1
|
Gupta AO, Azul M, Bhoopalan SV, Abraham A, Bertaina A, Bidgoli A, Bonfim C, DeZern A, Li J, Louis CU, Purtill D, Ruggeri A, Boelens JJ, Prockop S, Sharma A. International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the current state of hematopoietic stem and progenitor cell-based genomic therapies and the challenges faced. Cytotherapy 2024; 26:1411-1420. [PMID: 38970612 PMCID: PMC11471386 DOI: 10.1016/j.jcyt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent β-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Azul
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allistair Abraham
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
2
|
Liu S, Vivona ES, Kurre P. Why hematopoietic stem cells fail in Fanconi anemia: Mechanisms and models. Bioessays 2024:e2400191. [PMID: 39460396 DOI: 10.1002/bies.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Fanconi anemia (FA) is generally classified as a DNA repair disorder, conferring a genetic predisposition to cancer and prominent bone marrow failure (BMF) in early childhood. Corroborative human and murine studies point to a fetal origin of hematopoietic stem cell (HSC) attrition under replicative stress. Along with intriguing recent insights into non-canonical roles and domain-specific functions of FA proteins, these studies have raised the possibility of a DNA repair-independent BMF etiology. However, deeper mechanistic insight is critical as current curative options of allogeneic stem cell transplantation and emerging gene therapy have limited eligibility, carry significant side effects, and involve complex procedures restricted to resource-rich environments. To develop rational and broadly accessible therapies for FA patients, the field will need more faithful disease models that overcome the scarcity of patient samples, leverage technological advances, and adopt investigational clinical trial designs tailored for rare diseases.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - E S Vivona
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Saha A, Palchaudhuri R, Lanieri L, Hyzy S, Riddle MJ, Panthera J, Eide CR, Tolar J, Panoskaltsis-Mortari A, Gorfinkel L, Tkachev V, Gerdemann U, Alvarez-Calderon F, Palato ER, MacMillan ML, Wagner JE, Kean LS, Osborn MJ, Kiem HP, Scadden DT, Olson LM, Blazar BR. Alloengraftment without significant toxicity or GVHD in CD45 antibody-drug conjugate-conditioned Fanconi anemia mice. Blood 2024; 143:2201-2216. [PMID: 38447038 PMCID: PMC11143525 DOI: 10.1182/blood.2023023549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, leukemia, and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched Lineage-Sca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60% to 80% and 70% to 80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC-conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wild-type and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared with lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable patients with FA.
Collapse
Affiliation(s)
- Asim Saha
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | | | | | - Megan J. Riddle
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jamie Panthera
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Cindy R. Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Lev Gorfinkel
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Victor Tkachev
- Massachusetts General Hospital Center for Transplantation Sciences, Mass General Brigham and Massachusetts General Hospital, Boston, MA
| | - Ulrike Gerdemann
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Margaret L. MacMillan
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Leslie S. Kean
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Mark J. Osborn
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Hans-Peter Kiem
- Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | | | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
4
|
Kovuru N, Mochizuki-Kashio M, Menna T, Jeffrey G, Hong Y, Me Yoon Y, Zhang Z, Kurre P. Deregulated protein homeostasis constrains fetal hematopoietic stem cell pool expansion in Fanconi anemia. Nat Commun 2024; 15:1852. [PMID: 38424108 PMCID: PMC10904799 DOI: 10.1038/s41467-024-46159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Demand-adjusted and cell type specific rates of protein synthesis represent an important safeguard for fate and function of long-term hematopoietic stem cells. Here, we identify increased protein synthesis rates in the fetal hematopoietic stem cell pool at the onset of hematopoietic failure in Fanconi Anemia, a prototypical DNA repair disorder that manifests with bone marrow failure. Mechanistically, the accumulation of misfolded proteins in Fancd2-/- fetal liver hematopoietic stem cells converges on endoplasmic reticulum stress, which in turn constrains midgestational expansion. Restoration of protein folding by the chemical chaperone tauroursodeoxycholic acid, a hydrophilic bile salt, prevents accumulation of unfolded proteins and rescues Fancd2-/- fetal liver long-term hematopoietic stem cell numbers. We find that proteostasis deregulation itself is driven by excess sterile inflammatory activity in hematopoietic and stromal cells within the fetal liver, and dampened Type I interferon signaling similarly restores fetal Fancd2-/- long-term hematopoietic stem cells to wild type-equivalent numbers. Our study reveals the origin and pathophysiological trigger that gives rise to Fanconi anemia hematopoietic stem cell pool deficits. More broadly, we show that fetal protein homeostasis serves as a physiological rheostat for hematopoietic stem cell fate and function.
Collapse
Affiliation(s)
- Narasaiah Kovuru
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makiko Mochizuki-Kashio
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuning Hong
- La Trobe University, Department of Biochemistry and Chemistry, Melbourne, Australia
| | - Young Me Yoon
- Committee on Immunology, Graduate Program in Biosciences, University of Chicago, Chicago, IL, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Hudda Z, Myers KC. Posttransplant complications in patients with marrow failure syndromes: are we improving long-term outcomes? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:141-148. [PMID: 38066882 PMCID: PMC10727016 DOI: 10.1182/hematology.2023000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Inherited bone marrow failure syndromes (IBMFS) encompass a group of rare genetic disorders characterized by bone marrow failure, non-hematologic multisystemic comorbidities, disease defining congenital anomalies, and a susceptibility to myelodysplastic syndrome, acute myeloid leukemia, and in some instances solid tumors. The most common IBMFS include Fanconi anemia, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, and telomere biology disorders/ dyskeratosis congenita. Allogeneic hematopoietic stem cell transplant (HCT) is a well-established curative treatment to correct the hematological manifestations but does not halt or reverse the nonhematological complications and may hasten them. With advances in HCT and in our ability to care for patients with IBMFS, an increasing number of survivors are making it imperative to not only diagnose but also treat late effects from the pre-, peri-, and post-HCT course and complications relating to the natural history of the syndrome. As the field of HCT evolves to allow for the incorporation of alternate graft sources, for expansion of donor options to include unrelated and mismatched donors, and for use of reduced-intensity conditioning or reduced toxicity myeloablative regimens, we have yet to determine if these advances modify the disease-specific course. While long-term outcomes of these patients are often included under one umbrella, this article seeks to address disease-specific post-HCT outcomes within IBMFS.
Collapse
Affiliation(s)
- Zahra Hudda
- Department of Pediatrics, University of Cincinnati College of Medicine; and Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kasiani C Myers
- Department of Pediatrics, University of Cincinnati College of Medicine; and Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
6
|
Dror Y. Correcting the aberrant Fanconi anemia transcriptional program by gene therapy. Haematologica 2023; 108:2566-2567. [PMID: 37288500 PMCID: PMC10542829 DOI: 10.3324/haematol.2023.283031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Yigal Dror
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario; Institute of Medical Science, Faculty of Medicine, University of Toronto; Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Ontario.
| |
Collapse
|
7
|
Bueren JA, Auricchio A. Advances and Challenges in the Development of Gene Therapy Medicinal Products for Rare Diseases. Hum Gene Ther 2023; 34:763-775. [PMID: 37694572 DOI: 10.1089/hum.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The development of viral vectors and recombinant DNA technology since the 1960s has enabled gene therapy to become a real therapeutic option for several inherited and acquired diseases. After several ups and downs in the gene therapy field, we are currently living a new era in the history of medicine in which several ex vivo and in vivo gene therapies have reached maturity. This is testified by the recent marketing authorization of several gene therapy medicinal products. In addition, many others are currently under evaluation after exhaustive investigation in human clinical trials. In this review, we summarize some of the most significant milestones in the development of gene therapy medicinal products that have already facilitated the treatment of a significant number of rare diseases. Despite progresses in the gene therapy field, the transfer of these innovative therapies to clinical practice is also finding important restrictions. Advances and also challenges in the progress of gene therapy for rare diseases are discussed in this opening review of a Human Gene Therapy issue dedicated to the 30th annual Congress of the European Society for Gene and Cell Therapy.
Collapse
Affiliation(s)
- Juan A Bueren
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
8
|
Noguchi K, Ikawa Y, Takenaka M, Sakai Y, Fujiki T, Kuroda R, Chappell M, Ghiaccio V, Rivella S, Wada T. Protocol for a high titer of BaEV-Rless pseudotyped lentiviral vector: Focus on syncytium formation and detachment. J Virol Methods 2023; 314:114689. [PMID: 36739979 DOI: 10.1016/j.jviromet.2023.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The development of hematopoietic stem cell (HSCs) gene therapy for DNA repair disorders, such as Fanconi anemia and Bloom syndrome, is challenging because of the induction of HSCs apoptosis by cytokine stimulation. Although the Baboon envelope pseudotyped lentiviral vector (BaEV-Rless-LV) has been reported as a non-stimulatory gene transfer tool, the virus titer of BaEV-Rless-LV is too low for use in clinical applications. Transfected 293 T cells with helper plasmids, including the BaEV-Rless plasmid, showed morphological changes, such as syncytium formation and detachment. To establish a novel protocol for producing a high titer of BaEV-Rless-LV, we optimized three aspects of a basic virus production protocol by focusing on modifying culture conditions and the use of reagents: the virus titer increased 3-fold when the amount of BaEV-Rless plasmid was increased 1.2-fold; the highest titer was obtained when the viral supernatant was harvested at 48-h post-transfection, despite complete syncytium formation and detachment of the 293 T cells; and the use of poly-L-lysine-coated culture plates to enhance the adhesion and proliferation of 293 T cells and prevent detachment doubled the titer. Collectively, our novel protocol resulted in a 10-fold titer increase compared to the basic protocol and may be useful in clinical applications for treating DNA repair disorders.
