1
|
Torpey A, Bellow E, Samojedny V, Ahluwalia S, Desai A, Caldwell W, Bergese S. Nanotechnology in Pain Management. Pharmaceutics 2024; 16:1479. [PMID: 39598601 PMCID: PMC11597168 DOI: 10.3390/pharmaceutics16111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic pain is a debilitating condition that affects millions of patients worldwide, contributing to a high disease burden and millions of dollars in lost wages, missed workdays, and healthcare costs. Opioids, NSAIDs, acetaminophen, gabapentinoids, muscle relaxants, anticonvulsants, and antidepressants are the most used medications for chronic pain and carry significant side effects, including gastric bleeding, hepatotoxicity, stroke, kidney damage, constipation, dizziness, and arrhythmias. Opioids in particular carry the risk of long-term dependence, drug tolerance, and overdose. In 2022, 81,806 people died from opioid overdose in the United States alone. Alternative treatments for chronic pain are critically needed, and nanotechnology has emerged as a promising means of achieving effective long-term analgesia while avoiding the adverse side effects associated with conventional pharmacological agents. Nanotechnology-based treatments include liposomes, Poly Lactic-co-Glycolic Acid (PLGA) and other polymeric nanoparticles, and carbon-based polymers, which can help mitigate those adverse side effects. These nanomaterials can serve as drug delivery systems that facilitate controlled release and drug stability via the encapsulation of free molecules and protein-based drugs, leading to longer-lasting analgesia and minimizing side effects. In this review, we examine the role of nanotechnology in addressing concerns associated with conventional chronic pain treatments and discuss the ongoing efforts to develop novel, nanotechnology-based treatments for chronic pain such as nanocapacitor patches, gene therapy, the use of both viral and non-viral vectors, CRISPR, and scavengers.
Collapse
Affiliation(s)
- Andrew Torpey
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - Emily Bellow
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (E.B.); (V.S.)
| | - Veronica Samojedny
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (E.B.); (V.S.)
| | - Sukhpreet Ahluwalia
- Department of Surgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Amruta Desai
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - William Caldwell
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
- Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Kataria S, Patel U, Yabut K, Patel J, Patel R, Patel S, Wijaya JH, Maniyar P, Karki Y, Makrani MP, Viswanath O, Kaye AD. Recent Advances in Management of Neuropathic, Nociceptive, and Chronic Pain: A Narrative Review with Focus on Nanomedicine, Gene Therapy, Stem Cell Therapy, and Newer Therapeutic Options. Curr Pain Headache Rep 2024; 28:321-333. [PMID: 38386244 PMCID: PMC11126447 DOI: 10.1007/s11916-024-01227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW This manuscript summarizes novel clinical and interventional approaches in the management of chronic, nociceptive, and neuropathic pain. RECENT FINDINGS Pain can be defined as a feeling of physical or emotional distress caused by an external stimulus. Pain can be grouped into distinct types according to characteristics including neuropathic pain, which is a pain caused by disease or lesion in the sensory nervous system; nociceptive pain, which is pain that can be sharp, aching, or throbbing and is caused by injury to bodily tissues; and chronic pain, which is long lasting or persisting beyond 6 months. With improved understanding of different signaling systems for pain in recent years, there has been an upscale of methods of analgesia to counteract these pathological processes. Novel treatment methods such as use of cannabinoids, stem cells, gene therapy, nanoparticles, monoclonal antibodies, and platelet-rich plasma have played a significant role in improved strategies for therapeutic interventions. Although many management options appear to be promising, extensive additional clinical research is warranted to determine best practice strategies in the future for clinicians.
Collapse
Affiliation(s)
- Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA.
- LSU Health Science Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71104, USA.
| | | | - Kevin Yabut
- Louisiana State University Health Science Center, Shreveport, LA, 71103, USA
| | - Jayshil Patel
- Benchmark Physical Therapy, Upstream Rehabilitation, Knoxville, TN, 37920, USA
| | - Rajkumar Patel
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Savan Patel
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | | | - Pankti Maniyar
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Yukti Karki
- Kathmandu Medical College and Teaching Hospital, Kathmandu, 44600, Nepal
| | - Moinulhaq P Makrani
- Department of Pharmacology, Parul Institute of Medical Science and Research, Waghodia, Gujarat, 291760, India
| | - Omar Viswanath
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA
| |
Collapse
|
3
|
da Silva A, Lepetre-Mouelhi S, Couvreur P. Micro- and nanocarriers for pain alleviation. Adv Drug Deliv Rev 2022; 187:114359. [PMID: 35654211 DOI: 10.1016/j.addr.2022.114359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
Acute or chronic pain is a major source of impairment in quality of life and affects a substantial part of the population. To date, pain is alleviated by a limited range of treatments with significant toxicity, increased risk of misuse and inconsistent efficacy, owing, in part, to lack of specificity and/or unfavorable pharmacokinetic properties. Thanks to the unique properties of nanoscaled drug carriers, nanomedicine may enhance drug biodistribution and targeting, thus contributing to improved bioavailability and lower off-target toxicity. After a brief overview of the current situation and the main critical issues regarding pain alleviation, this review will examine the most advanced approaches using nanomedicine of each drug class, from the preclinical stage to approved nanomedicines.
