1
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S, Ge P. Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther 2024; 30:e70039. [PMID: 39267265 PMCID: PMC11392831 DOI: 10.1111/cns.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Copper is an essential trace element for biological systems, as it plays a critical role in the activity of various enzymes and metabolic processes. However, the dysregulation of copper homeostasis is closely associated with the onset and progression of numerous diseases. In recent years, copper-induced cell death, a novel form of cellular demise, has garnered significant attention. This process is characterized by the abnormal accumulation of intracellular copper ions, leading to cellular dysfunction and eventual cell death. Copper toxicity occurs through the interaction of copper with acylated enzymes in the tricarboxylic acid (TCA) cycle. This interaction results in subsequent protein aggregation, causing proteotoxic stress and ultimately resulting in cell death. Despite the promise of these findings, the detailed mechanisms and broader implications of cuproptosis remain underexplored. Therefore, our study aimed to investigate the role of copper in cell death and autophagy, focusing on the molecular mechanisms of cuproptosis. We also aimed to discuss recent advancements in copper-related research across various diseases and tumors, providing insights for future studies and potential therapeutic applications. MAIN BODY This review delves into the biological significance of copper metabolism and the molecular mechanisms underlying copper-induced cell death. Furthermore, we discuss the role of copper toxicity in the pathogenesis of various diseases, emphasizing recent advancements in the field of oncology. Additionally, we explore the therapeutic potential of targeting copper toxicity. CONCLUSION The study highlights the need for further research to explore alternative pathways of copper-induced cell death, detailed mechanisms of cuproptosis, and biomarkers for copper poisoning. Future research should focus on exploring the molecular mechanisms of cuproptosis, developing new therapeutic strategies, and verifying their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
2
|
Samutrtai P, Yingchutrakul Y, Faikhruea K, Vilaivan T, Chaikeeratisak V, Chatwichien J, Krobthong S, Aonbangkhen C. Vernonia amygdalina Leaf Extract Induces Apoptosis in HeLa Cells: A Metabolomics and Proteomics Study. Pharmaceuticals (Basel) 2024; 17:1079. [PMID: 39204184 PMCID: PMC11360076 DOI: 10.3390/ph17081079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal plants produce various bioactive molecules with potential anti-cancer properties with favorable safety profiles. We aimed to investigate the comprehensive composition of Vernonia amygdalina leaf extract and its cytotoxic effects via apoptosis in HeLa cells. The metabolomics approach using LC-MS/MS was conducted to gather the metabolite profile of the extract. Proteomics was performed to understand the comprehensive mechanistic pathways of action. The apoptosis was visualized by cellular staining and the apoptotic proteins were evaluated. V. amygdalina leaf extract exhibited dose-dependent cytotoxic effects on both HeLa and Vero cells after 24 h of exposure in the MTT assay with the IC50 values of 0.767 ± 0.0334 and 4.043 ± 0.469 µg mL-1, respectively, which demonstrated a higher concentration required for Vero cell cytotoxicity. The metabolomic profile of 112 known metabolites specified that the majority of them were alkaloids, phenolic compounds, and steroids. Among these metabolites, deacetylvindoline and licochalcone B were suggested to implicate cytotoxicity. The cytotoxic pathways involved the response to stress and cell death which was similar to doxorubicin. The upstream regulatory proteins, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and X-box binding protein 1 (XBP1), were significantly altered, supporting the regulation of apoptosis and cell death. The levels of apoptotic proteins, c-Jun N-terminal kinases (JNK), p53, and caspase-9 were significantly increased. The novel insights gained from the metabolomic profiling and proteomic pathway analysis of V. amygdalina leaf extract have identified crucial components related to apoptosis induction, highlighting its potential to develop future chemotherapy.
Collapse
Affiliation(s)
- Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.F.); (T.V.)
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.F.); (T.V.)
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute (CGI), Bangkok 10210, Thailand;
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Lee YS, Mun JG, Park SY, Hong DY, Kim HY, Kim SJ, Lee SB, Jang JH, Han YH, Kee JY. Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis. Nutrients 2024; 16:1844. [PMID: 38931199 PMCID: PMC11206761 DOI: 10.3390/nu16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.
Collapse
Affiliation(s)
- Yoon-Seung Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Shin-Young Park
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dah Yun Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ho-Yoon Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Su-Jin Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sun-Bin Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Jeong-Ho Jang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| | - Yo-Han Han
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
Mosquera-Sulbaran JA, Pedreañez A, Vargas R, Hernandez-Fonseca JP. Apoptosis in post-streptococcal glomerulonephritis and mechanisms for failed of inflammation resolution. Pediatr Nephrol 2024; 39:1709-1724. [PMID: 37775580 DOI: 10.1007/s00467-023-06162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Post-streptococcal glomerulonephritis is a condition resulting from infection by group A beta-hemolytic streptococcus. The main mechanism involves the formation of immune complexes formed in the circulation or in situ on the glomerular basement membrane, which activates complement and causes various inflammatory processes. Cellular mechanisms have been reported in the induction of kidney damage represented by the infiltration of innate cells (neutrophils and monocyte/macrophages) and adaptive cells (CD4 + lymphocytes and CD8 + lymphocytes) of the immune system. These cells induce kidney damage through various mechanisms. It has been reported that nephritogenic antigens are capable of inducing inflammatory processes early, even before the formation of immune complexes. Usually, this disease progresses towards clinical and renal normalization; however, in a smaller number of patients, it evolves into chronicity and persistent kidney damage. Hypotheses have been proposed regarding the mechanisms underlying this progression to chronicity including failure to induce apoptosis and failure to phagocytose apoptotic cells, allowing these cells to undergo membrane permeabilization and release pro-inflammatory molecules into the environment, thereby perpetuating renal inflammation. Other mechanisms involved include persistent infection, genetic background of the host's complement system, tubulointerstitial changes, and pre-existing kidney damage due to old age and comorbidities.
Collapse
Affiliation(s)
- Jesús A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo, 4001-A, Zulia, Venezuela.
| | - Adriana Pedreañez
- Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo, 4001-A, Zulia, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo, 4001-A, Zulia, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d'Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
6
|
Yang X, Wei M, An Y, Liang Q, Nan J, Vijayalakshmi A, Wang Z. Vernodalin Triggers ROS-Mediated Apoptosis in TPC-1 Human PapillaryThyroid Cancer Cells via Suppression of the MAPKs Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:2151-2158. [PMID: 39099452 DOI: 10.2174/0113862073286226240220092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Thyroid Cancer (TC) is an endocrine organ malignancy that has become more common in recent decades. Vernodalin (VN), a cytotoxic sesquiterpene, has been reported to exhibit anticancer properties against human breast and liver cancer cells. However, no study has explored the efficacy of VN with respect to its antiproliferative and apoptotic action on human Papillary Thyroid Cancer cells (PTC). OBJECTIVE The study intended to examine the antitumor and antiproliferative effects of VN and the apoptosis mechanisms underlying its action on TPC-1 human PTC cells. METHODS In this study, we examined the VN cell viability by MTT assay; performed ROS measurement by DCFH staining method, MMP identification by Rh-123 staining method, and apoptotic morphological assay by employing AO/EB and DAPI stain method, and further, p38 MAPK/ERK/JNK cell proliferation markers were determined by western blotting technique. RESULTS The findings showed that VN could inhibit the growth of PTC cells by increasing intracellular ROS, damaging MMP, and stimulating apoptosis in a concentration-dependent manner. The study demonstrated how VN inhibited TPC-1 cell viability by causing ROS-induced cell death via the MAPK signaling pathway. CONCLUSION VN may serve as an agonist to impact apoptosis in PTC cells. In human PTC, VN could play an effective role in chemotherapy. More studies pertaining to animal tumor models are needed to prove its anti-cancer effectiveness in vivo.
Collapse
Affiliation(s)
- Xijia Yang
- Department of General Surgery, Xi'an Gaoxin Hospital, Xi'an, 710000, China
| | - Meng Wei
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuan An
- Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Xi'an Jiaotong Univesity, Xi'an, 710061, P.R. China
| | - Qinlong Liang
- Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Xi'an Jiaotong Univesity, Xi'an, 710061, P.R. China
| | - Jing Nan
- Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Xi'an Jiaotong Univesity, Xi'an, 710061, P.R. China
| | - Annamalai Vijayalakshmi
- Galileovasan Offshore and Research And Development Pvt. Ltd, Nagapattinam, Tamil Nadu, 611002, India
| | - Zizhang Wang
- Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Xi'an Jiaotong Univesity, Xi'an, 710061, P.R. China
| |
Collapse
|
7
|
Katami H, Suzuki S, Fujii T, Ueno M, Tanaka A, Ohta KI, Miki T, Shimono R. Genetic and histopathological analysis of spermatogenesis after short-term testicular torsion in rats. Pediatr Res 2023; 94:1650-1658. [PMID: 37225778 DOI: 10.1038/s41390-023-02638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated. METHODS Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed. RESULTS Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis. CONCLUSION One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model. IMPACT How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated. This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT. Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.