Collapse
Affiliation(s)
- Kazuhiro Noguchi
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Mika Takenaka
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Yuta Sakai
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Toshihiro Fujiki
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Rie Kuroda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Maxwell Chappell
- Department of Hematology, Children's Hospital of Philadelphia, United States
| | - Valentina Ghiaccio
- Department of Hematology, Children's Hospital of Philadelphia, United States
| | - Stefano Rivella
- Department of Hematology, Children's Hospital of Philadelphia, United States
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| |
Collapse
|
9
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
10
|
Meng Q, Sun H, Liu J. Precise somatic genome editing for treatment of inborn errors of immunity. Front Immunol 2022; 13:960348. [PMID: 36091069 PMCID: PMC9459235 DOI: 10.3389/fimmu.2022.960348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid advances in high throughput sequencing have substantially expedited the identification and diagnosis of inborn errors of immunity (IEI). Correction of faulty genes in the hematopoietic stem cells can potentially provide cures for the majority of these monogenic immune disorders. Given the clinical efficacies of vector-based gene therapies already established for certain groups of IEI, the recently emerged genome editing technologies promise to bring safer and more versatile treatment options. Here, we review the latest development in genome editing technologies, focusing on the state-of-the-art tools with improved precision and safety profiles. We subsequently summarize the recent preclinical applications of genome editing tools in IEI models, and discuss the major challenges and future perspectives of such treatment modalities. Continued explorations of precise genome editing for IEI treatment shall move us closer toward curing these unfortunate rare diseases.
Collapse
Affiliation(s)
- Qingzhou Meng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Long JD, Trope EC, Yang J, Rector K, Kuo CY. Genes as Medicine: The Development of Gene Therapies for Inborn Errors of Immunity. Hematol Oncol Clin North Am 2022; 36:829-851. [PMID: 35778331 DOI: 10.1016/j.hoc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The field of gene therapy has experienced tremendous growth in the last decade ranging from improvements in the design of viral vectors for gene addition of therapeutic gene cassettes to the discovery of site-specific nucleases targeting transgenes to desired locations in the genome. Such advancements have not only enabled the development of disease models but also created opportunities for the development of tailored therapeutic approaches. There are 3 main methods of gene modification that can be used for the prevention or treatment of disease. This includes viral vector-mediated gene therapy to supply or bypass a missing/defective gene, gene editing enabled by programmable nucleases to create sequence-specific alterations in the genome, and gene silencing to reduce the expression of a gene or genes. These gene-modification platforms can be delivered either in vivo, for which the therapy is injected directed into a patient's body, or ex vivo, in which cells are harvested from a patient and modified in a laboratory setting, and then returned to the patient.
Collapse
Affiliation(s)
- Joseph D Long
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Edward C Trope
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Jennifer Yang
- Department of Psychology, University of California, Los Angeles, 1285 Psychology Building, Box 951563, Los Angeles, CA 90095, USA
| | | | - Caroline Y Kuo
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Sipe CJ, Kluesner MG, Bingea SP, Lahr WS, Andrew AA, Wang M, DeFeo AP, Hinkel TL, Laoharawee K, Wagner JE, MacMillan ML, Vercellotti GM, Tolar J, Osborn MJ, McIvor RS, Webber BR, Moriarity BS. Correction of Fanconi Anemia Mutations Using Digital Genome Engineering. Int J Mol Sci 2022; 23:8416. [PMID: 35955545 PMCID: PMC9369391 DOI: 10.3390/ijms23158416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using ‘digital’ genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy.
Collapse
Affiliation(s)
- Christopher J. Sipe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Samuel P. Bingea
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walker S. Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aneesha A. Andrew
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anthony P. DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy L. Hinkel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - John E. Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret L. MacMillan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark J. Osborn
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA;
| | - R. Scott McIvor
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.S.); (M.G.K.); (S.P.B.); (W.S.L.); (A.A.A.); (M.W.); (A.P.D.); (T.L.H.); (K.L.); (J.E.W.); (M.L.M.); (J.T.); (M.J.O.); (R.S.M.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Diana JS, Manceau S, Leblanc T, Magnani A, Magrin E, Bendavid M, Couzin C, Joseph L, Soulier J, Cavazzana M, Lefrère F. A new step in understanding stem cell mobilization in patients with Fanconi anemia: A bridge to gene therapy. Transfusion 2021; 62:165-172. [PMID: 34751952 DOI: 10.1111/trf.16721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is an inherited disorder characterized clinically by congenital abnormalities, progressive bone marrow failure (BMF), and a predisposition to malignancy. Gene therapy (GT) of FA, via the infusion of gene-corrected peripheral blood (PB) autologous hematopoietic stem cells (HSCs), may constitute a cure for BMF. GT bypasses the donor restrictions and adverse events associated with allogenic HSC transplantation. However, adequate harvesting of PB-HSCs is a crucial determinant of successful engraftment in gene therapy. Harvesting the low numbers of HSCs in patients with FA is particularly challenging. STUDY DESIGN AND METHODS This open-label phase I/II trial evaluates the feasibility and safety of co-administration of G-CSF and plerixafor in patients with FA for the mobilization and harvesting of peripheral HSCs, intending to use them in a gene therapy trial. Patients with mutations in the FANCA gene received two subcutaneous injections of G-CSF (6 μg/kg × 2/d from D1 to D8. Plerixafor (0.24 mg/kg/d) was administered 2 h before apheresis (from D5 onward). RESULTS CD34+ cells were mobilized for four patients quickly but transiently after the plerixafor injection. One patient had a CD34+ cell count of over 100/μl; the mobilization peaked 2 h after the injection and lasted for more than 9 h. There were no short-term adverse events associated with the mobilization or harvesting procedures. CONCLUSION Our data in patients with FA show that the mobilization of HSCs with G-CSF and plerixafor is safe and more efficient in younger individuals without BMF.
Collapse
Affiliation(s)
- Jean-Sébastien Diana
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Sandra Manceau
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Thierry Leblanc
- Pediatric Hematology Unit, Hôpital Robert Debré, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Alessandra Magnani
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Elisa Magrin
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Matthieu Bendavid
- Pediatric Immunology and Hematology Unit, Hôpital Necker, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Chloe Couzin
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Laure Joseph
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Jean Soulier
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (APHP), Universite de Paris, Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| | - Francois Lefrère
- Biotherapy Department, Hôpital Necker Enfants Malades, Asistance Publique-Hôpitaux de Paris, Universite de Paris, Paris, France
| |
Collapse
|
14
|
Inducible Sbds Deletion Impairs Bone Marrow Niche Capacity to Engraft Donor Bone Marrow After Transplantation. Blood Adv 2021; 6:108-120. [PMID: 34625796 PMCID: PMC8753223 DOI: 10.1182/bloodadvances.2021004640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Bone marrow (BM) niche-derived signals are critical for facilitating engraftment after hematopoietic stem cell (HSC) transplantation (HSCT). HSCT is required for restoration of hematopoiesis in patients with inherited bone marrow failure syndromes (iBMFS). Shwachman-Diamond syndrome (SDS) is a rare iBMFS associated with mutations in SBDS. Previous studies have demonstrated that SBDS deficiency in osteolineage niche cells causes bone marrow dysfunction that promotes leukemia development. However, it is unknown whether BM niche defects caused by SBDS deficiency also impair efficient engraftment of healthy donor HSC following HSCT, a hypothesis that could explain morbidity seen after clinical HSCT for patients with SDS. Here, we report a mouse model with inducible Sbds deletion in hematopoietic and osteolineage cells. Primary and secondary BM transplantation (BMT) studies demonstrated that SBDS deficiency within BM niches caused poor donor hematopoietic recovery and specifically poor HSC engraftment after myeloablative BMT. We have additionally identified multiple molecular and cellular defects within niche populations that are driven by SBDS deficiency and that are accentuated or develop specifically following myeloablative conditioning. These abnormalities include altered frequencies of multiple niche cell subsets including mesenchymal lineage cells, macrophages and endothelial cells; disruption of growth factor signaling, chemokine pathway activation, and adhesion molecule expression; and p53 pathway activation, and signals involved in cell cycle arrest. Taken together, this study demonstrates that SBDS deficiency profoundly impacts recipient hematopoietic niche function in the setting of HSCT, suggesting that novel therapeutic strategies targeting host niches could improve clinical HSCT outcomes for patients with SDS.