Collapse
|
4
|
Bhansali D, Teng SL, Lee CS, Schmidt BL, Bunnett NW, Leong KW. Nanotechnology for Pain Management: Current and Future Therapeutic Interventions. NANO TODAY 2021; 39:101223. [PMID: 34899962 PMCID: PMC8654201 DOI: 10.1016/j.nantod.2021.101223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain is one of the most common medical conditions and affects more Americans than diabetes, heart disease, and cancer combined. Current pain treatments mainly rely on opioid analgesics and remain unsatisfactory. The life-threatening side effects and addictive properties of opioids demand new therapeutic approaches. Nanomedicine may be able to address these challenges as it allows for sensitive and targeted treatments without some of the burdens associated with current clinical pain therapies. This review discusses the physiology of pain, the current landscape of pain treatment, novel targets for pain treatment, and recent and ongoing efforts to effectively treat pain using nanotechnology-based approaches. We highl ight advances in nanoparticle-based drug delivery to reduce side effects, gene therapy to tackle the source of pain, and nanomaterials-based scavenging to proactively mediate pain signaling.
Collapse
Affiliation(s)
- Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Shavonne L. Teng
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Caleb S. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
- Department of Systems Biology, Columbia University, New York, NY 10027
| |
Collapse
|
5
|
Sogi C, Takeshita N, Jiang W, Kim S, Maeda T, Yoshida M, Oyanagi T, Ito A, Kimura S, Seki D, Takano I, Sakai Y, Fujiwara I, Kure S, Takano-Yamamoto T. Methionine Enkephalin Suppresses Osteocyte Apoptosis Induced by Compressive Force through Regulation of Nuclear Translocation of NFATc1. JBMR Plus 2020; 4:e10369. [PMID: 32666020 PMCID: PMC7340448 DOI: 10.1002/jbm4.10369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Mechanical stress stimulates bone remodeling, which occurs through bone formation and resorption, resulting in bone adaptation in response to the mechanical stress. Osteocytes perceive mechanical stress loaded to bones and promote bone remodeling through various cellular processes. Osteocyte apoptosis is considered a cellular process to induce bone resorption during mechanical stress-induced bone remodeling, but the underlying molecular mechanisms are not fully understood. Recent studies have demonstrated that neuropeptides play crucial roles in bone metabolism. The neuropeptide, methionine enkephalin (MENK) regulates apoptosis positively and negatively depending on cell type, but the role of MENK in osteocyte apoptosis, followed by bone resorption, in response to mechanical stress is still unknown. Here, we examined the roles and mechanisms of MENK in osteocyte apoptosis induced by compressive force. We loaded compressive force to mouse parietal bones, resulting in a reduction of MENK expression in osteocytes. A neutralizing connective tissue growth factor (CTGF) antibody inhibited the compressive force-induced reduction of MENK. An increase in osteocyte apoptosis in the compressive force-loaded parietal bones was inhibited by MENK administration. Nuclear translocation of NFATc1 in osteocytes in the parietal bones was enhanced by compressive force. INCA-6, which inhibits NFAT translocation into nuclei, suppressed the increase in osteocyte apoptosis in the compressive force-loaded parietal bones. NFATc1-overexpressing MLO-Y4 cells showed increased expression of apoptosis-related genes. MENK administration reduced the nuclear translocation of NFATc1 in osteocytes in the compressive force-loaded parietal bones. Moreover, MENK suppressed Ca2+ influx and calcineurin and calmodulin expression, which are known to induce the nuclear translocation of NFAT in MLO-Y4 cells. In summary, this study shows that osteocytes expressed MENK, whereas the MENK expression was suppressed by compressive force via CTGF signaling. MENK downregulated nuclear translocation of NFATc1 probably by suppressing Ca2+ signaling in osteocytes and consequently inhibiting compressive force-induced osteocyte apoptosis, followed by bone resorption. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine Tohoku University Sendai Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | | | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Daisuke Seki
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Ikuko Takano
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Yuichi Sakai
- Minamihara Sakai Orthodontic Office Nagano Japan
| | - Ikuma Fujiwara
- Department of Pediatrics Sendai City Hospital Sendai Japan
| | - Shigeo Kure
- Department of Pediatrics, Graduate School of Medicine Tohoku University Sendai Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan.,Department of Biomaterials and Bioengineering Faculty of Dental Medicine, Hokkaido University Sapporo Japan
| |
Collapse
|
6
|
Gene Therapy for Pancreatic Diseases: Current Status. Int J Mol Sci 2018; 19:ijms19113415. [PMID: 30384450 PMCID: PMC6275054 DOI: 10.3390/ijms19113415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The pancreas is a key organ involved in digestion and endocrine functions in the body. The major diseases of the pancreas include pancreatitis, pancreatic cancer, cystic diseases, pancreatic divisum, islet cell tumors, endocrine tumors, diabetes mellitus, and pancreatic pain induced by these diseases. While various therapeutic methodologies have been established to date, however, the improvement of conventional treatments and establishment of novel therapies are essential to improve the efficacy. For example, conventional therapeutic options, including chemotherapy, are not effective against pancreatic cancer, and despite improvements in the last decade, the mortality rate has not declined and is estimated to become the second cause of cancer-related deaths by 2030. Therefore, continuous efforts focus on the development of novel therapeutic options. In this review, we will summarize the progress toward the development of gene therapies for pancreatic diseases, with an emphasis on recent preclinical studies and clinical trials. We aim to identify new areas for improvement of the current methodologies and new strategies that will lead to safe and effective gene therapeutic approaches in pancreatic diseases.
