1
|
MaruYama T, Miyazaki H, Komori T, Osana S, Shibata H, Owada Y, Kobayashi S. Curcumin analog GO-Y030 inhibits tumor metastasis and glycolysis. J Biochem 2023; 174:511-518. [PMID: 37656908 PMCID: PMC11002536 DOI: 10.1093/jb/mvad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
Tumor metastasis is one of the worst prognostic features of cancer. Although metastasis is a major cause of cancer-related deaths, an effective treatment has not yet been established. Here, we explore the antitumor effects of GO-Y030, a curcumin analog, via various mechanisms using a mouse model. GO-Y030 treatment of B16-F10 melanoma cells inhibited TGF-β expression and glycolysis. The invasion assay results showed almost complete invasion inhibition following GO-Y030 treatment. Mouse experiments demonstrated that GO-Y030 administration inhibited lung tumor metastasis without affecting vascular endothelial cells. Consistent with this result, GO-Y030 treatment led to the downregulation of MMP2 and VEGFα, inhibiting tumor invasion and metastasis. The silencing of eIF4B, a downstream molecule of S6, attenuated MMP2 expression. Our study demonstrates the novel efficacy of GO-Y030 in inhibiting tumor metastasis by regulating metastasis-associated gene expression via inhibiting dual access, glycolytic and TGF-β pathways.
Collapse
Affiliation(s)
- Takashi MaruYama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
- Department of Immunology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research(NIDCR), National Institutes of Health, 30 convent drive, Building 30, Bethesda, MD, 20892, USA
| | - Shion Osana
- Department of Engineering Science, University of Electro-Communications, Graduate School of Informatics and Engineering, Chofugaoka 1-5-1, Chofu, Tokyo, 182-8585, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University, Graduate School of Medicine, Hondo 1-1, Akita, Akita, 010-8543, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Seiryo 2-1, Aoba, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
2
|
Kamal MV, Damerla RR, Dikhit PS, Kumar NAN. Prostaglandin-endoperoxide synthase 2 (PTGS2) gene expression and its association with genes regulating the VEGF signaling pathway in head and neck squamous cell carcinoma. J Oral Biol Craniofac Res 2023; 13:567-574. [PMID: 37559688 PMCID: PMC10407435 DOI: 10.1016/j.jobcr.2023.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction The PTGS2 gene codes for the cyclooxygenase-2 (COX-2) enzyme that catalyzes the committed step in prostaglandin (PG) synthesis. Various in-vivo and in-vitro data suggest that prostaglandin E2 mediates as a signaling molecule for activating the VEGF signaling pathway (VSP), forming an association between COX-2 and VSP. Several chemotherapy regimens increasingly rely on preventing the synthesis of PGs. The targeted and metronomic chemotherapy agents, which suppress the COX-2 enzymes, have a major role in suppressing the oral cancer cascade. Hence, this study was designed to understand the pattern of PTGS2 expression and genes regulating VSP in head and neck cancers. Methods PTGS2 expression was analyzed in the TCGA database computationally with the help of the UALCAN web-server. The expression of VEGF signaling pathway genes was mined, and their expression pattern was determined. Co-expression analysis was done to elucidate the association between VEGF signaling genes and PTGS2. The ShineyGo web server was used for gene set enrichment. Results Significantly high PTGS2 expression was observed in tumor samples. Further genes regulating VEGF signaling were significantly overexpressed in tumor samples. Co-expression analysis results showed a significant positive correlation between PTGS2 and angiogenesis-regulating genes. The majority of the genes were enriched for angiogenesis pathways. Conclusion PTGS2 was significantly expressed in head and neck cancer, and its expression was associated with genes regulating angiogenesis.
Collapse
Affiliation(s)
- Mehta Vedant Kamal
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Punit Singh Dikhit
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena AN Kumar
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Zhang H, Wang X, Ma Y, Zhang Q, Liu R, Luo H, Wang Z. Review of possible mechanisms of radiotherapy resistance in cervical cancer. Front Oncol 2023; 13:1164985. [PMID: 37692844 PMCID: PMC10484717 DOI: 10.3389/fonc.2023.1164985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Radiotherapy is one of the main treatments for cervical cancer. Early cervical cancer is usually considered postoperative radiotherapy alone. Radiotherapy combined with cisplatin is the standard treatment for locally advanced cervical cancer (LACC), but sometimes the disease will relapse within a short time after the end of treatment. Tumor recurrence is usually related to the inherent radiation resistance of the tumor, mainly involving cell proliferation, apoptosis, DNA repair, tumor microenvironment, tumor metabolism, and stem cells. In the past few decades, the mechanism of radiotherapy resistance of cervical cancer has been extensively studied, but due to its complex process, the specific mechanism of radiotherapy resistance of cervical cancer is still not fully understood. In this review, we discuss the current status of radiotherapy resistance in cervical cancer and the possible mechanisms of radiotherapy resistance, and provide favorable therapeutic targets for improving radiotherapy sensitivity. In conclusion, this article describes the importance of understanding the pathway and target of radioresistance for cervical cancer to promote the development of effective radiotherapy sensitizers.
Collapse
Affiliation(s)
- Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
4
|
Svolacchia F, Brongo S, Catalano A, Ceccarini A, Svolacchia L, Santarsiere A, Scieuzo C, Salvia R, Finelli F, Milella L, Saturnino C, Sinicropi MS, Fabrizio T, Giuzio F. Natural Products for the Prevention, Treatment and Progression of Breast Cancer. Cancers (Basel) 2023; 15:cancers15112981. [PMID: 37296944 DOI: 10.3390/cancers15112981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we summarize the most used natural products as useful adjuvants in BC by clarifying how these products may play a critical role in the prevention, treatment and progression of this disease. BC is the leading cancer, in terms of incidence, that affects women. The epidemiology and pathophysiology of BC were widely reported. Inflammation and cancer are known to influence each other in several tumors. In the case of BC, the inflammatory component precedes the development of the neoplasm through a slowly increasing and prolonged inflammation that also favors its growth. BC therapy involves a multidisciplinary approach comprising surgery, radiotherapy and chemotherapy. There are numerous observations that showed that the effects of some natural substances, which, in integration with the classic protocols, can be used not only for prevention or integration in order to prevent recurrences and induce a state of chemoquiescence but also as chemo- and radiosensitizers during classic therapy.
Collapse
Affiliation(s)
- Fabiano Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
- Department of Medical Sciences, Policlinic Foundation Tor Vergata University, 00133 Rome, Italy
| | - Sergio Brongo
- Department of Plastic Surgery, University of Salerno, 84131 Campania, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Agostino Ceccarini
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
| | - Lorenzo Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
| | - Alessandro Santarsiere
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, 67000 Strasbourg, France
| | - Carmen Scieuzo
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Tommaso Fabrizio
- Department of Plastic Surgery, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Federica Giuzio
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
5
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Raaijmakers TK, van den Bijgaart RJE, Scheffer GJ, Ansems M, Adema GJ. NSAIDs affect dendritic cell cytokine production. PLoS One 2022; 17:e0275906. [PMID: 36227963 PMCID: PMC9560552 DOI: 10.1371/journal.pone.0275906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Immunotherapy is now considered as the new pillar in treatment of cancer patients. Dendritic cells (DCs) play an essential role in stimulating anti-tumor immune responses, as they are capable of cross-presenting exogenous tumor antigens in MHCI complexes to activate naïve CD8+ T cells. Analgesics, like non-steroid anti-inflammatory drugs (NSAIDs), are frequently given to cancer patients to help relieve pain, however little is known about their impact on DC function. METHODS Here, we investigated the effect of the NSAIDs diclofenac, ibuprofen and celecoxib on the three key processes of DCs required for proper CD8+ cytotoxic T cell induction: antigen cross-presentation, co-stimulatory marker expression, and cytokine production. RESULTS Our results show that TLR-induced pro- and anti-inflammatory cytokine excretion by human monocyte derived and murine bone-marrow derived DCs is diminished after NSAID exposure. CONCLUSIONS These results indicate that various NSAIDs can affect DC function and warrant further investigation into the impact of NSAIDs on DC priming of T cells and cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Tonke K. Raaijmakers
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - Renske J. E. van den Bijgaart
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Gosse J. Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Sakr MA, Al-Azzawi MA, Anis A, Abd El-Aziz AA, Ebeid ME, Shokeer MA, fayed A. The correlation between P53 and COX-2 expression and the pathological alteration in hepatocellular carcinoma. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is among the highest life-threatening malignancies. On both a molecular and histological level, HCC is a highly heterogeneous malignancy. This study was aimed to study the correlation between the molecular expression of some molecular biomarkers (P53 and Cox-2) and the histopathological alterations in the chemically induced HCC by Diethylnitrosamine (DEN) in Adult female Rats. The liver tumor induction was done by injection of DEN intraperitoneally one, two and three times/week for 2 months by the dose of 50 mg/kg Bw. The histopathological analysis was done and expression level of P53 and cox-2 was detected by quantitative polymerase chain reaction (qRT-PCR) at the end of the experiment.
Results
In this study, Grossly, livers of the groups administered with DEN showed multiple grayish-white macronodules on the outer surface which is dose dependent. Histopathologically, DEN induce multifocal micronodules of hepatocellular carcinoma which characterized by nuclear atypia, clear cell, mitotic figures and necrosis of hepatocytes. P53 mRNA expression to GAPDH, revealed that, there was a statistically significant decrease in HCC groups compared to healthy control group, while Cox-2 mRNA expression was significantly increased in HCC groups than healthy control group.
Conclusions
HCC staging can be achieved by detection the expression of P53, and Cox-2 as molecular markers as it considers noninvasive, rapid and easy method than the histopathological analysis. Finally, Cox-2 could be a therapeutic candidate for HCC due to the higher expression of Cox-2 in HCC lesions.