Collapse
|
15
|
Sevilla J, Navarro S, Rio P, Sánchez-Domínguez R, Zubicaray J, Gálvez E, Merino E, Sebastián E, Azqueta C, Casado JA, Segovia JC, Alberquilla O, Bogliolo M, Román-Rodríguez FJ, Giménez Y, Larcher L, Salgado R, Pujol RM, Hladun R, Castillo A, Soulier J, Querol S, Fernández J, Schwartz J, García de Andoín N, López R, Catalá A, Surralles J, Díaz-de-Heredia C, Bueren JA. Improved collection of hematopoietic stem cells and progenitors from Fanconi anemia patients for gene therapy purposes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:66-75. [PMID: 34485595 PMCID: PMC8390450 DOI: 10.1016/j.omtm.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (ClinicalTrials.gov, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients. Nine of eleven enrolled patients mobilized beyond the threshold level of 5 CD34+ cells/μL required to initiate apheresis. A median of 21.8 CD34+ cells/μL was reached at the peak of mobilization. Significantly, the oldest patients (15 and 16 years old) were the only ones who did not reach that threshold. A median of 4.27 million CD34+ cells/kg was collected in 2 or 3 aphereses. These numbers were markedly decreased to 1.1 million CD34+ cells/kg after immunoselection, probably because of weak expression of the CD34 antigen. However, these numbers were sufficient to facilitate the engraftment of corrected HSPCs in non-conditioned patients. No procedure-associated serious adverse events were observed. Mobilization of CD34+ cells correlated with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher proportion of CD34+ cells in bone marrow (BM). All these values offer crucial information for the enrollment of FA patients for gene therapy protocols.
Collapse
Affiliation(s)
- Julián Sevilla
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Susana Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Paula Rio
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Josune Zubicaray
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Eva Gálvez
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Eva Merino
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Elena Sebastián
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Carmen Azqueta
- Banc de Sang i Teixits de Catalunya, 08005 Barcelona, Spain
| | - José A Casado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - José C Segovia
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Omaira Alberquilla
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Massimo Bogliolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Genética e Institut de Reserca, IIB-Sant Pau, Hospital Sant Pau, 08041 Barcelona, Spain.,Departmento de Genética y Microbiología, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Francisco J Román-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Yari Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Lise Larcher
- Université de Paris, Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Rocío Salgado
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Roser M Pujol
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Genética e Institut de Reserca, IIB-Sant Pau, Hospital Sant Pau, 08041 Barcelona, Spain.,Departmento de Genética y Microbiología, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Raquel Hladun
- Servicio de Oncología y Hematología Pediátrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ana Castillo
- Análisis Clínicos Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
| | - Jean Soulier
- Université de Paris, Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Sergi Querol
- Banc de Sang i Teixits de Catalunya, 08005 Barcelona, Spain
| | | | | | | | | | - Albert Catalá
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Department of Hematology/Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain.,Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Spain
| | - Jordi Surralles
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Genética e Institut de Reserca, IIB-Sant Pau, Hospital Sant Pau, 08041 Barcelona, Spain.,Departmento de Genética y Microbiología, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Cristina Díaz-de-Heredia
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Oncología y Hematología Pediátrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| |
Collapse
|
16
|
Hughes AD, Kurre P. The impact of clonal diversity and mosaicism on haematopoietic function in Fanconi anaemia. Br J Haematol 2021; 196:274-287. [PMID: 34258754 DOI: 10.1111/bjh.17653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Recent advances have facilitated studies of the clonal architecture of the aging haematopoietic system, and provided clues to the mechanisms underlying the origins of hematopoietic malignancy. Much less is known about the clonal composition of haematopoiesis and its impact in bone marrow failure (BMF) disorders, including Fanconi anaemia (FA). Understanding clonality in FA is likely to inform both the marked predisposition to cancer and the rapid erosion of regenerative reserve seen with this disease. This may also hold broader lessons for haematopoietic stem cell biology in other diseases with a clonal restriction. In this review, we focus on the conceptual basis and available tools to study clonality, and highlight insights in somatic mosaicism and malignant evolution in FA in the context of haematopoietic failure and gene therapy.
Collapse
Affiliation(s)
- Andrew D Hughes
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
17
|
Shafqat S, Tariq E, Parnes AD, Dasouki MJ, Ahmed SO, Hashmi SK. Role of gene therapy in Fanconi anemia: A systematic and literature review with future directions. Hematol Oncol Stem Cell Ther 2021; 14:290-301. [PMID: 33736979 DOI: 10.1016/j.hemonc.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fanconi anemia (FA); however, its clinical application is still in the initial stages. We conducted this systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and Google Scholar were conducted and full texts of articles meeting our inclusion criteria were reviewed. Three clinical trials were included, with a total of nine patients and mean age of 10.7 ± 5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabilization in blood lineages, without any serious adverse effects from GT. A metaregression analysis could not be conducted, as very little long-term follow-up data of patients was observed, and the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a safe procedure in FA; however, further research needs to be conducted on the longitudinal clinical effects of GT in FA, for a better insight into its potential to become a standard form of treatment.
Collapse
Affiliation(s)
| | - Eleze Tariq
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Aric D Parnes
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Majed J Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Syed O Ahmed
- Department of Adult Hematology and Stem Cell Transplantation, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Wu L, Li X, Lin Q, Chowdhury F, Mazumder MH, Du W. FANCD2 and HES1 suppress inflammation-induced PPARɣ to prevent haematopoietic stem cell exhaustion. Br J Haematol 2021; 192:652-663. [PMID: 33222180 PMCID: PMC7856217 DOI: 10.1111/bjh.17230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
The Fanconi anaemia protein FANCD2 suppresses PPARƔ to maintain haematopoietic stem cell's (HSC) function; however, the underlying mechanism is not known. Here we show that FANCD2 acts in concert with the Notch target HES1 to suppress inflammation-induced PPARƔ in HSC maintenance. Loss of HES1 exacerbates FANCD2-KO HSC defects. However, deletion of HES1 does not cause more severe inflammation-mediated HSC defects in FANCD2-KO mice, indicating that both FANCD2 and HES1 are required for limiting detrimental effects of inflammation on HSCs. Further analysis shows that both FANCD2 and HES1 are required for transcriptional repression of inflammation-activated PPARg promoter. Inflammation orchestrates an overlapping transcriptional programme in HSPCs deficient for FANCD2 and HES1, featuring upregulation of genes in fatty acid oxidation (FAO) and oxidative phosphorylation. Loss of FANCD2 or HES1 augments both basal and inflammation-primed FAO. Targeted inhibition of PPARƔ or the mitochondrial carnitine palmitoyltransferase-1 (CPT1) reduces FAO and ameliorates HSC defects in inflammation-primed HSPCs deleted for FANCD2 or HES1 or both. Finally, depletion of PPARg or CPT1 restores quiescence in these mutant HSCs under inflammatory stress. Our results suggest that this novel FANCD2/HES1/PPARƔ axis may constitute a key component of immunometabolic regulation, connecting inflammation, cellular metabolism and HSC function.
Collapse
Affiliation(s)
- Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Xue Li
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Fabliha Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Md H. Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, WV
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Rust BJ, Becker PS, Chandrasekaran D, Kubek SP, Peterson CW, Adair JE, Kiem HP. Envelope-Specific Adaptive Immunity following Transplantation of Hematopoietic Stem Cells Modified with VSV-G Lentivirus. Mol Ther Methods Clin Dev 2020; 19:438-446. [PMID: 33294492 PMCID: PMC7683283 DOI: 10.1016/j.omtm.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Current approaches for hematopoietic stem cell gene therapy typically involve lentiviral gene transfer in tandem with a conditioning regimen to aid stem cell engraftment. Although many pseudotyped envelopes have the capacity to be immunogenic due to their viral origins, thus far immune responses against the most common envelope, vesicular stomatitis virus glycoprotein G (VSV-G), have not been reported in hematopoietic stem cell gene therapy trials. Herein, we report on two Fanconi anemia patients who underwent autologous transplantation of a lineage-depleted, gene-modified hematopoietic stem cell product without conditioning. We observed the induction of robust VSV-G-specific immunity, consistent with low/undetectable gene marking in both patients. Upon further interrogation, adaptive immune mechanisms directed against VSV-G were detected following transplantation in both patients, including increased VSV-G-specific T cell responses, anti-VSV-G immunoglobulin G (IgG), and cytotoxic responses that can specifically kill VSV-G-expressing target cell lines. A proportion of healthy controls also displayed preexisting VSV-G-specific CD4+ and CD8+ T cell responses, as well as VSV-G-specific IgG. Taken together, these data show that VSV-G-pseudotyped lentiviral vectors have the ability to elicit interfering adaptive immune responses in the context of certain hematopoietic stem cell transplantation settings.
