1
|
Niu L, Gao M, Li Y, Wang C, Zhang C, Duan H, Li H, Wang F, Ge J. Effects of the stress hormone norepinephrine on the probiotic properties of Levilactobacillus: antibacterial colonization, anti-inflammation, and antioxidation. Front Microbiol 2025; 16:1526362. [PMID: 39996081 PMCID: PMC11849050 DOI: 10.3389/fmicb.2025.1526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Probiotics as antibiotic alternatives are unstable for use under stress in clinical applications. To explore the influence of catecholamine hormones on probiotic bacterial inhibition and antimicrobial activity, we tested the effects of norepinephrine (NE) on Levilactobacillus in vitro and in a mouse model. The in vitro results showed that in the presence of NE, 80% of Levilactobacillus strains showed increased growth rate and more than 80% of the strains indicated lower antimicrobial activity at 22 h. Furthermore, in the mouse model, NE weakens the protective effect of L. brevis 23,017 on Escherichia coli infection, which is shown by the decreased ability of antibacterial colonization, antioxidation, and anti-inflammation, and downregulating the expression of antioxidant genes and intestinal mucosal barrier-related genes. At the same time, the addition of NE modulates the bacterial microbiota richness and diversity in the intestine, disrupting the balance of intestinal probiotics. These findings provide evidence that NE reduces the probiotic ability of Levilactobacillus and illustrates the plasticity of the probiotics in response to the intestinal microenvironment under stress.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yifan Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaonan Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Popa-Ion DA, Boldeanu L, Gheonea DI, Denicu MM, Boldeanu MV, Chiuțu LC. Anesthesia Medication's Impacts on Inflammatory and Neuroendocrine Immune Response in Patients Undergoing Digestive Endoscopy. Clin Pract 2024; 14:1171-1184. [PMID: 38921271 PMCID: PMC11203055 DOI: 10.3390/clinpract14030093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to explore the impact of anesthetic drugs currently used to perform lower digestive endoscopy on serum concentrations of inflammation markers and catecholamines. We selected 120 patients and divided them into three lots of 40 patients each: L1, in which no anesthetics were used; L2, in which propofol was used; and L3, in which propofol combined with fentanyl was used. All patients had serum concentrations of adrenaline/epinephrine (EPI), noradrenaline/norepinephrine (NE), tumor necrosis factor alpha (TNF-α), interleukin-4 (IL-4), IL-6, IL-8, and IL-10, taken at three time points: at the beginning of the endoscopic procedure (T0), 15 min after (T1), and 2 h after the end of the endoscopic procedure (T2). The results of the research showed changes in the levels of catecholamines and interleukins (ILs) at T0, with an increased response in L1 above the mean recorded in L2 and L3 (p < 0.001). At T1, increased values were recorded in all lots; values were significantly higher in L1. At T2, the values recorded in L3 were significantly lower than the values in L2 (student T, p < 0.001) and L1, in which the level of these markers continued to increase, reaching double values compared to T0 (student T, p < 0.001). In L2 at T1, the dose of propofol correlated much better with NE, EPI, and well-known cytokines. Our results show that propofol combined with fentanyl can significantly inhibit the activation of systemic immune and neuroendocrine response during painless lower digestive endoscopy.
Collapse
Affiliation(s)
- Denisa-Ancuța Popa-Ion
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-A.P.-I.); (M.M.D.); (L.C.C.)
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan-Ionuț Gheonea
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Madalina Maria Denicu
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-A.P.-I.); (M.M.D.); (L.C.C.)
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Luminița Cristina Chiuțu
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-A.P.-I.); (M.M.D.); (L.C.C.)
| |
Collapse
|
3
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 PMCID: PMC12164723 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
4
|
Huang YC, Hsu CC, Fu TC, Wang JS. Interval aerobic/resistance exercise training depresses adrenergic-induced apoptosis of lymphocytes in sedentary males. Eur J Appl Physiol 2024; 124:837-848. [PMID: 37712975 DOI: 10.1007/s00421-023-05311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Adrenergic stimulation affects lymphocyte autophagy and apoptosis by activating β1-adrenergic receptor (β1-AR) and G protein-coupled receptor kinase 2 (GRK-2) downstream signaling. This study investigated how combined aerobic and resistance exercise training on the interval or continuous pattern influences aerobic/muscular fitness and β1-AR/GRK-2 signaling, and corresponding apoptosis/autophagy of lymphocytes in sedentary males. METHODS Thirty-four sedentary males were randomized into interval training (IT, age = 22.5 ± 0.6 years, fitness level = 47.5 ± 0.9 mL/min/kg, body mass index (BMI) = 22.4 ± 0.4 kg/m2, n = 17) and continuous training (CT, age = 21.6 ± 0.4 years, fitness level = 45.2 ± 1.0 mL/min/kg, BMI = 22.2 ± 0.3 kg/m2, n = 17) groups. These subjects performed IT (bicycle exercise at alternating 40% and 80%VO2 reserve (VO2R) and isokinetic exercise at alternating 60°/s and 180°/s) or CT (bicycle exercise at continuously 60%VO2R and isokinetic exercise at continuously 120°/s) for 30 min/day, 5 days/week for 6 weeks. Aerobic capacity and muscular strength/endurance were determined by the graded exercise test (GXT) and isokinetic strength test, respectively. Blood lymphocyte autophagy/apoptosis and β1-AR/GRK-2 signaling were analyzed using flow cytometry. RESULTS Both IT and CT groups increased isokinetic strengths at various angular velocities, whereas only IT significantly enhanced muscle endurance, indicated by lowered fatigue index from 47.0 ± 1.3% to 41.8 ± 1.6% (P < 0.05). Moreover, the IT group (143 ± 7%) revealed a higher improvement in VO2peak than CT group (132 ± 6%) (P < 0.05). Acute GXT augmented (i) GRK-2 and protein kinase A expressions, (ii) LAMP-2 upregulation and acridine orange staining, (iii) mitochondrial transmembrane potential diminishing, caspase-3 activation, and phosphatidylserine (PS) exposure caused by epinephrine in blood lymphocytes. However, the degree of epinephrine-induced lymphocyte PS exposure potentiated by GXT was suppressed from 65.2 ± 5.2% to 47.4 ± 6.5% following 6 weeks of the IT (P < 0.05). CONCLUSION The IT may be considered more beneficial than CT in terms of improving aerobic/muscular fitness and simultaneously ameliorating apoptosis of blood lymphocyte evoked by intense exercise or adrenergic stimulation in sedentary males.
Collapse
Affiliation(s)
- Yu-Chieh Huang
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Chin Hsu
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tieh-Cheng Fu
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jong-Shyan Wang
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan.
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
- Graduate Institute of Rehabilitation Science, Chang Gung University, 259 Wen-Hwa 1St Road, Kwei-Shan, Tao-Yuan, 333, Taiwan.
| |
Collapse
|
5
|
Gardner J, Eiger DS, Hicks C, Choi I, Pham U, Chundi A, Namjoshi O, Rajagopal S. GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization. Sci Signal 2024; 17:eadd9139. [PMID: 38349966 PMCID: PMC10927030 DOI: 10.1126/scisignal.add9139] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of β-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.
Collapse
Affiliation(s)
- Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | | | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Anand Chundi
- Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Ojas Namjoshi
- Center for Drug Discovery RTI International, Research Triangle Park, NC, 27709, USA
- Present address: Engine Biosciences, 733 Industrial Rd., San Carlos, CA, 94070, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
6
|
Carbone AM, Del Calvo G, Nagliya D, Sharma K, Lymperopoulos A. Autonomic Nervous System Regulation of Epicardial Adipose Tissue: Potential Roles for Regulator of G Protein Signaling-4. Curr Issues Mol Biol 2022; 44:6093-6103. [PMID: 36547076 PMCID: PMC9776453 DOI: 10.3390/cimb44120415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine, epinephrine, and free fatty acids. The production of these molecules is biologically relevant for the heart, since abnormalities in EAT secretion are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction, leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation.
