1
|
Li X, Liang H, Fan J. Prospects of Cytomegalovirus-Specific T-Cell Receptors in Clinical Diagnosis and Therapy. Viruses 2023; 15:1334. [PMID: 37376633 DOI: 10.3390/v15061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for widespread infections worldwide. In immunocompetent individuals it is typically latent, while infection or reactivation in immunocompromised individuals can result in severe clinical symptoms or even death. Although there has been significant progress in the treatment and diagnosis of HCMV infection in recent years, numerous shortcomings and developmental limitations persist. There is an urgent need to develop innovative, safe, and effective treatments, as well as to explore early and timely diagnostic strategies for HCMV infection. Cell-mediated immune responses are the primary factor controlling HCMV infection and replication, but the protective role of humoral immune responses remains controversial. T-cells, key effector cells of the cellular immune system, are critical for clearing and preventing HCMV infection. The T-cell receptor (TCR) lies at the heart of T-cell immune responses, and its diversity enables the immune system to differentiate between self and non-self. Given the significant influence of cellular immunity on human health and the indispensable role of the TCR in T-cell immune responses, we posit that the impact of TCR on the development of novel diagnostic and prognostic methods, as well as on patient monitoring and management of clinical HCMV infection, will be far-reaching and profound. High-throughput and single-cell sequencing technologies have facilitated unprecedented quantitative detection of TCR diversity. With these current sequencing technologies, researchers have already obtained a vast number of TCR sequences. It is plausible that in the near future studies on TCR repertoires will be instrumental in assessing vaccine efficacy, immunotherapeutic strategies, and the early diagnosis of HCMV infection.
Collapse
Affiliation(s)
- Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
2
|
Liu G, Chen H, Cao X, Jia L, Rui W, Zheng H, Huang D, Liu F, Liu Y, Zhao X, Lu P, Lin X. Efficacy of pp65-specific TCR-T cell therapy in treating cytomegalovirus infection after hematopoietic stem cell transplantation. Am J Hematol 2022; 97:1453-1463. [PMID: 36054234 DOI: 10.1002/ajh.26708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Cytomegalovirus (CMV) infection remains a major cause of mortality after hematopoietic stem cell transplantation (HSCT). Current treatments, including antiviral drugs and adoptive cell therapy with CMV-specific cytotoxic T lymphocytes (CTLs), only show limited benefits in patients. T-cell receptor (TCR)-T cell therapy offers a promising option to treat CMV infections. Here, using tetramer-based screening and single-cell TCR cloning technologies, we identified various CMV antigen-specific TCRs from healthy donors, and generated TCR-T cells targeting multiple pp65 epitopes corresponding to three major HLA-A alleles. The TCR-T cells showed efficient cytotoxicity toward epitope-expressing target cells in vitro. After transfer into immune-deficient mice bearing pp65+ HLA+ tumor cells, TCR-T cells induced dramatic tumor regression and exhibited long-term persistence. In a phase I clinical trial (NCT04153279), CMV TCR-T cells were applied to treat patients with CMV reactivation after HSCT. Except one patient who withdrew at early treatment stage, all other six patients were well-tolerated and achieved complete response (CR), no more than grade 2 cytokine release syndrome (CRS) and other adverse events were observed. CMV TCR-T cells persisted up to 3 months. Among them, two patients have survived for more than 1 year. This study demonstrates the great potential in the treatment and prevention of CMV infection following HSCT or other organ transplantation.
Collapse
Affiliation(s)
- Guangna Liu
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,School of Biomedical Sciences, Hunan University, Changsha, China
| | - Hua Chen
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,BriStar Immunotech Co, Beijing, China
| | - Xingyu Cao
- Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Lemei Jia
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Rui
- BriStar Immunotech Co, Beijing, China
| | | | - Daosheng Huang
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| | - Fang Liu
- BriStar Immunotech Co, Beijing, China
| | - Yue Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueqiang Zhao
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,BriStar Immunotech Co, Beijing, China
| | - Peihua Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xin Lin
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
3
|
CAR-T Cells for the Treatment of Lung Cancer. Life (Basel) 2022; 12:life12040561. [PMID: 35455052 PMCID: PMC9028981 DOI: 10.3390/life12040561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell therapy with genetically modified T lymphocytes that express chimeric antigen receptors (CAR-T) is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in hematological malignancies. However, the efficacy of CAR-T cells in solid tumors is still very unsatisfactory, because of the strong immunosuppressive tumor microenvironment that hinders immune responses. The development of next-generation personalized CAR-T cells against solid tumors is a clinical necessity. The identification of therapeutic targets for new CAR-T therapies to increase the efficacy, survival, persistence, and safety in solid tumors remains a critical frontier in cancer immunotherapy. Here, we summarize basic, translational, and clinical results of CAR-T cell immunotherapies in lung cancer, from their molecular engineering and mechanistic studies to preclinical and clinical development.
Collapse
|
4
|
Xue SA, Chen Y, Voss RH, Kisan V, Wang B, Chen KK, He FQ, Cheng XX, Scolamiero L, Holler A, Gao L, Morris E, Stauss HJ. Enhancing the expression and function of an EBV-TCR on engineered T cells by combining Sc-TCR design with CRISPR editing to prevent mispairing. Cell Mol Immunol 2020; 17:1275-1277. [PMID: 32203185 PMCID: PMC7784858 DOI: 10.1038/s41423-020-0396-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shao-An Xue
- Key Laboratory of Natural Product Development & Anticancer Innovative Drug Research in Qinling, Xi'An. Xi'An University, Xi'An, 710065, P. R. China.