Collapse
Affiliation(s)
- Hiroto Katami
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takayuki Fujii
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Aya Tanaka
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ryuichi Shimono
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan.
| |
Collapse
|
8
|
El-Sayed NNE, Al-Otaibi TM, Barakat A, Almarhoon ZM, Hassan MZ, Al-Zaben MI, Krayem N, Masand VH, Ben Bacha A. Synthesis and Biological Evaluation of Some New 3-Aryl-2-thioxo-2,3-dihydroquinazolin-4(1 H)-ones and 3-Aryl-2-(benzylthio)quinazolin-4(3 H)-ones as Antioxidants; COX-2, LDHA, α-Glucosidase and α-Amylase Inhibitors; and Anti-Colon Carcinoma and Apoptosis-Inducing Agents. Pharmaceuticals (Basel) 2023; 16:1392. [PMID: 37895863 PMCID: PMC10610505 DOI: 10.3390/ph16101392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a-3h and 5a-5h were synthesized and evaluated as antioxidants, enzymes inhibitors and cytotoxic agents against LoVo and HCT-116 cells. Moreover, the most active cytotoxic derivatives were evaluated as apoptosis inducers. The results indicated that 3a, 3g and 5a were efficiently scavenged DPPH radicals with lowered IC50 values (mM) ranging from 0.165 ± 0.0057 to 0.191 ± 0.0099, as compared to 0.245 ± 0.0257 by BHT. Derivatives 3h, 5a and 5h were recognized as more potent dual inhibitors than quercetin against α-amylase and α-glucosidase, in addition to 3a, 3c, 3f and 5b-5f against α-amylase. Although none of the compounds demonstrated a higher efficiency than the reference inhibitors against COX-2 and LDHA, 3a and 3g were identified as the most active derivatives. Molecular docking studies were used to elucidate the binding affinities and binding interactions between the inhibitors and their target proteins. Compounds 3a and 3f showed cytotoxic activities, with IC50 values (µM) of 294.32 ± 8.41 and 383.5 ± 8.99 (LoVo), as well as 298.05 ± 13.26 and 323.59 ± 3.00 (HCT-116). The cytotoxicity mechanism of 3a and 3f could be attributed to the modulation of apoptosis regulators (Bax and Bcl-2), the activation of intrinsic and extrinsic apoptosis pathways via the upregulation of initiator caspases-8 and -9 as well as executioner caspase-3, and the arrest of LoVo and HCT-116 cell cycles in the G2/M and G1 phases, respectively. Lastly, the physicochemical, medicinal chemistry and ADMET properties of all compounds were predicted.
Collapse
Affiliation(s)
| | - Taghreed M. Al-Otaibi
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Assem Barakat
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Mohd. Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Maha I. Al-Zaben
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (T.M.A.-O.); (A.B.); (M.I.A.-Z.)
| | - Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Route de Soukra 3038, Sfax BP 1173, Tunisia;
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati College, Camp, Amravati, Maharashtra 444602, India;
| | - Abir Ben Bacha
- Biochemistry Department, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| |
Collapse
|
9
|
Yu L, Zhu G, Zhang Z, Yu Y, Zeng L, Xu Z, Weng J, Xia J, Li J, Pathak JL. Apoptotic bodies: bioactive treasure left behind by the dying cells with robust diagnostic and therapeutic application potentials. J Nanobiotechnology 2023; 21:218. [PMID: 37434199 DOI: 10.1186/s12951-023-01969-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Apoptosis, a form of programmed cell death, is essential for growth and tissue homeostasis. Apoptotic bodies (ApoBDs) are a form of extracellular vesicles (EVs) released by dying cells in the last stage of apoptosis and were previously regarded as debris of dead cells. Recent studies unraveled that ApoBDs are not cell debris but the bioactive treasure left behind by the dying cells with an important role in intercellular communications related to human health and various diseases. Defective clearance of ApoBDs and infected-cells-derived ApoBDs are possible etiology of some diseases. Therefore, it is necessary to explore the function and mechanism of the action of ApoBDs in different physiological and pathological conditions. Recent advances in ApoBDs have elucidated the immunomodulatory, virus removal, vascular protection, tissue regenerative, and disease diagnostic potential of ApoBDs. Moreover, ApoBDs can be used as drug carriers enhancing drug stability, cellular uptake, and targeted therapy efficacy. These reports from the literature indicate that ApoBDs hold promising potential for diagnosis, prognosis, and treatment of various diseases, including cancer, systemic inflammatory diseases, cardiovascular diseases, and tissue regeneration. This review summarizes the recent advances in ApoBDs-related research and discusses the role of ApoBDs in health and diseases as well as the challenges and prospects of ApoBDs-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zidan Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jinlong Weng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Junyi Xia
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jiang Li
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| | - Janak L Pathak
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Protasoni M, Serrano M. Targeting Mitochondria to Control Ageing and Senescence. Pharmaceutics 2023; 15:352. [PMID: 36839673 PMCID: PMC9960816 DOI: 10.3390/pharmaceutics15020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
Ageing is accompanied by a progressive impairment of cellular function and a systemic deterioration of tissues and organs, resulting in increased vulnerability to multiple diseases. Here, we review the interplay between two hallmarks of ageing, namely, mitochondrial dysfunction and cellular senescence. The targeting of specific mitochondrial features in senescent cells has the potential of delaying or even reverting the ageing process. A deeper and more comprehensive understanding of mitochondrial biology in senescent cells is necessary to effectively face this challenge. Here, we discuss the main alterations in mitochondrial functions and structure in both ageing and cellular senescence, highlighting the differences and similarities between the two processes. Moreover, we describe the treatments available to target these pathways and speculate on possible future directions of anti-ageing and anti-senescence therapies targeting mitochondria.
Collapse
Affiliation(s)
- Margherita Protasoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| |
Collapse
|
11
|
Li X, Ge M, Zhu W, Wang P, Wang J, Tai T, Wang Y, Sun J, Shi G. Protective Effects of Astilbin Against Cadmium-Induced Apoptosis in Chicken Kidneys via Endoplasmic Reticulum Stress Signaling Pathway. Biol Trace Elem Res 2022; 200:4430-4443. [PMID: 34799836 DOI: 10.1007/s12011-021-03029-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) can cause endoplasmic reticulum stress (ERS) and apoptosis in animals. The kidney is an organ seriously affected by Cd because it can accumulate metal ions. Astilbin (ASB) is a dihydroflavonol rhamnoside, which has an anti-renal injury effect. This study aimed to evaluate the protective effect of ASB on Cd-induced ERS and apoptosis in the chicken kidney. In this study, a total of 120 1-day-old chickens were randomly divided into 4 groups. Chickens were fed with a basic diet (Con group), ASB 40 mg/kg (ASB group), CdCl2 150 mg/kg + ASB 40 mg/kg (ASB/Cd group), and CdCl2 150 mg/kg (Cd group) for 90 days. The results showed that Cd exposure induced pathological and ultrastructural damages and apoptosis in chicken kidneys. Compared with the Con group, metallothionein (MT1/MT2) level, nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, ERS-related genes 78-kDa glucose-regulated protein (Grp78), protein kinase PKR-like endoplasmic reticulum kinase (Perk), activating transcription factor 4 (Atf4) and CAAT/enhancer-binding protein (C/EBP) homologous protein (Chop), and pro-apoptotic gene B-cell lymphoma 2 (Bcl-2)-associated X (Bax), caspase-12, caspase-9, caspase-3 expression levels, and apoptotic rate were significantly increased in the Cd group. The expression level of Bcl-2 was significantly decreased in the Cd group. ASB/Cd combined treatment significantly improves the damage of chicken kidneys by ameliorating Cd-induced kidney ERS and apoptosis. Cd can cause the disorder of the GRP78 signal axis, activate the PERK-ATF4-CHOP pathway, aggravate the structural damage and dysfunction of ER, and promote the apoptosis of chicken kidneys, while the above changes were significantly alleviated in the ASB/Cd group. The results showed that ASB antagonizes the negative effects of Cd and against Cd-induced apoptosis in chicken kidneys via ERS signaling pathway.
Collapse
Affiliation(s)
- Xiuyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Weifeng Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Panpan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jiangfeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Yuxi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jianxu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
12
|
Luteolin Pretreatment Attenuates Hepatic Ischemia-Reperfusion Injury in Mice by Inhibiting Inflammation, Autophagy, and Apoptosis via the ERK/PPARα Pathway. PPAR Res 2022; 2022:8161946. [PMID: 35966821 PMCID: PMC9366205 DOI: 10.1155/2022/8161946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury is a clinically significant process that frequently occurs in liver transplantation, partial hepatectomy, and hemorrhagic shock. The aim of this study was to explore the effectiveness of luteolin in hepatic IR injury and the underlying mechanism. BALB/c mice were randomly divided into six groups, including normal controls (NC), luteolin (50 mg/kg), sham procedure, IR+25 mg/kg luteolin, and IR+50 mg/kg luteolin group. Serum and tissue samples were collected at 6 and 24 h after reperfusion to assay liver enzymes, inflammatory factors, expression of proteins associated with apoptosis and autophagy, and factors associated with the extracellular signal-regulated kinase/peroxisome proliferator-activated receptor alpha (ERK/PPARα) pathway. Luteolin preconditioning decreased hepatocyte injury caused by ischemia-reperfusion, downregulated inflammatory factors, and inhibited apoptosis and autophagy. Luteolin also inhibited ERK phosphorylation and activated PPARα.
Collapse
|
13
|
Xu W, Huang Y. Regulation of Inflammatory Cell Death by Phosphorylation. Front Immunol 2022; 13:851169. [PMID: 35300338 PMCID: PMC8921259 DOI: 10.3389/fimmu.2022.851169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cell death is a necessary event in multi-cellular organisms to maintain homeostasis by eliminating unrequired or damaged cells. Currently, there are many forms of cell death, and several of them, such as necroptosis, pyroptosis and ferroptosis, even apoptosis trigger an inflammatory response by releasing damage-associated molecular patterns (DAMPs), which are involved in the pathogenesis of a variety of human inflammatory diseases, including autoimmunity disease, diabetes, Alzheimer’s disease and cancer. Therefore, the occurrence of inflammatory cell death must be strictly regulated. Recently, increasing studies suggest that phosphorylation plays a critical role in inflammatory cell death. In this review, we will summarize current knowledge of the regulatory role of phosphorylation in inflammatory cell death and also discuss the promising treatment strategy for inflammatory diseases by targeting related protein kinases that mediate phosphorylation or phosphatases that mediate dephosphorylation.