Collapse
|
7
|
Clinkinbeard T, Kline RH, Zhang LP, McIlwrath SL, Watkins JF, Westlund KN. A Mouse Model of Chronic Pancreatitis Induced by an Alcohol and High Fat Diet. ACTA ACUST UNITED AC 2017; 10:81-89. [PMID: 34326907 PMCID: PMC8317824 DOI: 10.2174/1876386301710010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background/Aims: Study of acute pancreatitis in chemically-induced rodent models has
provided useful data; models of alcoholic chronic pancreatitis have not been
available in mice. The aim of the present study was to characterize a mouse
model of chronic pancreatitis induced solely with an alcohol and high fat
(AHF) diet. Methods: Mice were fed a liquid high fat diet containing 6% alcohol as well as
a high fat supplement (57% total dietary fat) over a period of five months
or as control, normal chow ad libitum. Pain related
measures utilized as an index of pain included mechanical sensitivity of the
hind paws determined using von Frey filaments and a smooth/rough textured
plate. A modified hotplate test contributed information about higher order
behavioral responses to visceral hypersensitivity. Mice underwent mechanical
and thermal testing both with and without pharmacological treatment with a
peripherally restricted μ-opioid receptor agonist, loperamide. Results: Mice on the AHF diet exhibited mechanical and heat hypersensitivity
as well as fibrotic histology indicative of chronic pancreatitis. Low dose,
peripherally restricted opiate loperamide attenuated both mechanical and
heat hypersensitivity. Conclusion: Mice fed an alcohol and high fat diet develop histology consistent
with chronic pancreatitis as well as opioid sensitive mechanical and heat
hypersensitivity.
Collapse
Affiliation(s)
- T Clinkinbeard
- Center for Gerontology, School of Public Health, University of Kentucky, 725 Rose St., Lexington, KY 40536, USA.,Department of Physiology, School of Medicine, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - R H Kline
- Department of Physiology, School of Medicine, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - L P Zhang
- Department of Physiology, School of Medicine, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - S L McIlwrath
- Department of Physiology, School of Medicine, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - J F Watkins
- Center for Gerontology, School of Public Health, University of Kentucky, 725 Rose St., Lexington, KY 40536, USA
| | - K N Westlund
- Department of Physiology, School of Medicine, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| |
Collapse
|
8
|
Meidahl AC, Klukinov M, Tzabazis AZ, Sorensen JC, Yeomans DC. Nasal application of HSV encoding human preproenkephalin blocks craniofacial pain in a rat model of traumatic brain injury. Gene Ther 2017; 24:482-486. [PMID: 28682314 DOI: 10.1038/gt.2017.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/06/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022]
Abstract
According to Centers for Disease Control and Prevention, each year, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI), which frequently leads to chronic craniofacial pain. In this study we examine a gene therapy approach to the treatment of post-TBI craniofacial neuropathic pain using nasal application of a herpes simplex virus (HSV)-based vector expressing human proenkephalin (SHPE) to target the trigeminal ganglia. Mild TBI was induced in rats by the use of a modified fluid percussion model. Two days after mild TBI, following the development of facial mechanical allodynia, animals received either an intranasal application of vehicle or recombinant HSV encoding human preproenkephalin or lacZ reporter gene encoding control vector (SHZ.1). Compared with baseline response thresholds, mild TBI in SHZ.1 or vehicle-treated animals induced a robust craniofacial allodynia lasting at least 45 days. On the other hand, nasal SHPE application 2 days post-TBI attenuated facial allodynia, reaching significance by day 4-7 and maintaining this effect throughout the duration of the experiment. Immunohistochemical examination revealed strong expression of human proenkephalin in trigeminal ganglia of SHPE, but not SHZ.1-treated rats. This study demonstrates that intranasal administration of HSV-based gene vectors may be a viable, non-invasive means of treating chronic craniofacial pain, including post-TBI pain.