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yuan Chen
- Key Laboratory of Natural Product Development & Anticancer Innovative Drug Research in Qinling, Xi'An. Xi'An University, Xi'An, 710065, P. R. China
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Ralf-Holger Voss
- Research Center for Immunotherapy (FZI), University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Virad Kisan
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Bo Wang
- Key Laboratory of Natural Product Development & Anticancer Innovative Drug Research in Qinling, Xi'An. Xi'An University, Xi'An, 710065, P. R. China
| | - Ke-Ke Chen
- Key Laboratory of Natural Product Development & Anticancer Innovative Drug Research in Qinling, Xi'An. Xi'An University, Xi'An, 710065, P. R. China
| | - Feng-Qin He
- Key Laboratory of Natural Product Development & Anticancer Innovative Drug Research in Qinling, Xi'An. Xi'An University, Xi'An, 710065, P. R. China
| | - Xiao-Xia Cheng
- Key Laboratory of Natural Product Development & Anticancer Innovative Drug Research in Qinling, Xi'An. Xi'An University, Xi'An, 710065, P. R. China
| | - Laura Scolamiero
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Angelika Holler
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Liquan Gao
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Hans J Stauss
- Institute of Immunity & Transplantation, University College London Medical School, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
5
|
Sakai T, Terakura S, Miyao K, Okuno S, Adachi Y, Umemura K, Julamanee J, Watanabe K, Hamana H, Kishi H, Leitner J, Steinberger P, Nishida T, Murata M, Kiyoi H. Artificial T Cell Adaptor Molecule-Transduced TCR-T Cells Demonstrated Improved Proliferation Only When Transduced in a Higher Intensity. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:613-622. [PMID: 33005728 PMCID: PMC7509457 DOI: 10.1016/j.omto.2020.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
An artificial T cell adaptor molecule (ATAM) was generated to improve persistence of T cell receptor (TCR) gene-transduced T (TCR-T) cells compared to such persistence in a preceding study. ATAMs are gene-modified CD3ζ with the intracellular domain of 4-1BB inserted in the middle of CD3ζ. NY-ESO-1 TCR-T cells transduced with an ATAM with two separated virus vectors demonstrated superior proliferation upon antigen stimulation. To further develop clinically applicable ATAM-transduced TCR-T cells, we attempted to make a single virus vector to transduce the TCR and ATAM simultaneously. Because we failed to observe improved proliferation capacity upon stimulation after one virus vector (1vv) transduction, we compared TCR-T cells transduced with 1vv and two virus vector (2vv) methods to elucidate the reason. In Jurkat reporter cells, an ATAM transduced by the 2vv method demonstrated a higher intensity than by the 1vv method, and the ATAM intensity was associated with increased nuclear factor κB (NF-κB) signals upon stimulation. In ATAM-transduced primary T cells, a transduced ATAM by the 2vv method showed higher intensity and better proliferation. ATAM-transduced TCR-T cells demonstrated improved proliferation only when the ATAM was transduced at a higher intensity. To create a simpler transduction method, we need to develop a strategy to make a higher ATAM expression to prove the efficacy of ATAM transduction in TCR-T therapy.
Collapse
Affiliation(s)
- Toshiyasu Sakai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Miyao
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jakrawadee Julamanee
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Clinical Hematology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Keisuke Watanabe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Immunology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Tetsuya Nishida
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Saeed M, Schooten E, van Brakel M, K. Cole D, ten Hagen TLM, Debets R. T Cells Expressing a TCR-Like Antibody Selected Against the Heteroclitic Variant of a Shared MAGE-A Epitope Do Not Recognise the Cognate Epitope. Cancers (Basel) 2020; 12:cancers12051255. [PMID: 32429338 PMCID: PMC7281252 DOI: 10.3390/cancers12051255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antibodies-recognising peptides bound to the major histocompatibility complex (pMHC) represent potentially valuable and promising targets for chimeric antigen receptor (CAR) T cells to treat patients with cancer. Here, a human phage-Fab library has been selected using HLA-A2 complexed with a heteroclitic peptide variant from an epitope shared among multiple melanoma-associated antigens (MAGEs). DNA restriction analyses and phage ELISAs confirmed selection of unique antibody clones that specifically bind to HLA-A2 complexes or HLA-A2-positive target cells loaded with native or heteroclitic peptide. Antibodies selected against heteroclitic peptide, in contrast to native peptide, demonstrated significantly lower to even negligible binding towards native peptide or tumour cells that naturally expressed peptides. The binding to native peptide was not rescued by phage panning with antigen-positive tumour cells. Importantly, when antibodies directed against heteroclitic peptides were engineered into CARs and expressed by T cells, binding to native peptides and tumour cells was minimal to absent. In short, TCR-like antibodies, when isolated from a human Fab phage library using heteroclitic peptide, fail to recognise its native peptide. We therefore argue that peptide modifications to improve antibody selections should be performed with caution as resulting antibodies, either used directly or as CARs, may lose activity towards endogenously presented tumour epitopes.
Collapse
Affiliation(s)
- Mesha Saeed
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
| | - Erik Schooten
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands; (E.S.); (M.v.B.); (R.D.)
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands; (E.S.); (M.v.B.); (R.D.)
| | - David K. Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK;
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
- Correspondence:
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands; (E.S.); (M.v.B.); (R.D.)
| |
Collapse
|
7
|
Wälchli S, Sioud M. Next Generation of Adoptive T Cell Therapy Using CRISPR/Cas9 Technology: Universal or Boosted? Methods Mol Biol 2020; 2115:407-417. [PMID: 32006413 DOI: 10.1007/978-1-0716-0290-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Adoptive T cell therapy (ACT) using either chimeric antigen receptor (CAR)- or T cell receptor (TCR)-engineered lymphocytes has emerged as a promising strategy to treat cancer. However, this therapy is still facing enormous challenges such as poor quality of autologous T cells, T cell exhaustion, and the immune suppressive tumor microenvironments. Additionally, graft-versus-host disease is an issue that must be addressed to allow the use of allogeneic T cells. Strategies to overcome these therapeutic challenges using gene editing technology are now being developed. One strategy is to disrupt TCR and/or MHC expression in healthy donor T cells to generate T cells for universal use. Another strategy is to improve the quality of patient's T cells by eliminating either the expression of selected immune checkpoint receptors or negative regulators of TCR signaling and/or T-cell homeostasis. Here, we review the use of CRISPR-Cas9 platform in T cell engineering with a focus on the development of universal T cells and boosted autologous cells for next-generation ACT.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
| |
Collapse
|
8
|
Yang X, Xie S, Yang X, Cueva JC, Hou X, Tang Z, Yao H, Mo F, Yin S, Liu A, Lu X. Opportunities and Challenges for Antibodies against Intracellular Antigens. Am J Cancer Res 2019; 9:7792-7806. [PMID: 31695801 PMCID: PMC6831482 DOI: 10.7150/thno.35486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Therapeutic antibodies are one most significant advances in immunotherapy, the development of antibodies against disease-associated MHC-peptide complexes led to the introduction of TCR-like antibodies. TCR-like antibodies combine the recognition of intracellular proteins with the therapeutic potency and versatility of monoclonal antibodies (mAb), offering an unparalleled opportunity to expand the repertoire of therapeutic antibodies available to treat diseases like cancer. This review details the current state of TCR-like antibodies and describes their production, mechanisms as well as their applications. In addition, it presents an insight on the challenges that they must overcome in order to become commercially and clinically validated.