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Huang CY, Chien JH, Chang KF, Hsiao CY, Huang YC, Chen YT, Hsu MY, Hsieh MC, Tsai NM. Cedrus atlantica extract exerts antiproliferative effect on colorectal cancer through the induction of cell cycle arrest and apoptosis. Food Sci Nutr 2022; 10:1638-1648. [PMID: 35592288 PMCID: PMC9094448 DOI: 10.1002/fsn3.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cedrus atlantica is a tree species found in Morocco with many clinical benefits in genitourinary, musculoskeletal, and skin systems. Previous studies have reported that extracts of Cedrus atlantica have antioxidant, antimicrobial, and anticancer properties. However, its role in colorectal cancer (CRC) remains unclear. The present study investigated the effects and underlying mechanisms of Cedrus atlantica extract (CAt) using HT-29 (human colorectal adenocarcinoma) and CT-26 CRC cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure cell viability. Flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay were used to study the cell cycle and cell apoptosis, respectively. The expression of cell cycle and apoptosis-associated proteins was detected by western blotting or immunohistochemical (IHC) staining. CAt showed significant inhibitory effects on the proliferation of HT-29 and CT-26 cells, and combined with the clinical drug, 5-fluorouracil (5-FU), exhibited synergistic effects. CAt induced cell cycle arrest at the G0/G1 phase through the upregulation of p53/p21 and the downregulation of cyclin-dependent kinases (CDKs)/cyclins. In addition, CAt-treated cells exhibited chromatin condensation, DNA fragmentation, and apoptotic bodies, which are typical characteristics of apoptosis activated via both the extrinsic (Fas ligand (FasL)/Fas/caspase-8) and intrinsic (Bax/caspase-9) pathways. Importantly, CAt suppressed tumor progression and prolonged the life span of mice within a well-tolerated dose. Therefore, our findings provide novel insights into the use of CAt for the treatment of CRC.
Collapse
Affiliation(s)
- Chih-Yuan Huang
- Devision of Nephrology Department of Internal Medicine Ditmanson Medical Foundation Chia-Yi Christian Hospital Chia-Yi Taiwan, ROC.,Department of Sport Management College of Recreation and Health Management Chia Nan University of Pharmacy and Science Tainan Taiwan, ROC
| | - Ju-Huei Chien
- Department of Research Taichung Tzu-Chi Hospital Buddhist Tzu-Chi Medical Foundation Taichung Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology Central Taiwan University of Science and Technology Taichung Taiwan, ROC
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC
| | - Chih-Yen Hsiao
- Devision of Nephrology Department of Internal Medicine Ditmanson Medical Foundation Chia-Yi Christian Hospital Chia-Yi Taiwan, ROC.,Department of Hospital and Health Care Administration Chia Nan University of Pharmacy and Science Tainan Taiwan, ROC
| | - Ya-Chih Huang
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC.,Institute of Medicine Chung Shan Medical University Taichung Taiwan, ROC
| | - Yi-Ting Chen
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC
| | - Ming-Yi Hsu
- Department of Nursing Chung Shan Medical University Taichung Taiwan, ROC.,Department of Nursing Chung Shan Medical University Hospital Taichung Taiwan, ROC
| | - Ming-Chang Hsieh
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC.,Clinical Laboratory Chung Shan Medical University Hospital Taichung Taiwan, ROC
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology Chung Shan Medical University Taichung Taiwan, ROC.,Clinical Laboratory Chung Shan Medical University Hospital Taichung Taiwan, ROC.,Department of Life-and-Death Studies Nanhua University Chiayi Taiwan, ROC
| |
Collapse
|
15
|
Role of Apoptosis in HIV Pathogenesis. Adv Virol 2022; 2022:8148119. [PMID: 35462964 PMCID: PMC9023228 DOI: 10.1155/2022/8148119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
The apoptotic pathway is an important cell death pathway that contributes to the maintenance of homeostasis in living systems. However, variations in apoptosis have been linked to many diseases such as cancers and chronic infections. The HIV infection has contributed to increase mortality and morbidity worldwide, predominantly through the induction of gradual depletion of CD4+ T cells. The induction and mediation of both the intrinsic and extrinsic apoptotic pathways are crucial in HIV pathogenesis and intracellular survival. Consequently, a deep molecular understanding of how apoptosis is induced and modulated in HIV-mediated CD4+ T cell depletion is paramount, as this can lead to new portals of therapeutic intervention and control.
Collapse
|
16
|
Abstract
Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution.
Collapse
|
17
|
Aloe emodin 3-O-glucoside inhibits cell growth and migration and induces apoptosis of non-small-cell lung cancer cells via suppressing MEK/ERK and Akt signalling pathways. Life Sci 2022; 300:120495. [PMID: 35341826 DOI: 10.1016/j.lfs.2022.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
Abstract
AIMS Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer with a high mortality rate. Glycosylation of phenolic compounds may increase water-solubility and pharmacological activities and reduce the toxicity of aglycones. This study aimed to evaluate and compare the anticancer effect of aloe emodin 3-O-glucoside (AE3G) and its aglycone, aloe emodin (AE), against NSCLC. MAIN METHOD A human adenocarcinoma cell line (A549) and BALB/c nu/nu xenograft mice harboring A549 cells were used as the NSCLC models. Inhibition of cell migration, disruption of mitochondrial membrane potential (MMP), DNA fragmentation, and expression levels of apoptotic proteins were measured by western blot, wound healing assay, JC-1 staining, or TUNEL staining. Histopathological changes in tumour tissues were observed by H&E and TUNEL staining. RESULTS With no significant cytotoxicity against noncancerous cells (Vero cells), AE3G (5-50 μM) significantly and more effectively inhibited the growth, attachment, migration, Bcl-2 expression, and activation of MEK/ERK and Akt signalling proteins and induced cytochrome c release and Bax expression in A549 cells than AE. AE3G augmented the collapse of MMP, cleavage of caspases (caspase 9, 8, and 3) and PARP, and DNA fragmentation. Intraperitoneal injection of AE3G (13 and 26 mg/kg/day) reduced the tumour volume and weight and induced apoptotic cell death in tumour tissues of xenograft NSCLC mice. SIGNIFICANCE The present study demonstrated that AE3G significantly and more effectively diminished human NSCLC cell growth and migration by triggering mitochondria-dependent intrinsic apoptosis than AE, providing AE3G as a new potent candidate to prevent or treat human NSCLC.
Collapse
|
18
|
Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem 2022; 379:132135. [PMID: 35063850 DOI: 10.1016/j.foodchem.2022.132135] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
19
|
Bata N, Cosford NDP. Cell Survival and Cell Death at the Intersection of Autophagy and Apoptosis: Implications for Current and Future Cancer Therapeutics. ACS Pharmacol Transl Sci 2021; 4:1728-1746. [PMID: 34927007 DOI: 10.1021/acsptsci.1c00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Autophagy and apoptosis are functionally distinct mechanisms for cytoplasmic and cellular turnover. While these two pathways are distinct, they can also regulate each other, and central components of the apoptosis or autophagy pathway regulate both processes directly. Furthermore, several upstream stress-inducing signaling pathways can influence both autophagy and apoptosis. The crosstalk between autophagy and apoptosis has an integral role in pathological processes, including those related to cancer, homeostasis, and aging. Apoptosis is a form of programmed cell death, tightly regulated by various cellular and biochemical mechanisms, some of which have been the focus of drug discovery efforts targeting cancer therapeutics. Autophagy is a cellular degradation pathway whereby cells recycle macromolecules and organelles to generate energy when subjected to stress. Autophagy can act as either a prodeath or a prosurvival process and is both tissue and microenvironment specific. In this review we describe five groups of proteins that are integral to the apoptosis pathway and discuss their role in regulating autophagy. We highlight several apoptosis-inducing small molecules and biologics that have been developed and advanced into the clinic and discuss their effects on autophagy. For the most part, these apoptosis-inducing compounds appear to elevate autophagy activity. Under certain circumstances autophagy demonstrates cytoprotective functions and is overactivated in response to chemo- or radiotherapy which can lead to drug resistance, representing a clinical obstacle for successful cancer treatment. Thus, targeting the autophagy pathway in combination with apoptosis-inducing compounds may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Nicole Bata
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas D P Cosford
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Lemoine J, Ruella M, Houot R. Overcoming Intrinsic Resistance of Cancer Cells to CAR T-Cell Killing. Clin Cancer Res 2021; 27:6298-6306. [PMID: 34253582 PMCID: PMC11260069 DOI: 10.1158/1078-0432.ccr-21-1559] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 01/16/2023]
Abstract
In the past few years, chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for cancers that failed standard treatments. Such therapies have already been approved in several blood cancers, such as B-cell leukemia and lymphoma. Despite this progress, a significant proportion of patients experience primary or secondary resistance to CAR T-cell therapy. Here, we review the mechanisms by which CAR T cells eliminate their target and how cancer cells may be insensitive to such killing (here referred to as intrinsic resistance). Recent studies suggest that the activation of apoptosis through death receptor signaling is responsible for a major part of CAR T-cell cytotoxicity in vivo Indeed, cancer cells harboring aberrant apoptotic machinery may be insensitive to CAR T-cell killing. This intrinsic resistance of cancer cells to CAR T-cell killing could be responsible for a significant portion of treatment failure. Finally, we discuss strategies that may be envisioned to overcome such resistance to enhance CAR T-cell efficacy.