Collapse
|
8
|
Li S, Li L, Lin X, Chen C, Luo C, Huang Y. Targeted Inhibition of Tumor Inflammation and Tumor-Platelet Crosstalk by Nanoparticle-Mediated Drug Delivery Mitigates Cancer Metastasis. ACS NANO 2022; 16:50-67. [PMID: 34873906 DOI: 10.1021/acsnano.1c06022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sowing malignant cells (the "seeds" of metastasis) to engraft secondary sites requires a conducive premetastatic niche (PMN, the "soil" of metastasis). Inflammation and tumor associated platelet (TAP) has been hijacked by primary tumors to induce PMN "soil" in distant organs, as well as facilitate the dissemination of "seeds". This study reports a combinatory strategy with activated platelet-targeting nanoparticles to aim at the dynamic process of entire cancer metastasis, which exerts robust antimetastasis efficacy by simultaneously inhibiting tumor inflammation and tumor-platelet crosstalk. Our results reveals that the PSN peptide (a P-selectin-targeting peptide) modification enriched the accumulation of nanoparticles in primary tumor, pulmonary PMN, and metastases via capturing activated platelet. Such characteristics contribute to the efficient inhibition on almost every crucial and consecutive step of the metastasis cascade by retarding epithelial-mesenchymal transition (EMT) progression within tumors, specifically blocking the tumor-platelet crosstalk to remove the platelets "protective shield" around disseminated "seeds", and reversing the inflammatory microenvironment to interfere with the "soil" formation. Consisting of inflammation inhibiting and TAP impeding nanoparticles, this approach prominently reduces various metastasis in abscopal lung, including spontaneous metastasis, disseminated tumor cells metastasis, and post-operative metastasis. This work provides a generalizable nanoplatform of parallel inflammation disturbance and tumor-TAP crosstalk blockade to resist metastatic tumors.
Collapse
Affiliation(s)
- Shujie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Xi Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Cheng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Chaohui Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Al-Okbi SY. Date Palm as Source of Nutraceuticals for Health Promotion: a Review. Curr Nutr Rep 2022; 11:574-591. [PMID: 36125704 PMCID: PMC9750914 DOI: 10.1007/s13668-022-00437-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Chronic diseases are problematic to health professional specially when using drugs throughout the course of life with un-tolerated side effects. Returning to nature through using nutraceuticals might have both protective and therapeutic effects. Date palm was claimed to be a good source of such nutraceuticals or functional food ingredients. The purpose of the present review was to spot light on the different phytochemicals, phytonutrients, and remedial effects of date palm (Phoenix dactylifera L.) in a goal to be utilized in form of nutraceuticals. The possible mechanisms of action of the remedial effects were among the aim of the study. RECENT FINDINGS A protein hydrolyzate prepared from date seed could prevent DNA mutation and susceptibility to cancer. In addition to cancer prevention, date palm fruit improved the treatment outcome of cancer pediatric patients and possesses anti-angiogenic activity as one of the important anticancer mechanisms of action. On the other hand, date seed extracts was recently reported to protect from ulcerative colitis. It seems that all the aforementioned remedial effect might be ascribed to immunoregulatory effect of date palm. These findings proposed that date palm is beneficial for health. Date palm fruit is a rich source of vitamins, minerals, dietary fibers, energy, and easily digestible and absorbable sugars that instantaneously replenish and revitalize the body specially after fasting condition. Mineral contents in date fruits include potassium, phosphorus, magnesium, and calcium. Diverse health claims were reported to belong to various parts of the tree including the edible part of fruits, the seeds, the leaves, spathe (an envelope-like structure that encloses male and female date palm flowers), and pollen grains due to the presence of different bioactive constituents. The main phytochemicals and phytonutrients reported in date palms are phenolic compounds, carotenoids, sterols, anthocyanins, and others. In folk medicine, date palm fruits are used for enhancing immunity and treating gastrointestinal tract disorders, edema, bronchitis, wound, cancer, as well as infectious diseases. However, the exact health benefits and remedial effects of date palm were not fully and deeply investigated. The present review focused on the bioactive constituents and the reported health benefits of date palm and proposed mechanism of action.
Collapse
Affiliation(s)
- Sahar Y. Al-Okbi
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Aparnadevi P, Nirmal R, Veeravarmal V, Nandini D, Kalyani C, Singh D, Yoithapprabhunath T. Cyclooxygenase-2 (COX-2) expression in oral submucous fibrosis and oral squamous cell carcinoma: An immunohistochemical study. J Pharm Bioallied Sci 2022; 14:S769-S773. [PMID: 36110596 PMCID: PMC9469252 DOI: 10.4103/jpbs.jpbs_135_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022] Open
Abstract
Introduction: Material and Methods: Results: Conclusion:
Collapse
|
11
|
Sun S, Yang H, Wang F, Zhao S. Oct4 downregulation-induced inflammation increases the migration and invasion rate of oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1440-1449. [PMID: 34553218 DOI: 10.1093/abbs/gmab127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
Inflammatory changes are involved in tumor cell proliferation, migration, and invasion. Tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) play important roles in inflammatory regulation during tumor development. Oct4 acts as a transcription factor that modulates inflammatory changes in mesenchymal stem cells. In this study, we explored the role of Oct4 in the invasion and migration of oral squamous cell carcinoma (OSCC) cells. LPS and TNF-α were used to treat the OSCC cell lines HN4 and CAL27 to induce inflammation. The generation of inflammatory cytokines, including TNF-α, interleukin (IL)-1β, and IL-6, was evaluated by enzyme-linked immunosorbent assay and real-time quantitative PCR. Western blot analysis was employed to detect the expression and phosphorylation of JNK1, p65, and STAT3, which are key modulators of inflammation. Wound scratch healing and transwell invasion assays were further used to determine the role of inflammation in the invasion and migration of OSCC cells. Robust inflammation was observed in HN4 and CAL27 cells treated with LPS and TNF-α. A marked increase in JNK1, p65, and STAT3 phosphorylation levels in OSCC cells was also detected after LPS and TNF-α treatment. The migration and invasion of HN4 and CAL27 cells were significantly boosted by stimulation with LPS and TNF-α. Furthermore, Oct4 mRNA and protein levels were significantly upregulated by stimulation with LPS and TNF-α. Silencing of Oct4 led to reduced inflammation and decreased levels of phosphorylated JNK1, p65, and STAT3 and impaired invasion and migration in LPS- and TNF-α-stimulated OSCC cells. Overall, LPS- and TNF-α-induced inflammation suppressed the migration and invasion of OSCC cells by upregulating Oct4 expression.
Collapse
Affiliation(s)
- Shuntao Sun
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Hongyu Yang
- Department of Stomatology, Shenzhen Hospital, Peking University, Shenzhen 518035, China
| | - Feng Wang
- Department of Stomatology, Shenzhen Hospital, Peking University, Shenzhen 518035, China
| | - Shanshan Zhao
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
12
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Boroujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2021; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low / moderate levels may favor tumorigenesis while higher levels would exert anti-tumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "double-edged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression, and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojtaba Shabani-Boroujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, United States
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road. Hong Kong, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
13
|
Centuori SM, Caulin C, Bauman JE. Precision and Immunoprevention Strategies for Tobacco-Related Head and Neck Cancer Chemoprevention. Curr Treat Options Oncol 2021; 22:52. [PMID: 33991232 PMCID: PMC8122210 DOI: 10.1007/s11864-021-00848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/02/2022]
Abstract
OPINION STATEMENT To date, there is no FDA-approved chemoprevention approach for tobacco-related HNSCC. Effective chemoprevention approaches validated in sufficiently powered randomized trials are needed to reduce the incidence and improve survival. In this review, we recap the challenges encountered in past chemoprevention trials and discuss emerging approaches, with major focus on green chemoprevention, precision prevention, and immunoprevention. As our current depth of knowledge expands in the arena of cancer immunotherapy, the field of immunoprevention is primed for new discoveries and successes in cancer prevention.
Collapse
Affiliation(s)
- Sara M. Centuori
- Department of Medicine, University of Arizona, 1515 N. Campbell Ave, PO Box 245024, Tucson, AZ 85724-5024 USA
- University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
| | - Carlos Caulin
- University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
| | - Julie E. Bauman
- Department of Medicine, University of Arizona, 1515 N. Campbell Ave, PO Box 245024, Tucson, AZ 85724-5024 USA
- University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
| |
Collapse
|
14
|
Saka-Herrán C, Jané-Salas E, Estrugo-Devesa A, López-López J. Head and neck cancer and non-steroidal anti-inflammatory drugs: Systematic review and meta-analysis. Head Neck 2021; 43:1664-1682. [PMID: 33682986 DOI: 10.1002/hed.26663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
The objective was to assess the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on head and neck cancer (HNC) outcomes. A systematic review was conducted following the PRISMA guidelines. The MEDLINE and the Cochrane Central Register databases were searched. Risk of bias was assessed by the Cochrane Collaboration's tool and by the Newcastle-Ottawa Scale. Meta-analyses were performed with the RevMan software. Seventeen articles met the inclusion criteria. Quality scores for observational studies ranged between 5 and 8 stars and the RCT was assessed as high risk of bias. NSAIDs use was associated with a 13% risk reduction of HNC (OR: 0.87 95% CI 0.77-0.99). NSAIDs use was associated with a 30% reduced cancer-specific mortality and with a 40% decreased risk on disease-recurrence. NSAIDs may have a modest protective effect on HNC risk and a positive impact on cancer-specific survival and disease-recurrence. The findings do not support a protective role of aspirin on HNC outcomes.