Collapse
|
9
|
Casey NP, Fujiwara H, Tanimoto K, Okamoto S, Mineno J, Kuzushima K, Shiku H, Yasukawa M. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy. PLoS One 2016; 11:e0156896. [PMID: 27271876 PMCID: PMC4896450 DOI: 10.1371/journal.pone.0156896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/21/2016] [Indexed: 11/23/2022] Open
Abstract
Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient’s own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this ‘siTCR’ vector. We then compared the activity of this vector against the original, ‘conventional’ vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell receptor gene-transfer will be crucial for clinical applications of this technology.
Collapse
Affiliation(s)
- Nicholas Paul Casey
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazushi Tanimoto
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | - Hiroshi Shiku
- Department of Cancer Vaccine and Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
10
|
Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, Kramm CM, Rettie AE, Wiek C, Hanenberg H. Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Ther 2016; 23:615-26. [PMID: 27092941 DOI: 10.1038/gt.2016.38] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 12/18/2022]
Abstract
Engineering autologous or allogeneic T cells to express a suicide gene can control potential toxicity in adoptive T-cell therapies. We recently reported the development of a novel human suicide gene system that is based on an orphan human cytochrome P450 enzyme, CYP4B1, and the naturally occurring alkylator prodrug 4-ipomeanol. The goal of this study was to systematically develop a clinically applicable self-inactivating lentiviral vector for efficient co-expression of CYP4B1 as an ER-located protein with two distinct types of cell surface proteins, either MACS selection genes for donor lymphocyte infusions after allogeneic stem cell transplantation or chimeric antigen receptors for retargeting primary T cells. The U3 region of the myeloproliferative sarcoma virus in combination with the T2A site was found to drive high-level expression of our CYP4B1 mutant with truncated CD34 or CD271 as MACS suitable selection markers. This lentiviral vector backbone was also well suited for co-expression of CYP4B1 with a codon-optimized CD19 chimeric antigen receptor (CAR) construct. Finally, 4-ipomeanol efficiently induced apoptosis in primary T cells that co-express mutant CYP4B1 and the divergently located MACS selection and CAR genes. In conclusion, we here developed a clinically suited lentiviral vector that supports high-level co-expression of cell surface proteins with a potent novel human suicide gene.
Collapse
Affiliation(s)
- K Roellecke
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - E L Virts
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Einholz
- Institute for Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - K Z Edson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - B Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - C Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - D von Laer
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - K Scheckenbach
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - M Wagenmann
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - D Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - C M Kramm
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, Göttingen, Germany
| | - A E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - C Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - H Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Haque M, Song J, Fino K, Sandhu P, Wang Y, Ni B, Fang D, Song J. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplant 2016; 25:811-27. [PMID: 26777320 DOI: 10.3727/096368916x690467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8(+) T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zarling AL, Obeng RC, Desch AN, Pinczewski J, Cummings KL, Deacon DH, Conaway M, Slingluff CL, Engelhard VH. MHC-restricted phosphopeptides from insulin receptor substrate-2 and CDC25b offer broad-based immunotherapeutic agents for cancer. Cancer Res 2014; 74:6784-95. [PMID: 25297629 DOI: 10.1158/0008-5472.can-14-0043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer cells display novel phosphopeptides in association with MHC class I and II molecules. In this study, we evaluated two HLA-A2-restricted phosphopeptides derived from the insulin receptor substrate (IRS)-2 and the cell-cycle regulator CDC25b. These proteins are both broadly expressed in multiple malignancies and linked to cancer cell survival. Two phosphopeptides, termed pIRS-21097-1105 and pCDC25b38-46, served as targets of strong and specific CD8 T-cell memory responses in normal human donors. We cloned T-cell receptor (TCR) cDNAs from murine CD8 T-cell lines specific for either pIRS-21097-1105 or pCDC25b38-46. Expression of these TCRs in human CD8 T cells imparted high-avidity phosphopeptide-specific recognition and cytotoxic and cytokine-secreting effector activities. Using these cells, we found that endogenously processed pIRS-21097-1105 was presented on HLA-A2(+) melanomas and breast, ovarian, and colorectal carcinomas. Presentation was correlated with the level of the Ser(1100)-phosphorylated IRS-2 protein in metastatic melanoma tissues. The highest expression of this protein was evident on dividing malignant cells. Presentation of endogenously processed pCDC25b38-46 was narrower, but still evident on HLA-A2(+) melanoma, breast carcinoma, and lymphoblastoid cells. Notably, pIRS-21097-1105-specific and pCDC25b38-46-specific TCR-expressing human CD8 T cells markedly slowed tumor outgrowth in vivo. Our results define two new antigens that may be developed as immunotherapeutic agents for a broad range of HLA-A2(+) cancers.
Collapse
Affiliation(s)
- Angela L Zarling
- Carter Immunology Center and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Rebecca C Obeng
- Carter Immunology Center and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - A Nicole Desch
- Carter Immunology Center and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Joel Pinczewski
- Department of Pathology, University of Virginia, Charlottesville, Virginia. Human Immune Therapy Center, University of Virginia, Charlottesville, Virginia
| | - Kara L Cummings
- Carter Immunology Center and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Donna H Deacon
- Human Immune Therapy Center, University of Virginia, Charlottesville, Virginia. Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark Conaway
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Craig L Slingluff
- Human Immune Therapy Center, University of Virginia, Charlottesville, Virginia. Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Victor H Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
13
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
14
|
Abstract
Gene therapy as a treatment for cancer is regarded as high in promise, but low in delivery, a deficiency that has become more obvious with ever-increasing reports of the successful correction of monogenic disorders by this approach. We review the commercial and scientific obstacles that have led to these delays and describe how they are progressively being overcome. Recent and striking successes and correspondingly increased commercial involvement suggest that gene transfer could finally become a powerful method for development of safe and effective cancer therapeutic drugs.