Collapse
Affiliation(s)
- A C Meidahl
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - M Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - A Z Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J C Sorensen
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - D C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Ito K, Ookawara S, Ishibashi K, Morishita Y. Transgene and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus. NANO REVIEWS & EXPERIMENTS 2017; 8:1341758. [PMID: 30410709 PMCID: PMC6167029 DOI: 10.1080/20022727.2017.1341758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022]
Abstract
Gene therapy that targets the pancreas and intestines with delivery systems using nano-sized carriers such as viral and non-viral vectors could improve the control of blood glucose levels, resulting in an improved prognosis for patients with diabetes mellitus. Allogenic pancreatic islet cell transplantations using such delivery systems have been developed as therapeutic options for diabetes mellitus. This review focuses on transgenes and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
10
|
Wolfe D, Krisky D, Goss J, Wechuck J, Mata M, Fink DJ. Translating Gene Therapy for Pain from Animal Studies to the Clinic. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Guedon JMG, Wu S, Zheng X, Churchill CC, Glorioso JC, Liu CH, Liu S, Vulchanova L, Bekker A, Tao YX, Kinchington PR, Goins WF, Fairbanks CA, Hao S. Current gene therapy using viral vectors for chronic pain. Mol Pain 2015; 11:27. [PMID: 25962909 PMCID: PMC4446851 DOI: 10.1186/s12990-015-0018-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
Abstract
The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao).
Collapse
Affiliation(s)
- Jean-Marc G Guedon
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Xuexing Zheng
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | | | - Joseph C Glorioso
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Ching-Hang Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA. .,Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Neurology & Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Physiology & Pharmacology, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA.
| | - Paul R Kinchington
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - William F Goins
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA. .,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA. .,Department of Pharmacology, University of Minnesota, 9-177 Weaver Densford Hall, 308 Harvard Street, Minneapolis, MN, 55455, USA.
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Fairbanks CA, Goracke-Postle CJ. Neurobiological studies of chronic pain and analgesia: Rationale and refinements. Eur J Pharmacol 2015; 759:169-81. [PMID: 25818751 DOI: 10.1016/j.ejphar.2015.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
Chronic pain is a complex condition for which the need for specialized research and therapies has been recognized internationally. This review summarizes the context for the international call for expansion of pain research to improve our understanding of the mechanisms underlying pain in order to achieve improvements in pain management. The methods for conducting sensory assessment in animal models are discussed and the development of animal models of chronic pain is specifically reviewed, with an emphasis on ongoing refinements to more closely mimic a variety of human pain conditions. Pharmacological correspondences between pre-clinical pain models and the human clinical experience are noted. A discussion of the 3Rs Framework (Replacement, Reduction, Refinement) and how each may be considered in pain research is featured. Finally, suggestions are provided for engaging principal investigators, IACUC reviewers, and institutions in the development of strong partnerships to simultaneously expand our knowledge of the mechanisms underlying pain and analgesia while ensuring the humane use of animals in research.
Collapse
Affiliation(s)
- Carolyn A Fairbanks
- University of Minnesota, Department of Pharmaceutics, Minneapolis, MN, USA; University of Minnesota, Department of Pharmacology, Minneapolis, MN, USA; University of Minnesota, Department of Neuroscience, Minneapolis, MN, USA.
| | - Cory J Goracke-Postle
- University of Minnesota, Office of the Vice President for Research, Minneapolis, MN, USA
| |
Collapse
|
13
|
Guedon JMG, Zhang M, Glorioso JC, Goins WF, Kinchington PR. Relief of pain induced by varicella-zoster virus in a rat model of post-herpetic neuralgia using a herpes simplex virus vector expressing enkephalin. Gene Ther 2014; 21:694-702. [PMID: 24830437 DOI: 10.1038/gt.2014.43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/09/2022]
Abstract
Acute and chronic pain (post-herpetic neuralgia or PHN) are encountered in patients with herpes zoster that is caused by reactivation of varicella-zoster virus (VZV) from a state of neuronal latency. PHN is often refractory to current treatments, and additional strategies for pain relief are needed. Here we exploited a rat footpad model of PHN to show that herpes simplex virus (HSV) vector-mediated gene delivery of human preproenkephalin (vHPPE) effectively reduced chronic VZV-induced nocifensive indicators of pain. VZV inoculated at the footpad induced prolonged mechanical allodynia and thermal hyperalgesia that did not develop in controls or with ultraviolet light-inactivated VZV. Subsequent footpad administration of vHPPE relieved VZV-induced pain behaviors in a dose-dependent manner for extended periods, and prophylactic vector administration prevented VZV-induced pain from developing. Short-term pain relief following low-dose vHPPE administration could be effectively prolonged by vector re-administration. HPPE transcripts were increased three- to fivefold in ipsilateral ganglia, but not in the contralateral dorsal root ganglia. VZV hypersensitivity and its relief by vHPPE were not affected by peripheral delivery of opioid receptor agonist or antagonist, suggesting that the efficacy was mediated at the ganglion and/or spinal cord level. These results support further development of ganglionic expression of enkephalin as a novel treatment for the pain associated with Zoster.