Collapse
Affiliation(s)
- Jean Lemoine
- AP-HP, Department of Hematology, Université de Paris, Paris, France
| | - Marco Ruella
- Center for Cellular Immunotherapies and Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roch Houot
- Department of Hematology, CHU de Rennes, Université de Rennes, INSERM U1236, Rennes, France.
| |
Collapse
|
21
|
Sankaramoorthy A, Roy S. High Glucose-Induced Apoptosis Is Linked to Mitochondrial Connexin 43 Level in RRECs: Implications for Diabetic Retinopathy. Cells 2021; 10:cells10113102. [PMID: 34831325 PMCID: PMC8618331 DOI: 10.3390/cells10113102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common causes of vision loss and blindness among the working-age population. High glucose (HG)-induced decrease in mitochondrial connexin 43 (mtCx43) level is known to promote mitochondrial fragmentation, cytochrome c release, and apoptosis in retinal endothelial cells associated with DR. In this study, we investigated whether counteracting HG-induced decrease in mtCx43 level would preserve mitochondrial integrity and prevent apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N; 5 mM glucose) or HG (30 mM glucose) medium for 7 days. In parallel, cells grown in HG were transfected with Cx43 plasmid, or empty vector (EV), as control. Western blot (WB) analysis showed a significant decrease in mtCx43 level concomitant with increased cleaved caspase-3, Bax, cleaved PARP, and mitochondrial fragmentation in cells grown in HG condition compared to those grown in N medium. When cells grown in HG were transfected with Cx43 plasmid, mtCx43 level was significantly increased and resulted in reduced cleaved caspase-3, Bax, cleaved PARP and preservation of mitochondrial morphology with a significant decrease in the number of TUNEL-positive cells compared to those grown in HG alone. Findings from the study indicate a novel role for mtCx43 in regulating apoptosis and that maintenance of mtCx43 level could be useful in preventing HG-induced apoptosis by reducing mitochondrial fragmentation associated with retinal vascular cell loss in DR.
Collapse
Affiliation(s)
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-(617)-358-6801; Fax: +1-(617)-638-4177
| |
Collapse
|
22
|
Tsai TH, Lieu AS, Huang TY, Kwan AL, Lin CL, Hsu YC. RTA404, an Activator of Nrf2, Activates the Checkpoint Kinases and Induces Apoptosis through Intrinsic Apoptotic Pathway in Malignant Glioma. J Clin Med 2021; 10:4805. [PMID: 34768325 PMCID: PMC8585078 DOI: 10.3390/jcm10214805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Malignant glioma (MG) is an aggressive malignant brain tumor. Despite advances in multidisciplinary treatment, overall survival rates remain low. A trifluoroethyl amide derivative of 2-cyano-3-,12-dioxoolean-1,9-dien-28-oic acid (CDDO), CDDO-trifluoroethyl amide (CDDO-TFEA) is a nuclear erythroid 2-related factor 2/antioxidant response element pathway activator. RTA404 is used to inhibit proliferation and induce apoptosis in cancer cells. However, its effect on tumorigenesis in glioma is unclear. Methods: This in vitro study evaluated the effects of RTA404 on MG cells. We treated U87MG cell lines with RTA404 and performed assessments of apoptosis and cell cycle distributions. DNA content and apoptosis induction were subjected to flow cytometry analysis. The mitotic index was assessed based on MPM-2 expression. Protein expression was analyzed through Western blotting. Results: RTA404 significantly inhibited the cell viability and induced cell apoptosis on the U87MG cell line. The Annexin-FITC/PI assay revealed significant changes in the percentage of apoptotic cells. Treatment with RTA404 led to a significant reduction in the U87MG cells' mitochondrial membrane potential. A significant rise in the percentage of caspase-3 activity was detected in the treated cells. In addition, these results suggest that cells pass the G2 checkpoint without cell cycle arrest by RTA404 treatment in the MPM-2 staining. An analysis of CHK1, CHK2, and p-CHK2 expression suggested that the DNA damage checkpoint system seems also to be activated by RTA404 treatment in established U87MG cells. Therefore, RTA404 may not only activate the DNA damage checkpoint system, it may also exert apoptosis in established U87MG cells. Conclusions: RTA404 inhibits the cell viability of gliomas and induces cancer cell apoptosis through intrinsic apoptotic pathway in Malignant glioma. In addition, the DNA damage checkpoint system seems also to be activated by RTA404. Taken together, RTA404 activated the DNA damage checkpoint system and induced apoptosis through intrinsic apoptotic pathways in established U87MG cells.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzuu-Yuan Huang
- Department of Neurosurgery, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (T.-H.T.); (A.-S.L.); (A.-L.K.); (C.-L.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| |
Collapse
|
23
|
Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol 2021; 18:2114-2127. [PMID: 34321623 PMCID: PMC8429580 DOI: 10.1038/s41423-021-00740-6] [Citation(s) in RCA: 619] [Impact Index Per Article: 206.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome is a cytosolic multiprotein complex composed of the innate immune receptor protein NLRP3, adapter protein ASC, and inflammatory protease caspase-1 that responds to microbial infection, endogenous danger signals, and environmental stimuli. The assembled NLRP3 inflammasome can activate the protease caspase-1 to induce gasdermin D-dependent pyroptosis and facilitate the release of IL-1β and IL-18, which contribute to innate immune defense and homeostatic maintenance. However, aberrant activation of the NLRP3 inflammasome is associated with the pathogenesis of various inflammatory diseases, such as diabetes, cancer, and Alzheimer's disease. Recent studies have revealed that NLRP3 inflammasome activation contributes to not only pyroptosis but also other types of cell death, including apoptosis, necroptosis, and ferroptosis. In addition, various effectors of cell death have been reported to regulate NLRP3 inflammasome activation, suggesting that cell death is closely related to NLRP3 inflammasome activation. In this review, we summarize the inextricable link between NLRP3 inflammasome activation and cell death and discuss potential therapeutics that target cell death effectors in NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
24
|
Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel) 2021; 13:cancers13174363. [PMID: 34503172 PMCID: PMC8430856 DOI: 10.3390/cancers13174363] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells to convey drug resistance. We also focus on our current understanding related to the interactions between survival and cell death pathways, as well as on mechanisms underlying the balance shift towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize the current and future therapeutic approaches for overcoming MDR. Abstract The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.
Collapse
|
25
|
Rhinovirus and Cell Death. Viruses 2021; 13:v13040629. [PMID: 33916958 PMCID: PMC8067602 DOI: 10.3390/v13040629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Rhinoviruses (RVs) are the etiological agents of upper respiratory tract infections, particularly the common cold. Infections in the lower respiratory tract is shown to cause severe disease and exacerbations in asthma and COPD patients. Viruses being obligate parasites, hijack host cell pathways such as programmed cell death to suppress host antiviral responses and prolong viral replication and propagation. RVs are non-enveloped positive sense RNA viruses with a lifecycle fully contained within the cytoplasm. Despite decades of study, the details of how RVs exit the infected cell are still unclear. There are some diverse studies that suggest a possible role for programmed cell death. In this review, we aimed to consolidate current literature on the impact of RVs on cell death to inform future research on the topic. We searched peer reviewed English language literature in the past 21 years for studies on the interaction with and modulation of cell death pathways by RVs, placing it in the context of the broader knowledge of these interconnected pathways from other systems. Our review strongly suggests a role for necroptosis and/or autophagy in RV release, with the caveat that all the literature is based on RV-A and RV-B strains, with no studies to date examining the interaction of RV-C strains with cell death pathways.
Collapse
|
26
|
Pemafibrate Pretreatment Attenuates Apoptosis and Autophagy during Hepatic Ischemia-Reperfusion Injury by Modulating JAK2/STAT3 β/PPAR α Pathway. PPAR Res 2021; 2021:6632137. [PMID: 33777128 PMCID: PMC7972847 DOI: 10.1155/2021/6632137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a common phenomenon in liver transplantation and liver surgery. This article is aimed at clarifying the role of pemafibrate in HIRI through JAK2/STAT3β/PPARα. In the experiment, we divided Balb/c into seven groups, namely, normal control (NC), Sham, PEM (1.0 mg/kg), IRI, IRI + PEM (0.1 mg/kg), IRI + PEM (0.5 mg/kg), and IRI + PEM (1.0 mg/kg). We used biochemical assay, histopathological evaluation, immunohistochemistry, RT-PCR and qRT-PCR, ELISA analysis, and other methods to determine the level of serum AST, ALT, IL-1β, and TNF-α in the liver at three time points (2 h, 8 h, and 24 h) after reperfusion of apoptosis factor, autophagy factor, and the JAK2/STAT3/PPARα content in tissues. Our experiment results showed that the pemafibrate can effectively reduce the level of hepatic IR injury. In addition, pemafibrate has anti-inflammatory, antiapoptotic, and antiautophagy effects, which are mediated by the JAK2/STAT3β/PPARα pathway.
Collapse
|
27
|
Abdulhussein D, Kanda M, Aamir A, Manzar H, Yap TE, Cordeiro MF. Apoptosis in health and diseases of the eye and brain. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:279-306. [PMID: 34090617 DOI: 10.1016/bs.apcsb.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a form of programmed cell death (PCD) and enables the immunologically silent disposal of senescent or unwanted cells, causing minimal damage to the surrounding environment. Apoptosis can occur via intrinsic or extrinsic pathways that initiate a series of intracellular and extracellular signaling events. This ultimately leads to the clearance of the cell by phagocytes. This normal physiological mechanism may be accelerated in several diseases including those involving the eyes and brain, leading to loss of structure and function. This review presents the role of PCD in the health of the eyes and brain, and the evidence presented for its aberrant role in disease.