Collapse
Affiliation(s)
- Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Marin V, Cribioli E, Philip B, Tettamanti S, Pizzitola I, Biondi A, Biagi E, Pule M. Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods 2013. [PMID: 23186165 DOI: 10.1089/hgtb.2012.050] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Use of adoptive T-cell therapy (ACT) is increasing; however, T-cell therapy can result in severe toxicity. Consequently, several suicide-gene strategies that allow selective destruction of the infused T cells have been described. We compared effectiveness of four such strategies in vitro in Epstein Barr virus (EBV)-cytotoxic T lymphocytes (CTLs). Herpes simplex virus thymidine kinase (HSV-TK), human inducible caspase 9 (iCasp9), mutant human thymidylate kinase (mTMPK), and human CD20 codon optimized genes were cloned in frame with 2A-truncated codon optimized CD34 (dCD34) in a retroviral vector. Codon-optimization considerably improved CD20 expression. EBV-CTLs could be efficiently transduced in all constructs, with transgene expression similar to the control vector containing dCD34 alone. Expression was maintained for prolonged cultures. Expression of the suicide genes was not associated with alterations in immunophenotype, proliferation, or function of CTLs. Activation of HSV-TK, iCasp9, and CD20 ultimately resulted in equally effective destruction of transduced T cells. However, while iCasp9 and CD20 effected immediate cell-death induction, HSV-TK-expressing T cells required 3 days of exposure to ganciclovir to reach full effect. mTMPK-transduced cells showed lower T-cell killing all time points. Our results suggest that the faster activity of iCasp9 might be advantageous in treating certain types of acutely life-threatening toxicity. Codon-optimized CD20 has potential as a suicide gene.
Collapse
Affiliation(s)
- Virna Marin
- Centro Ricerca M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Iwami K, Natsume A, Ohno M, Ikeda H, Mineno J, Nukaya I, Okamoto S, Fujiwara H, Yasukawa M, Shiku H, Wakabayashi T. Adoptive transfer of genetically modified Wilms' tumor 1-specific T cells in a novel malignant skull base meningioma model. Neuro Oncol 2013; 15:747-58. [PMID: 23460320 DOI: 10.1093/neuonc/not007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Meningiomas are the most commonly diagnosed primary intracranial neoplasms. Despite significant advances in modern therapies, the management of malignant meningioma and skull base meningioma remains a challenge. Thus, the development of new treatment modalities is urgently needed for these difficult-to-treat meningiomas. The goal of this study was to investigate the potential of build-in short interfering RNA-based Wilms' tumor protein (WT1)-targeted adoptive immunotherapy in a reproducible mouse model of malignant skull base meningioma that we recently established. METHODS We compared WT1 mRNA expression in human meningioma tissues and gliomas by quantitative real-time reverse-transcription polymerase chain reaction. Human malignant meningioma cells (IOMM-Lee cells) were labeled with green fluorescent protein (GFP) and implanted at the skull base of immunodeficient mice by using the postglenoid foramen injection (PGFi) technique. The animals were sacrificed at specific time points for analysis of tumor formation. Two groups of animals received adoptive immunotherapy with control peripheral blood mononuclear cells (PBMCs) or WT1-targeted PBMCs. RESULTS High levels of WT1 mRNA expression were observed in many meningioma tissues and all meningioma cell lines. IOMM-Lee-GFP cells were successfully implanted using the PGFi technique, and malignant skull base meningiomas were induced in all mice. The systemically delivered WT1-targeted PBMCs infiltrated skull base meningiomas and significantly delayed tumor growth and increased survival time. CONCLUSIONS We have established a reproducible mouse model of malignant skull base meningioma. WT1-targeted adoptive immunotherapy appears to be a promising approach for the treatment of difficult-to-treat meningiomas.
Collapse
Affiliation(s)
- Kenichiro Iwami
- Department of Neurosurgery, Nagoya University, Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Katz SC, Burga RA, Naheed S, Licata LA, Thorn M, Osgood D, Nguyen CT, Espat NJ, Fletcher JA, Junghans RP. Anti-KIT designer T cells for the treatment of gastrointestinal stromal tumor. J Transl Med 2013; 11:46. [PMID: 23433424 PMCID: PMC3599052 DOI: 10.1186/1479-5876-11-46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Imatinib mesylate is an effective treatment for metastatic gastrointestinal stromal tumor (GIST). However, most patients eventually develop resistance and there are few other treatment options. Immunotherapy using genetically modified or designer T cells (dTc) has gained increased attention for several malignancies in recent years. The aims of this study were to develop and test novel anti-KIT dTc engineered to target GIST cells. METHODS Human anti-KIT dTc were created by retroviral transduction with novel chimeric immune receptors (CIR). The gene for stem cell factor (SCF), the natural ligand for KIT, was cloned into 1st generation (SCF-CD3ζ, 1st gen) and 2nd generation (SCF-CD28-CD3ζ, 2nd gen) CIR constructs. In vitro dTc proliferation and tumoricidal capacity in the presence of KIT+ tumor cells were measured. In vivo assessment of dTc anti-tumor efficacy was performed by treating immunodeficient mice harboring subcutaneous GIST xenografts with dTc tail vein infusions. RESULTS We successfully produced the 1st and 2nd gen anti-KIT CIR and transduced murine and human T cells. Average transduction efficiencies for human 1st and 2nd gen dTc were 50% and 42%. When co-cultured with KIT+ tumor cells, both 1st and 2nd gen dTc proliferated and produced IFNγ. Human anti-KIT dTc were efficient at lysing GIST in vitro compared to untransduced T cells. In mice with established GIST xenografts, treatment with either 1st or 2nd gen human anti-KIT dTc led to significant reductions in tumor growth rates. CONCLUSIONS We have constructed a novel anti-KIT CIR for production of dTc that possess specific activity against KIT+ GIST in vitro and in vivo. Further studies are warranted to evaluate the therapeutic potential and safety of anti-KIT dTc.
Collapse
Affiliation(s)
- Steven C Katz
- Roger Williams Medical Center, Department of Surgery, Providence, RI/Boston University School of Medicine, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy. Cancer Gene Ther 2012; 20:57-64. [PMID: 23175243 PMCID: PMC3534155 DOI: 10.1038/cgt.2012.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR-CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR-CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR-CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature.