Collapse
Affiliation(s)
- J-M G Guedon
- 1] Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P R Kinchington
- 1] Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Goss JR, Krisky D, Wechuck J, Wolfe D. Herpes simplex virus-based nerve targeting gene therapy in pain management. J Pain Res 2014; 7:71-9. [PMID: 24470772 PMCID: PMC3901742 DOI: 10.2147/jpr.s36619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic pain represents a major medical burden not only in terms of suffering but also in terms of economic costs. Traditional medical approaches have so far proven insufficient in treating chronic pain and new approaches are necessary. Gene therapy with herpes simplex virus (HSV)-based vectors offers the ability to directly target specific regions of the neuraxis involved in pain transmission including the primary afferent nociceptor. This opens up new targets to interact with that are either not available to traditional systemic drugs or cannot be adequately acted upon without substantial adverse off-target effects. Having access to the entire neuron, which HSV-based vector gene therapy enables, expands treatment options beyond merely treating symptoms and allows for altering the basic biology of the nerve. In this paper, we discuss several HSV-based gene therapy vectors that our group and others have used to target specific neuronal functions involved in the processing of nociception in order to develop new therapies for the treatment of chronic pain.
Collapse
|
15
|
A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 2014; 20:176-95. [PMID: 24284415 DOI: 10.1097/01.mib.0000437499.52922.b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain frequently accompanies inflammatory disorders of the gastrointestinal tract (GIT), and animal models of GIT inflammation have been developed to explore the role of the central nervous system (CNS) in this process. Here, we summarize the evidence from animal studies for CNS plasticity following GIT inflammation. METHODS A systematic review was conducted to identify studies that: (1) used inflammation of GIT organs, (2) assessed pain or visceral hypersensitivity, and (3) presented evidence of CNS involvement. Two hundred and eight articles were identified, and 79 were eligible for analysis. RESULTS Rats were most widely used (76%). Most studies used adult animals (42%) with a bias toward males (74%). Colitis was the most frequently used model (78%) and 2,4,6-trinitrobenzenesulfonic acid the preferred inflammatory agent (33%). Behavioral (58%), anatomical/molecular (44%), and physiological (24%) approaches were used alone or in combination to assess CNS involvement during or after GIT inflammation. Measurement times varied widely (<1 h-> 2 wk after inflammation). Blinded outcomes were used in 42% studies, randomization in 10%, and evidence of visceral inflammation in 54%. Only 3 studies fulfilled our criteria for high methodological quality, and no study reported sample size calculations. CONCLUSIONS The included studies provide strong evidence for CNS plasticity following GIT inflammation, specifically in the spinal cord dorsal horn. This evidence includes altered visceromotor responses and indices of referred pain, elevated neural activation and peptide content, and increased neuronal excitability. This evidence supports continued use of this approach for preclinical studies; however, there is substantial scope to improve study design.
Collapse
|
16
|
Yokoyama H, Oguchi T, Goins WF, Goss JR, Nishizawa O, de Groat WC, Wolfe D, Krisky DM, Glorioso JC, Yoshimura N. Effects of herpes simplex virus vector-mediated enkephalin gene therapy on bladder overactivity and nociception. Hum Gene Ther 2013; 24:170-80. [PMID: 23316929 DOI: 10.1089/hum.2011.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously reported the effects of herpes simplex virus (HSV) vector-mediated enkephalin on bladder overactivity and pain. In this study, we evaluated the effects of vHPPE (E1G6-ENK), a newly engineered replication-deficient HSV vector encoding human preproenkephalin (hPPE). vHPPE or control vector was injected into the bladder wall of female rats 2 weeks prior to the following studies. A reverse-transcription PCR study showed high hPPE transgene levels in L6 dorsal root ganglia innervating the bladder in the vHPPE group. The number of freezing behaviors, which is a nociceptive reaction associated with bladder pain, was also significantly lower in the vHPPE group compared with the control group. The number of L6 spinal cord c-fos-positive cells and the urinary interleukin (IL)-1β and IL-6 levels after resiniferatoxin (RTx) administration into the bladder of the vHPPE group were significantly lower compared with those of the control vector-injected group. In continuous cystometry, the vHPPE group showed a smaller reduction in intercontraction interval after RTx administration into the bladder. This antinociceptive effect was antagonized by naloxone hydrochloride. Thus, the HSV vector vHPPE encoding hPPE demonstrated physiological improvement in visceral pain induced by bladder irritation. Gene therapy may represent a potentially useful treatment modality for bladder hypersensitive disorders such as bladder pain syndrome/interstitial cystitis.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Modulating pain in the periphery: gene-based therapies to enhance peripheral opioid analgesia: Bonica lecture, ASRA 2010. Reg Anesth Pain Med 2012; 37:210-4. [PMID: 22189620 DOI: 10.1097/aap.0b013e31823b145f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This article provides a brief overview of earlier work of our group on the peripheral signaling of pain, summarizes more recent studies on the role of opioids in chronic neuropathic pain, and speculates on the future of gene-based therapies as novel strategies to enhance the peripheral modulation of pain. Neurophysiologic and psychophysical studies have revealed features of primary afferent activity from somatic tissue that led to improved understanding of the physiology and pathophysiology of pain signaling by nociceptive and nonnociceptive fibers. The demonstration of peripheral opioid mechanisms in neuropathic pain suggests a potential role for these receptors in the modulation of pain at its initiation site. Our work has focused on characterizing this peripheral opioid analgesia in chronic neuropathic pain such that it can be exploited to develop novel and potent peripheral analgesics for its treatment. Ongoing research on virus-mediated gene transfer strategies to enhance peripheral opioid analgesia is presented.