Collapse
Affiliation(s)
- Dalia Abdulhussein
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Mumta Kanda
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - Abdullah Aamir
- Whipps Cross Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - M Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom; Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
28
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
29
|
Asong G, Amissah F, Voshavar C, Nkembo AT, Ntantie E, Lamango NS, Ablordeppey SY. A Mechanistic Investigation on the Anticancer Properties of SYA013, a Homopiperazine Analogue of Haloperidol with Activity against Triple Negative Breast Cancer Cells. ACS OMEGA 2020; 5:32907-32918. [PMID: 33403252 PMCID: PMC7774091 DOI: 10.1021/acsomega.0c03495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 05/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the most malignant cancers associated with early metastasis, poor clinical prognosis, and high recurrence rate. TNBC is a distinct subtype of breast cancer that lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptors (HER2). Development of effective TNBC therapies has been limited partially due to the lack of specific molecular targets and chemotherapy involving different cytotoxic drugs suffers from significant side effects and drug-resistance development. Therefore, there is an unmet need for the development of novel and efficient therapeutic drugs with reduced side effects to treat TNBC. We have previously reported that certain analogues of haloperidol (a typical antipsychotic drug used for treating mental/mood disorders such as schizophrenia and bipolar disorder) suppress the viability of a variety of solid tumor cell lines, and we have identified 4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluoro-phenyl)butan-1-one (SYA013) with such antiproliferative properties. Interestingly, unlike haloperidol, SYA013 shows moderate selectivity toward σ2 receptors. In this study, we explored the potential of SYA013 in modulating the important biological events associated with cell survival and progression as well as the mechanistic aspects of apoptosis in a representative TNBC cell line (MDA-MB-231). Our results indicate that SYA013 inhibits the proliferation of MDA-MB-231 cells in a concentration-dependent manner and suppresses cell migration and invasion. Apoptotic studies were also conducted in MDA-MB-468 cells (cells derived from a 51-year old Black female with metastatic adenocarcinoma of the breast.). In addition, we have demonstrated that SYA013 induces MDA-MB-231 cell death through the intrinsic apoptotic pathway and may suppress tumor progression and metastasis. Taken together, our study presents a mechanistic pathway of the anticancer properties of SYA013 against TNBC cell lines and suggests a potential for exploring SYA013 as a lead agent for development against TNBC.
Collapse
Affiliation(s)
- Gladys
M. Asong
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Felix Amissah
- College
of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Chandrashekhar Voshavar
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Augustine T. Nkembo
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Elizabeth Ntantie
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Nazarius S. Lamango
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Seth Y. Ablordeppey
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| |
Collapse
|
30
|
Dai Y, Li J, Li M, Liu Z, Liu J, An L, Du F. Methyl-CpG-binding domain 3 (Mbd3) is an important regulator for apoptosis in mouse embryonic stem cells. Am J Transl Res 2020; 12:8147-8161. [PMID: 33437388 PMCID: PMC7791517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Methyl-CpG-binding domain 3 (Mbd3) is a core repressor complex component. Although Mbd3 is required for the pluripotency of embryonic stem cells (ES), the role of Mbd3 in mouse ES (mES) cell apoptosis remains undefined. In this study naïve-state mES were derived and maintained in the presence of a selective protein kinase C pathway inhibitor (PKCi; Gӧ6983) to study the function of Mbd3 during mES apoptosis. Mbd3 overexpression in mES decreased the total cell number and viability, and it also dramatically increased the rate of apoptosis. Further investigation of Mbd3 overexpression revealed a 3-fold increase in the proapoptotic/prosurvival protein ratio (Bax/Bcl-2) and elevated RNA expression levels of apoptosis-related genes, including Bim, Trail, Fasl, and caspase 3, with reduced Bcl-2 RNA expression levels. Removal of PKCi from the mES cell culture resulted in upregulated Mbd3 expression and apoptosis, similar to the effects of Mbd3 overexpression. Furthermore, specific knockdown of endogenous Mbd3 partially rescued the mES apoptosis induced by the removal of PKCi, thus increasing the total cell number and viability while decreasing the rate of apoptosis. Additionally, Bax, Bim, Trail, and caspase 3 RNA expression levels were partially reduced, and that of Bcl-2 was partially increased. Our findings support Mbd3 as a pivotal regulator of apoptosis in mES.
Collapse
Affiliation(s)
- Yujian Dai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Jinshan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Mingyang Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Jiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, PR China
- Renova Life, Inc.College Park, Maryland 20742, USA
| |
Collapse
|
31
|
Kuriakose GC, Arathi BP, Divya Lakshmanan M, Jiby MV, Gudde RS, Jayabhaskaran C. Sub-acute Toxicity Assessment of Taxol Isolated From Fusarium Solani, an Endophytic Fungus of Taxus Brevifolia, in Wistar Rats and Analyzing Its Cytotoxicity and Apoptotic Potential in Lung Cancer Cells. Front Oncol 2020; 10:538865. [PMID: 33117679 PMCID: PMC7574678 DOI: 10.3389/fonc.2020.538865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/14/2020] [Indexed: 01/18/2023] Open
Abstract
The limited availability of taxol from plant sources has prompted the scientific world to look for an alternative, as in the chemical synthesis of tissue cultures of the Taxus species, to meet the increasing demand for the drug. However, these alternative means are expensive or result in low yield. Previously, we have reported that Fusarium solani isolated from Taxus celebica produced taxol and its precursor baccatin III in liquid-grown cultures, and it exhibited promising anticancerous effects in certain cancer cell lines. In the present study, we examined the sub-acute toxicity of fungal taxol (FS) in Wistar rats according to the Organization for Economic Co-operation and Development (OECD) guidelines. The sub-acute oral administration of FS up to 500 mg/kg for a period of 28 days appears to be safe in rats and did not cause severe treatment-related toxicity or treatment-related death. The observed changes in body weight, histopathology, hematological and biochemical parameters, and organ weight were not significant compared to those in the control group of animals. The results suggest that FS is relatively safe when administered orally in rats. The antiproliferative and apoptosis-inducing activities were studied in A549 (human lung cancer) cell line. FS arrested the cells at S and G2/M phases, leading to apoptosis. The characteristic molecular signatures of apoptosis, such as externalized phosphatidyl serine, DNA fragmentation, and nuclear and chromatin condensation, were observed upon FS treatment. FS triggered the generation of reactive oxygen species in A549 cells and elicited cell death by both extrinsic as well as the mitochondria-mediated intrinsic pathway of apoptosis. These results indicate that endophytic fungi isolated from medicinal plants may serve as potential sources of anticancerous compounds with little side effects.
Collapse
Affiliation(s)
- Gini C Kuriakose
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - B P Arathi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - M V Jiby
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - C Jayabhaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
32
|
Schnetler R, Fanucchi S, Moldoveanu T, Koorsen G. Linker Histone H1.2 Directly Activates BAK through the K/RVVKP Motif on the C-Terminal Domain. Biochemistry 2020; 59:3332-3346. [PMID: 32786407 DOI: 10.1021/acs.biochem.0c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
H1.2 is a key mediator of apoptosis following DNA double-strand breaks. The link between H1.2 and canonical apoptotic pathways is unclear. One study found that H1.2 stimulates cytochrome c (Cyt c) release; in contrast, apoptosis-inducing factor was found to be released in another study. The C-terminal domain (CTD) of H1.2 has been implicated in the latter pathway, but activation of the proapoptotic protein BCL-2 homologous antagonist/killer (BAK) is a common denominator in both pathways. This study aimed to determine whether the CTD of H1.2 is also responsible for mitochondrial Cyt c release and whether a previously identified K/RVVKP motif in the CTD mediates the response. This study investigated if H1.2 mediates apoptosis induction through direct interaction with BAK. We established that the CTD of H1.2 stimulates mitochondrial Cyt c release in vitro in a mitochondrial permeability transition-independent manner and that the substitution of a single valine with threonine in the K/RVVKP motif abolishes Cyt c release. Additionally, we showed that H1.2 directly interacts with BAK with weak affinity and that the CTD of H1.2 mediates this binding. Using two 20-amino acid peptides derived from the CTD of H1.2 and H1.1 (K/RVVKP motif inclusive), we determined the main residues involved in the direct interaction with BAK. We propose that H1.2 operates through the K/RVVKP motif by directly activating BAK through inter- and intramolecular interactions. These findings expand the view of H1.2 as a signal-transducing molecule that can activate apoptosis in a BAK-dependent manner.
Collapse
Affiliation(s)
- Rozanné Schnetler
- Department of Biochemistry, University of Johannesburg, Corner Kingsway and University Roads, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Sylvia Fanucchi
- Department of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Tudor Moldoveanu
- Department of Structural Biology and Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Gerrit Koorsen
- Department of Biochemistry, University of Johannesburg, Corner Kingsway and University Roads, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
33
|
Rameshbabu S, Messaoudi SA, Alehaideb ZI, Ali MS, Venktraman A, Alajmi H, Al-Eidi H, Matou-Nasri S. Anastatica hierochuntica (L.) methanolic and aqueous extracts exert antiproliferative effects through the induction of apoptosis in MCF-7 breast cancer cells. Saudi Pharm J 2020; 28:985-993. [PMID: 32792843 PMCID: PMC7414070 DOI: 10.1016/j.jsps.2020.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer therapy using anticancer bioactive compounds derived from natural products as adjuvant treatment has gained recognition due to expensive and toxic conventional chemotherapeutic drugs. The whole plant of Anastatica hierochuntica (L.) (A. hierochuntica) has been investigated for its pharmacologically important anticancer properties but without categorizing the biological activities of the plant parts. We assessed the anticancer potential of different parts of A. hierochuntica (seeds, stems and leaves) and explored their mechanisms of action using the human breast cancer cell line, MCF-7. Currently, we investigated the antiproliferative effects of methanolic (MSD, MST, ML) and aqueous (ASD, AST, AL) extracts of A. hierochuntica plant parts on the MCF-7 cells using cell viability assays. Flow cytometry, Western Blot, DNA fragmentation, and gene expression assays were performed to evaluate apoptosis and cell cycle regulatory proteins. The results indicate that the methanolic and aqueous extracts decreased MCF-7 cell viability in a dose-dependent manner. The induction of apoptosis was observed in all the methanolic and aqueous-treated MCF-7 cells. The cell death process was confirmed by the visualization of DNA fragmentation and cleavage of the intrinsic apoptotic pathways, caspase-9 and caspase-3, the key enzyme causing apoptosis hallmarks. In addition, the most pro-apoptotic extracts, ASD and ML, up-regulated the expression of pro-apoptotic Bax, tumor suppressor TP53 genes and the cyclin inhibitor CDKN1A gene. In conclusion, of the aqueous and methanolic extracts of A. hierochuntica plant parts exerting antiproliferative effects through the induction of apoptosis in breast cancer MCF-7 cells, ASD and ML extracts were the most promising natural-based drugs for the treatment of breast cancer.