Collapse
Affiliation(s)
| | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, USA
| |
Collapse
|
7
|
Borges JI, Ferraino KE, Cora N, Nagliya D, Suster MS, Carbone AM, Lymperopoulos A. Adrenal G Protein-Coupled Receptors and the Failing Heart: A Long-distance, Yet Intimate Affair. J Cardiovasc Pharmacol 2022; 80:386-392. [PMID: 34983911 PMCID: PMC9294064 DOI: 10.1097/fjc.0000000000001213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/11/2021] [Indexed: 01/31/2023]
Abstract
Systolic heart failure (HF) is a chronic clinical syndrome characterized by the reduction in cardiac function and still remains the disease with the highest mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Chronic human HF is characterized by several important neurohormonal perturbations, emanating from both the autonomic nervous system and the adrenal glands. Circulating catecholamines (norepinephrine and epinephrine) and aldosterone elevations are among the salient alterations that confer significant hormonal burden on the already compromised function of the failing heart. This is why sympatholytic treatments (such as β-blockers) and renin-angiotensin system inhibitors or mineralocorticoid receptor antagonists, which block the effects of angiotensin II (AngII) and aldosterone on the failing heart, are part of the mainstay HF pharmacotherapy presently. The adrenal gland plays an important role in the modulation of cardiac neurohormonal stress because it is the source of almost all aldosterone, of all epinephrine, and of a significant amount of norepinephrine reaching the failing myocardium from the blood circulation. Synthesis and release of these hormones in the adrenals is tightly regulated by adrenal G protein-coupled receptors (GPCRs), such as adrenergic receptors and AngII receptors. In this review, we discuss important aspects of adrenal GPCR signaling and regulation, as they pertain to modulation of cardiac function in the context of chronic HF, by focusing on the 2 best studied adrenal GPCR types in that context, adrenergic receptors and AngII receptors (AT 1 Rs). Particular emphasis is given to findings from the past decade and a half that highlight the emerging roles of the GPCR-kinases and the β-arrestins in the adrenals, 2 protein families that regulate the signaling and functioning of GPCRs in all tissues, including the myocardium and the adrenal gland.
Collapse
Affiliation(s)
- Jordana I. Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S. Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Alexandra M. Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
8
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
9
|
Borges JI, Carbone AM, Cora N, Sizova A, Lymperopoulos A. GTPγS Assay for Measuring Agonist-Induced Desensitization of Two Human Polymorphic Alpha 2B-Adrenoceptor Variants. Methods Mol Biol 2022; 2547:267-273. [PMID: 36068469 DOI: 10.1007/978-1-0716-2573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5'-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
10
|
Boukerb AM, Cambronel M, Rodrigues S, Mesguida O, Knowlton R, Feuilloley MGJ, Zommiti M, Connil N. Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology. Front Microbiol 2021; 12:690942. [PMID: 34690943 PMCID: PMC8526972 DOI: 10.3389/fmicb.2021.690942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.
Collapse
Affiliation(s)
- Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Melyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sophie Rodrigues
- EA 3884, LBCM, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mohamed Zommiti
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|
11
|
Marsico F, Paolillo S, Gargiulo P, Parisi V, Nappi C, Assante R, Dell'Aversana S, Esposito I, Renga F, Esposito L, Bardi L, Rengo G, Dellegrottaglie S, Marciano C, Leosco D, Cuocolo A, Filardi PP. Renal function and cardiac adrenergic impairment in patients affected by heart failure. J Nucl Cardiol 2021; 28:2112-2122. [PMID: 31808105 DOI: 10.1007/s12350-019-01975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023]
Abstract
Although in heart failure (HF) there is a strict correlation between heart and kidney, no data are available on the potential relationship in HF between renal dysfunction (RD) and the impaired sympathetic innervation. Aim of the present study was to assess the relationship between RD and cardiac sympathetic innervation in HF patients with reduced ejection fraction. Two hundred and sixty-three patients with mild-to-severe HF underwent iodine-123 meta-iodobenzylguanidine myocardial scintigraphy to assess sympathetic innervation, evaluating early and late heart-to-mediastinum (H/M) ratios and washout rate. In all patients, glomerular filtration rate (eGFR) by Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula was assessed. A direct association was found between EPI-eGFR and late H/M (r = .215; P < .001). Dividing the population into moderate-to-severe eGFR reduction and normal-to-mildly reduced eGFR (cutoff ≤ 60 mL·min-1·1.73 m-2), a statistically significant reduction of late H/M value was found in patients with RD compared to patients with preserved eGFR (P = .030). By multivariable linear regression analysis, eGFR resulted in the prediction of impaired late H/M in patients with RD (P = .005). Patients with RD and HF show more impaired cardiac sympathetic activity than HF patients with preserved renal function, and reduced eGFR is a predictor of reduced late H/M.
Collapse
Affiliation(s)
- Fabio Marsico
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Paola Gargiulo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Simona Dell'Aversana
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Immacolata Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Francesco Renga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Luca Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Luca Bardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
12
|
Lymperopoulos A, Borges JI, Cora N, Sizova A. Sympatholytic Mechanisms for the Beneficial Cardiovascular Effects of SGLT2 Inhibitors: A Research Hypothesis for Dapagliflozin's Effects in the Adrenal Gland. Int J Mol Sci 2021; 22:7684. [PMID: 34299304 PMCID: PMC8305388 DOI: 10.3390/ijms22147684] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Heart failure (HF) remains the leading cause of morbidity and death in the western world, and new therapeutic modalities are urgently needed to improve the lifespan and quality of life of HF patients. The sodium-glucose co-transporter-2 (SGLT2) inhibitors, originally developed and mainly indicated for diabetes mellitus treatment, have been increasingly shown to ameliorate heart disease, and specifically HF, in humans, regardless of diabetes co-existence. Indeed, dapagliflozin has been reported to reduce cardiovascular mortality and hospitalizations in patients with HF and reduced ejection fraction (HFrEF). This SGLT2 inhibitor demonstrates these benefits also in non-diabetic subjects, indicating that dapagliflozin's efficacy in HF is independent of blood glucose control. Evidence for the effectiveness of various SGLT2 inhibitors in providing cardiovascular benefits irrespective of their effects on blood glucose regulation have spurred the use of these agents in HFrEF treatment and resulted in FDA approvals for cardiovascular indications. The obvious question arising from all these studies is, of course, which molecular/pharmacological mechanisms underlie these cardiovascular benefits of the drugs in diabetics and non-diabetics alike. The fact that SGLT2 is not significantly expressed in cardiac myocytes (SGLT1 appears to be the dominant isoform) adds even greater perplexity to this answer. A variety of mechanisms have been proposed over the past few years and tested in cell and animal models and prominent among those is the potential for sympatholysis, i.e., reduction in sympathetic nervous system activity. The latter is known to be high in HF patients, contributing significantly to the morbidity and mortality of the disease. The present minireview first summarizes the current evidence in the literature supporting the notion that SGLT2 inhibitors, such as dapagliflozin and empagliflozin, exert sympatholysis, and also outlines the main putative underlying mechanisms for these sympatholytic effects. Then, we propose a novel hypothesis, centered on the adrenal medulla, for the sympatholytic effects specifically of dapagliflozin. Adrenal medulla is responsible for the production and secretion of almost the entire amount of circulating epinephrine and of a significant percentage of circulating norepinephrine in the human body. If proven true experimentally, this hypothesis, along with other emerging experimental evidence for sympatholytic effects in neurons, will shed new light on the pharmacological effects that mediate the cardiovascular benefits of SGLT2 inhibitor drugs, independently of their blood glucose-lowering effects.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA; (J.I.B.); (N.C.); (A.S.)