Collapse
|
18
|
Goins WF, Cohen JB, Glorioso JC. Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol Dis 2012; 48:255-70. [PMID: 22668775 DOI: 10.1016/j.nbd.2012.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 11/30/2022] Open
Abstract
Chronic pain is a major health concern affecting 80 million Americans at some time in their lives with significant associated morbidity and effects on individual quality of life. Chronic pain can result from a variety of inflammatory and nerve damaging events that include cancer, infectious diseases, autoimmune-related syndromes and surgery. Current pharmacotherapies have not provided an effective long-term solution as they are limited by drug tolerance and potential abuse. These concerns have led to the development and testing of gene therapy approaches to treat chronic pain. The potential efficacy of gene therapy for pain has been reported in numerous pre-clinical studies that demonstrate pain control at the level of the spinal cord. This promise has been recently supported by a Phase-I human trial in which a replication-defective herpes simplex virus (HSV) vector was used to deliver the human pre-proenkephalin (hPPE) gene, encoding the natural opioid peptides met- and leu-enkephalin (ENK), to cancer patients with intractable pain resulting from bone metastases (Fink et al., 2011). The study showed that the therapy was well tolerated and that patients receiving the higher doses of therapeutic vector experienced a substantial reduction in their overall pain scores for up to a month post vector injection. These exciting early clinical results await further patient testing to demonstrate treatment efficacy and will likely pave the way for other gene therapies to treat chronic pain.
Collapse
Affiliation(s)
- William F Goins
- Dept of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA 15219, USA.
| | | | | |
Collapse
|
19
|
Wolfe D, Mata M, Fink DJ. Targeted drug delivery to the peripheral nervous system using gene therapy. Neurosci Lett 2012; 527:85-9. [PMID: 22565023 DOI: 10.1016/j.neulet.2012.04.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Gene transfer to target delivery of neurotrophic factors to the primary sensory afferent for treatment of polyneuropathy, or of inhibitory neurotransmitters for relief of chronic pain, offers the possibility of a highly selective targeted release of bioactive molecules within the nervous system. Preclinical studies with non-replicating herpes simplex virus (HSV)-based vectors injected into the skin to transduce neurons in the dorsal root ganglion have demonstrated efficacy in reducing-pain related behaviors in animal models of inflammatory pain, neuropathic pain, and pain caused by cancer, and in preventing progression of sensory neuropathy caused by toxins, chemotherapeutic drugs or resulting from diabetes. Successful completion of the first phase 1 clinical trial of HSV-mediated gene transfer in patients with intractable pain from cancer has set the stage for further clinical trials of this approach.
Collapse
|
20
|
Abstract
Pancreatic pain is often severe and difficult to treat clinically. Many animal models that mimic pancreatic pain are typically short term and invasive in nature. The present chapter describes the development and characterization of two non-invasive rat models of pancreatitis, one acute and one chronic. The two models described here are simple to replicate, giving them advantage over other animal models of pancreatic inflammation. A goal of this chapter is also to detail their usefulness as visceral pain models.
Collapse
|
21
|
Hameed M, Hameed H, Erdek M. Pain management in pancreatic cancer. Cancers (Basel) 2010; 3:43-60. [PMID: 24212605 PMCID: PMC3756348 DOI: 10.3390/cancers3010043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/25/2010] [Accepted: 12/20/2010] [Indexed: 12/15/2022] Open
Abstract
A majority of pancreatic cancer patients present with pain at the time of diagnosis. Pain management can be challenging in light of the aggressive nature of this cancer. Apart from conventional pharmacotherapy, timely treatment with neurolytic celiac plexus block (NCPB) has been shown to be of benefit. NCPB has demonstrated efficacious pain control in high quality studies with analgesic effects lasting one to two months. NCPB has also shown to decrease the requirements of narcotics, and thus decrease opioid related side effects. Another option for the control of moderate to severe pain is intrathecal therapy (IT). Delivery of analgesic medications intrathecally allows for lower dosages of medications and thus reduced toxicity. Both of the above mentioned interventional procedures have been shown to have low complication rates, and be safe and effective. Ultimately, comprehensive pancreatic cancer pain management necessitates understanding of pain mechanisms and delivery of sequential validated therapeutic interventions within a multidisciplinary patient care model.