Collapse
|
19
|
Abstract
The function of T lymphocytes as orchestrators and effectors of the adaptive immune response is directed by the specificity of their T cell receptors (TCRs). By transferring into T cells the genes encoding antigen-specific receptors, the functional activity of large populations of T cells can be redirected against defined targets including virally infected or cancer cells. The potential of therapeutic T cells to traffic to sites of disease, to expand and to persist after a single treatment remains a major advantage over the currently available immunotherapies that use monoclonal antibodies. Here we review recent progress in the field of TCR gene therapy, outlining challenges to its successful implementation and the strategies being used to overcome them. We detail strategies used in the optimization of affinity and surface expression of the introduced TCR, the choice of T cell subpopulations for gene transfer, and the promotion of persistence of gene-modified T cells in vivo. We review the safety concerns surrounding the use of gene-modified T cells in patients, discussing emerging solutions to these problems, and describe the increasingly positive results from the use of gene-modified T cells in recent clinical trials of adoptive cellular immunotherapy. The increasing sophistication of measures to ensure the safety of engineered T cells is accompanied by an increasing number of clinical trials: these will be essential to guide the effective translation of cellular immunotherapy from the laboratory to the bedside.
Collapse
Affiliation(s)
- Benjamin J Uttenthal
- Department of Immunology, Institute of Immunity, Infection and Transplantation, University College London (UCL), Royal Free Hospital, London, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
Tumour and virus-infected cells are recognised by CD8+ cytotoxic T cells that, in response, are activated to eliminate these cells. In order to be activated, the clonotypic T-cell receptor (TCR) needs to encounter a specific peptide antigen presented by the membrane surface major histocompatibility complex (MHC) molecule. Cells that have undergone malignant transformation or viral infection present peptides derived from tumour-associated antigens or viral proteins on their MHC class I molecules. Therefore, disease-specific MHC-peptide complexes are desirable targets for immunotherapeutic approaches. One such approach transforms the unique fine specificity but low intrinsic affinity of TCRs to MHC-peptide complexes into high-affinity soluble antibody molecules endowed with a TCR-like specificity towards tumour or viral epitopes. These antibodies, termed TCR-like antibodies, are being developed as a new class of immunotherapeutics that can target tumour and virus-infected cells and mediate their specific killing. In addition to their therapeutic capabilities, TCR-like antibodies are being developed as diagnostic reagents for cancer and infectious diseases, and serve as valuable research tools for studying MHC class I antigen presentation.
Collapse
|
21
|
Merhavi-Shoham E, Haga-Friedman A, Cohen CJ. Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2011; 22:14-22. [PMID: 22210183 DOI: 10.1016/j.semcancer.2011.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/15/2011] [Indexed: 12/14/2022]
Abstract
The adoptive transfer of tumor-specific T-lymphocytes holds promise for the treatment of metastatic cancer. Genetic modulation of T-lymphocytes using TCR transfer with tumor-specific TCR genes is an attractive strategy to generate anti-tumor response, especially against large solid tumors. Recently, several clinical trials have demonstrated the therapeutic potential of this approach which lead to impressive tumor regression in cancer patients. Still, several factors may hinder the clinical benefit of this approach, such as the type of cells to modulate, the vector configuration or the safety of the procedure. In the present review we will aim at giving an overview of the recent developments related to the immune modulation of the anti-tumor adaptive response using genetically engineered lymphocytes and will also elaborate the development of other genetic modifications to enhance their anti-tumor immune response.
Collapse
Affiliation(s)
- Efrat Merhavi-Shoham
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
22
|
Human T cells expressing affinity-matured TCR display accelerated responses but fail to recognize low density of MHC-peptide antigen. Blood 2011; 118:319-29. [DOI: 10.1182/blood-2010-12-326736] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We have tested whether affinity-matured TCRs that retain peptide specificity improve the ability of primary human CD8+ T cells to mount antigen-specific responses. We found that TCR affinity correlated with the speed of T-cell responses. High affinity TCR–antigen interactions rapidly initiated T-cell responses, but low affinity TCR/antigen interactions required longer time periods to elicit the same responses. Within the “natural” affinity range, increased TCR-to-antigen affinity correlated with improved ability of T cells to recognize low concentration of antigen. However, affinity-matured TCR with 700-fold enhanced affinity for MHC-to-antigen required 100-fold higher antigen-density to initiate T-cell responses than did wild-type TCR. Using modified peptides to reduce the affinity of TCR-to-antigen interaction, we demonstrate that affinity-matured TCRs are not defective, being superior to wild-type TCR in recognizing low concentration of modified peptides. These data indicate that enhancing TCR affinity can accelerate the speed of T-cell activation and reduce the ability to recognize low density of MHC-to-peptide antigen. We predict that future studies of the human T-cell repertoire will reveal 2 types of low avidity T cells: fast and slow responders, with high-affinity and low-affinity TCR, respectively.
Collapse
|
23
|
Hanley PJ, Cruz CR, Shpall EJ, Bollard CM. Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy 2011; 12:713-20. [PMID: 20818913 DOI: 10.3109/14653249.2010.517518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because of the necessary immunodepletion prior to cord blood transplantation as well as the immaturity of cord blood immune cells, recipients experience a high incidence of viral infection in addition to complications observed after hematopoietic stem cell transplantation, such as relapse and graft-versus-host disease. We describe current immunotherapeutic approaches to treating these complications, including the generation of antigen-specific T cells from cord blood, redirecting cord blood T cells using chimeric antigen receptors, and generating cord blood-derived natural killer cells and regulatory T cells.
Collapse
Affiliation(s)
- Patrick J Hanley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Canderan G, Gruarin P, Montagna D, Fontana R, Melloni G, Traversari C, Dellabona P, Casorati G. An efficient strategy to induce and maintain in vitro human T cells specific for autologous non-small cell lung carcinoma. PLoS One 2010; 5:e12014. [PMID: 20711505 PMCID: PMC2918513 DOI: 10.1371/journal.pone.0012014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 07/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background The efficient expansion in vitro of cytolytic CD8+ T cells (CTLs) specific for autologous tumors is crucial both for basic and translational aspects of tumor immunology. We investigated strategies to generate CTLs specific for autologous Non-Small Cell Lung Carcinoma (NSCLC), the most frequent tumor in mankind, using circulating lymphocytes. Principal Findings Classic Mixed Lymphocyte Tumor Cultures with NSCLC cells consistently failed to induce tumor-specific CTLs. Cross-presentation in vitro of irradiated NSCLC cells by autologous dendritic cells, by contrast, induced specific CTL lines from which we obtained a high number of tumor-specific T cell clones (TCCs). The TCCs displayed a limited TCR diversity, suggesting an origin from few tumor-specific T cell precursors, while their TCR molecular fingerprints were detected in the patient's tumor infiltrating lymphocytes, implying a role in the spontaneous anti-tumor response. Grafting NSCLC-specific TCR into primary allogeneic T cells by lentiviral vectors expressing human V-mouse C chimeric TCRα/β chains overcame the growth limits of these TCCs. The resulting, rapidly expanding CD4+ and CD8+ T cell lines stably expressed the grafted chimeric TCR and specifically recognized the original NSCLC. Conclusions This study defines a strategy to efficiently induce and propagate in vitro T cells specific for NSCLC starting from autologous peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Glenda Canderan
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Gruarin
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Montagna
- Laboratory of Immunology, Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Raffaella Fontana
- Cancer Gene Therapy Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Melloni
- Department of Thoracic Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- * E-mail: (PD); (GC)
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- * E-mail: (PD); (GC)
| |
Collapse
|
25
|
Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010; 2010:692097. [PMID: 20625438 PMCID: PMC2896720 DOI: 10.1155/2010/692097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/20/2010] [Indexed: 12/21/2022] Open
Abstract
In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients.