| | | | | | | |
Collapse
|
13
|
Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021. [DOI: 10.3390/pharmaceutics13060838
expr 929824082 + 956151497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors’ (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
|
14
|
Rakib A, Eva TA, Sami SA, Mitra S, Nafiz IH, Das A, Tareq AM, Nainu F, Dhama K, Emran TB, Simal-Gandara J. Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021; 13:838. [PMID: 34198801 PMCID: PMC8228839 DOI: 10.3390/pharmaceutics13060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors' (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan 90245, Indonesia;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
15
|
Abstract
Periodontal diseases are chronic inflammatory, multifactorial diseases where the major triggering factors for disease onset are bacteria and their toxins, but the major part of tissue destruction occurs as a result of host response towards the periodontal microbiome. Periodontal microbiome consists of a wide range of microorganisms including obligate and facultative anaerobes. In health, there is a dynamic balance between the host, environment, and the microbiome. Environmental factors, mainly tobacco smoking and psychological stress, disrupt the symbiotic relationship. Tobacco smoke and its components alter the bacterial surface and functions such as growth. Psychological stressors and stress hormones may affect the outcome of an infection by changing the virulence factors and/or host response. This review aims to provide currently available data on the effects of the major environmental factors on the periodontal microbiome.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
16
|
Cora N, Ghandour J, Pollard CM, Desimine VL, Ferraino KE, Pereyra JM, Valiente R, Lymperopoulos A. Nicotine-induced adrenal beta-arrestin1 upregulation mediates tobacco-related hyperaldosteronism leading to cardiac dysfunction. World J Cardiol 2020; 12:192-202. [PMID: 32547713 PMCID: PMC7283997 DOI: 10.4330/wjc.v12.i5.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/27/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tobacco-related products, containing the highly addictive nicotine together with numerous other harmful toxicants and carcinogens, have been clearly associated with coronary artery disease, heart failure, stroke, and other heart diseases. Among the mechanisms by which nicotine contributes to heart disease is elevation of the renin-angiotensin-aldosterone system (RAAS) activity. Nicotine, and its major metabolite in humans cotinine, have been reported to induce RAAS activation, resulting in aldosterone elevation in smokers. Aldosterone has various direct and indirect adverse cardiac effects. It is produced by the adrenal cortex in response to angiotensin II (AngII) activating AngII type 1 receptors. RAAS activity increases in chronic smokers, causing raised aldosterone levels (nicotine exposure causes the same in rats). AngII receptors exert their cellular effects via either G proteins or the two βarrestins (βarrestin1 and-2). AIM Since adrenal ßarrestin1 is essential for adrenal aldosterone production and nicotine/cotinine elevate circulating aldosterone levels in humans, we hypothesized that nicotine activates adrenal ßarrestin1, which contributes to RAAS activation and heart disease development. METHODS We studied human adrenocortical zona glomerulosa H295R cells and found that nicotine and cotinine upregulate βarrestin1 mRNA and protein levels, thereby enhancing AngII-dependent aldosterone synthesis and secretion. RESULTS In contrast, siRNA-mediated βarrestin1 knockdown reversed the effects of nicotine on AngII-induced aldosterone production in H295R cells. Importantly, nicotine promotes hyperaldosteronism via adrenal βarrestin1, thereby precipitating cardiac dysfunction, also in vivo, since nicotine-exposed experimental rats with adrenal-specific βarrestin1 knockdown display lower circulating aldosterone levels and better cardiac function than nicotine-exposed control animals with normal adrenal βarrestin1 expression. CONCLUSION Adrenal βarrestin1 upregulation is one of the mechanisms by which tobacco compounds, like nicotine, promote cardio-toxic hyperaldosteronism in vitro and in vivo. Thus, adrenal βarrestin1 represents a novel therapeutic target for tobacco-related heart disease prevention or mitigation.
Collapse
Affiliation(s)
- Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Jennifer Ghandour
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Celina Marie Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Victoria Lynn Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Krysten Elaine Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Janelle Marie Pereyra
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Rachel Valiente
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States.
| |
Collapse
|
17
|
Pollard CM, Ghandour J, Cora N, Perez A, Parker BM, Desimine VL, Wertz SL, Pereyra JM, Ferraino KE, Patel JJ, Lymperopoulos A. GRK2-Mediated Crosstalk Between β-Adrenergic and Angiotensin II Receptors Enhances Adrenocortical Aldosterone Production In Vitro and In Vivo. Int J Mol Sci 2020; 21:574. [PMID: 31963151 PMCID: PMC7013621 DOI: 10.3390/ijms21020574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aldosterone is produced by adrenocortical zona glomerulosa (AZG) cells in response to angiotensin II (AngII) acting through its type I receptors (AT1Rs). AT1R is a G protein-coupled receptor (GPCR) that induces aldosterone via both G proteins and the adapter protein βarrestin1, which binds the receptor following its phosphorylation by GPCR-kinases (GRKs) to initiate G protein-independent signaling. β-adrenergic receptors (ARs) also induce aldosterone production in AZG cells. Herein, we investigated whether GRK2 or GRK5, the two major adrenal GRKs, is involved in the catecholaminergic regulation of AngII-dependent aldosterone production. In human AZG (H295R) cells in vitro, the βAR agonist isoproterenol significantly augmented both AngII-dependent aldosterone secretion and synthesis, as measured by the steroidogenic acute regulatory (StAR) protein and CYP11B2 (aldosterone synthase) mRNA inductions. Importantly, GRK2, but not GRK5, was indispensable for the βAR-mediated enhancement of aldosterone in response to AngII. Specifically, GRK2 inhibition with Cmpd101 abolished isoproterenol's effects on AngII-induced aldosterone synthesis/secretion, whereas the GRK5 knockout via CRISPR/Cas9 had no effect. It is worth noting that these findings were confirmed in vivo, since rats overexpressing GRK2, but not GRK5, in their adrenals had elevated circulating aldosterone levels compared to the control animals. However, treatment with the β-blocker propranolol prevented hyperaldosteronism in the adrenal GRK2-overexpressing rats. In conclusion, GRK2 mediates a βAR-AT1R signaling crosstalk in the adrenal cortex leading to elevated aldosterone production. This suggests that adrenal GRK2 may be a molecular link connecting the sympathetic nervous and renin-angiotensin systems at the level of the adrenal cortex and that its inhibition might be therapeutically advantageous in hyperaldosteronism-related conditions.
Collapse
|
18
|
Abstract
G protein-coupled receptors (GPCRs) are critical cellular sensors that mediate numerous physiological processes. In the heart, multiple GPCRs are expressed on various cell types, where they coordinate to regulate cardiac function by modulating critical processes such as contractility and blood flow. Under pathological settings, these receptors undergo aberrant changes in expression levels, localization and capacity to couple to downstream signalling pathways. Conventional therapies for heart failure work by targeting GPCRs, such as β-adrenergic receptor and angiotensin II receptor antagonists. Although these treatments have improved patient survival, heart failure remains one of the leading causes of mortality worldwide. GPCR kinases (GRKs) are responsible for GPCR phosphorylation and, therefore, desensitization and downregulation of GPCRs. In this Review, we discuss the GPCR signalling pathways and the GRKs involved in the pathophysiology of heart disease. Given that increased expression and activity of GRK2 and GRK5 contribute to the loss of contractile reserve in the stressed and failing heart, inhibition of overactive GRKs has been proposed as a novel therapeutic approach to treat heart failure.
Collapse
|
19
|
Wertz SL, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Co-IP assays for measuring GPCR–arrestin interactions. Methods Cell Biol 2019; 149:205-213. [DOI: 10.1016/bs.mcb.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Desimine VL, McCrink KA, Parker BM, Wertz SL, Maning J, Lymperopoulos A. Biased Agonism/Antagonism of Cardiovascular GPCRs for Heart Failure Therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:41-61. [PMID: 29776604 DOI: 10.1016/bs.ircmb.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) are among the most important drug targets currently used in clinic, including drugs for cardiovascular indications. We now know that, in addition to activating heterotrimeric G protein-dependent signaling pathways, GPCRs can also activate G protein-independent signaling, mainly via the βarrestins. The major role of βarrestin1 and -2, also known as arrestin2 or -3, respectively, is to desensitize GPCRs, i.e., uncoupled them from G proteins, and to subsequently internalize the receptor. As the βarrestin-bound GPCR recycles inside the cell, it serves as a signalosome transducing signals in the cytoplasm. Since both G proteins and βarrestins can transduce signals from the same receptor independently of each other, any given GPCR agonist might selectively activate either pathway, which would make it a biased agonist for that receptor. Although this selectivity is always relative (never absolute), in cases where the G protein- and βarrestin-dependent signals emanating from the same GPCR result in different cellular effects, pharmacological exploitation of GPCR-biased agonism might have therapeutic potential. In this chapter, we summarize the GPCR signaling pathways and their biased agonism/antagonism examples discovered so far that can be exploited for heart failure treatment. We also highlight important issues that need to be clarified along the journey of these ligands from bench to the clinic.