Collapse
Affiliation(s)
- Blake J. Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 91911, USA
| | - Pamela S. Becker
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 91911, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Devikha Chandrasekaran
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 91911, USA
| | - Sara P. Kubek
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 91911, USA
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 91911, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer E. Adair
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 91911, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 91911, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
21
|
Canonical and Noncanonical Roles of Fanconi Anemia Proteins: Implications in Cancer Predisposition. Cancers (Basel) 2020; 12:cancers12092684. [PMID: 32962238 PMCID: PMC7565043 DOI: 10.3390/cancers12092684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fanconi anemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities, and predisposition to cancer. In this review, we present an overview of both canonical (regulation of interstrand cross-links repair, ICLs) and noncanonical roles of FA proteins. We divide noncanonical alternative functions in two types: nuclear (outside ICLs such as FA action in replication stress or DSB repair) and cytosolic (such as in mitochondrial quality control or selective autophagy). We further discuss the involvement of FA genes in the predisposition to develop different types of cancers and we examine current DNA damage response-targeted therapies. Finally, we promote an insightful perspective regarding the clinical implication of the cytosolic noncanonical roles of FA proteins in cancer predisposition, suggesting that these alternative roles could be of critical importance for disease progression. Abstract Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.
Collapse
|
22
|
Rageul J, Kim H. Fanconi anemia and the underlying causes of genomic instability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:693-708. [PMID: 31983075 PMCID: PMC7778457 DOI: 10.1002/em.22358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disorder, characterized by birth defects, progressive bone marrow failure, and a predisposition to cancer. This devastating disease is caused by germline mutations in any one of the 22 known FA genes, where the gene products are primarily responsible for the resolution of DNA interstrand cross-links (ICLs), a type of DNA damage generally formed by cytotoxic chemotherapeutic agents. However, the identity of endogenous mutagens that generate DNA ICLs remains largely elusive. In addition, whether DNA ICLs are indeed the primary cause behind FA phenotypes is still a matter of debate. Recent genetic studies suggest that naturally occurring reactive aldehydes are a primary source of DNA damage in hematopoietic stem cells, implicating that they could play a role in genome instability and FA. Emerging lines of evidence indicate that the FA pathway constitutes a general surveillance mechanism for the genome by protecting against a variety of DNA replication stresses. Therefore, understanding the DNA repair signaling that is regulated by the FA pathway, and the types of DNA lesions underlying the FA pathophysiology is crucial for the treatment of FA and FA-associated cancers. Here, we review recent advances in our understanding of the relationship between reactive aldehydes, bone marrow dysfunction, and FA biology in the context of signaling pathways triggered during FA-mediated DNA repair and maintenance of the genomic integrity. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York 11794, USA
- Correspondence to: Hyungjin Kim, Ph.D., Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Basic Sciences Tower 8-125, 100 Nicolls Rd., Stony Brook, NY 11794, Phone: 631-444-3134, FAX: 631-444-3218,
| |
Collapse
|
23
|
Nicoletti E, Rao G, Bueren JA, Río P, Navarro S, Surrallés J, Choi G, Schwartz JD. Mosaicism in Fanconi anemia: concise review and evaluation of published cases with focus on clinical course of blood count normalization. Ann Hematol 2020; 99:913-924. [PMID: 32065290 PMCID: PMC7196946 DOI: 10.1007/s00277-020-03954-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
Fanconi anemia (FA) is a DNA repair disorder resulting from mutations in genes encoding for FA DNA repair complex components and is characterized by variable congenital abnormalities, bone marrow failure (BMF), and high incidences of malignancies. FA mosaicism arises from reversion or other compensatory mutations in hematopoietic cells and may be associated with BMF reversal and decreased blood cell sensitivity to DNA-damaging agents (clastogens); this sensitivity is a phenotypic and diagnostic hallmark of FA. Uncertainty regarding the clinical significance of FA mosaicism persists; in some cases, patients have survived multiple decades without BMF or hematologic malignancy, and in others hematologic failure occurred despite the presence of clastogen-resistant cell populations. Assessment of mosaicism is further complicated because clinical evaluation is frequently based on clastogen resistance in lymphocytes, which may arise from reversion events both in lymphoid-specific lineages and in more pluripotent hematopoietic stem/progenitor cells (HSPCs). In this review, we describe diagnostic methods and outcomes in published mosaicism series, including the substantial intervals (1-6 years) over which blood counts normalized, and the relatively favorable clinical course in cases where clastogen resistance was demonstrated in bone marrow progenitors. We also analyzed published FA mosaic cases with emphasis on long-term clinical outcomes when blood count normalization was identified. Blood count normalization in FA mosaicism likely arises from reversion events in long-term primitive HSPCs and is associated with low incidences of BMF or hematologic malignancy. These observations have ramifications for current investigational therapeutic programs in FA intended to enable gene correction in long-term repopulating HSPCs.
Collapse
Affiliation(s)
| | - Gayatri Rao
- Rocket Pharmaceuticals, Inc., New York, NY, USA
| | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jordi Surrallés
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Genome Instability and DNA Repair Syndromes Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona, Spain
| | - Grace Choi
- Rocket Pharmaceuticals, Inc., New York, NY, USA
| | | |
Collapse
|
24
|
Pino-Barrio MJ, Giménez Y, Villanueva M, Hildenbeutel M, Sánchez-Dominguez R, Rodríguez-Perales S, Pujol R, Surrallés J, Río P, Cathomen T, Mussolino C, Bueren JA, Navarro S. TALEN mediated gene editing in a mouse model of Fanconi anemia. Sci Rep 2020; 10:6997. [PMID: 32332829 PMCID: PMC7181878 DOI: 10.1038/s41598-020-63971-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023] Open
Abstract
The promising ability to genetically modify hematopoietic stem and progenitor cells by precise gene editing remains challenging due to their sensitivity to in vitro manipulations and poor efficiencies of homologous recombination. This study represents the first evidence of implementing a gene editing strategy in a murine safe harbor locus site that phenotypically corrects primary cells from a mouse model of Fanconi anemia A. By means of the co-delivery of transcription activator-like effector nucleases and a donor therapeutic FANCA template to the Mbs85 locus, we achieved efficient gene targeting (23%) in mFA-A fibroblasts. This resulted in the phenotypic correction of these cells, as revealed by the reduced sensitivity of these cells to mitomycin C. Moreover, robust evidence of targeted integration was observed in murine wild type and FA-A hematopoietic progenitor cells, reaching mean targeted integration values of 21% and 16% respectively, that were associated with the phenotypic correction of these cells. Overall, our results demonstrate the feasibility of implementing a therapeutic targeted integration strategy into the mMbs85 locus, ortholog to the well-validated hAAVS1, constituting the first study of gene editing in mHSC with TALEN, that sets the basis for the use of a new safe harbor locus in mice.
Collapse
Affiliation(s)
- Maria José Pino-Barrio
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Yari Giménez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariela Villanueva
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcus Hildenbeutel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Rebeca Sánchez-Dominguez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Roser Pujol
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Jordi Surrallés
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Juan Antonio Bueren
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain.
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain.
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, 28040, Madrid, Spain.
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040, Madrid, Spain.
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Li C, Lieber A. Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Lett 2019; 593:3623-3648. [PMID: 31705806 PMCID: PMC10473235 DOI: 10.1002/1873-3468.13668] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022]
Abstract
Genome editing of hematopoietic stem cells (HSCs) represents a therapeutic option for a number of hematological genetic diseases, as HSCs have the potential for self-renewal and differentiation into all blood cell lineages. This review presents advances of genome editing in HSCs utilizing adenovirus vectors as delivery vehicles. We focus on capsid-modified, helper-dependent adenovirus vectors that are devoid of all viral genes and therefore exhibit an improved safety profile. We discuss HSC genome engineering for several inherited disorders and infectious diseases including hemoglobinopathies, Fanconi anemia, hemophilia, and HIV-1 infection by ex vivo and in vivo editing in transgenic mice, nonhuman primates, as well as in human CD34+ cells. Mechanisms of therapeutic gene transfer including episomal expression of designer nucleases and base editors, transposase-mediated random integration, and targeted homology-directed repair triggered integration into selected genomic safe harbor loci are also reviewed.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
27
|
Chatla S, Du W, Wilson AF, Meetei AR, Pang Q. Fancd2-deficient hematopoietic stem and progenitor cells depend on augmented mitochondrial translation for survival and proliferation. Stem Cell Res 2019; 40:101550. [PMID: 31472450 PMCID: PMC6907690 DOI: 10.1016/j.scr.2019.101550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the Fanconi anemia (FA) protein family are involved in multiple cellular processes including response to DNA damage and oxidative stress. Here we show that a major FA protein, Fancd2, plays a role in mitochondrial biosynthesis through regulation of mitochondrial translation. Fancd2 interacts with Atad3 and Tufm, which are among the most frequently identified components of the mitochondrial nucleoid complex essential for mitochondrion biosynthesis. Deletion of Fancd2 in mouse hematopoietic stem and progenitor cells (HSPCs) leads to increase in mitochondrial number, and enzyme activity of mitochondrion-encoded respiratory complexes. Fancd2 deficiency increases mitochondrial protein synthesis and induces mitonuclear protein imbalance. Furthermore, Fancd2-deficient HSPCs show increased mitochondrial respiration and mitochondrial reactive oxygen species. By using a cell-free assay with mitochondria isolated from WT and Fancd2-KO HSPCs, we demonstrate that the increased mitochondrial protein synthesis observed in Fancd2-KO HSPCs was directly linked to augmented mitochondrial translation. Finally, Fancd2-deficient HSPCs are selectively sensitive to mitochondrial translation inhibition and depend on augmented mitochondrial translation for survival and proliferation. Collectively, these results suggest that Fancd2 restricts mitochondrial activity through regulation of mitochondrial translation, and that augmented mitochondrial translation and mitochondrial respiration may contribute to HSC defect and bone marrow failure in FA.