Collapse
Key Words
- AL, aqueous extract of A. hierochuntica’s leaf
- ASD, aqueous extract of A. hierochuntica’s seed
- AST, aqueous extract of A. hierochuntica’s stem
- Anastatica hierochuntica
- Apoptosis
- BC, breast cancer
- Breast cancer
- CDK, cyclin-dependent kinase
- Cell cycle
- MCF-7, Michigan Cancer Foundation-7
- ML, methanolic extract of A. hierochuntica’s leaf
- MSD, methanolic extract of A. hierochuntica’s seed
- MST, methanolic extract of A. hierochuntica’s stem
- NP40, Nonidet P-40
- Natural products
- P53
- STS, Staurosporine
- TP53, tumor protein p53
Collapse
Affiliation(s)
- Saranya Rameshbabu
- Post Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, Tamil Nadu, India
| | - Safia A. Messaoudi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Zeyad Ibrahim Alehaideb
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammed Syed Ali
- Department of Biotechnology, Mohamed Sathak College of Arts and Science, Tamil Nadu, India
| | - Anuradha Venktraman
- Post Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, Tamil Nadu, India
| | - Hala Alajmi
- Biobank, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Autophagy as a decisive process for cell death. Exp Mol Med 2020; 52:921-930. [PMID: 32591647 PMCID: PMC7338414 DOI: 10.1038/s12276-020-0455-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Autophagy is an intracellular catabolic pathway in which cellular constituents are engulfed by autophagosomes and degraded upon autophagosome fusion with lysosomes. Autophagy serves as a major cytoprotective process by maintaining cellular homeostasis and recycling cytoplasmic contents. However, emerging evidence suggests that autophagy is a primary mechanism of cell death (autophagic cell death, ACD) and implicates ACD in several aspects of mammalian physiology, including tumor suppression and psychological disorders. However, little is known about the physiological roles and molecular mechanisms of ACD. In this review, we document examples of ACD and discuss recent progress in our understanding of its molecular mechanisms.
Collapse
|
35
|
Li Y, Wang R, Xue L, Yang Y, Zhi F. Astilbin protects against cerebral ischaemia/reperfusion injury by inhibiting cellular apoptosis and ROS-NLRP3 inflammasome axis activation. Int Immunopharmacol 2020; 84:106571. [PMID: 32413740 DOI: 10.1016/j.intimp.2020.106571] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ischaemic stroke is a lethal cerebrovascular disease that occurs worldwide. Astilbin is a natural flavonoid compound with various physiological activities. The purpose of this study was to investigate the neuroprotective effects of Astilbin after cerebral ischaemia reperfusion (I/R) injury. METHODS The oxygen and glucose deprivation (OGD) model was used to simulate cerebral I/R injury in vitro. Cell viability was measured via CCK-8 and LDH release assays. Cell apoptosis was measured via Hoechst 33258 staining and flow cytometry assays. ROS was detected via flow cytometry assay. The protein expression levels were determined by western blotting. The middle cerebral artery occlusion (MCAO) model was used to simulate cerebral I/R injury in vivo. Cerebral ischaemic volume was measured by TTC staining. The Zea-Longa score, rota-rod test, and foot-fault test were used to evaluate behavioural changes and neurological deficits in rats. RESULTS Astilbin significantly enhanced cell viability and decreased LDH release after OGD treatment in vitro. Astilbin effectively curbed cell apoptosis induced by OGD via inhibiting the activation of caspase-3, decreasing the ratio of Bax/Bcl-2 and decreasing FADD. Astilbin also inhibited OGD-induced inflammation by suppressing ROS-NLRP3 inflammasome axis activation. Further results revealed that Astilbin could suppress the MAPK pathway and activate the PI3K/AKT pathway. Finally, Astilbin significantly reduced the cerebral infarction volume and relieved neurological deficits in rats in vivo. CONCLUSION Astilbin could defend against cerebral I/R injury by inhibiting apoptosis and inflammation via suppressing the MAPK pathway and activating the AKT pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Rong Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lian Xue
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yilin Yang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Feng Zhi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
36
|
Gach-Janczak K, Drogosz-Stachowicz J, Długosz-Pokorska A, Jakubowski R, Janecki T, Szymański J, Janecka A. A New Hybrid δ-Lactone Induces Apoptosis and Potentiates Anticancer Activity of Taxol in HL-60 Human Leukemia Cells. Molecules 2020; 25:molecules25071479. [PMID: 32218198 PMCID: PMC7180485 DOI: 10.3390/molecules25071479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the search for new drug candidates, researchers turn to natural substances isolated from plants which may be either used directly or may serve as a source for chemical modifications. An interesting strategy in the design of novel anticancer agents is based on the conjugation of two or more biologically active structural motifs into one hybrid compound. In this study, we investigated the anticancer potential of 4-benzyl-5,7-dimethoxy-4-methyl-3-methylidene-3,4-dihydro-2H-chroman-2-one (DL-247), a new hybrid molecule combining a chroman-2-one skeleton with an exo-methylidene bond conjugated with a carbonyl group, in human myeloid leukemia HL-60 cell line. The cytotoxicity of the new compound was tested using MTT assay. The effect of DL-247 on cell proliferation and apoptosis induction were studied by flow cytometry, fluorometric assay and ELISA analysis. DL-247 displayed high cytotoxic activity (IC50 = 1.15 µM, after 24 h incubation), significantly inhibited cell proliferation and induced apoptosis by both, the intrinsic and extrinsic pathways. A combination of DL-247 with taxol exhibited a strong synergistic effect on DNA damage generation, apoptosis induction and inhibition of cell growth.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (J.D.-S.); (A.D.-P.); (A.J.)
- Correspondence: ; Tel.: +48-272-57-10
| | - Joanna Drogosz-Stachowicz
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (J.D.-S.); (A.D.-P.); (A.J.)
| | - Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (J.D.-S.); (A.D.-P.); (A.J.)
| | - Rafał Jakubowski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (R.J.); (T.J.)
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (R.J.); (T.J.)
| | - Jacek Szymański
- Central Laboratory, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (J.D.-S.); (A.D.-P.); (A.J.)
| |
Collapse
|
37
|
Xu Y, Zhou Q, Feng X, Dai Y, Jiang Y, Jiang W, Liu X, Xing X, Wang Y, Ni Y, Zheng C. Disulfiram/copper markedly induced myeloma cell apoptosis through activation of JNK and intrinsic and extrinsic apoptosis pathways. Biomed Pharmacother 2020; 126:110048. [PMID: 32145587 DOI: 10.1016/j.biopha.2020.110048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfiram (DSF) is an FDA approved anti-alcoholism drug in use for more than 60 years. Recently, antitumor activity of the DSF/copper (DSF/Cu) complex has been identified. Its anti-multiple myeloma activity, however, has barely been investigated. In the present study, our results demonstrated that the DSF/Cu complex induced apoptosis of MM cells and MM primary cells. The results indicated that DSF/Cu significantly induced cell cycle arrest at the G2/M phase in MM.1S and RPMI8226 cells. Moreover, JC-1 and Western blot results showed that DSF/Cu disrupted mitochondrial membrane integrity and cleaved caspase-8 in MM cells, respectively, suggesting that it induced activation of extrinsic and intrinsic apoptosis pathways. Interestingly, DSF/Cu induced caspase-3 activation was partly blocked by Z-VAD-FMK (zVAD), a pan-caspase inhibitor, indicating at caspase-dependent and -independent paths involved in DSF/Cu induced myeloma cell apoptosis machinery. Additionally, activation of the c-Jun N-terminal kinase (JNK) signaling pathway was observed in DSF/Cu treated MM cells. More importantly, our results demonstrated that DSF/Cu significantly reduced tumor volumes and prolonged overall survival of MM bearing mice when compared with the controls. Taken together, our novel findings showed that DSF/Cu has potent anti-myeloma activity in vitro and in vivo highlighting valuable clinical potential of DSF/Cu in MM treatment.
Collapse
Affiliation(s)
- Yaqi Xu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Qian Zhou
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China; Haemal Internal Medicine, Linyi Central Hospital, Yishui Country, Linyi, Shandong 276400, China
| | - Xiaoli Feng
- Clinical Laboratory, The Second Hospital, Shandong University, Jinan, Shandong, China
| | - Yibo Dai
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Wen Jiang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China; Central Laboratory, The Second Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Xiangling Xing
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institutet and Karolinska University Hospital Solna, 17164, Solna, Sweden
| | - Yongjing Wang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China
| | - Yihong Ni
- Department of Endocrine, the Second Hospital, Shandong University, Jinan, Shandong, China.