Collapse
Affiliation(s)
- Constanza Saka-Herrán
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, Barcelona, Spain
| | - Enric Jané-Salas
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona - Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Barcelona, Spain
| | - Albert Estrugo-Devesa
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona - Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Barcelona, Spain
| | - José López-López
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona - Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Barcelona, Spain
| |
Collapse
|
15
|
Veigas F, Mahmoud YD, Merlo J, Rinflerch A, Rabinovich GA, Girotti MR. Immune Checkpoints Pathways in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13051018. [PMID: 33804419 PMCID: PMC7957692 DOI: 10.3390/cancers13051018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the last decades, scientific advances in immuno-oncology and a better understanding of tumors’ immune profile led to the development of novel immunotherapeutic strategies, especially immune checkpoint inhibitors. The blockade of PD-1 by monoclonal antibodies (mAbs) is the only immunotherapy based on immune checkpoint pathways approved for head and neck squamous cell carcinoma. As only a small fraction of patients perceives clinical benefit, understanding the molecular mechanisms and signaling pathways activated by the immune checkpoints and other tumor intrinsic features that modulate the immune infiltrate is crucial to better select patients for immunotherapy treatment and to develop novel therapeutic strategies. We here review the immune escape mechanisms of head and neck tumors, with a particular focus on the immune checkpoints, their role as therapeutic targets, and the predictive biomarkers of response to anti-PD-1/PD-L1 therapy. We also summarize the ongoing clinical trials testing several combinations of immune checkpoint inhibitors with other therapeutic approaches to improve patient outcomes. Abstract Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors usually diagnosed at an advanced stage and characterized by a poor prognosis. The main risk factors associated with its development include tobacco and alcohol consumption and Human Papillomavirus (HPV) infections. The immune system has a significant role in the oncogenesis and evolution of this cancer type. Notably, the immunosuppressive tumor microenvironment triggers immune escape through several mechanisms. The improved understanding of the antitumor immune response in solid tumors and the role of the immune checkpoint molecules and other immune regulators have led to the development of novel therapeutic strategies that revolutionized the clinical management of HNSCC. However, the limited overall response rate to immunotherapy urges identifying predictive biomarkers of response and resistance to treatment. Here, we review the role of the immune system and immune checkpoint pathways in HNSCC, the most relevant clinical findings linked to immunotherapeutic strategies and predictive biomarkers of response and future treatment perspectives.
Collapse
Affiliation(s)
- Florencia Veigas
- Laboratorio de Inmuno Oncología Traslacional, Instituto of Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina; (F.V.); (Y.D.M.); (J.M.)
| | - Yamil D. Mahmoud
- Laboratorio de Inmuno Oncología Traslacional, Instituto of Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina; (F.V.); (Y.D.M.); (J.M.)
| | - Joaquin Merlo
- Laboratorio de Inmuno Oncología Traslacional, Instituto of Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina; (F.V.); (Y.D.M.); (J.M.)
| | - Adriana Rinflerch
- Laboratorio GIGA, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biología Subtropical, Universidad Nacional de Misiones, CONICET, Posadas N3300NFK, Misiones, Argentina;
| | - Gabriel Adrian Rabinovich
- Laboratorio de Inmunopatología, Instituto of Biología y Medicina Experimental, CONICET, Buenos Aires C1428ADN, Argentina;
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - María Romina Girotti
- Laboratorio de Inmuno Oncología Traslacional, Instituto of Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina; (F.V.); (Y.D.M.); (J.M.)
- Correspondence:
| |
Collapse
|
16
|
Irani S. New Insights into Oral Cancer-Risk Factors and Prevention: A Review of Literature. Int J Prev Med 2020; 11:202. [PMID: 33815726 PMCID: PMC8000242 DOI: 10.4103/ijpvm.ijpvm_403_18] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The oral cancer constitutes 48% of head and neck cancer cases. Ninety percent of oral cancer cases are histologically diagnosed as oral squamous cell carcinomas (OSCCs). Despite new management strategies, the 5-year survival rate of oral cancer is still below 50% in most countries. Head and neck cancers are heterogeneous tumors, and this characteristic of them provides a challenge to treatment plan. Due to the poor outcomes in oral cancer, prevention is a necessity. In this review, a relevant English Literature search in PubMed, ScienceDirect, and Google Scholar from 2000 to mid-2018 was performed. All published articles related to oral cancer and its prevention were included. The risk factors of oral cancer and strategies of oral cancer prevention will be discussed.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Department of Oral Pathology, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
- School of Medicine, Griffith University, Gold Coast, Australia
| |
Collapse
|
17
|
AĞDAŞ F, ERYILMAZ A, GÖKMEN YILMAZ E, ERGİN K. THE EFFECTS OF SULINDAC ON CELL VIABILITY, CELL CYCLE AND ANJIOGENEZİS IN PHARYNGEAL CANCER CELL. ENT UPDATES 2020. [DOI: 10.32448/entupdates.750434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
Prognostic Value of Microvessel Density in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. DISEASE MARKERS 2020; 2020:8842795. [PMID: 33062071 PMCID: PMC7539077 DOI: 10.1155/2020/8842795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
The prognostic value of microvessel density (MVD) in head and neck squamous cell carcinoma (HNSCC) remains disputable. The purpose of this study was to comprehensively determine the prognostic value of MVD in HNSCC. Relevant literatures were identified using PubMed, Embase, and Cochrane Library. A meta-analysis was performed to clarify the prognostic role of MVD in HNSCC patients and different subgroups. A total of 14 eligible articles were included in this meta-analysis. The combined hazard ratio (HR) and 95% confidence interval (95% CI) for overall survival (OS) of 11 studies was 1.663 (1.236-2.237, P = 0.001), and the pooled HR and 95% CI for progression-free survival (PFS) of 7 studies was 2.069 (1.281-3.343, P = 0.003). Subgroup analyses were also performed on different issues, such as regional distribution of patients, age, tumor location, antibody, and treatment strategy. To conclude, high MVD is associated with worse OS and PFS in patients with HNSCC.
Collapse
|
19
|
Preventative Effect of Mebendazole against Malignancies in Neurofibromatosis 1. Genes (Basel) 2020; 11:genes11070762. [PMID: 32650362 PMCID: PMC7397152 DOI: 10.3390/genes11070762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Patients with RASopathy Neurofibromatosis 1 (NF1) are at a markedly increased risk of the development of benign and malignant tumors. Malignant tumors are often recalcitrant to treatments and associated with poor survival; however, no chemopreventative strategies currently exist. We thus evaluated the effect of mebendazole, alone or in combination with cyclooxygenase-2 (COX-2) inhibitors, on the prevention of NF1-related malignancies in a cisNf1+/−;Tp53+/− (NPcis) mouse model of NF1. Our in vitro findings showed that mebendazole (MBZ) inhibits the growth of NF1-related malignant peripheral nerve sheath tumors (MPNSTs) through a reduction in activated guanosine triphosphate (GTP)-bound Ras. The daily MBZ treatment of NPcis mice dosed at 195 mg/kg daily, initiated 60 days after birth, substantially delayed the formation of solid malignancies and increased median survival (p < 0.0001). Compared to placebo-treated mice, phosphorylated extracellular signal-regulated kinase (pERK) levels were decreased in the malignancies of MBZ-treated mice. The combination of MBZ with COX-2 inhibitor celecoxib (CXB) further enhanced the chemopreventative effect in female mice beyond each drug alone. These findings demonstrate the feasibility of a prevention strategy for malignancy development in high-risk NF1 individuals.
Collapse
|
20
|
Perrot CY, Herrera JL, Fournier-Goss AE, Komatsu M. Prostaglandin E2 breaks down pericyte-endothelial cell interaction via EP1 and EP4-dependent downregulation of pericyte N-cadherin, connexin-43, and R-Ras. Sci Rep 2020; 10:11186. [PMID: 32636414 PMCID: PMC7341885 DOI: 10.1038/s41598-020-68019-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
A close association between pericytes and endothelial cells (ECs) is crucial to the stability and function of capillary blood vessels and microvessels. The loss or dysfunction of pericytes results in significant disruption of these blood vessels as observed in pathological conditions, including cancer, diabetes, stroke, and Alzheimer’s disease. Prostaglandin E2 (PGE2) is a lipid mediator of inflammation, and its tissue concentration is elevated in cancer and neurological disorders. Here, we show that the exposure to PGE2 switches pericytes to a fast-migrating, loosely adhered phenotype that fails to intimately interact with ECs. N-cadherin and connexin-43 in adherens junction and gap junction between pericytes and ECs are downregulated by EP-4 and EP-1-dependent mechanisms, leading to breakdown of the pericyte–EC interaction. Furthermore, R-Ras, a small GTPase important for vascular normalization and vessel stability, is transcriptionally repressed by PGE2 in an EP4-dependent manner. Mouse dermal capillary vessels lose pericyte coverage substantially upon PGE2 injection into the skin. Our results suggest that EP-mediated direct disruption of pericytes by PGE2 is a key process for vascular destabilization. Restoring pericyte–EC interaction using inhibitors of PGE2 signaling may offer a therapeutic strategy in cancer and neurological disorders, in which pericyte dysfunction contributes to the disease progression.
