficult, because the brain is three-dimensional and its parenchyma is more complex than the thinner, flatter peripheral tissues. To overcome this limitation, we performed a dynamic background subtraction. The background is dynamically related to vessel intensity, and changes in intensity were determined by eliminating the effects of neighboring and underlying vessels. We applied this method to studying the effects of ionizing radiation on the blood-brain barrier (BBB) permeability and cell interactions and the modulation of these effects by anti-ICAM-1 antibodies. Our results demonstrate that this method is sensitive to changes in these properties of the BBB.
Collapse
Affiliation(s)
- M Waleed Gaber
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | |
Collapse
|