Collapse
|
26
|
Bialer G, Horovitz-Fried M, Ya’acobi S, Morgan RA, Cohen CJ. Selected Murine Residues Endow Human TCR with Enhanced Tumor Recognition. THE JOURNAL OF IMMUNOLOGY 2010; 184:6232-41. [DOI: 10.4049/jimmunol.0902047] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Burns WR, Zhao Y, Frankel TL, Hinrichs CS, Zheng Z, Xu H, Feldman SA, Ferrone S, Rosenberg SA, Morgan RA. A high molecular weight melanoma-associated antigen-specific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer Res 2010; 70:3027-33. [PMID: 20395199 PMCID: PMC3245576 DOI: 10.1158/0008-5472.can-09-2824] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express human leukocyte antigen (HLA) class I antigen-restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight melanoma-associated antigen (HMW-MAA), which is highly expressed on more than 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3zeta activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA-expressing cell lines. Furthermore, the receptor functioned in both CD4(+) and CD8(+) cells, was non-MHC restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies.
Collapse
Affiliation(s)
- William R. Burns
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yangbing Zhao
- University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Timothy L. Frankel
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christian S. Hinrichs
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hui Xu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven A. Feldman
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Soldano Ferrone
- University of Pittsburgh Cancer Institute, Departments of Surgery, of Immunology and of Pathology, Pittsburgh, PA
| | - Steven A. Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Richard A. Morgan
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Shao H, Zhang W, Hu Q, Wu F, Shen H, Huang S. TCR mispairing in genetically modified T cells was detected by fluorescence resonance energy transfer. Mol Biol Rep 2010; 37:3951-6. [PMID: 20373027 DOI: 10.1007/s11033-010-0053-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 03/05/2010] [Indexed: 02/08/2023]
Abstract
Adoptive transfer of T lymphocytes genetically modified with antigen-specific T cell receptor (TCR) constitutes a promising approach for the treatment of malignant tumors and virus infections. One of the challenges in this field of TCR gene therapy is TCR mispairing defining the incorrect pairing between an introduced TCR α or β chain and an endogenous TCR β or α chain, which results in diluted surface expression of the therapeutic TCR αβ. Although there is currently no clinical evidence for TCR mispairing-induced autoreactivity, the generation of autoreactive TCRs upon TCR mispairing cannot be excluded. So it is important to detect TCR mispairing to evaluate the efficiency of TCR gene therapy. Currently there is no available quantitative assay for the measurement of TCR mispairing. Fluorescence resonance energy transfer (FRET) is a powerful approach for identifying biologically relevant molecular interactions with high spatiotemporal resolution. In this study, we described the method of FRET for the measurement of TCR mispairing. It was found that the average FRET efficiency was 12.2 ± 7.5% in HeLa cells and 8.4 ± 3.3% in Jurkat cells (P = 0.026605). The reduction of FRET efficiency in lymphocytes reflected the presence of mispaired TCRs, indicating there were ~30% TCR mispairing in lymphocytes. This study provides a quantitative intracellular assay that can be used to detect TCR mispairing in genetically modified T lymphocytes.
Collapse
Affiliation(s)
- Hongwei Shao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Advanced malignant melanoma: immunologic and multimodal therapeutic strategies. JOURNAL OF ONCOLOGY 2010; 2010:689893. [PMID: 20224761 PMCID: PMC2836142 DOI: 10.1155/2010/689893] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/07/2010] [Indexed: 02/08/2023]
Abstract
Immunologic treatment strategies are established in malignant
melanoma treatment, mainly focusing on Interleukin-2 in advanced disease
and interferon alpha in the adjuvant situation. In advanced
disease, therapies with IL-2, interferon and different
chemotherapeutic agents were not associated with better patient
survival in the vast majority of patients. Therefore, an overview
of novel immunological agents and combined therapeutic approaches
is presented in this review, covering allogenic and autologous
vaccine strategies, dendritic cell vaccination, strategies for
adoptive immunotherapy and T cell receptor gene transfer,
treatment with cytokines and monoclonal antibodies against the
CTLA-4 antigen. As emerging treatment strategies are based on
individual molecular and immunological characterization of
individual tumors/patients, tailored targeted drug therapies move
into the focus of treatment strategies. Multimodal combination
therapies with considerable potential in altering the immune
response in malignant melanoma patients are currently emerging. As
oncology moves forward into the field of personalized therapies, a
careful molecular and immunological characterization of patients
is crucial to select patients for individual targeted treatment.
Collapse
|
30
|
Kanagawa N, Yanagawa T, Mukai Y, Yoshioka Y, Okada N, Nakagawa S. Tumor-targeting CTL expressing a single-chain Fv specific for VEGFR2. Biochem Biophys Res Commun 2010; 394:54-8. [PMID: 20171182 DOI: 10.1016/j.bbrc.2010.02.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy.