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, China; Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, China.
| |
Collapse
|
38
|
Poofery J, Sripanidkulchai B, Banjerdpongchai R. Extracts of Bridelia ovata and Croton oblongifolius induce apoptosis in human MDA‑MB‑231 breast cancer cells via oxidative stress and mitochondrial pathways. Int J Oncol 2020; 56:969-985. [PMID: 32319560 DOI: 10.3892/ijo.2020.4973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/12/2019] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is the most common type of cancer and is also the second leading cause of cancer‑associated death in women worldwide. Thus, there is an urgent requirement for the development of effective treatments for this disease. Bridelia ovata and Croton oblongifolius are herbs used in Thai traditional medicine that have been used to treat various health problems; B. ovata has traditionally been used as a purgative, an antipyretic, a leukorrhea treatment and as a birth control herb. C. oblongifolius has been used to increase breast milk production, for post‑partum care (where it is used as a hot bath herb), and as a treatment for flat worms and dysmenorrhea. However, there is little research investigating the anticancer properties of these herbs. The present study aimed to investigate the anticancer properties of crude ethyl acetate extracts of B. ovata (BEA) and C. oblongifolius (CEA) in order to explore their underlying mechanisms in breast cancer cell death. The phytoconstituents of the crude extracts of BEA and CEA were studied using gas chromatography‑mass spectrometry (GC‑MS). GC‑MS analysis showed that the primary compound in BEA is friedelan‑3‑one, and kaur‑16‑en‑18‑oic acid in CEA. Cytotoxicity was investigated using an MTT assay, both BEA and CEA showed greater toxicity against MDA‑MB‑231 breast cancer cells compared with their effect on MCF10A normal epithelial mammary cells. BEA and CEA exerted various effects, including inducing apoptotic cell death, reducing mitochondrial transmembrane potential, increasing the levels of intracellular ROS, activating caspases, upregulating pro‑apoptotic and downregulating anti‑apoptotic genes and proteins. BEA and CEA were shown to have anticancer activity against breast cancer cells and induce apoptosis in these cells via a mitochondrial pathway and oxidative stress.
Collapse
Affiliation(s)
- Juthathip Poofery
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
39
|
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ, Leuvenink HGD. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J Clin Med 2020; 9:jcm9010253. [PMID: 31963521 PMCID: PMC7019324 DOI: 10.3390/jcm9010253] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Søren E. Pischke
- Clinic for Emergencies and Critical Care, Department of Anesthesiology, Department of Immunology, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway;
| | - Stefan P. Berger
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Jan Stephan F. Sanders
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Robert A. Pol
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Rutger J. Ploeg
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| |
Collapse
|
40
|
Hong JY, Chung KS, Shin JS, Lee JH, Gil HS, Lee HH, Choi E, Choi JH, Hassan AH, Lee YS, Lee KT. The Anti-Proliferative Activity of the Hybrid TMS-TMF-4f Compound Against Human Cervical Cancer Involves Apoptosis Mediated by STAT3 Inactivation. Cancers (Basel) 2019; 11:cancers11121927. [PMID: 31816985 PMCID: PMC6966466 DOI: 10.3390/cancers11121927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
We previously reported the potential anti-proliferative activity of 3-(5,6,7-trimethoxy-4-oxo-4H-chromen-2-yl)-N-(3,4,5-trimethoxyphenyl) benzamide (TMS-TMF-4f) against human cancer cells; however, the underlying molecular mechanisms have not been investigated. In the present study, TMS-TMF-4f showed the highest cytotoxicity in human cervical cancer cells (HeLa and CaSki) and low cytotoxicity in normal ovarian epithelial cells. Annexin V-FITC and propidium iodide (PI) double staining revealed that TMS-TMF-4f-induced cytotoxicity was caused by the induction of apoptosis in both HeLa and CaSki cervical cancer cells. The compound TMS-TMF-4f enhanced the activation of caspase-3, caspase-8, and caspase-9 and regulated Bcl-2 family proteins, which led to mitochondrial membrane potential (MMP) loss and resulted in the release of cytochrome c and Smac/DIABLO into the cytosol. Also, TMS-TMF-4f suppressed both constitutive and IL-6-inducible levels of phosphorylated STAT3 (p-STAT3) and associated proteins such as Mcl-1, cyclin D1, survivin, and c-Myc in both cervical cancer cells. STAT-3 overexpression completely ameliorated TMS-TMF-4f-induced apoptotic cell death and PARP cleavage. Docking analysis revealed that TMS-TMF-4f could bind to unphosphorylated STAT3 and inhibit its interconversion to the activated form. Notably, intraperitoneal administration of TMS-TMF-4f (5, 10, or 20 mg/kg) decreased tumor growth in a xenograft cervical cancer mouse model, demonstrated by the increase in TUNEL staining and PARP cleavage and the reduction in p-STAT3, Mcl-1, cyclin D1, survivin, and c-Myc expression levels in tumor tissues. Taken together, our results suggest that TMS-TMF-4f may potentially inhibit human cervical tumor growth through the induction of apoptosis via STAT3 suppression.
Collapse
Affiliation(s)
- Joo Young Hong
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Hyo-Sun Gil
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Eunwoo Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
| | - Ahmed H.E. Hassan
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (J.Y.H.); (K.-S.C.); (J.-S.S.); (J.-H.L.); (H.-H.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (E.C.); (J.-H.C.); (Y.S.L.)
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
41
|
Agarwal RG, Sharma P, Nyati KK. microRNAs in Mycobacterial Infection: Modulation of Host Immune Response and Apoptotic Pathways. Immune Netw 2019; 19:e30. [PMID: 31720041 PMCID: PMC6829074 DOI: 10.4110/in.2019.19.e30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023] Open
Abstract
Our current knowledge of mycobacterial infections in humans has progressively increased over the past few decades. The infection of Mycobacterium tuberculosis causes tuberculosis (TB) disease, which has reasoned for excessive morbidity and mortality worldwide, and has become a foremost issue of health problem globally. Mycobacterium leprae, another member of the family Mycobacteriaceae, is responsible for causing a chronic disease known as leprosy that mainly affects mucosa of the upper respiratory tract, skin, peripheral nerves, and eyes. Ample amount of existing data suggests that pathogenic mycobacteria have skilled in utilizing different mechanisms to escape or offset the host immune responses. They hijack the machinery of immune cells through the modulation of microRNAs (miRs), which regulate gene expression and immune responses of the host. Evidence shows that miRs have now gained considerable attention in the research, owing to their involvement in a broad range of inflammatory processes that are further implicated in the pathogenesis of several diseases. However, the knowledge of functions of miRs during mycobacterial infections remains limited. This review summarises recent findings of differential expression of miRs, which are used to good advantage by mycobacteria in offsetting host immune responses generated against them.
Collapse
Affiliation(s)
- Riddhi Girdhar Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Kishan Kumar Nyati
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
42
|
The Molecular Links between Cell Death and Inflammasome. Cells 2019; 8:cells8091057. [PMID: 31509938 PMCID: PMC6769855 DOI: 10.3390/cells8091057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death pathways and inflammasome activation pathways can be genetically and functionally separated. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, interleukin-1β (IL-1β), and IL-18 to bioactive forms for protection from a wide range of pathogens, as well as environmental and host-derived danger molecules. Programmed cell death has been extensively studied, and its role in the development, homeostasis, and control of infection and danger is widely appreciated. Apoptosis and the recently recognized necroptosis are the best-characterized forms of programmed death, and the interplay between them through death receptor signaling is also being studied. Moreover, growing evidence suggests that many of the signaling molecules known to regulate programmed cell death can also modulate inflammasome activation in a cell-intrinsic manner. Therefore, in this review, we will discuss the current knowledge concerning the role of the signaling molecules originally associated with programmed cell death in the activation of inflammasome and IL-1β processing.
Collapse
|
43
|
Shanmugapriya, Othman N, Sasidharan S. Prediction of genes and protein-protein interaction networking for miR-221-5p using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Increased Oxidative Stress Induced by Rubus Bioactive Compounds Induce Apoptotic Cell Death in Human Breast Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6797921. [PMID: 31281587 PMCID: PMC6589211 DOI: 10.1155/2019/6797921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
Abstract
Bioactive compounds from plants represent good candidate drugs for the prevention and treatment of various forms of cancer. Berries are rich sources of bioactive compounds, and there has been an increasing interest in the study of therapeutic action of wild berries. Oxidants are generated continuously in biological system as a result of physiological process. When there is an imbalance between oxidants and antioxidants, it leads to a condition called oxidative stress. Natural compounds as inducers of oxidative stress are able to modulate the physiological functions of cancer cells leading to cell death or survival. The aim of this study was to evaluate the induction of apoptosis by isolated bioactive compounds (1-(2-hydroxyphenyl)-4-methylpentan-1-one (C1) and 2-[(3-methylbutoxy) carbonyl] benzoic acid (C2)) from Rubus fairholmianus against MCF-7 breast cancer cells. The exposure of C1 and C2 reduced viability (IC50 of C1: 4.69; C2: 8.36 μg/mL) and proliferation. Cytochrome c release from mitochondria and changes in mitochondrial membrane potential of treated cells supported the intrinsic apoptotic cell death. Reactive oxygen species (ROS) production after treatment with C1 and C2 was found to be higher and induced nuclear damage. Expression of apoptotic proteins after the treatments was significantly upregulated as indicated using immunofluorescence (caspase 9, p53, and Bax), western blotting (p53, cleaved PARP, cytochrome c, and Bax), and ELISA (caspase 9) analysis. Overall, C1 was more cytotoxic, increased the ROS production in dichlorodihydrofluorescein diacetate assay, and induced apoptosis in breast cancer cells. These results illustrate that berry bioactive compounds have strong chemopreventive potential. In this article, we provide information on prooxidant and anticancer activities of Rubus bioactive compounds. Natural products have always demonstrated a significant contribution to the development of several cancer chemotherapeutic drugs. Most of these compounds are known to affect the redox state of the cell; and studies on these compounds have focused on their antioxidant property instead of prooxidant properties.