Collapse
Affiliation(s)
- Mariam Hameed
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, 600 N. Wolfe St., Phipps 160, Baltimore, MD 21287, USA; E-Mails: (M.H.); (H.H.)
| | - Haroon Hameed
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, 600 N. Wolfe St., Phipps 160, Baltimore, MD 21287, USA; E-Mails: (M.H.); (H.H.)
| | - Michael Erdek
- Division of Pain Medicine, Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, School of Medicine, 550 North Broadway St., Suite 301, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
HSV vector-mediated modification of primary nociceptor afferents: an approach to inhibit chronic pain. Gene Ther 2010; 16:493-501. [PMID: 19357694 DOI: 10.1038/gt.2009.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic pain is a serious medical condition with millions of sufferers for whom long-term therapies are either lacking or inadequate. Here we review the use of herpes simplex virus vectors as therapeutic tools to treat chronic pain by gene therapy. We describe an approach to inhibit chronic pain signaling whereby vector-mediated genes transferred to sensory nerves will modify the primary afferent nociceptor to prevent pain signaling to second-order nerves in the spinal cord. This approach may be used to reverse the chronic pain state of the nociceptor and could affect downstream pain-related changes in the central nervous system.
Collapse
|
23
|
|
24
|
Yeomans DC, Wilson SP. Herpes virus-based recombinant herpes vectors: gene therapy for pain and molecular tool for pain science. Gene Ther 2009; 16:502-8. [DOI: 10.1038/gt.2009.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Christianson JA, Bielefeldt K, Altier C, Cenac N, Davis BM, Gebhart GF, High KW, Kollarik M, Randich A, Undem B, Vergnolle N. Development, plasticity and modulation of visceral afferents. ACTA ACUST UNITED AC 2008; 60:171-86. [PMID: 19150371 DOI: 10.1016/j.brainresrev.2008.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123-1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed.
Collapse
Affiliation(s)
- Julie A Christianson
- University of Pittsburgh School of Medicine, Pittsburgh Center for Pain Research, 200 Lothrop St., Pittsburgh, PA 16261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
27
|
Glorioso JC, Fink DJ. Herpes vector-mediated gene transfer in the treatment of chronic pain. Mol Ther 2008; 17:13-8. [PMID: 18841093 DOI: 10.1038/mt.2008.213] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chronic pain is a major health concern with up to 50% of patients finding little if any relief following traditional pharmacotherapy. This review describes the treatment of chronic pain using herpes simplex virus type 1 (HSV)-based vectors. HSV can be effectively used to deliver pain-modulating transgenes to sensory neurons in vivo following intradermal inoculation. The vector genome persists in peripheral nerve bodies in an episomal state and serves as a platform for expression of natural pain-relieving molecules that access endogenous antinociceptive circuitry. The vectors are mutated to prevent reactivation from latency or spread to the central nervous system. Dermatome selection for administration of HSV vectors provides targeted delivery of pain gene therapy to primary afferent neurons. This novel approach alleviates pain without systemic side effects or the induction of tolerance and can be used in combination with standard pain treatments.
Collapse
Affiliation(s)
- Joseph C Glorioso
- 1Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
28
|
Mata M, Hao S, Fink DJ. Gene therapy directed at the neuroimmune component of chronic pain with particular attention to the role of TNF alpha. Neurosci Lett 2008; 437:209-13. [PMID: 18403116 PMCID: PMC2668118 DOI: 10.1016/j.neulet.2008.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/28/2008] [Accepted: 03/19/2008] [Indexed: 01/17/2023]
Abstract
Identification that neuroimmune activation in the spinal cord is an important factor in the development of chronic pain has opened the possibility that gene transfer of anti-inflammatory peptides may be used to reduce pain neurotransmission. We review the published evidence regarding gene transfer to meninges to express the anti-inflammatory peptide interleukin 10, and gene transfer to dorsal root ganglia using replication incompetent HSV vectors to express interleukin 4, interleukin 10, or the soluble (p55) tumor necrosis factor receptor (sTNFR). The results of these experiments suggest a novel role for "reverse signaling" through the full-length membrane form of TNFalpha in spinal glia in the modulation of chronic pain.