Collapse
Affiliation(s)
- Naoko Kanagawa
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood 2010; 115:2695-703. [PMID: 20110422 DOI: 10.1182/blood-2009-09-242263] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viral infections and leukemic relapse account for the majority of treatment failures in patients with B-cell acute lymphoblastic leukemia (B-ALL) receiving allogeneic hematopoietic stem cell (HSC) or cord blood (CB) transplants. Adoptive transfer of virus-specific cytotoxic T lymphocytes (CTLs) provides protection against common viruses causing serious infections after HSC transplantation without concomitant graft-versus-host disease. We have now generated CTL lines from peripheral blood (PB) or CB units that recognize multiple common viruses and provide antileukemic activity by transgenic expression of a chimeric antigen receptor (CAR) targeting CD19 expressed on B-ALL. PB-derived CAR(+) CTLs produced interferon-gamma (IFNgamma) in response to cytomegalovirus-pp65, adenovirus-hexon, and Epstein-Barr virus pepmixes (from 205 +/- 104 to 1034 +/- 304 spot-forming cells [SFCs]/10(5) T cells) and lysed primary B-ALL blasts in (51)Cr-release assays (mean, 66% +/- 5% specific lysis; effector-target [E/T] ratio, 40:1) and the CD19(+) Raji cell line (mean, 78% +/- 17%) in contrast to nontransduced controls (8% +/- 8% and 3% +/- 2%). CB-derived CAR(+) CTLs showed similar antiviral and antitumor function and both PB and CB CAR(+) CTLs completely eliminated B-ALL blasts over 5 days of coculture. This approach may prove beneficial for patients with high-risk B-ALL who have recently received an HSC or CB transplant and are at risk of infection and relapse.
Collapse
|
32
|
Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H, Kato I. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 2009; 69:9003-11. [PMID: 19903853 DOI: 10.1158/0008-5472.can-09-1450] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive T-cell therapy using lymphocytes genetically engineered to express tumor antigen-specific TCRs is an attractive strategy for treating patients with malignancies. However, there are potential drawbacks to this strategy: mispairing of the introduced TCR alpha/beta chains with the endogenous TCR subunits and competition of CD3 molecules between the introduced and endogenous TCRs can impair cell surface expression of the transduced TCR, resulting in insufficient function and potential generation of autoreactive T cells. In addition, the risk of tumor development following the infusion of cells with aberrant vector insertion sites increases with the vector copy number in the transduced cells. In this study, we developed retroviral vectors encoding both small interfering RNA constructs that specifically down-regulate endogenous TCR and a codon-optimized, small interfering RNA-resistant TCR specific for the human tumor antigens MAGE-A4 or WT1. At low copy numbers of the integrated vector, the transduced human lymphocytes exhibited high surface expression of the introduced tumor-specific TCR and reduced expression of endogenous TCRs. In consequence, the vector-transduced lymphocytes showed enhanced cytotoxic activity against antigen-expressing tumor cells. Therefore, our novel TCR gene therapy may open a new gate for effective immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Sachiko Okamoto
- Center for Cell and Gene Therapy, Takara Bio, Inc., Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Schub A, Schuster IG, Hammerschmidt W, Moosmann A. CMV-specific TCR-transgenic T cells for immunotherapy. THE JOURNAL OF IMMUNOLOGY 2009; 183:6819-30. [PMID: 19864595 DOI: 10.4049/jimmunol.0902233] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reactivation of CMV can cause severe disease after allogeneic hemopoietic stem cell transplantation. Adoptive T cell therapy was successfully used for patients who had received transplants from CMV-positive donors. However, patients with transplants from CMV-negative donors are at highest risk, and an adoptive therapy is missing because CMV-specific T cells are not available from such donors. To address this problem, we used retroviral transfer of CMV-specific TCR genes. We generated CMV-specific T cell clones of several HLA restrictions recognizing the endogenously processed Ag pp65. The genes of four TCRs were cloned and transferred to primary T cells from CMV-negative donors. These CMV-TCR-transgenic T cells displayed a broad spectrum of important effector functions (secretion of IFN-gamma and IL-2, cytotoxicity, proliferation) in response to endogenously processed pp65 and could be enriched and expanded by strictly Ag-specific stimulation. Expansion of engineered T cells was accompanied by an increase in specific effector functions, indicating that the transferred specificity is stable and fully functional. Hence, we expect these CMV-TCR-transgenic T cells to be effective in controlling acute CMV disease and establishing an antiviral memory.
Collapse
Affiliation(s)
- Andrea Schub
- Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | | | | | | |
Collapse
|
34
|
Jones S, Peng PD, Yang S, Hsu C, Cohen CJ, Zhao Y, Abad J, Zheng Z, Rosenberg SA, Morgan RA. Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum Gene Ther 2009; 20:630-40. [PMID: 19265475 DOI: 10.1089/hum.2008.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentiviral vectors containing promoters of distinct origins, that is, strong viral promoters (cytomegalovirus [CMV] and murine stem cell virus [MSCV]), a cellular promoter (phosphoglycerate kinase [PGK]), and two composite promoters (CAG [a composite promoter sequence comprised of the CMV enhancer and portions of the chicken beta-actin promoter and the rabbit beta-globin gene] and SV40/CD43), were used to evaluate green fluorescent protein (GFP) reporter gene expression in human primary peripheral blood lymphocytes (PBLs) and tumor-infiltrating lymphocytes (TILs). In PBLs, vectors containing the MSCV promoter were found to be optimal for expression in both minimally stimulated and highly activated lymphocytes. The stability of gene expression was monitored for up to 7 weeks in culture and the MSCV promoter-containing vector was found to be comparable to the cellular PGK promoter-containing vector. The MSCV promoter-containing lentiviral vector was also the most active in transduced TILs and these cells retained biological activity as measured by antimelanoma antigen reactivity. Using the knowledge gained in comparing individual promoters, a series of two-gene-containing lentiviral vectors was constructed in an attempt to produce the alpha and beta chains of antitumor antigen T cell receptors (TCRs). Dual-promoter or internal ribosome entry site (IRES)-containing vector designs were evaluated and found to be unable to produce both chains of the TCR in amounts that led to significant biological activity. In contrast, if the alpha and beta chains were linked by a 2A ribosomal skip peptide, both proper TCR chain pairing and biologically activity were observed. This paper emphasizes the need to optimize both promoter function and protein synthesis in constructs that require stoichiometric production of multiple protein subunits.