Collapse
|
45
|
Al-Afifi NA, Alabsi AM, Shaghayegh G, Ramanathan A, Ali R, Alkoshab M, Bakri MM. The in vitro and in vivo antitumor effects of Dracaena cinnabari resin extract on oral cancer. Arch Oral Biol 2019; 104:77-89. [PMID: 31176147 DOI: 10.1016/j.archoralbio.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the potential for apoptosis induction of Dracaena cinnabari Balf. f methanolic extract (DCBME) on tongue squamous cell carcinoma cell line, H103. We evaluated the chemopreventive activity of DCBME against 4-nitroquinolone-1-oxide (4NQO)-induced tongue carcinogenesis in rat. DESIGN Phase contrast microscope, acridine orange/propidium iodide (AO/PI) analysis of cells under fluorescence microscope, annexin-V flow-cytometry, DNA fragmentation, mitochondrial membrane potential, and caspase 3/7, 8 and 9 assays were performed. In vivo study, the rats were given 4NQO in their drinking water. The tongue was subjected to histopathological study to evaluate the incidence of squamous cell carcinoma (SCC). RESULTS DCBME showed cytotoxic effect on H103 cells in a dose- and time-dependent manner. Furthermore, DCBME showed low cytotoxic effect on a normal cell line. In H103 cells, it caused cell morphology changes, S and G2/M-phase cell cycle arrest, significant reduction of cell migration and induced apoptosis through the intrinsic (mitochondrial) pathway. The incidence of SCC was 85.7% in the induced cancer and vehicle groups while in rats treated with DCBME at 100, 500 and 1000 mg/kg was 57.1%, 28.6% and 14.3%, respectively. CONCLUSIONS (DCBME)-apoptosis induction reported in this work can be exploited as a potential antitumor agent with applications in medicinal treatments of tongue SCC.
Collapse
Affiliation(s)
- Nashwan Abdullah Al-Afifi
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aied M Alabsi
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom Kuala Langat, Selangor, Malaysia.
| | - Gohar Shaghayegh
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rola Ali
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom Kuala Langat, Selangor, Malaysia
| | - May Alkoshab
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Kim S, Oh MW, Bin Park W, Yoo HS. Global Gene Networks in 3D4/31 Porcine Alveolar Macrophages Treated with Antigenic Epitopes of Actinobacillus pleuropneumoniae ApxIA, IIA, and IVA. Sci Rep 2019; 9:5269. [PMID: 30918280 PMCID: PMC6437162 DOI: 10.1038/s41598-019-41748-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Actinobacillus pleuropneumoniae (App) is the causative agent of porcine pleuropneumonia. Although App produces several virulence factors, Apx toxins, the primary App virulence factors, have been the focus of numerous studies. However, the host response against the Apx toxins has not been elucidated at the transcriptomic level. Therefore, in this study, we examined the response of an immortalized porcine alveolar macrophage cell line (IPAM 3D4/31) to four antigenic epitopes of the App exotoxins, ApxIA, IIA and IVA. The antigenic epitopes of the Apx toxins (ApxIA Ct, ApxIIA Nt, ApxIVA C1 and ApxIV C2) were determined by an in-silico antigenicity prediction analysis. Gene expression in IPAMs was analyzed by RNA-Seq after treatment with the four proteins for 24 h. A total of 15,269 DEGs were observed to be associated with cellular and metabolic processes in the GO category Biological Process and nuclear receptors and apoptosis signaling in IPA analyses. These DEGs were also related to M2 macrophage polarization and apoptosis in IPAMs. These host transcriptional analyses present novel global gene networks of the host response to treatment with Apx toxins.
Collapse
Affiliation(s)
- Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Myung Whan Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Maturation-associated gene expression profiles during normal human bone marrow erythropoiesis. Cell Death Discov 2019; 5:69. [PMID: 30854228 PMCID: PMC6395734 DOI: 10.1038/s41420-019-0151-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Erythropoiesis has been extensively studied using in vitro and in vivo animal models. Despite this, there is still limited data about the gene expression profiles (GEP) of primary (ex vivo) normal human bone marrow (BM) erythroid maturation. We investigated the GEP of nucleated red blood cell (NRBC) precursors during normal human BM erythropoiesis. Three maturation-associated populations of NRBC were identified and purified from (fresh) normal human BM by flow cytometry and the GEP of each purified cell population directly analyzed using DNA-oligonucleotide microarrays. Overall, 6569 genes (19% of the genes investigated) were expressed in ≥1 stage of BM erythropoiesis at stable (e.g., genes involved in DNA process, cell signaling, protein organization and hemoglobin production) or variable amounts (e.g., genes related to cell differentiation, apoptosis, metabolism), the latter showing a tendency to either decrease from stage 1 to 3 (genes associated with regulation of erythroid differentiation and survival, e.g., SPI1, STAT5A) or increase from stage 2 to stage 3 (genes associated with autophagy, erythroid functions such as heme production, e.g., ALAS1, ALAS2), iron metabolism (e.g., ISCA1, SLC11A2), protection from oxidative stress (e.g., UCP2, PARK7), and NRBC enucleation (e.g., ID2, RB1). Interestingly, genes involved in apoptosis (e.g., CASP8, P2RX1) and immune response (e.g., FOXO3, TRAF6) were also upregulated in the last stage (stage 3) of maturation of NRBC precursors. Our results confirm and extend on previous observations and providing a frame of reference for better understanding the critical steps of human erythroid maturation and its potential alteration in patients with different clonal and non-clonal erythropoietic disorders.
Collapse
|
48
|
Wang H, He L, Zhang P, Zhang J, Chen Z, Ren X, Mei X. Folate-modified hydroxyapatite nanorods induce apoptosis in MCF-7 cells through a mitochondrial-dependent pathway. NEW J CHEM 2019. [DOI: 10.1039/c9nj03653a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted delivery of therapeutic drugs into cancer cells is a facile method to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Huiping Wang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Libang He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Peng Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Jie Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Zhenhua Chen
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xiuli Ren
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xifan Mei
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| |
Collapse
|
49
|
Wang XH, Zheng SS, Huang T, Su LM, Zhao YH, Souders CL, Martyniuk CJ. Fluazinam impairs oxidative phosphorylation and induces hyper/hypo-activity in a dose specific manner in zebrafish larvae. CHEMOSPHERE 2018; 210:633-644. [PMID: 30031347 DOI: 10.1016/j.chemosphere.2018.07.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Fluazinam is a pyridinamine fungicide that induces oxidative stress and mitochondrial damage in cells, and it has been reported to be neurotoxic. To characterize the biological effects of fluazinam, we assessed mitochondrial bioenergetics, dopamine system expression, and behavior of early life staged zebrafish (0.01 μM-0.5 μM). Fluazinam at environmentally-relevant levels did not induce sub-lethal effects in larvae, but at the LC50 (0.5 μM), fluazinam decreased basal and ATP-linked respiration significantly in embryos. As mitochondria are directly related to redox homeostasis and apoptosis, the expression of genes related to oxidative stress and apoptosis were measured. Superoxide dismutase 2 (sod2), heat stock protein 70 (hsp70), bcl2-associated X protein (bax), and caspase 9 (casp9) mRNA levels were up-regulated by 0.5 μM fluazinam. Taken together, there was evidence for mitochondrial dysfunction and oxidative damage at the highest concentration of fluazinam (0.5 μM) tested. As there are reports for fluazinam-induced neurotoxicity in dopamine synthesizing cells, transcriptional targets in the dopamine system were assessed in the zebrafish. Tyrosine hydroxylase 1 (th1) and dopamine receptor 2a (drd2a) mRNA levels were decreased by 0.5 μM fluazinam, suggesting that this fungicide may affect the dopaminergic system. To further assess the potential for fluazinam-mediated neuromodulation, the dark photokinesis response was assessed in larvae following exposure. Larvae exposed to 0.1 μM fluazinam showed hyperactivity, while larvae exposed to 0.2 and 0.3 μM showed hypo-activity. This study demonstrates that fluazinam disrupts mitochondrial bioenergetics in zebrafish, inducing an oxidative stress response, and aberrant behaviors in larvae that are dose dependent.
Collapse
Affiliation(s)
- Xiao H Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Shan S Zheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Li M Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
50
|
Ye X, Zhou XJ, Zhang H. Exploring the Role of Autophagy-Related Gene 5 ( ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front Immunol 2018; 9:2334. [PMID: 30386331 PMCID: PMC6199349 DOI: 10.3389/fimmu.2018.02334] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a highly conserved process that degrades certain intracellular contents in both physiological and pathological conditions. Autophagy-related proteins (ATG) are key players in this pathway, among which ATG5 is indispensable in both canonical and non-canonical autophagy. Recent studies demonstrate that ATG5 modulates the immune system and crosstalks with apoptosis. However, our knowledge of the pathogenesis and regulatory mechanisms of autophagy in various immune related diseases is lacking. Thus, a deeper understanding of ATG5's role in the autophagy mechanism may shed light on the link between autophagy and the immune response, and lead to the development of new therapies for autoimmune diseases and autoinflammatory diseases. In this focused review, we discuss the latest insights into the role of ATG5 in autoimmunity. Although these studies are at a relatively early stage, ATG5 may eventually come to be regarded as a “guardian of immune integrity.” Notably, accumulating evidence indicates that other ATG genes may have similar functions.
Collapse
Affiliation(s)
- Xin Ye
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|