Collapse
Affiliation(s)
- Marina Mata
- Department of Neurology, University of Michigan, 1914 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0316, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48109-0316, USA
| | | | | |
Collapse
|
29
|
Lu Y, McNearney TA, Wilson SP, Yeomans DC, Westlund KN. Joint capsule treatment with enkephalin-encoding HSV-1 recombinant vector reduces inflammatory damage and behavioural sequelae in rat CFA monoarthritis. Eur J Neurosci 2008; 27:1153-65. [PMID: 18364035 DOI: 10.1111/j.1460-9568.2008.06076.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study assessed enkephalin expression induced by intra-articular application of recombinant, enkephalin-encoding herpes virus (HSV-1) and the impact of expression on nociceptive behaviours and synovial lining inflammation in arthritic rats. Replication-conditional HSV-1 recombinant vectors with cDNA encoding preproenkephalin (HSV-ENK), or control transgene beta-galactosidase cDNA (HSV-beta-gal; control) were injected into knee joints with complete Freund's adjuvant (CFA). Joint temperatures, circumferences and nociceptive behaviours were monitored on days 0, 7, 14 and 21 post CFA and vector treatments. Lumbar (L4-6) dorsal root ganglia (DRG) and spinal cords were immunostained for met-enkephalin (met-ENK), beta-gal, HSV-1 proteins and Fos. Joint tissues were immunostained for met-ENK, HSV-1 proteins, and inflammatory mediators Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and cyclo-oxygenase-2, or stained with haematoxylin and eosin for histopathology. Compared to exuberant synovial hypertrophy and inflammatory cell infiltration seen in arthritic rats treated with CFA only or CFA and HSV-beta-gal, the CFA- and HSV-ENK-treated arthritic rats had: (i) striking preservation of synovial membrane cytoarchitecture with minimal inflammatory cell infiltrates; (ii) significantly improved nociceptive behavioural responses to mechanical and thermal stimuli; (iii) normalized Fos staining in lumbar dorsal horn; and (iv) significantly increased met-ENK staining in ipsilateral synovial tissue, lumbar DRG and spinal cord. The HSV-1 and transgene product expression were confined to ipsilateral lumbar DRG (HSV-1, met-ENK, beta-gal). Only transgene product (met-ENK and beta-gal) was seen in lumbar spinal cord sections. Targeted delivery of enkephalin-encoding HSV-1 vector generated safe, sustained opioid-induced analgesia with protective anti-inflammatory blunting in rat inflammatory arthritis.
Collapse
Affiliation(s)
- Ying Lu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Chronic pain is a highly prevalent condition that impacts adversely on individual quality of life, imposes substantial costs on the healthcare system and a considerable burden on society. Advances in the understanding of pain mechanisms have opened the way for the development of new treatment strategies. The continuous delivery of short-lived potent bioactive molecules to sensory nerves, spinal cord or meninges--achieved by directed gene transfer--offers the possibility to selectively interrupt nociceptive neurotransmission or to interfere with the plastic changes in the nervous system underlying the development or persistence of chronic pain. In this review we describe advances in the use of non-viral and viral vector-based gene transfer for the treatment of pain, with a special focus on the use of recombinant non-replicating herpes simplex virus-based vectors and the prospects for clinical trials.
Collapse
Affiliation(s)
- Marina Mata
- Department of Neurology, University of Michigan School of Medicine and VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | | | |
Collapse
|
31
|
Yang H, McNearney TA, Chu R, Lu Y, Ren Y, Yeomans DC, Wilson SP, Westlund KN. Enkephalin-encoding herpes simplex virus-1 decreases inflammation and hotplate sensitivity in a chronic pancreatitis model. Mol Pain 2008; 4:8. [PMID: 18307791 PMCID: PMC2292157 DOI: 10.1186/1744-8069-4-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/28/2008] [Indexed: 12/15/2022] Open
Abstract
Background A chronic pancreatitis model was developed in young male Lewis rats fed a high-fat and alcohol liquid diet beginning at three weeks. The model was used to assess time course and efficacy of a replication defective herpes simplex virus type 1 vector construct delivering human cDNA encoding preproenkephalin (HSV-ENK). Results Most surprising was the relative lack of inflammation and tissue disruption after HSV-ENK treatment compared to the histopathology consistent with pancreatitis (inflammatory cell infiltration, edema, acinar cell hypertrophy, fibrosis) present as a result of the high-fat and alcohol diet in controls. The HSV-ENK vector delivered to the pancreatic surface at week 3 reversed pancreatitis-associated hotplate hypersensitive responses for 4–6 weeks, while control virus encoding β-galactosidase cDNA (HSV-β-gal) had no effect. Increased Fos expression seen bilaterally in pain processing regions in control animals with pancreatitis was absent in HSV-ENK-treated animals. Increased met-enkephalin staining was evident in pancreas and lower thoracic spinal cord laminae I–II in the HSV-ENK-treated rats. Conclusion Thus, clear evidence is provided that site specific HSV-mediated transgene delivery of human cDNA encoding preproenkephalin ameliorates pancreatic inflammation and significantly reduces hypersensitive hotplate responses for an extended time consistent with HSV mediated overexpression, without tolerance or evidence of other opiate related side effects.
Collapse
Affiliation(s)
- Hong Yang
- Dept of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|