Collapse
Affiliation(s)
- Victoria L Desimine
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Barbara M Parker
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Shelby L Wertz
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jennifer Maning
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| |
Collapse
|
21
|
Arrestins in the Cardiovascular System: An Update. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:27-57. [DOI: 10.1016/bs.pmbts.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Cannavo A, Komici K, Bencivenga L, D'amico ML, Gambino G, Liccardo D, Ferrara N, Rengo G. GRK2 as a therapeutic target for heart failure. Expert Opin Ther Targets 2017; 22:75-83. [PMID: 29166798 DOI: 10.1080/14728222.2018.1406925] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION G protein-coupled receptor (GPCR) kinase-2 (GRK2) is a regulator of GPCRs, in particular β-adrenergic receptors (ARs), and as demonstrated by decades of investigation, it has a pivotal role in the development and progression of cardiovascular disease, like heart failure (HF). Indeed elevated levels and activity of this kinase are able to promote the dysfunction of both cardiac and adrenal α- and β-ARs and to dysregulate other protective signaling pathway, such as sphingosine 1-phospate and insulin. Moreover, recent discoveries suggest that GRK2 can signal independently from GPCRs, in a 'non-canonical' manner, via interaction with non-GPCR molecule or via its mitochondrial localization. Areas covered: Based on this premise, GRK2 inhibition or its genetic deletion has been tested in several disparate animal models of cardiovascular disease, showing to protect the heart from adverse remodeling and dysfunction. Expert opinion: HF is one of the leading cause of death worldwide with enormous health care costs. For this reason, the identification of new therapeutic targets like GRK2 and strategies such as its inhibition represents a new hope in the fight against HF development and progression. Herein, we will update the readers about the 'state-of-art' of GRK2 inhibition as a potent therapeutic strategy in HF.
Collapse
Affiliation(s)
- Alessandro Cannavo
- a Center for Translational Medicine , Temple University Lewis Katz School of Medicine , Philadelphia , PA , USA.,b Dpt Translational Medical Sciences , Federico II University of Naples , Naples , Italy
| | - Klara Komici
- b Dpt Translational Medical Sciences , Federico II University of Naples , Naples , Italy
| | - Leonardo Bencivenga
- b Dpt Translational Medical Sciences , Federico II University of Naples , Naples , Italy
| | - Maria Loreta D'amico
- c Istituti Clinici Scientifici Maugeri SpA Società Benefit , Telese Terme Institute , Benevento , Italy
| | - Giuseppina Gambino
- c Istituti Clinici Scientifici Maugeri SpA Società Benefit , Telese Terme Institute , Benevento , Italy
| | - Daniela Liccardo
- b Dpt Translational Medical Sciences , Federico II University of Naples , Naples , Italy
| | - Nicola Ferrara
- b Dpt Translational Medical Sciences , Federico II University of Naples , Naples , Italy.,c Istituti Clinici Scientifici Maugeri SpA Società Benefit , Telese Terme Institute , Benevento , Italy
| | - Giuseppe Rengo
- b Dpt Translational Medical Sciences , Federico II University of Naples , Naples , Italy.,c Istituti Clinici Scientifici Maugeri SpA Società Benefit , Telese Terme Institute , Benevento , Italy
| |
Collapse
|
23
|
Maning J, Negussie S, Clark MA, Lymperopoulos A. Biased agonism/antagonism at the AngII-AT1 receptor: Implications for adrenal aldosterone production and cardiovascular therapy. Pharmacol Res 2017; 125:14-20. [PMID: 28511989 DOI: 10.1016/j.phrs.2017.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/23/2022]
Abstract
Many of the effects of angiotensin II (AngII), including adrenocortical aldosterone release, are mediated by the AngII type 1 receptor (AT1R), a receptor with essential roles in cardiovascular homeostasis. AT1R belongs to the G protein-coupled receptor (GPCR) superfamily, mainly coupling to the Gq/11 type of G proteins. However, it also signals through βarrestins, oftentimes in parallel to eliciting G protein-dependent signaling. This has spurred infinite possibilities for cardiovascular pharmacology, since various beneficial effects are purportedly exerted by AT1R via βarrestins, unlike AT1R-induced G protein-mediated pathways that usually result in damaging cardiovascular effects, including hypertension and aldosterone elevation. Over the past decade however, a number of studies from our group and others have suggested that AT1R-induced βarrestin signaling can also be damaging for the heart, similarly to the G protein-dependent one, with regard to aldosterone regulation. Additionally, AT1R-induced βarrestin signaling in astrocytes from certain areas of the brain may also play a significant role in central regulation of blood pressure and hypertension pathogenesis. These findings have provided the impetus for testing available angiotensin receptor blockers (ARBs) in their efficacy towards blocking both routes (i.e. both G protein- and βarrestin-dependent) of AT1R signaling in vitro and in vivo and also have promoted structure-activity relationship (SAR) studies for the AngII molecule in terms of βarrestin signaling to certain cellular effects, e.g. adrenal aldosterone production. In the present review, we will recount all of these recent studies on adrenal and astrocyte AT1R-dependent βarrestin signaling while underlining their implications for cardiovascular pathophysiology and therapy.
Collapse
Affiliation(s)
- Jennifer Maning
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Shmuel Negussie
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
24
|
Artalejo AR, Olivos-Oré LA. Alpha2-adrenoceptors in adrenomedullary chromaffin cells: functional role and pathophysiological implications. Pflugers Arch 2017; 470:61-66. [PMID: 28836008 DOI: 10.1007/s00424-017-2059-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Chromaffin cells from the adrenal medulla participate in stress responses by releasing catecholamines into the bloodstream. Main control of adrenal catecholamine secretion is exerted both neurally (by the splanchnic nerve fibers) and humorally (by corticosteroids, circulating noradrenaline, etc.). It should be noted, however, that secretory products themselves (catecholamines, ATP, opioids, ascorbic acid, chromogranins) could also influence the secretory response in an autocrine/paracrine manner. This form of control is activity-dependent and can be either inhibitory or excitatory. Among the inhibitory influences, it stands out the one mediated by α2-adrenergic autoreceptors activated by released catecholamines. α2-adrenoceptors are G protein-coupled receptors capable to inhibit exocytotic secretion through a direct interaction of Gβγ subunits with voltage-gated Ca2+ channels. Interestingly, upon intense and/or prolonged stimulation, α2-adrenergic receptors become desensitized by the intervention of G protein-coupled receptor kinase 2 (GRK2). In several experimental models of heart failure, there has been reported the up-regulation of GRK2 and the loss of functioning of inhibitory α2-adrenoceptors resulting in enhanced release of adrenomedullary catecholamines. Given the importance of circulating catecholamines in the pathophysiology of heart failure, the recovery of α2-adrenergic modulation of the secretory response from chromaffin cells appears as a novel strategy for a better control of the patients with this cardiac disease.
Collapse
Affiliation(s)
- Antonio R Artalejo
- Institute for Research in Neurochemistry & Department of Toxicology and Pharmacology, Faculty of Veterinary, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28029, Madrid, Spain.
| | - Luis Alcides Olivos-Oré
- Institute for Research in Neurochemistry & Department of Toxicology and Pharmacology, Faculty of Veterinary, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28029, Madrid, Spain
| |
Collapse
|
25
|
Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe 2017; 44:13-19. [DOI: 10.1016/j.anaerobe.2017.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/26/2022]
|
26
|
Lymperopoulos A, Aukszi B. Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: Implications for heart failure therapy. World J Cardiol 2017; 9:200-206. [PMID: 28400916 PMCID: PMC5368669 DOI: 10.4330/wjc.v9.i3.200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/29/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
Aldosterone mediates many of the physiological and pathophysiological/cardio-toxic effects of angiotensin II (AngII). Its synthesis and secretion from the zona glomerulosa cells of the adrenal cortex, elevated in chronic heart failure (HF), is induced by AngII type 1 receptors (AT1Rs). The AT1R is a G protein-coupled receptor, mainly coupling to Gq/11 proteins. However, it can also signal through β-arrestin-1 (βarr1) or -2 (βarr2), both of which mediate G protein-independent signaling. Over the past decade, a second, Gq/11 protein-independent but βarr1-dependent signaling pathway emanating from the adrenocortical AT1R and leading to aldosterone production has become appreciated. Thus, it became apparent that AT1R antagonists that block both pathways equally well are warranted for fully effective aldosterone suppression in HF. This spurred the comparison of all of the currently marketed angiotensin receptor blockers (ARBs, AT1R antagonists or sartans) at blocking activation of the two signaling modes (G protein-, and βarr1-dependent) at the AngII-activated AT1R and hence, at suppression of aldosterone in vitro and in vivo. Although all agents are very potent inhibitors of G protein activation at the AT1R, candesartan and valsartan were uncovered to be the most potent ARBs at blocking βarr activation by AngII and at suppressing aldosterone in vitro and in vivo in post-myocardial infarction HF animals. In contrast, irbesartan and losartan are virtually G protein-"biased" blockers at the human AT1R, with very low efficacy for βarr inhibition and aldosterone suppression. Therefore, candesartan and valsartan (and other, structurally similar compounds) may be the most preferred ARB agents for HF pharmacotherapy, as well as for treatment of other conditions characterized by elevated aldosterone.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Anastasios Lymperopoulos, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Beatrix Aukszi
- Anastasios Lymperopoulos, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| |
Collapse
|
27
|
Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1883-1892. [PMID: 28130200 DOI: 10.1016/j.bbadis.2017.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies.