Collapse
Affiliation(s)
- Srinivas Chatla
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, United States of America.
| | - Andrew F Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States of America.
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
28
|
Río P, Navarro S, Wang W, Sánchez-Domínguez R, Pujol RM, Segovia JC, Bogliolo M, Merino E, Wu N, Salgado R, Lamana ML, Yañez RM, Casado JA, Giménez Y, Román-Rodríguez FJ, Álvarez L, Alberquilla O, Raimbault A, Guenechea G, Lozano ML, Cerrato L, Hernando M, Gálvez E, Hladun R, Giralt I, Barquinero J, Galy A, García de Andoín N, López R, Catalá A, Schwartz JD, Surrallés J, Soulier J, Schmidt M, Díaz de Heredia C, Sevilla J, Bueren JA. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat Med 2019; 25:1396-1401. [PMID: 31501599 DOI: 10.1038/s41591-019-0550-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date1,2. Mutations in FANCA account for more than 60% of FA cases worldwide3,4. Clinically, FA is associated with congenital abnormalities and cancer predisposition. However, bone marrow failure is the primary pathological feature of FA that becomes evident in 70-80% of patients with FA during the first decade of life5,6. In this clinical study (ClinicalTrials.gov, NCT03157804 ; European Clinical Trials Database, 2011-006100-12), we demonstrate that lentiviral-mediated hematopoietic gene therapy reproducibly confers engraftment and proliferation advantages of gene-corrected hematopoietic stem cells (HSCs) in non-conditioned patients with FA subtype A. Insertion-site analyses revealed the multipotent nature of corrected HSCs and showed that the repopulation advantage of these cells was not due to genotoxic integrations of the therapeutic provirus. Phenotypic correction of blood and bone marrow cells was shown by the acquired resistance of hematopoietic progenitors and T lymphocytes to DNA cross-linking agents. Additionally, an arrest of bone marrow failure progression was observed in patients with the highest levels of gene marking. The progressive engraftment of corrected HSCs in non-conditioned patients with FA supports that gene therapy should constitute an innovative low-toxicity therapeutic option for this life-threatening disorder.
Collapse
Affiliation(s)
- Paula Río
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Susana Navarro
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Wei Wang
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany.,GeneWerk, Heidelberg, Germany
| | - Rebeca Sánchez-Domínguez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Roser M Pujol
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Instituto de Investigaciones Biomédicas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - José C Segovia
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Massimo Bogliolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Instituto de Investigaciones Biomédicas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Eva Merino
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología Pediátrica, Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Ning Wu
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Rocío Salgado
- Servicio de Hematología, Hospital Universitario Fundación Jiménez Diaz, Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - María L Lamana
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Rosa M Yañez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - José A Casado
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Yari Giménez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Francisco J Román-Rodríguez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Lara Álvarez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Omaira Alberquilla
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Anna Raimbault
- Université de Paris (IRSL, INSERM, CNRS), Paris, France.,Hôpital Saint-Louis, Paris, France
| | - Guillermo Guenechea
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - M Luz Lozano
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Laura Cerrato
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Miriam Hernando
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Eva Gálvez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología Pediátrica, Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Raquel Hladun
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Irina Giralt
- Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | | | | | | | - Ricardo López
- Osakidetza Basque Health Service, Pediatric Oncology and Hematology Unit, Cruces University Hospital, Barakaldo, Spain
| | - Albert Catalá
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Jordi Surrallés
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Instituto de Investigaciones Biomédicas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jean Soulier
- Université de Paris (IRSL, INSERM, CNRS), Paris, France.,Hôpital Saint-Louis, Paris, France
| | - Manfred Schmidt
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany.,GeneWerk, Heidelberg, Germany
| | - Cristina Díaz de Heredia
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Julián Sevilla
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología Pediátrica, Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain. .,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
29
|
Abstract
Fanconi anemia (FA) is a rare inherited disease that is associated with bone marrow failure and a predisposition to cancer. Previous clinical trials emphasized the difficulties that accompany the use of gene therapy to treat bone marrow failure in patients with FA. Nevertheless, the discovery of new drugs that can efficiently mobilize hematopoietic stem cells (HSCs) and the development of optimized procedures for transducing HSCs, using safe, integrative vectors, markedly improved the efficiency by which the phenotype of hematopoietic repopulating cells from patients with FA can be corrected. In addition, these achievements allowed the demonstration of the in vivo proliferation advantage of gene-corrected FA repopulating cells in immunodeficient mice. Significantly, new gene therapy trials are currently ongoing to investigate the progressive restoration of hematopoiesis in patients with FA by gene-corrected autologous HSCs. Further experimental studies are focused on the ex vivo transduction of unpurified FA HSCs, using new pseudotyped vectors that have HSC tropism. Because of the resistance of some of these vectors to serum complement, new strategies for in vivo gene therapy for FA HSCs are in development. Finally, because of the rapid advancements in gene-editing techniques, correction of CD34+ cells isolated from patients with FA is now feasible, using gene-targeting strategies. Taken together, these advances indicate that gene therapy can soon be used as an efficient and safe alternative for the hematopoietic treatment of patients with FA.
Collapse
Affiliation(s)
- Paula Río
- 1 Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; and Madrid, Spain .,3 Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD) , Madrid, Spain
| | - Susana Navarro
- 1 Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; and Madrid, Spain .,3 Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD) , Madrid, Spain
| | - Juan A Bueren
- 1 Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; and Madrid, Spain .,3 Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD) , Madrid, Spain
| |
Collapse
|
30
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
31
|
Domenech C, Maillard L, Rousseau A, Guidez F, Petit L, Pla M, Clay D, Guimiot F, Sanfilippo S, Jacques S, de la Grange P, Robil N, Soulier J, Souyri M. Studies in an Early Development Window Unveils a Severe HSC Defect in both Murine and Human Fanconi Anemia. Stem Cell Reports 2018; 11:1075-1091. [PMID: 30449320 PMCID: PMC6234961 DOI: 10.1016/j.stemcr.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia (FA) causes bone marrow failure early during childhood, and recent studies indicate that a hematopoietic defect could begin in utero. We performed a unique kinetics study of hematopoiesis in Fancg-/- mouse embryos, between the early embryonic day 11.5 (E11.5) to E12.5 developmental window (when the highest level of hematopoietic stem cells [HSC] amplification takes place) and E14.5. This study reveals a deep HSC defect with exhaustion of proliferative and self-renewal capacities very early during development, together with severe FA clinical and biological manifestations, which are mitigated at E14.5 due to compensatory mechanisms that help to ensure survival of Fancg-/- embryos. It also reports that a deep HSC defect is also observed during human FA development, and that human FA fetal liver (FL) HSCs present a transcriptome profile similar to that of mouse E12.5 Fancg-/- FL HSCs. Altogether, our results highlight that early mouse FL could represent a good alternative model for studying Fanconi pathology.