Collapse
Affiliation(s)
- Carole Y Perrot
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jose L Herrera
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ashley E Fournier-Goss
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA. .,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Assali M, Abualhasan M, Zohud N, Ghazal N. RP-HPLC Method Development and Validation of Synthesized Codrug in Combination with Indomethacin, Paracetamol, and Famotidine. Int J Anal Chem 2020; 2020:1894907. [PMID: 32695171 PMCID: PMC7350129 DOI: 10.1155/2020/1894907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Indomethacin is considered a potent nonsteroidal anti-inflammatory drug that could be combined with Paracetamol to have superior and synergist activity to manage pain and inflammation. To reduce the gastric side effect, they could be combined with Famotidine. Methodology. A codrug of Indomethacin and Paracetamol was synthesized and combined in solution with Famotidine. The quantification of the pharmaceutically active ingredients is pivotal in the development of pharmaceutical formulations. Therefore, a novel reverse-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated according to the International Council for Harmonization (ICH) Q2R1 guidelines. A reverse phase C18 column with a mobile phase acetonitrile: sodium acetate buffer 60 : 40 at a flow rate of 1.4 mL/min and pH 5 was utilized. RESULTS The developed method showed good separation of the four tested drugs with a linear range of 0.01-0.1 mg/mL (R 2 > 0.99). The LODs for FAM, PAR, IND, and codrug were 3.076 × 10-9, 3.868 × 10-10, 1.066 × 10-9, and 4.402 × 10-9 mg/mL respectively. While the LOQs were 9.322 × 10-9, 1.172 × 10-10, 3.232 × 10-9, and 1.334 × 10-8 mg/mL, respectively. Furthermore, the method was precise, accurate, selective, and robust with values of relative standard deviation (RSD) less than 2%. Moreover, the developed method was applied to study the in vitro hydrolysis and conversion of codrug into Indomethacin and Paracetamol. CONCLUSION The codrug of Indomethacin and Paracetamol was successfully synthesized for the first time. Moreover, the developed analytical method, to our knowledge, is the first of its kind to simultaneously quantify four solutions containing the following active ingredients of codrug, Indomethacin, Paracetamol, and Famotidine mixture with added pharmaceutical inactive ingredients in one HPLC run.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, State of Palestine
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, State of Palestine
| | - Nihal Zohud
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, State of Palestine
| | - Noura Ghazal
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, State of Palestine
| |
Collapse
|
22
|
Santoro A, Bufo P, Russo G, Cagiano S, Papagerakis S, Bucci P, Aquino G, Longo F, Feola A, Giordano A, Di Carlo A, Di Domenico M, Pannone G. Expression and clinical implication of cyclooxygenase-2 and E-cadherin in oral squamous cell carcinomas. Cancer Biol Ther 2020. [PMID: 26218314 PMCID: PMC7537792 DOI: 10.1080/15384047.2015.1071741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) and angiogenesis are crucial events for development of aggressive and often fatal Oral Squamous Cell Carcinomas (OSCCs). Both promote cancer progression and metastasis development, but while the former induces the loss of E-cadherin expression and, hence cadherin switching; the latter produces hematic blood vessel neo-formation and contribute to OSCC cell growth, tumor mass development, and dissemination. Cyclooxygenase-2 (COX-2) has an important role, not only in angiogenic mechanisms, but also in favoring cancer invasion. Indeed it decreases the expression of E-cadherin and leads to phenotypic changes in epithelial cells (EMT) enhancing their carcinogenic potential. Our aim is to evaluate the interplay between E-cadherin cytoplasmic delocalization, COX-2 up-regulation and COX-2 induced neo-angiogenesis in 120 cases of OSCC. We have analyzed the distribution and the number of neo-formed endothelial buds surrounding infiltrating cells that express COX-2, as well as the neo-formed vessels in chronic inflammatory infiltrate, which surround the tumor. A double immunostaining method was employed in order to verify co-localization of endothelial cell marker (CD34) and COX-2. IHC has also been used to assess E-cadherin expression. Our data demonstrate that the OSCC cells, which lose membranous E-cadherin staining, acquiring a cytoplasmic delocalization, overexpress COX-2. Moreover, we find a new CD34+ vessel formation (sprouting angiogenesis). Only basaloid type of OSCC showes low level of COX-2 expression together with very low level of neo-angiogenesis and consequent tumor necrosis. The well-known anti-metastatic effect of certain COX-2 inhibitors suggests that these molecules might have clinical utility in the management of advanced cancers.
Collapse
Affiliation(s)
- Angela Santoro
- Department of Anatomic Pathology, 'Giovanni Paolo II' Foundation-UCSC , Campobasso, Italy
| | - Pantaleo Bufo
- Department of Clinical and Experimental Medicine, Institute of Pathological Anatomy, University of Foggia , Foggia, Italy
| | - Giuseppe Russo
- Department of Clinical and Experimental Medicine, Institute of Pathological Anatomy, University of Foggia , Foggia, Italy
| | - Simona Cagiano
- Department of Clinical and Experimental Medicine, Institute of Pathological Anatomy, University of Foggia , Foggia, Italy
| | - Silvana Papagerakis
- Laboratory of Head and Neck Cancer Invasion and Metastasis, Department of Otolaryngology, Head and Neck Oncology, University of Michigan, Medical School , Ann Arbor, MI, USA
| | - Paolo Bucci
- Department of Neuroscience, Reproductive and Odontostomatologies Science, University of Naples 'Federico II' , Naples, Italy
| | - Gabriella Aquino
- Section of Pathological Anatomy, National Cancer Institute 'G. Pascale Foundation' , Naples, Italy
| | - Francesco Longo
- Head and Neck Medical Oncology Unit, National Cancer Institute 'G. Pascale Foundation' , Naples, Italy
| | - Antonia Feola
- Department of Biology, University of Naples , Naples, Italy.,Department of Biochemistry, Biophisic and General Pathology Second University of Naples , Naples, Italy
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena , Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia, PA, USA
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome , Rome, Italy
| | - Marina Di Domenico
- Department of Biochemistry, Biophisic and General Pathology Second University of Naples , Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia, PA, USA
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, Institute of Pathological Anatomy, University of Foggia , Foggia, Italy
| |
Collapse
|
23
|
New pyrimidines and triazolopyrimidines as antiproliferative and antioxidants with cyclooxygenase-1/2 inhibitory potential. Future Med Chem 2020; 11:1583-1603. [PMID: 31469327 DOI: 10.4155/fmc-2018-0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Cyclooxygenase-2 (COX-2) inhibition and scavenging-free radicals are important targets in cancer treatment. Materials & methods: Sulfanylpyrimidines and triazolopyrimidines were synthesized and evaluated as anticancer and antioxidant COX-1/2 inhibitors. Results: Compound 7 showed the same growth inhibitory activity as 5-fluorouracil against MCF-7. Compound 6f displayed broad-spectrum anticancer activity against the four tested cancer cell lines. Compounds 5b, 6a, 6c, 6d and 8 were found to be more active antioxidants than trolox. Compounds 6a, 6c, 6f and 8 revealed high COX-2 inhibitory activity and selectivity, which was confirmed by docking studies. Conclusion: Compound 6f could be considered as promising anticancer and antioxidant structural lead with COX-2 inhibition that deserve further derivatization and investigation.
Collapse
|
24
|
Shamloo N, Taghavi N, Yazdani F, Azimian P, Ahmadi S. Evaluation of VEGF expression correlates with COX-2 expression in pleomorphic adenoma, mucoepidermoid carcinoma and adenoid cystic carcinoma. Dent Res J (Isfahan) 2020; 17:100-106. [PMID: 32435431 PMCID: PMC7224257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Pleomorphic adenoma (PA), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (AdCC) are the most common benign and malignant salivary gland tumors. Cyclooxygenase-2 (COX-2) is a key regulatory enzyme that its overexpression in various tumors is correlated with progression, metastasis, and apoptosis inhibition. Vascular endothelial growth factor (VEGF) is a potent angiogenic mediator that has an important role in neoplastic angiogenesis. The aim of this study was to immunohistochemically analyze the expression of COX-2 and VEGF and to compare the expression of benign and two malignant salivary gland tumors with varied structures. MATERIALS AND METHODS In this cross-sectional study, 90 specimens including 30 cases of each tumor were retrieved. Immunohistochemical staining of COX-2 and VEGF was performed for all the samples. The percentage of positive tumor cells and staining intensity was evaluated by two pathologists blindly. Data were analyzed by Chi-square and Gamma test and P < 0.05. RESULTS A statistically significant difference was noted between the expression and intensity of COX-2 and VEGF in PA, MEC, and AdCC (P < 0.05). A significant correlation was observed between COX-2 and VEGF expression in MEC and AdCC (P < 0.05). However, no significant correlation was found between the expression and intensity of COX-2 and VEGF with histologic grade and lymph node metastasis in MEC and AdCC (P < 0.05). CONCLUSION High expression of VEGF and COX-2 in malignant tumors compared to PA suggested the role of both markers in malignant transformation. The significant correlation of VEGF expression with COX-2 may represent the role of COX-2 in tumor angiogenesis by modulating VEGF production.