Collapse
|
28
|
Mody R, Hernandez Y, Lymperopoulos A. Assays of adrenal GPCR signaling and regulation: Measuring adrenal β-arrestin activity in vivo through plasma membrane recruitment. Methods Cell Biol 2017:79-87. [DOI: 10.1016/bs.mcb.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Lymperopoulos A, Brill A, McCrink KA. GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens. Int J Biochem Cell Biol 2016; 77:213-219. [PMID: 26851510 DOI: 10.1016/j.biocel.2016.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The circulating catecholamines (CAs) epinephrine (Epi) and norepinephrine (NE) derive from two major sources in the whole organism: the sympathetic nerve endings, which release NE on effector organs, and the chromaffin cells of the adrenal medulla, which are cells that synthesize, store and release Epi (mainly) and NE. All of the Epi in the body and a significant amount of circulating NE derive from the adrenal medulla. The secretion of CAs from adrenal chromaffin cells is regulated in a complex way by a variety of membrane receptors, the vast majority of which are G protein-coupled receptors (GPCRs), including adrenergic receptors (ARs), which act as "presynaptic autoreceptors" in this regard. There is a plethora of CA-secretagogue signals acting on these receptors but some of them, most notably the α2ARs, inhibit CA secretion. Over the past few years, however, a few new proteins present in chromaffin cells have been uncovered to participate in CA secretion regulation. Most prominent among these are GRK2 and β-arrestin1, which are known to interact with GPCRs regulating receptor signaling and function. The present review will discuss the molecular and signaling mechanisms by which adrenal chromaffin cell-residing GPCRs and their regulatory proteins modulate CA synthesis and secretion. Particular emphasis will be given to the newly discovered roles of GRK2 and β-arrestins in these processes and particular points of focus for future research will be highlighted, as well.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA.
| | - Ava Brill
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
30
|
Hullmann J, Traynham CJ, Coleman RC, Koch WJ. The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol Res 2016; 110:52-64. [PMID: 27180008 DOI: 10.1016/j.phrs.2016.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a global epidemic with the highest degree of mortality and morbidity of any disease presently studied. G protein-coupled receptors (GPCRs) are prominent regulators of cardiovascular function. Activated GPCRs are "turned off" by GPCR kinases (GRKs) in a process known as "desensitization". GRKs 2 and 5 are highly expressed in the heart, and known to be upregulated in HF. Over the last 20 years, both GRK2 and GRK5 have been demonstrated to be critical mediators of the molecular alterations that occur in the failing heart. In the present review, we will highlight recent findings that further characterize "non-canonical" GRK signaling observed in HF. Further, we will also present potential therapeutic strategies (i.e. small molecule inhibition, microRNAs, gene therapy) that may have potential in combating the deleterious effects of GRKs in HF.
Collapse
Affiliation(s)
| | - Christopher J Traynham
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Ryan C Coleman
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
31
|
Valero TR, Sturchler E, Jafferjee M, Rengo G, Magafa V, Cordopatis P, McDonald P, Koch WJ, Lymperopoulos A. Structure-activity relationship study of angiotensin II analogs in terms of β-arrestin-dependent signaling to aldosterone production. Pharmacol Res Perspect 2016; 4:e00226. [PMID: 27069636 PMCID: PMC4804318 DOI: 10.1002/prp2.226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion induction, a steroid hormone that contributes to the pathology of postmyocardial infarction (MI) heart failure (HF), is mediated by both Gq/11 proteins and β-arrestins, both of which couple to the AngII type 1 receptors (AT1Rs) of adrenocortical zona glomerulosa (AZG) cells. Over the past several years, AngII analogs with increased selectivity ("bias") toward β-arrestin-dependent signaling at the AT1R have been designed and described, starting with SII, the gold-standard β-arrestin-"biased" AngII analog. In this study, we examined the relative potencies of an extensive series of AngII peptide analogs at relative activation of G proteins versus β-arrestins by the AT1R. The major structural difference of these peptides from SII was their varied substitutions at position 5, rather than position 4 of native AngII. Three of them were found biased for β-arrestin activation and extremely potent at stimulating aldosterone secretion in AZG cells in vitro, much more potent than SII in that regard. Finally, the most potent of these three ([Sar(1), Cys(Et)(5), Leu(8)]-AngII, CORET) was further examined in post-MI rats progressing to HF and overexpressing adrenal β-arrestin1 in vivo. Consistent with the in vitro studies, CORET was found to exacerbate the post-MI hyperaldosteronism, and, consequently, cardiac function of the post-MI animals in vivo. Finally, our data suggest that increasing the size of position 5 of the AngII peptide sequence results in directly proportional increases in AT1R-dependent β-arrestin activation. These findings provide important insights for AT1R pharmacology and future AngII-targeted drug development.
Collapse
Affiliation(s)
- Thairy Reyes Valero
- Department of Pharmaceutical SciencesLaboratory for the Study of Neurohormonal Control of the CirculationNova Southeastern University College of PharmacyFort LauderdaleFlorida33328
| | | | - Malika Jafferjee
- Department of Pharmaceutical SciencesLaboratory for the Study of Neurohormonal Control of the CirculationNova Southeastern University College of PharmacyFort LauderdaleFlorida33328
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation–Scientific Institute of Telese TermeTelese TermeItaly
| | - Vassiliki Magafa
- Department of PharmacyLaboratory of Pharmacognosy & Chemistry of Natural ProductsUniversity of PatrasPatrasGreece
| | - Paul Cordopatis
- Department of PharmacyLaboratory of Pharmacognosy & Chemistry of Natural ProductsUniversity of PatrasPatrasGreece
| | | | - Walter J. Koch
- Center for Translational MedicineTemple UniversityPhiladelphiaPennsylvania19140
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical SciencesLaboratory for the Study of Neurohormonal Control of the CirculationNova Southeastern University College of PharmacyFort LauderdaleFlorida33328
| |
Collapse
|
32
|
Cannavo A, Liccardo D, Eguchi A, Elliott KJ, Traynham CJ, Ibetti J, Eguchi S, Leosco D, Ferrara N, Rengo G, Koch WJ. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun 2016; 7:10877. [PMID: 26932512 PMCID: PMC4778065 DOI: 10.1038/ncomms10877] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
Hyper-aldosteronism is associated with myocardial dysfunction including induction of cardiac fibrosis and maladaptive hypertrophy. Mechanisms of these cardiotoxicities are not fully understood. Here we show that mineralocorticoid receptor (MR) activation by aldosterone leads to pathological myocardial signalling mediated by mitochondrial G protein-coupled receptor kinase 2 (GRK2) pro-death activity and GRK5 pro-hypertrophic action. Moreover, these MR-dependent GRK2 and GRK5 non-canonical activities appear to involve cross-talk with the angiotensin II type-1 receptor (AT1R). Most importantly, we show that ventricular dysfunction caused by chronic hyper-aldosteronism in vivo is completely prevented in cardiac Grk2 knockout mice (KO) and to a lesser extent in Grk5 KO mice. However, aldosterone-induced cardiac hypertrophy is totally prevented in Grk5 KO mice. We also show human data consistent with MR activation status in heart failure influencing GRK2 levels. Therefore, our study uncovers GRKs as targets for ameliorating pathological cardiac effects associated with high-aldosterone levels.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | - Daniela Liccardo
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | - Akito Eguchi
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | - Katherine J. Elliott
- Department of Physiology and Cardiovascular Research Center, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | - Christopher J. Traynham
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | - Jessica Ibetti
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | - Satoru Eguchi
- Department of Physiology and Cardiovascular Research Center, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| | - Dario Leosco
- Department of Translational Medical Science, University of Naples Federico II, Via Pansini, 5, Naples 80131, Italy
| | - Nicola Ferrara
- Department of Translational Medical Science, University of Naples Federico II, Via Pansini, 5, Naples 80131, Italy
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme,Via bagni vecchi, 1, Telese Terme, Benevento 82037, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Science, University of Naples Federico II, Via Pansini, 5, Naples 80131, Italy
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme,Via bagni vecchi, 1, Telese Terme, Benevento 82037, Italy