Collapse
Affiliation(s)
- Carine Domenech
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Loïc Maillard
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alix Rousseau
- IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM U944/CNRS UMR7212, Hôpital Saint Louis, Paris, France
| | - Fabien Guidez
- INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Laurence Petit
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Marika Pla
- INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Denis Clay
- INSERM U972, Hôpital Paul Brousse, Villejuif, France; Plateforme de cytométrie, UMS33, Université Paris Sud, Villejuif, France
| | - Fabien Guimiot
- Service de Foetopathologie, Hôpital Robert Debré, Paris, France
| | - Sandra Sanfilippo
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | | | | | | | - Jean Soulier
- IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM U944/CNRS UMR7212, Hôpital Saint Louis, Paris, France
| | - Michèle Souyri
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
32
|
Adair JE, Chandrasekaran D, Sghia-Hughes G, Haworth KG, Woolfrey AE, Burroughs LM, Choi GY, Becker PS, Kiem HP. Novel lineage depletion preserves autologous blood stem cells for gene therapy of Fanconi anemia complementation group A. Haematologica 2018; 103:1806-1814. [PMID: 29976742 PMCID: PMC6278989 DOI: 10.3324/haematol.2018.194571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 01/20/2023] Open
Abstract
A hallmark of Fanconi anemia is accelerated decline in hematopoietic stem and progenitor cells (CD34 +) leading to bone marrow failure. Long-term treatment requires hematopoietic cell transplantation from an unaffected donor but is associated with potentially severe side-effects. Gene therapy to correct the genetic defect in the patient's own CD34+ cells has been limited by low CD34+ cell numbers and viability. Here we demonstrate an altered ratio of CD34Hi to CD34Lo cells in Fanconi patients relative to healthy donors, with exclusive in vitro repopulating ability in only CD34Hi cells, underscoring a need for novel strategies to preserve limited CD34+ cells. To address this need, we developed a clinical protocol to deplete lineage+(CD3+, CD14+, CD16+ and CD19+) cells from blood and marrow products. This process depletes >90% of lineage+cells while retaining ≥60% of the initial CD34+cell fraction, reduces total nucleated cells by 1-2 logs, and maintains transduction efficiency and cell viability following gene transfer. Importantly, transduced lineage- cell products engrafted equivalently to that of purified CD34+ cells from the same donor when xenotransplanted at matched CD34+ cell doses. This novel selection strategy has been approved by the regulatory agencies in a gene therapy study for Fanconi anemia patients (NCI Clinical Trial Reporting Program Registry ID NCI-2011-00202; clinicaltrials.gov identifier: 01331018).
Collapse
Affiliation(s)
- Jennifer E Adair
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | - Ann E Woolfrey
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | | | - Pamela S Becker
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
33
|
Haworth KG, Ironside C, Ramirez MA, Weitz S, Beard BC, Schwartz JD, Adair JE, Kiem HP. Minimal conditioning in Fanconi anemia promotes multi-lineage marrow engraftment at 10-fold lower cell doses. J Gene Med 2018; 20:e3050. [PMID: 30129972 DOI: 10.1002/jgm.3050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Gene therapy approaches for the treatment of Fanconi anemia (FA) hold promise for patients without a suitably matched donor for an allogeneic bone marrow transplant. However, significant limitations include the collection of sufficient stem cell numbers from patients, the fragility of these cells during ex vivo manipulation, and clinically meaningful engraftment following transplantation. With these challenges in mind, we were interested in determining (i) whether gene-corrected cells at progressively lower numbers can successfully engraft in FA; (ii) whether low-dose conditioning facilitates this engraftment; and (iii) whether these cells can be selected for post-transplant. METHODS Utilizing a well characterized mouse model of FA, we infused donor bone marrow from healthy heterozygote littermates that are unaffected carriers of the FANCA mutation to mimic a gene-corrected product, after administering low-dose conditioning. Once baseline engraftment was observed, we administered a second, very-low selective dose to determine whether gene-corrected cells could be selected for in vivo. RESULTS We demonstrate that upfront low-dose conditioning greatly increases successful engraftment of hematopoietic corrected cells in a pre-clinical animal model of FA. Additionally, without conditioning, cells can still engraft and demonstrate a selective advantage in vivo over time following transplantation, and these corrected cells can be directly selected for in vivo after engraftment. CONCLUSIONS Minimal conditioning prior to bone marrow transplant in Fanconi anemia promotes the multi-lineage engraftment of 10-fold fewer cells compared to nonconditioned controls. These data provide important insights into the potential of minimally toxic conditioning protocols for FA gene therapy applications.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christina Ironside
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Megan A Ramirez
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sarah Weitz
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Du W, Li X, Wilson AF, Pang Q. A small molecule p53 activator attenuates Fanconi anemia leukemic stem cell proliferation. Stem Cell Res Ther 2018; 9:145. [PMID: 29784053 PMCID: PMC5963145 DOI: 10.1186/s13287-018-0882-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/12/2022] Open
Abstract
Although p53 mutations are common in solid tumors, such mutations are found at a lower frequency in hematologic malignancies. In the genetic disorder Fanconi anemia (FA), p53 has been proposed as an important pathophysiological factor for two important hematologic hallmarks of the disease: bone marrow failure and leukemogenesis. Here we show that low levels of the p53 protein enhance the capacity of leukemic stem cells from FA patients to repopulate immunodeficient mice. Furthermore, boosting p53 protein levels with the use of the small molecule Nutlin-3 reduced leukemia burden in recipient mice. These results demonstrate that the level of p53 protein plays a crucial role in FA leukemogenesis.
Collapse
Affiliation(s)
- Wei Du
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA.
| | - Xiaoli Li
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Andrew F Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
35
|
Kurre P. Hematopoietic development: a gap in our understanding of inherited bone marrow failure. Exp Hematol 2017; 59:1-8. [PMID: 29248612 DOI: 10.1016/j.exphem.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/26/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) represent a heterogeneous group of multisystem disorders that typically present with cytopenia in early childhood. Efforts to understand the underlying hematopoietic stem cell (HSC) losses have generally focused on postnatal hematopoiesis. However, reflecting the role of many of the involved genes in core cellular functions and the diverse nonhematologic abnormalities seen in patients at birth, studies have begun to explore IBMFS manifestations during fetal development. Here, I consider the current evidence for fetal deficits in the HSC pool and highlight emerging concepts regarding the origins and unique pathophysiology of hematopoietic failure in IBMFS.
Collapse
Affiliation(s)
- Peter Kurre
- Department of Pediatrics, Papé Family Pediatric Research Institute, Pediatric Blood & Cancer Biology Program, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
36
|
Fernández-García M, Luisa Lamana M, Hernando-Rodríguez M, Sánchez-Domínguez R, Bueren J, Yañez R. Improved Hematopoietic Gene Therapy in a Mouse Model of Fanconi Anemia Mediated by Mesenchymal Stromal Cells. Hum Gene Ther 2017; 29:327-336. [PMID: 28816065 DOI: 10.1089/hum.2017.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study we propose a novel approach based on the use of mesenchymal stromal cells (MSCs), aiming at limiting risks of graft failure in gene therapy protocols associated with low conditioning regimens. Because the engraftment of corrected hematopoietic stem cells (HSCs) is particularly challenging in Fanconi anemia (FA), we have investigated the relevance of MSCs in an experimental model of FA gene therapy. Our results showed, first, that risks of graft failure in recipients conditioned with a moderate dose of 5 Gy and infused with limited numbers of wild-type HSCs are significantly higher in Fanca-/- recipients as compared with wild-type recipients. However, when wild-type HSC numbers inducing 30-50% of graft failures in Fanca-/- recipients were coinfused with MSCs, no graft failures were observed. Moreover, graft failures associated with the infusion of low numbers of gene-corrected Fanca-/- HSCs were also significantly overcome by MSC coinfusion. Our study shows for the first time that MSC coinfusion constitutes a simple and nontoxic approach to minimize risks of graft failure in gene therapy applications associated with low conditioning regimens and infusion of limited numbers of corrected HSCs.
Collapse
Affiliation(s)
- María Fernández-García
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas(CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) , Madrid, Spain.,2 Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Maria Luisa Lamana
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas(CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) , Madrid, Spain.,2 Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Miriam Hernando-Rodríguez
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas(CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) , Madrid, Spain.,2 Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas(CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) , Madrid, Spain.,2 Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Juan Bueren
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas(CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) , Madrid, Spain.,2 Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Rosa Yañez
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas(CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII) , Madrid, Spain.,2 Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
37
|
Engraftment and in vivo proliferation advantage of gene-corrected mobilized CD34 + cells from Fanconi anemia patients. Blood 2017; 130:1535-1542. [PMID: 28801449 DOI: 10.1182/blood-2017-03-774174] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
Previous Fanconi anemia (FA) gene therapy studies have failed to demonstrate engraftment of gene-corrected hematopoietic stem and progenitor cells (HSPCs) from FA patients, either after autologous transplantation or infusion into immunodeficient mice. In this study, we demonstrate that a validated short transduction protocol of G-CSF plus plerixafor-mobilized CD34+ cells from FA-A patients with a therapeutic FANCA-lentiviral vector corrects the phenotype of in vitro cultured hematopoietic progenitor cells. Transplantation of transduced FA CD34+ cells into immunodeficient mice resulted in reproducible engraftment of myeloid, lymphoid, and CD34+ cells. Importantly, a marked increase in the proportion of phenotypically corrected, patient-derived hematopoietic cells was observed after transplantation with respect to the infused CD34+ graft, indicating the proliferative advantage of corrected FA-A hematopoietic repopulating cells. Our data demonstrate for the first time that optimized protocols of hematopoietic stem cell collection from FA patients, followed by the short and clinically validated transduction of these cells with a therapeutic lentiviral vector, results in the generation of phenotypically corrected HSPCs capable of repopulating and developing proliferation advantage in immunodeficient mice. Our results suggest that clinical approaches for FA gene therapy similar to those used in this study will facilitate hematopoietic repopulation in FA patients with gene corrected HSPCs, opening new prospects for gene therapy of FA patients.