Collapse
Affiliation(s)
- Stephanie Jones
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lack of specific gamma-retroviral vector long terminal repeat promoter silencing in patients receiving genetically engineered lymphocytes and activation upon lymphocyte restimulation. Blood 2009; 114:2888-99. [PMID: 19589923 DOI: 10.1182/blood-2009-01-199216] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retroviral transduction of tumor antigen-specific T-cell receptor (TCR) genes into lymphocytes redirects T cells to lyse tumors. Furthermore, adoptive transfer of these lymphocytes has mediated objective responses in patients with metastatic cancer. From 2004 to 2006, more than 40 patients were treated with autologous gene-modified lymphocytes expressing a melanoma antigen-specific TCR at the National Cancer Institute. Eighteen such patients were analyzed for persistence and gene expression in vivo. In addition, the impact of epigenetic silencing and of lymphocyte restimulation was studied. Although gene-modified lymphocytes persisted in vivo, the shutdown of TCR transgene expression was observed. Bisulfite sequencing analysis and ex vivo DNA methyltransferase inhibition demonstrated that the decrease in gene expression did not result from DNA methylation. Surprisingly, down-regulation of vector-driven transgene transcriptional activity was not vector specific but mimicked that of endogenous genes. The decrease in TCR transgene expression, however, was reversed upon lymphocyte stimulation. These data demonstrate a lack of gamma-retroviral promoter-specific gene silencing in adoptively transferred human lymphocytes and support that transgene expression is largely affected by global cellular mechanisms. The use of immunomodulatory adjuvants, eg, vaccination or cytokine therapy, for in vivo T-cell activation may help overcome this metabolic quiescence and thus augment cellular immunotherapy-based cancer therapy.
Collapse
|
36
|
Uckert W, Schumacher TNM. TCR transgenes and transgene cassettes for TCR gene therapy: status in 2008. Cancer Immunol Immunother 2009; 58:809-22. [PMID: 19189103 PMCID: PMC11030292 DOI: 10.1007/s00262-008-0649-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/17/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
The genetic introduction of T cell receptor genes into T cells has been developed over the past decade as a strategy to induce defined antigen-specific T cell immunity. With the potential value of TCR gene therapy well-established in murine models and the feasibility of infusion of TCR-modified autologous T cells shown in a first phase I trial, the next key step will be to transform TCR gene transfer from an experimental technique into a robust clinical strategy. In this review, we discuss the different properties of the TCR transgene and transgene cassette that can strongly affect both the efficacy and the safety of TCR gene transfer.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/prevention & control
- Clinical Trials, Phase I as Topic/statistics & numerical data
- Codon/genetics
- Dimerization
- Feasibility Studies
- Genes, Synthetic
- Genes, Transgenic, Suicide
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Genetic Vectors/adverse effects
- Genetic Vectors/therapeutic use
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- MART-1 Antigen
- Melanoma/immunology
- Melanoma/secondary
- Melanoma/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/immunology
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Receptors, Antigen, T-Cell/genetics
- Species Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
- Transgenes
Collapse
Affiliation(s)
- Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center of Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Ton N. M. Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
37
|
Geiger C, Nößner E, Frankenberger B, Falk CS, Pohla H, Schendel DJ. Harnessing innate and adaptive immunity for adoptive cell therapy of renal cell carcinoma. J Mol Med (Berl) 2009; 87:595-612. [DOI: 10.1007/s00109-009-0455-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 12/22/2022]
|
38
|
Foster AE, Brenner MK, Dotti G. Adoptive T-cell immunotherapy of chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2008; 21:375-89. [PMID: 18790444 DOI: 10.1016/j.beha.2008.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immunotherapy for B-cell chronic lymphocytic leukaemia (B-CLL) and other haematological malignancies may consist of passive antibody, active immunization or adoptive T-cell transfer. This chapter will focus on T-lymphocyte immunotherapy; an approach supported by earlier observations that the beneficial effects of allogeneic stem cell transplantation depend, in part, on the graft-versus-leukaemia effects mediated by these cells. One promising strategy consists of the genetic manipulation of effector T lymphocytes to express tumour-specific T-cell receptors or chimeric antigen receptors directed against surface antigens on the B-CLL cells. This methodology is now being integrated with the concept that tumour recurrence may be due to the persistence of a reservoir of more primitive and chemoresistant tumour cells, dubbed 'cancer stem cells', with self-renewal capacity. Identification and characterization of these cancer stem cells in B-CLL is crucial for the development of new anti-tumour agents, and for the identification of target antigens for cellular immunotherapy. This chapter will describe how immunotherapy may be directed to a more primitive side population of B-CLL cells.
Collapse
Affiliation(s)
- Aaron E Foster
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, 6621 Fannin Street, MC 3-3320, Houston, Texas 77030, USA
| | | | | |
Collapse
|
39
|
Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, Huls MH, Liu E, Gee AP, Mei Z, Yvon E, Weiss HL, Liu H, Rooney CM, Heslop HE, Brenner MK. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14:1264-70. [PMID: 18978797 DOI: 10.1038/nm.1882] [Citation(s) in RCA: 926] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 10/02/2008] [Indexed: 02/07/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) directed to nonviral tumor-associated antigens do not survive long term and have limited antitumor activity in vivo, in part because such tumor cells typically lack the appropriate costimulatory molecules. We therefore engineered Epstein-Barr virus (EBV)-specific CTLs to express a chimeric antigen receptor directed to the diasialoganglioside GD2, a nonviral tumor-associated antigen expressed by human neuroblastoma cells. We reasoned that these genetically engineered lymphocytes would receive optimal costimulation after engagement of their native receptors, enhancing survival and antitumor activity mediated through their chimeric receptors. Here we show in individuals with neuroblastoma that EBV-specific CTLs expressing a chimeric GD2-specific receptor indeed survive longer than T cells activated by the CD3-specific antibody OKT3 and expressing the same chimeric receptor but lacking virus specificity. Infusion of these genetically modified cells seemed safe and was associated with tumor regression or necrosis in half of the subjects tested. Hence, virus-specific CTLs can be modified to function as tumor-directed effector cells.
Collapse
Affiliation(s)
- Martin A Pule
- Center for Cell and Gene Therapy, Baylor College of Medicine and The Methodist Hospital and Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Willemsen R, Chames P, Schooten E, Gratama JW, Debets R. Selection of human antibody fragments directed against tumor T-cell epitopes for adoptive T-cell therapy. Cytometry A 2008; 73:1093-9. [DOI: 10.1002/cyto.a.20644] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Abstract
Clinical trials have established that T cells have the ability to prevent and treat pathogens and tumors. This is perhaps best exemplified by engraftment of allogeneic T cells in the context of hematopoietic stem-cell transplantation (HSCT), which for over the last 50 years remains one of the best and most robust examples of cell-based therapies for the treatment of hematologic malignancies. Yet, the approach to infuse T cells for treatment of cancer, in general, and pediatric tumors, in particular, generally remains on the sidelines of cancer therapy. This review outlines the current state-of-the-art and provides a rationale for undertaking adoptive immunotherapy trials with emphasis on childhood malignancies.
Collapse
|