| | - Walter J. Koch
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, N. Broad Street, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
33
|
Cannavo A, Liccardo D, Lymperopoulos A, Gambino G, D'Amico ML, Rengo F, Koch WJ, Leosco D, Ferrara N, Rengo G. β Adrenergic Receptor Kinase C-Terminal Peptide Gene-Therapy Improves β2-Adrenergic Receptor-Dependent Neoangiogenesis after Hindlimb Ischemia. J Pharmacol Exp Ther 2016; 356:503-513. [PMID: 26604244 PMCID: PMC6047230 DOI: 10.1124/jpet.115.228411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/18/2015] [Indexed: 01/15/2023] Open
Abstract
After hindlimb ischemia (HI), increased catecholamine levels within the ischemic muscle can cause dysregulation of β2-adrenergic receptor (β2AR) signaling, leading to reduced revascularization. Indeed, in vivo β2AR overexpression via gene therapy enhances angiogenesis in a rat model of HI. G protein-coupled receptor kinase 2 (GRK2) is a key regulator of βAR signaling, and β adrenergic receptor kinase C-terminal peptide (βARKct), a peptide inhibitor of GRK2, has been shown to prevent βAR down-regulation and to protect cardiac myocytes and stem cells from ischemic injury through restoration of β2AR protective signaling (i.e., protein kinase B/endothelial nitric oxide synthase). Herein, we tested the potential therapeutic effects of adenoviral-mediated βARKct gene transfer in an experimental model of HI and its effects on βAR signaling and on endothelial cell (EC) function in vitro. Accordingly, in this study, we surgically induced HI in rats by femoral artery resection (FAR). Fifteen days of ischemia resulted in significant βAR down-regulation that was paralleled by an approximately 2-fold increase in GRK2 levels in the ischemic muscle. Importantly, in vivo gene transfer of the βARKct in the hindlimb of rats at the time of FAR resulted in a marked improvement of hindlimb perfusion, with increased capillary and βAR density in the ischemic muscle, compared with control groups. The effect of βARKct expression was also assessed in vitro in cultured ECs. Interestingly, ECs expressing the βARKct fenoterol, a β2AR-agonist, induced enhanced β2AR proangiogenic signaling and increased EC function. Our results suggest that βARKct gene therapy and subsequent GRK2 inhibition promotes angiogenesis in a model of HI by preventing ischemia-induced β2AR down-regulation.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Anastasios Lymperopoulos
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Giuseppina Gambino
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Maria Loreta D'Amico
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Franco Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Walter J Koch
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Dario Leosco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| |
Collapse
|
34
|
McCrink KA, Brill A, Lymperopoulos A. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure. World J Cardiol 2015; 7:539-543. [PMID: 26413230 PMCID: PMC4577680 DOI: 10.4330/wjc.v7.i9.539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/24/2015] [Accepted: 07/11/2015] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic (adrenergic) nervous system (SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases (GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell (receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.
Collapse
Affiliation(s)
- Katie A McCrink
- Katie A McCrink, Ava Brill, Anastasios Lymperopoulos, Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, United States
| | - Ava Brill
- Katie A McCrink, Ava Brill, Anastasios Lymperopoulos, Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, United States
| | - Anastasios Lymperopoulos
- Katie A McCrink, Ava Brill, Anastasios Lymperopoulos, Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, United States
| |
Collapse
|
35
|
Capote LA, Mendez Perez R, Lymperopoulos A. GPCR signaling and cardiac function. Eur J Pharmacol 2015; 763:143-148. [PMID: 25981298 DOI: 10.1016/j.ejphar.2015.05.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptors (GPCRs), such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, i.e. myocytes, fibroblasts and endothelial cells, play crucial roles in regulating cardiac function and morphology. Their importance in cardiac physiology and disease is reflected by the fact that, collectively, they represent the direct targets of over a third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of their structure, function and the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart disease therapy. Here, we review these signaling modalities employed by GPCRs known to be expressed in the cardiac myocyte membranes and to directly modulate cardiac contractility. We also highlight drugs and drug classes that directly target these GPCRs to modulate cardiac function, as well as molecules involved in cardiac GPCR signaling that have the potential of becoming novel drug targets for modulation of cardiac function in the future.
Collapse
Affiliation(s)
- Leany A Capote
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Roberto Mendez Perez
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
36
|
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95:377-404. [PMID: 25834229 PMCID: PMC4551214 DOI: 10.1152/physrev.00015.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - J Kurt Chuprun
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Mathew Schwartz
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
37
|
Activation of lymphocyte autophagy/apoptosis reflects haemodynamic inefficiency and functional aerobic impairment in patients with heart failure. Clin Sci (Lond) 2014; 127:589-602. [PMID: 24863428 DOI: 10.1042/cs20130789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lymphocytopenia is associated with an adverse prognosis in heart failure (HF). The present study investigated whether lymphocytopenia results from activated lymphocyte autophagy/apoptosis, which reflects haemodynamic inefficiency and functional aerobic impairment in patients with HF. One hundred and twenty-seven patients with HF were divided into three groups: HF with non- (lymphocytes ≥2000 cells/μl; n=45), mild (lymphocytes between ≥1500 cells/μl and <2000 cells/μl; n=39) and severe (lymphocytes <1500 cells/μl; n=43) lymphocytopenia. Lymphocyte autophagy/apoptosis, ventilatory/haemodynamic efficiencies and generic/disease-specific quality of life were analysed in these patients with HF and 35 normal counterparts. The results demonstrated that patients with HF with severe lymphocytopenia had (i) increased G-protein-coupled receptor kinase-2 (GRK-2) levels, (ii) lower mammalian target of rapamycin (mTOR) levels with higher lysosome-associated membrane protein-2 (LAMP-2) expression and Acridine Orange (AO) staining, (iii) lower mitochondrial transmembrane potential with higher caspase-3 activation and phosphatidylserine (PS) exposure, and (iv) greater extents of adrenaline (epinephrine)-induced apoptosis in lymphocytes, and higher plasma noradrenaline (norepinephrine)/adrenaline, myeloperoxidase and interleukin-6 concentrations than patients with HF without lymphocytopenia and normal counterparts did. Moreover, lymphocyte caspase-3 activation was an effect modifier, which modulated the correlation status between lymphocyte count and GRK-2 level. Lymphocyte count was positively correlated with peak cardiac output and peak oxygen consumption (VO2peak) in patients with HF. In addition, HF with lymphocytopenia was accompanied by lower Short Form-36 physical/mental component scores and increased Minnesota Living with Heart Failure Questionnaire scores. Therefore, we conclude that increased sympathetic activation and oxidative stress/pro-inflammatory status cause lymphocytopenia by activating programmed lymphocyte death in patients with HF. Moreover, a low lymphocyte count correlates with reduced haemodynamics and aerobic capacity, which reflects poor generic/disease-specific quality of life in patients with HF.
Collapse
|
38
|
Femminella GD, Barrese V, Ferrara N, Rengo G. Tailoring therapy for heart failure: the pharmacogenomics of adrenergic receptor signaling. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:267-73. [PMID: 25276090 PMCID: PMC4175026 DOI: 10.2147/pgpm.s49799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure is one of the leading causes of mortality in Western countries, and β-blockers are a cornerstone of its treatment. However, the response to these drugs is variable among individuals, which might be explained, at least in part, by genetic differences. Pharmacogenomics is the study of genetic contributions to drug response variability in order to provide evidence for a tailored therapy in an individual patient. Several studies have investigated the pharmacogenomics of the adrenergic receptor system and its role in the context of the use of β-blockers in treating heart failure. In this review, we will focus on the most significant polymorphisms described in the literature involving adrenergic receptors and adrenergic receptor-related proteins, as well as genetic variations influencing β-blocker metabolism.