Collapse
|
38
|
Abstract
INTRODUCTION Oncolytic viruses represent a novel treatment modality that is unencumbered by the standard resistance mechanisms limiting the therapeutic efficacy of conventional antineoplastic agents. Attenuated engineered measles virus strains derived from the Edmonston vaccine lineage have undergone extensive preclinical evaluation with significant antitumor activity observed in a broad range of preclinical tumoral models. These have laid the foundation for several clinical trials in both solid and hematologic malignancies, which have demonstrated safety, biologic activity and the ability to elicit antitumor immune responses. Areas covered: This review examines the published preclinical data which supported the clinical translation of this therapeutic platform, reviews the available clinical trial data and expands on ongoing phase II testing. It also looks at approaches to optimize clinical applicability and offers future perspectives. Expert opinion: Reverse genetic engineering has allowed the generation of oncolytic MV strains retargeted to increase viral tumor specificity, or armed with therapeutic and immunomodulatory genes in order to enhance anti-tumor efficacy. Continuous efforts focusing on exploring methods to overcome resistance pathways and determining optimal combinatorial strategies will facilitate further development of this encouraging antitumor strategy.
Collapse
Affiliation(s)
- Steven Robinson
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| | - Evanthia Galanis
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
39
|
Sun W, Zheng W, Simeonov A. Drug discovery and development for rare genetic disorders. Am J Med Genet A 2017; 173:2307-2322. [PMID: 28731526 DOI: 10.1002/ajmg.a.38326] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Approximately 7,000 rare diseases affect millions of individuals in the United States. Although rare diseases taken together have an enormous impact, there is a significant gap between basic research and clinical interventions. Opportunities now exist to accelerate drug development for the treatment of rare diseases. Disease foundations and research centers worldwide focus on better understanding rare disorders. Here, the state-of-the-art drug discovery strategies for small molecules and biological approaches for orphan diseases are reviewed. Rare diseases are usually genetic diseases; hence, employing pharmacogenetics to develop treatments and using whole genome sequencing to identify the etiologies for such diseases are appropriate strategies to exploit. Beginning with high throughput screening of small molecules, the benefits and challenges of target-based and phenotypic screens are discussed. Explanations and examples of drug repurposing are given; drug repurposing as an approach to quickly move programs to clinical trials is evaluated. Consideration is given to the category of biologics which include gene therapy, recombinant proteins, and autologous transplants. Disease models, including animal models and induced pluripotent stem cells (iPSCs) derived from patients, are surveyed. Finally, the role of biomarkers in drug discovery and development, as well as clinical trials, is elucidated.
Collapse
Affiliation(s)
- Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Medical Center Drive, Bethesda, Maryland
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Medical Center Drive, Bethesda, Maryland
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Medical Center Drive, Bethesda, Maryland
| |
Collapse
|
40
|
Botthof JG, Bielczyk-Maczyńska E, Ferreira L, Cvejic A. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish. Proc Natl Acad Sci U S A 2017; 114:E4452-E4461. [PMID: 28512217 PMCID: PMC5465903 DOI: 10.1073/pnas.1620631114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.
Collapse
Affiliation(s)
- Jan Gregor Botthof
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ewa Bielczyk-Maczyńska
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- National Health Service Blood and Transplant, Cambridge CB2 0PT, United Kingdom
| | - Lauren Ferreira
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom;
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
41
|
Ebens CL, MacMillan ML, Wagner JE. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations. Expert Rev Hematol 2017; 10:81-97. [PMID: 27929686 PMCID: PMC6089510 DOI: 10.1080/17474086.2016.1268048] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to <10% and acute graft-versus-host disease (GVHD) from >40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.
Collapse
Affiliation(s)
- Christen L Ebens
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Margaret L MacMillan
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| | - John E Wagner
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| |
Collapse
|
42
|
Zhang QS. Stem Cell Therapy for Fanconi Anemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:19-28. [DOI: 10.1007/5584_2017_67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Dinsart C, Pervolaraki K, Stroh-Dege A, Lavie M, Ronsse I, Rommelaere J, Van Damme J, Van Raemdonck K, Struyf S. Recombinant Parvoviruses Armed to Deliver CXCL4L1 and CXCL10 Are Impaired in Their Antiangiogenic and Antitumoral Effects in a Kaposi Sarcoma Tumor Model Due To the Chemokines' Interference with the Virus Cycle. Hum Gene Ther 2016; 28:295-306. [PMID: 28042949 DOI: 10.1089/hum.2016.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Application of oncolytic viruses is a valuable option to broaden the armament of anticancer therapies, as these combine specific cytotoxic effects and immune-stimulating properties. The self-replicating H-1 parvovirus (H-1PV) is a prototypical oncolytic virus that, besides targeting tumor cells, also infects endothelial cells, thus combining oncolytic and angiostatic traits. To increase its therapeutic value, H-1PV can be armed with cytokines or chemokines to enhance the immunological response. Some chemokines-more specifically, the CXCR3 ligands CXCL4L1 and CXCL10-combine immune-stimulating properties with angiostatic activity. This study explores the therapeutic value of recombinant parvoviruses carrying CXCL4L1 or CXCL10 transgenes (Chi-H1/CXCL4L1 or Chi-H1/CXCL10, respectively) to inhibit the growth of the human Kaposi sarcoma cell line KS-IMM. KS-IMM cells infected by Chi-H1/CXCL4L1 or Chi-H1/CXCL10 released the corresponding chemokine and showed reduced migratory capacity. Therefore, the antitumoral capacity of Chi-H1/CXCL4L1 or Chi-H1/CXCL10 was tested in mice. Either in vitro infected KS-IMM cells were injected or subcutaneously growing KS-IMM xenografts were treated by peritumoral injections of the different viruses. Surprisingly, the transgenes did not increase the antitumoral effect of natural H-1PV. Further experiments indicated that CXCL4L1 and CXCL10 interfered with the expression of the viral NS1 protein in KS-IMM cells. These results indicate that the outcome of parvovirus-based delivery of CXCR3 ligands might be tumor cell type dependent, and hence its application must be considered carefully.
Collapse
Affiliation(s)
- Christiane Dinsart
- 1 Division of Tumor Virology, German Cancer Research Center , Heidelberg, Germany
| | - Kalliopi Pervolaraki
- 1 Division of Tumor Virology, German Cancer Research Center , Heidelberg, Germany.,2 Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Rega Institute for Medical Research , Leuven, Belgium
| | - Alexandra Stroh-Dege
- 1 Division of Tumor Virology, German Cancer Research Center , Heidelberg, Germany
| | - Muriel Lavie
- 1 Division of Tumor Virology, German Cancer Research Center , Heidelberg, Germany
| | - Isabelle Ronsse
- 2 Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Rega Institute for Medical Research , Leuven, Belgium
| | - Jean Rommelaere
- 1 Division of Tumor Virology, German Cancer Research Center , Heidelberg, Germany
| | - Jo Van Damme
- 2 Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Rega Institute for Medical Research , Leuven, Belgium
| | - Katrien Van Raemdonck
- 2 Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Rega Institute for Medical Research , Leuven, Belgium
| | - Sofie Struyf
- 2 Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Rega Institute for Medical Research , Leuven, Belgium
| |
Collapse
|
44
|
Impairment of fetal hematopoietic stem cell function in the absence of Fancd2. Exp Hematol 2016; 48:79-86. [PMID: 27915139 DOI: 10.1016/j.exphem.2016.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022]
Abstract
Fanconi anemia (FA) results from mutations in the genes necessary for DNA damage repair and often leads to progressive bone marrow failure. Although the exhaustion of the bone marrow leads to cytopenias in FA patients as they age, evidence from human FA and mouse model fetal livers suggests that hematopoietic defects originate in utero, which may lead to deficient seeding of the bone marrow. To address this possibility, we examined the consequences of loss of Fancd2, a central component of the FA pathway. Examination of embryonic day 14.5 (E14.5) Fancd2 knockout (KO) fetal livers showed a decrease in total cellularity and specific declines in long-term and short-term hematopoietic stem cell (LT-HSC and ST-HSC, respectively) numbers. Fancd2 KO fetal liver cells display similar functional defects to Fancd2 adult bone marrow cells, including reduced colony-forming units, increased mitomycin C sensitivity, increased LT-HSC apoptosis, and heavily impaired competitive repopulation, implying that these defects are intrinsic to the fetal liver and are not dependent on the accumulation of DNA damage during aging. Telomere shortening, an aging-related mechanism proposed to contribute to HSC apoptosis and bone marrow failure in FA, was not observed in Fancd2 KO fetal livers. In summary, loss of Fancd2 yields significant defects to fetal liver hematopoiesis, particularly the HSC population, which mimics key phenotypes from adult Fancd2 KO bone marrow independently of aging-accrued DNA damage.