Collapse
Affiliation(s)
- Nafiseh Shamloo
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Taghavi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Yazdani
- Department of Pathology, Amiralam Hospital, Tehran University of Medical Science, Tehran, Iran
| | | | - Samane Ahmadi
- Department of Endodontics, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran,Address for correspondence: Dr. Samane Ahmadi, Department of Endodontics, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail:
| |
Collapse
|
25
|
Watanabe Y, Imanishi Y, Ozawa H, Sakamoto K, Fujii R, Shigetomi S, Habu N, Otsuka K, Sato Y, Sekimizu M, Ito F, Ikari Y, Saito S, Kameyama K, Ogawa K. Selective EP2 and Cox-2 inhibition suppresses cell migration by reversing epithelial-to-mesenchymal transition and Cox-2 overexpression and E-cadherin downregulation are implicated in neck metastasis of hypopharyngeal cancer. Am J Transl Res 2020; 12:1096-1113. [PMID: 32269737 PMCID: PMC7137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Cyclooxygenase-2 (Cox-2) has been shown to promote cancer initiation and progression through pleiotropic functions including induction of epithelial-to-mesenchymal transition (EMT) via its predominant product prostaglandin E2 that binds to the cognate receptor EP2. Hence, pharmacological inhibition at the level of EP2 is assumed to be a more selective alternative with less risk to Cox-2 inhibition. However, little is known regarding the anti-cancer effect of an EP2 antagonist on the malignant properties of cancers including hypopharyngeal squamous cell carcinoma (HPSCC). The present study found that both the Cox-2 inhibitor celecoxib and the EP2 antagonist PF-04418948 upregulated CDH-1 expression, restored membranous localization of E-cadherin, and reduced vimentin expression, by downregulating the transcriptional repressors of E-cadherin in BICR6 and FaDu cells. Such Cox-2 or EP2 inhibition-induced EMT reversal led to repressed migration ability in both cells. Immunohistochemical analysis of surgical HPSCC specimens demonstrated an inverse relationship in expression between Cox-2 and E-cadherin both in the context of statistics (P = 0.028) and of reciprocal immunolocalization in situ. Multivariate logistic regression revealed that overexpression of Cox-2 (P < 0.001) and downregulation of E-cadherin (P = 0.016) were both independently predictive of neck metastasis. These results suggest that suppression of cell migration ability via reversing EMT by inhibiting the Cox-2/EP2 signaling may contribute to preventing the development and progression of lymphatic metastasis. Collectively, targeting Cox-2/EP2, especially using EP2 antagonist, can be a promising therapeutic strategy by exerting an anti-metastatic effect via EMT reversal for improving the treatment outcomes of patients with various cancers including HPSCC.
Collapse
Affiliation(s)
- Yoshihiro Watanabe
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
- Department of Otorhinolaryngology, Tokyo Saiseikai Central HospitalTokyo, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kawasaki Municipal Kawasaki HospitalKawasaki, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Koji Sakamoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Saiseikai Utsunomiya HospitalUtsunomiya, Japan
| | - Ryoichi Fujii
- Department of Otorhinolaryngology, Saiseikai Yokohamashi Tobu HospitalYokohama, Japan
| | - Seiji Shigetomi
- Department of Otorhinolaryngology, Yokohama Municipal Citizen’s HospitalYokohama, Japan
| | - Noboru Habu
- Department of Otorhinolaryngology, Kyosai Tachikawa HospitalTokyo, Japan
| | - Kuninori Otsuka
- Department of Otorhinolaryngology, Shin-Yurigaoka General HospitalKawasaki, Japan
| | - Yoichiro Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Kawasaki Municipal Kawasaki HospitalKawasaki, Japan
| | - Mariko Sekimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Fumihiro Ito
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Yuichi Ikari
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Shin Saito
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of MedicineTokyo, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| |
Collapse
|
26
|
Anoopkumar-Dukie S, Conere T, Houston A, King L, Christie D, McDermott C, Allshire A. The COX-2 inhibitor NS398 selectively sensitizes hypoxic HeLa cells to ionising radiation by mechanisms both dependent and independent of COX-2. Prostaglandins Other Lipid Mediat 2020; 148:106422. [PMID: 32004752 DOI: 10.1016/j.prostaglandins.2020.106422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/24/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
It is widely accepted that the hypoxic nature of solid tumors contribute to their resistance to radiation therapy. There is increasing evidence that cyclooxygenase-2 (COX-2) contributes to increased resistance of tumors to radiation therapy. Several studies demonstrate that combination of COX-2 selective inhibitors with radiation therapy selectively enhances radio responsiveness of tumor cells. However, the majority of these studies utilised suprapharmacological concentrations under normoxic conditions only. Furthermore, the mechanism by which these agents act remain largely unclear. Therefore, the aim of this study was to determine the impact of COX-2 selective inhibitors on both normoxic and hypoxic radiosensitivity in vitro and the mechanisms underlying this. Because of the close, reciprocal relationship between COX-2 and p53 we investigated their contribution to radioresistance. To achieve this we exposed HeLa, MCF-7 and MeWo cells to the COX-2 selective inhibitor, NS398 (10μM). NS398 (10μM) selectively sensitized hypoxic HeLa and MCF-7 but not MeWo cells to ionising radiation (5 Gy). Furthermore, while knockdown of COX-2 with siRNA did not affect either normoxic radiosensitivity in HeLa cells, the radiosensitisation observed with NS398 was lost suggesting both COX-2 dependent and independent mechanisms. We also show that ionising radiation at 5 Gy results in phosphorylation of p53 at serine 15, a key phosphorylation site for p53-mediated apoptosis, and that hypoxia attenuates this phosphorylation. Attenuated phosphorylation of p53 under hypoxic conditions may therefore contribute to hypoxic radioresistance. We also show that NS398 selectively phosphorylates p53 under hypoxic conditions following irradiation at 5 Gy. p53 phosphorylation could be an underlying mechanism by which this agent and other COX-2 inhibitors sensitize tumors to radiation therapy.
Collapse
Affiliation(s)
- Shailendra Anoopkumar-Dukie
- School of Pharmacy and Pharmacology, Griffith University, Queensland, Australia; Quality Use of Medicines Network, Griffith University, Queensland, Australia.
| | - Tom Conere
- Department of Medical Physics, Cork University Hospital, Wilton, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland
| | - Liam King
- School of Pharmacy and Pharmacology, Griffith University, Queensland, Australia
| | | | - Catherine McDermott
- Centre for Urology Research, Bond University, Gold Coast, Queensland, Australia
| | - Ashley Allshire
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Sarma H, Jahan T, Sharma HK. Progress in Drug and Formulation Development for the Chemoprevention of Oral Squamous Cell Carcinoma: A Review. ACTA ACUST UNITED AC 2020; 13:16-36. [PMID: 30806332 DOI: 10.2174/1872211313666190222182824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer is a life-threatening global problem with high incidence rates. Prioritizing the prevention of cancer, chemopreventive agents have drawn much attention from the researchers. OBJECTIVE This review focuses on the discussion of the progress in the development of chemopreventive agents and formulations related to the prevention of oral cancer. METHODS In this perspective, an extensive literature survey was carried out to understand the mechanism, control and chemoprevention of oral cancer. Different patented agents and formulations have also exhibited cancer preventive efficacy in experimental studies. This review summarizes the etiology of oral cancer and developments in prevention strategies. RESULTS The growth of oral cancer is a multistep activity necessitating the accumulation of genetic as well as epigenetic alterations in key regulatory genes. Many risk factors are associated with oral cancer. Genomic technique for sequencing all tumor specimens has been made available to help detect mutations. The recent development of molecular pathway and genetic tools has made the process of diagnosis easier, better forecast and efficient therapeutic management. Different chemical agents have been studied for their efficacy to prevent oral cancer and some of them have shown promising results. CONCLUSION Use of chemopreventive agents, either synthetic or natural origin, to prevent carcinogenesis is a worthy concept in the management of cancers. Preventive measures are helpful in controlling the occurrence or severity of the disease. The demonstrated results of preventive agents have opened an arena for the development of promising chemopreventive agents in the management of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Himangshu Sarma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Taslima Jahan
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Hemanta K Sharma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
28
|
Ahmadi S, Shamloo N, Taghavi N, Yazdani F, Azimian P. Evaluation of VEGF expression correlates with COX-2 expression in pleomorphic adenoma, mucoepidermoid carcinoma and adenoid cystic carcinoma. Dent Res J (Isfahan) 2020. [DOI: 10.4103/1735-3327.280887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Spotlight on ROS and β3-Adrenoreceptors Fighting in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6346529. [PMID: 31934266 PMCID: PMC6942895 DOI: 10.1155/2019/6346529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
The role of ROS and RNS is a long-standing debate in cancer. Increasing the concentration of ROS reaching the toxic threshold can be an effective strategy for the reduction of tumor cell viability. On the other hand, cancer cells, by maintaining intracellular ROS concentration at an intermediate level called “mild oxidative stress,” promote the activation of signaling that favors tumor progression by increasing cell viability and dangerous tumor phenotype. Many chemotherapeutic treatments induce cell death by rising intracellular ROS concentration. The persistent drug stimulation leads tumor cells to simulate a process called hormesis by which cancer cells exhibit a biphasic response to exposure to drugs used. After a first strong response to a low dose of chemotherapeutic agent, cancer cells start to decrease the response even if high doses of drugs were used. In this framework, β3-adrenoreceptors (β3-ARs) fit with an emerging antioxidant role in cancer. β3-ARs are involved in tumor proliferation, angiogenesis, metastasis, and immune tolerance. Its inhibition, by the selective β3-ARs antagonist (SR59230A), leads cancer cells to increase ROS concentration thus inducing cell death and to decrease NO levels thus inhibiting angiogenesis. In this review, we report an overview on reactive oxygen biology in cancer cells focusing on β3-ARs as new players in the antioxidant pathway.
Collapse
|
30
|
Yoshida H, Yoshimura H, Matsuda S, Yamamoto S, Ohmori M, Ohta K, Ryoke T, Itoi H, Kiyoshima T, Kobayashi M, Sano K. Celecoxib suppresses lipopolysaccharide-stimulated oral squamous cell carcinoma proliferation in vitro and in vivo. Oncol Lett 2019; 18:5793-5800. [PMID: 31788052 PMCID: PMC6865759 DOI: 10.3892/ol.2019.10975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most common chronic oral inflammatory conditions worldwide and is associated with a risk of developing oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis is a major pathogen in periodontitis, and its lipopolysaccharide (LPS) promotes the expression of cyclooxygenase-2 (COX-2) in OSCC both in vivo and in vitro. Celecoxib is a selective COX-2 inhibitor; however, its antitumor effects on P. gingivalis LPS-stimulated OSCC and the underlying molecular mechanism remain unclear. To elucidate the association between periodontitis and OSCC, the effect of P. gingivalis-derived LPS on OSCC cell proliferation was examined both in vitro and in vivo in the present study. The expression levels of COX-2 and p53 in OSCC cells with/without celecoxib treatment were determined via western blotting. The therapeutic potential of celecoxib in LPS-stimulated OSCC was evaluated by staining for Ki-67 and p21, as well as with terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining. LPS treatment significantly increased OSCC cell proliferation in vitro, and celecoxib significantly inhibited cell proliferation with/without LPS treatment. Celecoxib treatment of OSCC cells downregulated the protein expression levels of COX-2 compared with untreated cells, but there was little change in p53 expression. In the mouse xenograft model, oral administration of celecoxib significantly suppressed tumor growth, reduced the expression of Ki-67, increased the apoptosis index and induced p21 expression with/without LPS treatment. The results from the present study demonstrate that P. gingivalis' LPS can stimulate tumor growth by interacting with OSCC cells. In conclusion, these results suggest that celecoxib could be used for the effective prevention and treatment of LPS-stimulated OSCC.