Collapse
Affiliation(s)
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy ; Division of Biomedical Sciences, St George's University of London, London, UK
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University, Naples, Italy ; "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| | - Giuseppe Rengo
- "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| |
Collapse
|
39
|
de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G. Adrenal adrenoceptors in heart failure. Front Physiol 2014; 5:246. [PMID: 25071591 PMCID: PMC4084669 DOI: 10.3389/fphys.2014.00246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is a chronic clinical syndrome characterized by the reduction in left ventricular (LV) function and it represents one of the most important causes of morbidity and mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Sympathetic outflow, characterized by increased circulating catecholamines (CA) biosynthesis and secretion, is peculiar in HF and sympatholytic treatments (as β-blockers) are presently being used for the treatment of this disease. Adrenal gland secretes Epinephrine (80%) and Norepinephrine (20%) in response to acetylcholine stimulation of nicotinic cholinergic receptors on the chromaffin cell membranes. This process is regulated by adrenergic receptors (ARs): α2ARs inhibit CA release through coupling to inhibitory Gi-proteins, and β ARs (mainly β2ARs) stimulate CA release through coupling to stimulatory Gs-proteins. All ARs are G-protein-coupled receptors (GPCRs) and GPCR kinases (GRKs) regulate their signaling and function. Adrenal GRK2-mediated α2AR desensitization and downregulation are increased in HF and seem to be a fundamental regulator of CA secretion from the adrenal gland. Consequently, restoration of adrenal α2AR signaling through the inhibition of GRK2 is a fascinating sympatholytic therapeutic strategy for chronic HF. This strategy could have several significant advantages over existing HF pharmacotherapies minimizing side-effects on extra-cardiac tissues and reducing the chronic activation of the renin–angiotensin–aldosterone and endothelin systems. The role of adrenal ARs in regulation of sympathetic hyperactivity opens interesting perspectives in understanding HF pathophysiology and in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Claudio de Lucia
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Grazia D Femminella
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Giuseppina Gambino
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Gennaro Pagano
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Elena Allocca
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Carlo Rengo
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Candida Silvestri
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Dario Leosco
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Nicola Ferrara
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| |
Collapse
|
40
|
Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, De Lucia C, Liccardo D, Gao E, Leosco D, Koch WJ, Lymperopoulos A. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 2014; 63:404-412. [PMID: 24218435 PMCID: PMC3889868 DOI: 10.1161/hypertensionaha.113.02043] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
β-Arrestin (βarr)-1 and β-arrestin-2 (βarrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac β-adrenergic receptor (βAR) function via βAR desensitization and downregulation. In addition, they mediate G-protein-independent βAR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac βAR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal βarr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of βarr1 in post-myocardial infarction (MI) HF by testing the effects of βarr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied βarr1 knockout (βarr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) βarr1KO mice display enhanced βAR-dependent contractility and post-MI βarr1KO mice enhanced overall cardiac function (and βAR-dependent contractility) compared with wild type. Post-MI βarr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac βAR signaling and function, as evidenced by increased βAR density and procontractile signaling, via reduced cardiac βAR desensitization because of cardiac βarr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal βarr1 absence. Thus, βarr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.
Collapse
Affiliation(s)
- Ashley Bathgate-Siryk
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S University Dr, HPD Bldg/Room 1338, Fort Lauderdale, FL 33328.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Femminella GD, de Lucia C, Iacotucci P, Formisano R, Petraglia L, Allocca E, Ratto E, D'Amico L, Rengo C, Pagano G, Bonaduce D, Rengo G, Ferrara N. Neuro-hormonal effects of physical activity in the elderly. Front Physiol 2013; 4:378. [PMID: 24391595 PMCID: PMC3868730 DOI: 10.3389/fphys.2013.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/04/2013] [Indexed: 01/14/2023] Open
Abstract
Thanks to diagnostic and therapeutic advances, the elderly population is continuously increasing in the western countries. Accordingly, the prevalence of most chronic age-related diseases will increase considerably in the next decades, thus it will be necessary to implement effective preventive measures to face this epidemiological challenge. Among those, physical activity exerts a crucial role, since it has been proven to reduce the risk of cardiovascular diseases, diabetes, obesity, cognitive impairment and cancer. The favorable effects of exercise on cardiovascular homeostasis can be at least in part ascribed to the modulation of the neuro-hormonal systems implicated in cardiovascular pathophysiology. In the elderly, exercise has been shown to affect catecholamine secretion and biosynthesis, to positively modulate the renin-angiotensin-aldosterone system and to reduce the levels of plasma brain natriuretic peptides. Moreover, drugs modulating the neuro-hormonal systems may favorably affect physical capacity in the elderly. Thus, efforts should be made to actually make physical activity become part of the therapeutic tools in the elderly.
Collapse
Affiliation(s)
- Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Claudio de Lucia
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Paola Iacotucci
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Roberto Formisano
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Elena Allocca
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Enza Ratto
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Loreta D'Amico
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Carlo Rengo
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| | - Gennaro Pagano
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| |
Collapse
|
42
|
Rengo G, Parisi V, Femminella GD, Pagano G, de Lucia C, Cannavo A, Liccardo D, Giallauria F, Scala O, Zincarelli C, Perrone Filardi P, Ferrara N, Leosco D. Molecular aspects of the cardioprotective effect of exercise in the elderly. Aging Clin Exp Res 2013; 25:487-97. [PMID: 23949971 DOI: 10.1007/s40520-013-0117-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
Aging is a well-recognized risk factor for several different forms of cardiovascular disease. However, mechanisms by which aging exerts its negative effect on outcome have been only partially clarified. Numerous evidence indicate that aging is associated with alterations of several mechanisms whose integrity confers protective action on the heart and vasculature. The present review aims to focus on the beneficial effects of exercise, which plays a pivotal role in primary and secondary prevention of cardiovascular diseases, in counteracting age-related deterioration of protective mechanisms that are crucially involved in the homeostasis of cardiovascular system. In this regard, animal and human studies indicate that exercise training is able: (1) to improve the inotropic reserve of the aging heart through restoration of cardiac β-adrenergic receptor signaling; (2) to rescue the mechanism of cardiac preconditioning and angiogenesis whose integrity has been shown to confer cardioprotection against ischemia and to improve post-myocardial infarction left ventricular remodeling; (3) to counteract age-related reduction of antioxidant systems that is associated to decreased cellular resistance to reactive oxygen species accumulation. Moreover, this review also describes the molecular effects induced by different exercise training protocols (endurance vs. resistance) in the attempt to better explain what kind of exercise strategy could be more efficacious to improve cardiovascular performance in the elderly population.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, via Sergio Pansini, 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lymperopoulos A. Physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol 2013; 4:240. [PMID: 24027534 PMCID: PMC3761154 DOI: 10.3389/fphys.2013.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of PharmacyFort Lauderdale, FL, USA
| |
Collapse
|
44
|
Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 2013; 113:739-753. [PMID: 23989716 PMCID: PMC3843360 DOI: 10.1161/circresaha.113.300308] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, and Division of Cardiology, Fondazione Salvatore Maugeri, Telese Terme, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
45
|
Paolillo S, Rengo G, Pagano G, Pellegrino T, Savarese G, Femminella GD, Tuccillo M, Boemio A, Attena E, Formisano R, Petraglia L, Scopacasa F, Galasso G, Leosco D, Trimarco B, Cuocolo A, Perrone-Filardi P. Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabetes Care 2013; 36:2395-401. [PMID: 23530014 PMCID: PMC3714495 DOI: 10.2337/dc12-2147] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Impaired parasympathetic and sympathetic nervous system activity have been demonstrated in patients with diabetes mellitus (DM) and correlated with worse prognosis. Few data are available on the effect of DM on cardiac neuropathy in heart failure (HF). The aim of the current study was to assess cardiac sympathetic activity in HF patients with and without DM. RESEARCH DESIGN AND METHODS Patients with severe HF (n = 75), with (n = 37) and without DM (n = 38), and 14 diabetic patients with normal cardiac function underwent (123)I meta-iodobenzylguanidine scintigraphy from which early and late heart-to-mediastinum (H/M) ratios were calculated. Clinical, echocardiographic, and biochemical data were measured. RESULTS DM compared with non-DM patients showed significantly lower early (1.65 ± 0.21 vs. 1.75 ± 0.21; P < 0.05) and late H/M ratios (1.46 ± 0.22 vs. 1.58 ± 0.24; P < 0.03). Early and late H/M were significantly higher in DM patients without HF (2.22 ± 0.35 and 1.99 ± 0.24, respectively) than HF patients with (P < 0.0001) and without (P < 0.0001) DM. In HF patients, an inverse correlation between early or late H/M ratio and hemoglobin A1c (HbA1c) (Pearson = -0.473, P = 0.001; Pearson = -0.382, P = 0.001, respectively) was observed. In DM, in multivariate analysis, HbA1c and ejection fraction remained significant predictors of early H/M; HbA1c remained the only significant predictor of late H/M. No correlation between early or late H/M and HbA1c was found in non-DM patients. CONCLUSIONS Diabetic patients with HF show lower cardiac sympathetic activity than HF patients not having DM or than DM patients with a similar degree of autonomic dysfunction not having HF. HbA1c correlated with the degree of reduction in cardiac sympathetic activity.