Collapse
|
45
|
Chakkaramakkil Verghese S, Goloviznina NA, Kurre P. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector. Stem Cell Res Ther 2016; 7:170. [PMID: 27865213 PMCID: PMC5116221 DOI: 10.1186/s13287-016-0431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC)-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV) particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.
Collapse
Affiliation(s)
- Santhosh Chakkaramakkil Verghese
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA. .,Papé Family Pediatric Research Institute, Oregon Health & Science University, L321, Portland, OR, 97239, USA.
| | - Natalya A Goloviznina
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, L321, Portland, OR, 97239, USA.,Present address: Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter Kurre
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, L321, Portland, OR, 97239, USA
| |
Collapse
|
46
|
Adair JE, Waters T, Haworth KG, Kubek SP, Trobridge GD, Hocum JD, Heimfeld S, Kiem HP. Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy. Nat Commun 2016; 7:13173. [PMID: 27762266 PMCID: PMC5080442 DOI: 10.1038/ncomms13173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However, current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility, limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here, we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow, and reconstitute human haematopoiesis in immunocompromised mice. Importantly, nonhuman primate autologous gene-modified CD34+ cell products are capable of stable, polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy, there is enormous potential for this approach to treat patients on a global scale.
Collapse
Affiliation(s)
- Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.,Departments of Medical Oncology and Pathology, University of Washington, 1410 Campus Parkway, Seattle, Washington 98195, USA
| | - Timothy Waters
- Miltenyi Biotec Inc., 2303 Lindbergh St, Auburn, California 95602, USA
| | - Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | - Sara P Kubek
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University Spokane, PO Box 1495, Spokane, Washington 99210, USA
| | - Jonah D Hocum
- Department of Pharmaceutical Sciences, Washington State University Spokane, PO Box 1495, Spokane, Washington 99210, USA
| | - Shelly Heimfeld
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.,Departments of Medical Oncology and Pathology, University of Washington, 1410 Campus Parkway, Seattle, Washington 98195, USA
| |
Collapse
|
47
|
Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 2016; 128:2774-2784. [PMID: 27756748 DOI: 10.1182/blood-2015-11-683490] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Bone marrow transplantation is currently the only curative therapy for the hematopoietic complications of this disorder. However, long-term morbidity and mortality remain very high, and new therapeutics are badly needed. Here we show that the widely used diabetes drug metformin improves hematopoiesis and delays tumor formation in Fancd2-/- mice. Metformin is the first compound reported to improve both of these FA phenotypes. Importantly, the beneficial effects are specific to FA mice and are not seen in the wild-type controls. In this preclinical model of FA, metformin outperformed the current standard of care, oxymetholone, by improving peripheral blood counts in Fancd2-/- mice significantly faster. Metformin increased the size of the hematopoietic stem cell compartment and enhanced quiescence in hematopoietic stem and progenitor cells. In tumor-prone Fancd2-/-Trp53+/- mice, metformin delayed the onset of tumors and significantly extended the tumor-free survival time. In addition, we found that metformin and the structurally related compound aminoguanidine reduced DNA damage and ameliorated spontaneous chromosome breakage and radials in human FA patient-derived cells. Our results also indicate that aldehyde detoxification might be one of the mechanisms by which metformin reduces DNA damage in FA cells.
Collapse
|
48
|
|
49
|
Oncolytic viruses-immunotherapeutics on the rise. J Mol Med (Berl) 2016; 94:979-91. [PMID: 27492706 DOI: 10.1007/s00109-016-1453-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022]
Abstract
The oncolytic virus (OV) field has entered an exciting period in its evolution in which our basic understanding of viral biology and anti-cancer potential are being actively translated into viable therapeutic options for aggressive malignancies. OVs are naturally occurring or engineered viruses that are able to exploit cancer-specific changes in cellular signaling to specifically target cancers and their microenvironment. The direct cytolytic effect of OVs on cancer cells is known to release antigens, which can begin a cascade of events that results in the induction of anti-cancer adaptive immunity. This response is now regarded as the most critical mechanism of OV action and harnessing it can lead to the elimination of distant micrometastases as well as provide long-term anti-cancer immune surveillance. In this review, we highlight the development of the OV field, why OVs are gaining an increasingly elevated standing as members of the cancer immunotherapy armamentarium, and finally, ongoing clinical studies that are aimed at translating unique OV therapies into approved therapies for aggressive cancers.
Collapse
|
50
|
Sousa R, Gonçalves C, Guerra IC, Costa E, Fernandes A, do Bom Sucesso M, Azevedo J, Rodriguez A, Rius R, Seabra C, Ferreira F, Ribeiro L, Ferrão A, Castedo S, Cleto E, Coutinho J, Carvalho F, Barbot J, Porto B. Increased red cell distribution width in Fanconi anemia: a novel marker of stress erythropoiesis. Orphanet J Rare Dis 2016; 11:102. [PMID: 27456001 PMCID: PMC4960735 DOI: 10.1186/s13023-016-0485-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Red cell distribution width (RDW), a classical parameter used in the differential diagnosis of anemia, has recently been recognized as a marker of chronic inflammation and high levels of oxidative stress (OS). Fanconi anemia (FA) is a genetic disorder associated to redox imbalance and dysfunctional response to OS. Clinically, it is characterized by progressive bone marrow failure, which remains the primary cause of morbidity and mortality. Macrocytosis and increased fetal hemoglobin, two indicators of bone marrow stress erythropoiesis, are generally the first hematological manifestations to appear in FA. However, the significance of RDW and its possible relation to stress erythropoiesis have never been explored in FA. In the present study we analyzed routine complete blood counts from 34 FA patients and evaluated RDW, correlating with the hematological parameters most consistently associated with the FA phenotype. RESULTS We showed, for the first time, that RDW is significantly increased in FA. We also showed that increased RDW is correlated with thrombocytopenia, neutropenia and, most importantly, highly correlated with anemia. Analyzing sequential hemograms from 3 FA patients with different clinical outcomes, during 10 years follow-up, we confirmed a consistent association between increased RDW and decreased hemoglobin, which supports the postulated importance of RDW in the evaluation of hematological disease progression. CONCLUSIONS This study shows, for the first time, that RDW is significantly increased in FA, and this increment is correlated with neutropenia, thrombocytopenia, and highly correlated with anemia. According to the present results, it is suggested that increased RDW can be a novel marker of stress erythropoiesis in FA.
Collapse
Affiliation(s)
- Rosa Sousa
- Laboratory of Cytogenetics, Abel Salazar Institute for Biomedical Sciences, University of Porto (ICBAS, UP), Porto, Portugal
| | - Cristina Gonçalves
- Clinical Hematology Service, Hospital Center of Porto (CHP), Porto, Portugal
| | | | - Emília Costa
- Pediatric Hematology Unity, Hospital Center of Porto (CHP), Porto, Portugal
| | - Ana Fernandes
- Pediatric Hematology-Oncology Unity, Hospital Center of S. João, Porto (CHSJ), Porto, Portugal
| | - Maria do Bom Sucesso
- Pediatric Hematology-Oncology Unity, Hospital Center of S. João, Porto (CHSJ), Porto, Portugal
| | - Joana Azevedo
- Hematology Service, Hospital and University Center of Coimbra (CHUC), Porto, Portugal
| | - Alfredo Rodriguez
- Laboratory of Cytogenetics, National Institute of Pediatrics, Ciudad de Mexico (INP), Mexico City, Mexico
| | - Rocio Rius
- Laboratory of Cytogenetics, National Institute of Pediatrics, Ciudad de Mexico (INP), Mexico City, Mexico
| | - Carlos Seabra
- Clinical Pathology Service, Infante D. Pedro Hospital, Aveiro (CHBV), Aveiro, Portugal
| | - Fátima Ferreira
- Hematology Service, Hospital Center of S. João, Porto (CHSJ), Porto, Portugal
| | - Letícia Ribeiro
- Hematology Service, Hospital and University Center of Coimbra (CHUC), Porto, Portugal
| | - Anabela Ferrão
- Pediatric Service, Hospital Center of Lisboa Norte (CHLN), Lisbon, Portugal
| | - Sérgio Castedo
- Medical Genetics and Prenatal Diagnosis Prof Doctor Sérgio Castedo, Porto (GDPN), Porto, Portugal
| | - Esmeralda Cleto
- Pediatric Hematology Unity, Hospital Center of Porto (CHP), Porto, Portugal
| | - Jorge Coutinho
- Clinical Hematology Service, Hospital Center of Porto (CHP), Porto, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Barbot
- Pediatric Hematology Unity, Hospital Center of Porto (CHP), Porto, Portugal
| | - Beatriz Porto
- Laboratory of Cytogenetics, Abel Salazar Institute for Biomedical Sciences, University of Porto (ICBAS, UP), Porto, Portugal
| |
Collapse
|