Collapse
Affiliation(s)
- Hisato Yoshida
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hitoshi Yoshimura
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinpei Matsuda
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Satoshi Yamamoto
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masahiro Ohmori
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Keiichi Ohta
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takashi Ryoke
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hayato Itoi
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Unit of Pathological Sciences, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuo Sano
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
31
|
Bovone G, Guzzi EA, Tibbitt MW. Flow‐based reactor design for the continuous production of polymeric nanoparticles. AIChE J 2019. [DOI: 10.1002/aic.16840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| | - Elia A. Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| |
Collapse
|
32
|
Kaffash E, Badiee A, Akhgari A, Akhavan Rezayat N, Abbaspour M, Saremnejad F. Development and characterization of a multiparticulate drug delivery system containing indomethacin-phospholipid complex to improve dissolution rate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Moradi K, Barneh F, Irian S, Amini M, Moradpoor R, Amanzadeh A, Choopani S, Rahimi H, Ghodselahi T, Boujar MM, Salimi M. Two Novel Tri-Aryl Derivatives Attenuate the Invasion-Promoting Effects of Stromal Mesenchymal Stem Cells on Breast Cancer. Anticancer Agents Med Chem 2019; 19:1002-1011. [PMID: 30747082 DOI: 10.2174/1871520619666190212123912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/28/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Background:The concept of Epithelial-Mesenchymal Transition (EMT) to promote carcinoma progression has been recognized as a venue for research on novel anticancer drugs. Triaryl template-based structures are one of the pivotal structural features found in a number of compounds with a wide variety of biological properties including anti-breast cancer. Among the various factors triggering EMT program, cyclooxygenase-2 (COX-2), NF-κB as well as the transforming growth factor-beta (TGF-β) have been widely investigated.Objective:Here, we aim to investigate the effect of two novel compounds A and B possessing triaryl structures, which interact with both COX-2 and TGF-β active sites and suppress NF-κB activation, on EMT in a co-culture system with breast cancer and stromal cells.Methods:MDA-MB-231 and bone-marrow mesenchymal stem (BM-MS) cells were co-cultured in a trans-well plate. Migration, matrigel-based invasion and colony formation in soft agar assays along with Real- time PCR and Western blot analysis were performed to examine the effect of compounds A and B on the invasive properties of MDA-MB-231 cells after 72 hours of co-culturing with BM-MSCs. In addition, TGF-beta interaction was investigated by Localized Surface Plasmon Resonance (LSPR).Results:BM-MSCs enhanced migration, invasion and anchorage-independent growth of the co-cultured MDAMB- 231 cells. A reduction in E-cadherin level concomitant with an increase in vimentin and N-cadherin levels following the co-culture implied EMT as the underlying process. Compounds A and B inhibited invasion and anchorage-independent growth of breast cancer cells co-cultured with BM-MSCs at 10µM. The observed inhibitory effects along with an increase in E-cadherin and a reduction in vimentin and ZEB2 levels suggest that the anti-invasive properties of compounds A and B might proceed through the blockade of stromal cell-induced EMT, mediated by their interaction with TGF-beta.Conclusion:These findings introduce compounds A and B as novel promising agents, which prevent EMT in invasive breast cancer cells.
Collapse
Affiliation(s)
- Khadijeh Moradi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Farnaz Barneh
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohsen Amini
- Medicinal Chemistry Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Moradpoor
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Choopani
- Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Massoud M. Boujar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Khan MI, Shin JH, Kim JD. Crude microcystins extracted from Microcystis aeruginosa exert anti-obesity effects by downregulating angiogenesis and adipogenesis related signaling molecules in HUVEC and 3 T3-L1 cells. Altern Ther Health Med 2019; 19:100. [PMID: 31068163 PMCID: PMC6505220 DOI: 10.1186/s12906-019-2501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/15/2019] [Indexed: 11/23/2022]
Abstract
Background Obesity is a risk factor for many diseases including diabetes, cancer, arthritis, and cardiovascular diseases. Angiogenesis nourishes adipose tissues and contributes to obesity; it can be prevented by suppressing the expression of associated signaling molecules. Natural products have garnered attention owing to their safety and efficacy in treating several diseases, including obesity. Methods Crude Microcystins were extracted from the blooming Microcystis aeruginosa under stress conditions, by ultrasonication following by solvent extraction. The microcystin extract was evaluated for its potential of inhibiting angiogenesis and adipogenesis. The antiangiogenic activity of the microcystins extract was investigated using human umbilical vein endothelial cells (HUVECs), and its anti-obesity activity was determined in vitro by quantification of the accumulated lipids in mouse 3 T3-L1 cells via Oil Red O staining method. Results The microcystin extract suppressed HUVECs proliferation and tubes formation in Matrigel in a dose-dependent manner. RT-PCR analysis revealed the downregulation of the mRNA expression of angiogenesis-related signaling molecules, such as PI3K, β-catenin, vascular endothelial growth factor receptor-2 (VEGFR-2), vascular endothelial-cadherin, Akt1, and NF-κB. Additionally, it inhibited the differentiation of premature 3 T3 cells and lipid accumulation in a dose-dependent manner. It suppressed adipogenesis and lipogenesis by reducing the expression level of peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, and sterol regulatory element-binding protein. Conclusions Crude microcystin exerts anti-angiogenic and anti-obesity effects due to the inhibitory effects on the genes expression of associated signaling molecules and transcriptional factors.
Collapse
|
35
|
Maiti A, Qi Q, Peng X, Yan L, Takabe K, Hait NC. Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells. Int J Oncol 2019; 55:116-130. [PMID: 31059004 PMCID: PMC6561627 DOI: 10.3892/ijo.2019.4796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) cells form angiogenesis-independent vessel-like structures to survive, known as vasculogenic mimicry (VM), contributing to a poor prognosis for cancer patients. Nuclear localized class I histone deacetylases (HDACs) enzymes, particularly HDACs 1, 2, 3 deacetylate chromatin histones, are overexpressed in cancers and epigenetically regulate the expression of genes involved in cancer initiation and progression. The specific HDAC inhibitor, entinostat, has been shown to attenuate tumor progression and metastasis in TNBC. In this study, we hypothesized that entinostat would enhance the expression of anti-angiogenic and tumor suppressor genes and would thus suppress VM structures in TNBC cells in a 3D Matrigel cell culture preclinical model. Our data indicated that invasive triple-negative MDA-MB-231, LM2-4 and BT-549 breast cancer cells, but not poorly invasive luminal MCF-7 cells, efficiently underwent matrix-associated VM formation. Approximately 80% of TNBC cells with the stem cell phenotype potential formed vessel-like structures when mixed with Matrigel and cultured in the low attachment tissue culture plate. The molecular mechanisms of VM formation are rather complex, while angiogenesis inhibitor genes are downregulated and pro-angiogenesis genes are upregulated in VM-forming cells. Our data revealed that treatment of the TNBC VM phenotype cells with entinostat epigenetically led to the re-expression of the anti-angiogenic genes, serpin family F member 1 (SERPINF1) and thrombospondin 2 (THBS2), and to that of the tumor suppressor genes, phosphatase and tensin homolog (PTEN) and p21, and reduced VM structures. We also found that treatment of the TNBC VM phenotype cells with entinostat downregulated the expression of vascular endothelial growth factor A (VEGF-A), and that of the epithelial-mesenchymal transition (EMT)-related genes, Vimentin and β-catenin. METABIRC and TCGA breast cancer cohort mRNA expression data analysis revealed that a high expression of the anti-angiogenesis-associated genes, THBS2, SERPINF1 and serpin family B member 5 (SERPINB5), and of the tumor suppressor gene, PTEN, was associated with a better overall survival (OS) of breast cancer patients. Taken together, the findings of this study demonstrate that HDACs 1, 2, 3 partly contribute to VM formation in TNBC cells; thus, HDACs may be an important therapeutic target for TNBC.