Collapse
Affiliation(s)
- Stefania Paolillo
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples,Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Adrenal gland infection by serotype 5 adenovirus requires coagulation factors. PLoS One 2013; 8:e62191. [PMID: 23638001 PMCID: PMC3636216 DOI: 10.1371/journal.pone.0062191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR) or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin) as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT) imaging of gene expression to determine whether local virus administration (direct injection in the kidney) could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.
Collapse
|
47
|
Arrestins in the cardiovascular system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:297-334. [PMID: 23764059 DOI: 10.1016/b978-0-12-394440-5.00012-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Of the four mammalian arrestins, only the β-arrestins (βarrs; Arrestin2 and -3) are expressed throughout the cardiovascular system, where they regulate, as either desensitizers/internalizers or signal transducers, several G-protein-coupled receptors (GPCRs) critical for cardiovascular homeostasis. The cardiovascular roles of βarrs have been delineated at an accelerated pace via a variety of techniques and tools, such as knockout mice, siRNA knockdown, artificial or naturally occurring polymorphic GPCRs, and availability of new βarr "biased" GPCR ligands. This chapter summarizes the current knowledge of cardiovascular arrestin physiology and pharmacology, addressing the individual cardiovascular receptors affected by βarrs in vivo, as well as the individual cell types, tissues, and organs of the cardiovascular system in which βarr effects are exerted; for example, cardiac myocyte or fibroblast, vascular smooth muscle, adrenal gland and platelet. In the broader scope of cardiovascular βarr pharmacology, a discussion of the βarr "bias" of certain cardiovascular GPCR ligands is also included.
Collapse
|
48
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Suppressed G-protein-coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction. Acta Physiol (Oxf) 2013; 207:142-55. [PMID: 22925038 DOI: 10.1111/j.1748-1716.2012.02473.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/15/2012] [Accepted: 07/03/2012] [Indexed: 12/14/2022]
Abstract
AIM Pre-menopausal women have less cardiovascular disease and lower cardiovascular morbidity and mortality than men the same age. Previously, we noted in mice that G-protein-coupled receptor kinase 2 (GRK2) negatively regulates the Akt/eNOS pathway in male diabetic aortas and that endothelial function via the Akt/eNOS pathway is less affected in female diabetic aortas. The cellular mechanisms underlying these sex differences remain unclear. We aimed to investigate the ways in which GRK2 might modulate vascular functions in male and female diabetic mice (DM). METHODS Vascular functions were examined in aortic rings. GRK2, β-arrestin 2 and Akt/eNOS-signalling-pathway protein levels and activities were assayed by Western blotting. RESULTS Phenylephrine-induced contraction was greater, while both clonidine-induced and insulin-induced relaxations were weaker (vs. male controls), in aortas from male type 2 DM, suggesting impairments of the Akt/eNOS pathway and α-adrenoceptor function. GRK2-inhibitor reversed only the impairment in Akt/eNOS-pathway-mediated relaxation in male DM. Increases in GRK2 activity, GRK2 expression in the membrane, plasma Ang II and systolic blood pressure were seen in male DM (vs. male controls) but not in female DM; these increases were attenuated by GRK2-inhibitor treatment. Repeatedly obtaining clonidine concentration-response curves led to reduced relaxation in male and in female DM aortas, indicating similar desensitization between female DM and male DM. This effect was reversed by GRK2-inhibitor in both sexes. CONCLUSION GRK2 plays a key role in modulating the aortic vasodilator effect of clonidine by selectively affecting the Akt/eNOS pathway. This action of GRK2 is more powerful in male than in female DM.
Collapse
Affiliation(s)
- K. Taguchi
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - T. Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - K. Kamata
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - T. Kobayashi
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| |
Collapse
|
49
|
Rengo G, Lymperopoulos A, Zincarelli C, Femminella G, Liccardo D, Pagano G, de Lucia C, Cannavo A, Gargiulo P, Ferrara N, Perrone Filardi P, Koch W, Leosco D. Blockade of β-adrenoceptors restores the GRK2-mediated adrenal α(2) -adrenoceptor-catecholamine production axis in heart failure. Br J Pharmacol 2012; 166:2430-2440. [PMID: 22519418 PMCID: PMC3448904 DOI: 10.1111/j.1476-5381.2012.01972.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/07/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Sympathetic nervous system (SNS) hyperactivity is characteristic of chronic heart failure (HF) and significantly worsens prognosis. The success of β-adrenoceptor antagonist (β-blockers) therapy in HF is primarily attributed to protection of the heart from the noxious effects of augmented catecholamine levels. β-Blockers have been shown to reduce SNS hyperactivity in HF, but the underlying molecular mechanisms are not understood. The GPCR kinase-2 (GRK2)-α(2) adrenoceptor-catecholamine production axis is up-regulated in the adrenal medulla during HF causing α(2) -adrenoceptor dysfunction and elevated catecholamine levels. Here, we sought to investigate if β-blocker treatment in HF could lower SNS activation by directly altering adrenal GRK2 levels. EXPERIMENTAL APPROACH Four weeks after myocardial infarction-induced HF, adult rats were randomized to 10-week treatment with vehicle (HF/C) or bisoprolol (HF/B). Cardiac function and dimensions were measured. In heart and adrenal gland, GRK2 levels were assessed by RT-PCR and Western blotting and adrenoceptors studied with radioligand binding. Catecholamines and α(2) adrenoceptors in adrenal medulla chromaffin cell cultures were also measured. KEY RESULTS Bisoprolol treatment ameliorated HF-related adverse cardiac remodelling and reduced plasma catecholamine levels, compared with HF/C rats. Bisoprolol also attenuated adrenal GRK2 overexpression as observed in HF/C rats and increased α(2) adrenoceptor density. In cultures of adrenal medulla chromaffin cells from all study groups, bisoprolol reversed HF-related α(2) adrenoceptor dysfunction. This effect was reversed by GRK2 overexpression. CONCLUSION AND IMPLICATIONS Blockade of β-adrenoceptors normalized the adrenal α(2) adrenoceptor-catecholamine production axis by reducing GRK2 levels. This effect may contribute significantly to the decrease of HF-related sympathetic overdrive by β-blockers.
Collapse
Affiliation(s)
- G Rengo
- Cardiology Division, Fondazione Salvatore Maugeri, IRCCS, Telese Terme (BN), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D. Myocardial β(2) -adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 2012; 166:2348-2361. [PMID: 22452704 PMCID: PMC3448898 DOI: 10.1111/j.1476-5381.2012.01954.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated whether β(2) -adrenoceptor overexpression could promote angiogenesis and improve blood perfusion and left ventricular (LV) remodeling of the failing heart. EXPERIMENTAL APPROACH We explored the angiogenic effects of β(2) -adrenoceptor overexpression in a rat model of post-myocardial infarction (MI) heart failure (HF). Cardiac adenoviral-mediated β(2) -adrenoceptor overexpression was obtained via direct intramyocardial injection 4-weeks post-MI. Adenovirus(Ad)-GFP and saline injected rats served as controls. Furthermore, we extended our observation to β(2) -adrenoceptor -/- mice undergoing MI. KEY RESULTS Transgenes were robustly expressed in the LV at 2 weeks post-gene therapy, whereas their expression was minimal at 4-weeks post-gene delivery. In HF rats, cardiac β(2) -adrenoceptor overexpression resulted in enhanced basal and isoprenaline-stimulated cardiac contractility at 2-weeks post-gene delivery. At 4 weeks post-gene transfer, Ad-β(2) -adrenoceptor HF rats showed improved LV remodeling and cardiac function. Importantly, β(2) -adrenoceptor overexpression was associated with a markedly increased capillary and arteriolar length density and enhanced in vivo myocardial blood flow and coronary reserve. At the molecular level, cardiac β(2) -adrenoceptor gene transfer induced the activation of the VEGF/PKB/eNOS pro-angiogenic pathway. In β(2) -adrenoceptor-/- mice, we found a ~25% reduction in cardiac capillary density compared with β(2) -adrenoceptor+/+ mice. The lack of β(2) -adrenoceptors was associated with a higher mortality rate at 30 days and LV dilatation, and a worse global cardiac contractility compared with controls. CONCLUSIONS AND IMPLICATION β(2) -Adrenoceptors play an important role in the regulation of the angiogenic response in HF. The activation of VEGF/PKB/eNOS pathway seems to be strongly involved in this mechanism.
Collapse
Affiliation(s)
- G Rengo
- Salvatore Maugeri Foundation, IRCCS, Telese Terme (BN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|