Collapse
Affiliation(s)
- Aparna Maiti
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xuan Peng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nitai C Hait
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
36
|
Nasry WHS, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers (Basel) 2018; 10:cancers10100348. [PMID: 30248985 PMCID: PMC6211032 DOI: 10.3390/cancers10100348] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
A significant amount of research indicates that the cyclooxygenase/prostaglandin E2 (PGE2) pathway of inflammation contributes to the development and progression of a variety of cancers, including squamous cell carcinoma of the oral cavity and oropharynx (OSCC). Although there have been promising results from studies examining the utility of anti-inflammatory drugs in the treatment of OSCC, this strategy has been met with only variable success and these drugs are also associated with toxicities that make them inappropriate for some OSCC patients. Improved inflammation-targeting therapies require continued study of the mechanisms linking inflammation and progression of OSCC. In this review, a synopsis of OSCC biology will be provided, and recent insights into inflammation related mechanisms of OSCC pathobiology will be discussed. The roles of prostaglandin E2 and cluster of differentiation factor 147 (CD147) will be presented, and evidence for their interactions in OSCC will be explored. Through continued investigation into the protumourigenic pathways of OSCC, more treatment modalities targeting inflammation-related pathways can be designed with the hope of slowing tumour progression and improving patient prognosis in patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
37
|
Vosoughhosseini S, Aghbali A, Emamverdizadeh P, Razbani M, Mesgari M, Barzegar A. Effect of Ferula persica plant methanol extract on the level of Cox-2 in induced squamous cell carcinoma (SCC) in rat tongue. J Dent Res Dent Clin Dent Prospects 2018; 12:91-96. [PMID: 30087758 PMCID: PMC6076884 DOI: 10.15171/joddd.2018.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 05/19/2018] [Indexed: 11/09/2022] Open
Abstract
Background: More than 90% of oral cancers are cases of squamous cell carcinoma. Standard treatment of cancer includes a combination of surgery, chemotherapy and radiotherapy. Each of these treatments, however, brings about certain problems and side effects. Today herbal medicine, has become a more preferable option in dealing with health problems or preventing them because this type of medicine has better compatibility with the body and does not cause undesirable side effects. In this study , the effect of Ferula persica plant methanol extraction on Cox-2 levels in SCC induced rat tongue is conducted in vivo.
Methods: In this lab research, 75 rats from SD race in the age – range of 2/5 – 3 months were selected and put in five groups. In order to induce tongue carcinoma, 4– Nitroquinoline 1 (4 NQO) powder was used 3 times a week for each rat. Furthermore, Ferula persica extract was given to each of the groups in order to examine Cox-2 changes in the blood.
Results: Comparison of Cox-2 average in various groups resulted in the observation that there was significant difference between the Cox-2 levels in the groups which had only received carcinogen and the other groups. In this group, Cox-2 level was less and in the group that had received Ferula extract (500 mg) along with carcinogen , Cox-2 level was found to be more than other groups.
Conclusion:
Ferula persica extract does not have reducing effect on serum Cox-2.
Collapse
Affiliation(s)
- Sepideh Vosoughhosseini
- Professor, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirala Aghbali
- Associate professor, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parya Emamverdizadeh
- Assistant Professor, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Razbani
- Postgraduate Student, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Mesgari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Barzegar
- Assistant Professor, Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Corvò R, Antognoni P, Sanguineti G. Biological Predictors of Response to Radiotherapy in Head and Neck Cancer: Recent Advances and Emerging Perspectives. TUMORI JOURNAL 2018; 87:355-63. [PMID: 11989586 DOI: 10.1177/030089160108700601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study of new biological parameters has received considerable attention in radiotherapy during the last decade due to their potential value in predicting treatment response in squamous cell carcinoma of the head and neck (SCC-HN) and the foreseen possibility of selecting altered fractionation radiotherapy for the individual patient. Although there are established clinical parameters in SCC-HN patients that relate to radiation response (extent of disease, hemoglobin level), recent advances with direct measurement of tumor oxygenation, inherent radiosensitivity and proliferation rate have increased the promise of individualization of treatment strategy according to these radiobiologically based parameters. Molecular research has now identified a host of new biological parameters with potential predictive utility; oncogenes, tumor suppressor genes, cell-cycle control genes, apoptosis genes and angiogenesis genes have been extensively studied and correlated with radiation response. Moreover, study of the epidermal growth factor receptor signal-transduction system as a possible response modulator has recently fostered molecular strategies which employ blockade of the receptor to down-regulate tumor growth. This article briefly reviews and analyzes the main controversial issues and drawbacks that hinder the general use of biological parameters for predicting tumor response to radiotherapy. It highlights the future perspectives of radiotherapy predictive assay research and the need to shift from single-parameter analysis to multiparametric studies which take into account several potential predictors that together are involved in different biological and clinical pathways.
Collapse
Affiliation(s)
- R Corvò
- UO Oncologia Radioterapica, Istituto Nazionale per la Ricerca sul Cancro, Genoa.
| | | | | |
Collapse
|
39
|
COX-2 as a determinant of lower disease-free survival for patients affected by ameloblastoma. Pathol Res Pract 2018; 214:907-913. [PMID: 29559247 DOI: 10.1016/j.prp.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/27/2018] [Accepted: 03/13/2018] [Indexed: 11/20/2022]
Abstract
Ameloblastoma is a locally aggressive neoplasm with a poorly understood pathogenesis. Therefore, the aim of this study is to investigate whether COX-2 expression is associated with ameloblastoma microvascular density (MVD) and with tumor aggressiveness. Sixty-three cases of primary ameloblastomas arranged in tissue microarray were submitted to immunohistochemistry against cyclooxigenase-2 (COX-2) and CD34. Clinicopathological parameters regarding sex, age, tumour size, tumour duration, tumour location, treatment, recurrences, radiographic features, vestibular/lingual and basal cortical disruption and follow-up data were obtained from patients' medical records and correlated with the proteins expression. The results on BRAF-V600E expression were obtained from our previous study and correlated with COX-2 and CD34 expressions. Log-rank univariate analysis and multivariate Cox regression model were done to investigate the prognostic potential of the molecular markers. Twenty-eight cases (44.4%) exhibited cytoplasmic positivity for COX-2, predominantly in the columnar peripheral cells, with a mean MVD of 2.2 vessels/mm2. COX-2 was significantly associated with recurrences (p < 0.001) and BRAF-V600E expression (p < 0.001), whereas lower MVD was associated with the use of conservative therapy (p = 0.004). Using univariate and multivariate analyses, COX-2 was significantly associated with a lower 5-year disease-free survival (DFS) rate (p < 0.001 and p = 0.012, respectively), but not with a higher MVD (p = 0.68). In conclusion, COX-2 expression in ameloblastomas is not associated with MVD, but it is significantly associated with recurrences and with a lower DFS.
Collapse
|
40
|
Cha BK, Kim YS, Hwang KE, Cho KH, Oh SH, Kim BR, Jun HY, Yoon KH, Jeong ET, Kim HR. Celecoxib and sulindac inhibit TGF-β1-induced epithelial-mesenchymal transition and suppress lung cancer migration and invasion via downregulation of sirtuin 1. Oncotarget 2018; 7:57213-57227. [PMID: 27528025 PMCID: PMC5302984 DOI: 10.18632/oncotarget.11127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
The non-steroidal anti-inflammatory drugs (NSAIDs) celecoxib and sulindac have been reported to suppress lung cancer migration and invasion. The class III deacetylase sirtuin 1 (SIRT1) possesses both pro- and anticarcinogenic properties. However, its role in inhibition of lung cancer cell epithelial-mesenchymal transition (EMT) by NSAIDs is not clearly known. We attempted to investigate the potential use of NSAIDs as inhibitors of TGF-β1-induced EMT in A549 cells, and the underlying mechanisms of suppression of lung cancer migration and invasion by celecoxib and sulindac. We demonstrated that celecoxib and sulindac were effective in preventing TGF-β1-induced EMT, as indicated by upregulation of the epithelial marker, E-cadherin, and downregulation of mesenchymal markers and transcription factors. Moreover, celecoxib and sulindac could inhibit TGF-β1-enhanced migration and invasion of A549 cells. SIRT1 downregulation enhanced the reversal of TGF-β1-induced EMT by celecoxib or sulindac. In contrast, SIRT1 upregulation promoted TGF-β1-induced EMT. Taken together, these results indicate that celecoxib and sulindac can inhibit TGF-β1-induced EMT and suppress lung cancer cell migration and invasion via downregulation of SIRT1. Our findings implicate overexpressed SIRT1 as a potential therapeutic target to reverse TGF-β1-induced EMT and to prevent lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Byong-Ki Cha
- Department of Thoracic and Cardiovascular Surgery, Chonbuk National University Medical School, Jeonbuk, Korea
| | - Young-Suk Kim
- Departments of Internal Medicine, Institute of Wonkwang Medical Science, Wonkwang University, School of Medicine 344-2 shinyong-dong Iksan, Jeonbuk, Korea
| | - Ki-Eun Hwang
- Departments of Internal Medicine, Institute of Wonkwang Medical Science, Wonkwang University, School of Medicine 344-2 shinyong-dong Iksan, Jeonbuk, Korea
| | - Kyung-Hwa Cho
- Departments of Internal Medicine, Institute of Wonkwang Medical Science, Wonkwang University, School of Medicine 344-2 shinyong-dong Iksan, Jeonbuk, Korea
| | - Seon-Hee Oh
- Department of Premedicine, School of Medicine, Chosun University, Gwangju, Korea
| | - Byoung-Ryun Kim
- Department of Obstetrics & Gynecology, Wonkwang University, School of Medicine, Iksan, Jeonbuk, Korea
| | - Hong-Young Jun
- Imaging Science Research Center, Wonkwang University, School of Medicine, Iksan, Jeonbuk, Korea
| | - Kwon-Ha Yoon
- Departments of Radiology, Wonkwang University, School of Medicine, Iksan, Jeonbuk, Korea
| | - Eun-Taik Jeong
- Departments of Internal Medicine, Institute of Wonkwang Medical Science, Wonkwang University, School of Medicine 344-2 shinyong-dong Iksan, Jeonbuk, Korea
| | - Hak-Ryul Kim
- Departments of Internal Medicine, Institute of Wonkwang Medical Science, Wonkwang University, School of Medicine 344-2 shinyong-dong Iksan, Jeonbuk, Korea
| |
Collapse
|
41
|
Gao L, Liu B, Mao W, Gao R, Zhang S, Duritahala, Fu C, Shen Y, Zhang Y, Zhang N, Wu J, Deng Y, Wu X, Cao J. PTGER2 activation induces PTGS-2 and growth factor gene expression in endometrial epithelial cells of cattle. Anim Reprod Sci 2017; 187:54-63. [PMID: 29033117 DOI: 10.1016/j.anireprosci.2017.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/16/2017] [Accepted: 10/06/2017] [Indexed: 11/25/2022]
|
42
|
Gonzaga AKG, Lopes MLDS, Ribeiro CMD, Aquino ARL, Nonaka CFW, Silveira EJD, Medeiros AMC. Participation of cyclooxygenase-2 in lip carcinogenesis. J Eur Acad Dermatol Venereol 2017; 32:e69-e71. [PMID: 28833615 DOI: 10.1111/jdv.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A K G Gonzaga
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - M L D S Lopes
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - C M D Ribeiro
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - A R L Aquino
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - C F W Nonaka
- Department of Dentistry, State University of Paraíba, Campina Grande, ParaÍba, Brazil
| | - E J D Silveira
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - A M C Medeiros
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
43
|
Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci Rep 2017; 7:6235. [PMID: 28740192 PMCID: PMC5524966 DOI: 10.1038/s41598-017-06673-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
Overexpression of cyclooxygenase-2 in oral cancer increases lymph node metastasis and is associated with a poor prognosis. The potential of celecoxib (CXB) use is reported in cancer treatment by inhibiting proliferation through apoptosis, but the effects on the epithelial-mesenchymal transition (EMT) and cancer cell mobility remain unclear. We performed a preclinical study and population-based study to evaluate CXB use in the prevention of oral cancer progression and occurrence. The in-vitro findings showed that CXB is involved in the inhibition of EMT and cell mobility through blocking transcription factors (Slug, Snail and ZEB1), cytoplasmic mediators (focal adhesion kinase (FAK), vimentin and β-catenin), cell adhesion molecules (cadherins and integrins), and surface receptors (AMFR and EGFR). The murine xenograft model showed a 65% inhibition in tumour growth after a 5-week treatment of CXB compared to placebo. Xenograft tumours in placebo-treated mice displayed a well-to-moderate/moderate differentiated SCC grade, while those from CXB-treated mice were well differentiated. The expression levels of membrane EGFR, and nuclear FAK, Slug and ZEB1 were decreased in the xenograft tumours of CXB-treated mice. A retrospective cohort study showed that increasing the daily dose and medication time of CXB was associated with oral cancer prevention. The findings provide an alternative prevention strategy for oral cancer development with CXB use.
Collapse
|
44
|
Wang Y, Ren B, Zhou X, Liu S, Zhou Y, Li B, Jiang Y, Li M, Feng M, Cheng L. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells. PLoS One 2017; 12:e0177166. [PMID: 28472126 PMCID: PMC5417706 DOI: 10.1371/journal.pone.0177166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.
Collapse
Affiliation(s)
- Yuxia Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| |
Collapse
|
45
|
Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents. Sci Rep 2017; 7:44701. [PMID: 28317866 PMCID: PMC5357798 DOI: 10.1038/srep44701] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E2 (PGE2) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection.
Collapse
|
46
|
Li W, Sun D, Lv Z, Wei Y, Zheng L, Zeng T, Zhao J. Insulin-like growth factor binding protein-4 inhibits cell growth, migration and invasion, and downregulates COX-2 expression in A549 lung cancer cells. Cell Biol Int 2017; 41:384-391. [PMID: 28150906 DOI: 10.1002/cbin.10732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor binding protein 4 (IGFBP-4) and cyclooxygenase2 (COX-2) are associated with tumor inflammatory microenvironment which is involved in the progression of tumor. However, it is unclear that the roles of IGFBP-4 in lung cancer and the effects of IGFBP-4 on COX-2 expression. In this study, we showed that IGFBP-4 could decrease COX-2 production in lung cancer A549 cells. IGFBP-4 expression was significantly lower but COX-2 expression was higher in lung cancer tissues compared to matched adjacent normal tissues. In addition, IGFBP-4 could inhibit lung cancer cell proliferation, migration and invasion, and suppress the phosphorylation of PI3 K/AKT, ERK, and CREB. These results indicate that IGFBP-4 has potent antitumor effects in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Weiwen Li
- Department of Pulmonary Medicine, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Debin Sun
- Department of Pulmonary Medicine, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhuqing Lv
- Department of Pulmonary Medicine, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yueqiu Wei
- Department of Pulmonary Medicine, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Department of Neurology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Tingting Zeng
- Department of Neurology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Jialu Zhao
- Department of Pulmonary Medicine, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| |
Collapse
|
47
|
El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol 2017; 50:212-222. [PMID: 27878253 DOI: 10.3892/ijo.2016.3769] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
Despite considerable advances in understanding hepatocellular carcinoma, it is one of the common and deadliest cancers worldwide. Hence, increasing efforts are needed for early diagnosis and effective treatments. Saffron has been recently found to inhibit growth of liver cancer in rats. The aim of this study was to develop an effective method for treatment of liver cancer using magnetite nanoparticles (MNPs) coated with crocin, the main active component of saffron. MNPs were prepared and initially coated with dextran and a cross-linker to enhance conjugation of crocin using a modified coprecipitation method. Cultured HepG2 cells and diethylnitrosamine-injected mice were treated with corcin-coated MNPs and analyzed using cell proliferation assay and immunohistochemical analysis, respectively. Treatment of HepG2 cells with crocin-coated MNPs led to a significant inhibition of their growth as compared to control or those treated with free crocin or uncoated MNPs. Histological examinations of the livers of diethylnitrosamine-injected mice revealed several precancerous changes: multiple proliferative hepatic foci, hyper- or dysplastic transformations of bile ducts/ductules, and nuclear atypia associated with polyploidy, karyomegaly, and vacuolation. Immunohistochemistry using antibodies specific for cell proliferation (Ki-67) and apoptosis (M30-CytoDEATH and Bcl-2) revealed their upregulation during development of precancerous lesions. Using antibodies specific for inflammation (cyclooxygenase-2), oxidative stress (glutathione) and angiogenesis (vascular endothelial growth factor) indicated the involvement of multiple signaling pathways in the development of precancerous lesions. Treatment with crocin-coated MNPs was associated with regression of precancerous lesions, significant upregulation of apoptotic cells and downregulation of Bcl-2 labeling and markers of cell proliferation, inflammation, oxidative stress and angiogenesis. In conclusion, crocin-coated MNPs are more effective than free corcin for treatment of liver precancerous lesions in mice. These findings will help to develop new modalities for early detection and treatment of liver precancerous lesions.
Collapse
Affiliation(s)
- Rkia El-Kharrag
- Department of Biology, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Soleiman Hisaindee
- Department of Chemistry, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Yaser Greish
- Department of Chemistry, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Sherif M Karam
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| |
Collapse
|
48
|
Hsu FT, Chen TC, Chuang HY, Chang YF, Hwang JJ. Enhancement of adoptive T cell transfer with single low dose pretreatment of doxorubicin or paclitaxel in mice. Oncotarget 2016; 6:44134-50. [PMID: 26683520 PMCID: PMC4792547 DOI: 10.18632/oncotarget.6628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023] Open
Abstract
Ex vivo expansion of CD8+ T-cells has been a hindrance for the success of adoptive T cell transfer in clinic. Currently, preconditioning with chemotherapy is used to modulate the patient immunity before ACT, however, the tumor microenvironment beneficial for transferring T cells may also be damaged. Here preconditioning with single low dose of doxorubicin or paclitaxel combined with fewer CD8+ T-cells was investigated to verify whether the same therapeutic efficacy of ACT could be achieved. An E.G7/OT1 animal model that involved adoptive transfer of OVA-specific CD8+ T-cells transduced with a granzyme B promoter-driven firefly luciferase and tomato fluorescent fusion reporter gene was used to evaluate this strategy. The result showed that CD8+ T-cells were activated and sustained longer in mice pretreated with one low-dose Dox or Tax. Enhanced therapeutic efficacy was found in Dox or Tax combined with 2x106 CD8+ T-cells and achieved the same level of tumor growth inhibition as that of 5x106 CD8+ T-cells group. Notably, reduced numbers of Tregs and myeloid derived suppressor cells were shown in combination groups. By contrast, the number of tumor-infiltrating cytotoxic T lymphocytes and IL-12 were increased. The NF-κB activity and immunosuppressive factors such as TGF-β, IDO, CCL2, VEGF, CCL22, COX-2 and IL-10 were suppressed. This study demonstrates that preconditioning with single low dose Dox or Tax and combined with two fifth of the original CD8+ T-cells could improve the tumor microenvironment via suppression of NF-κB and its related immunosuppressors, and activate more CD8+ T-cells which also stay longer.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan.,Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Chun Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Fang Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
49
|
Teema AM, Zaitone SA, Moustafa YM. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology 2016; 107:432-450. [PMID: 27016022 DOI: 10.1016/j.neuropharm.2016.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation and angiogenesis have been involved in the pathogenesis of Parkinson's disease (PD). This study investigated the effect of ibuprofen or piroxicam on the motor response to l-dopa and development of dyskinesia in Parkinsonian rats focusing on the anti-angiogenic role of the two non-steroidal anti-inflammatory drugs (NSAIDs). Rats were divided into nine groups as follows: Group I: the vehicle group, Group II: rotenone group, rats were injected with nine doses of rotenone (1 mg/kg/48 h), group III&IV: rats received rotenone + ibuprofen (10 or 30 mg/kg), Group V-VI: rats received rotenone + piroxicam (1 or 3 mg/kg), Group VII: rats received rotenone + l-dopa/carbidopa (100/10 mg/kg), Group VIII-IX: rats received rotenone + l-dopa/carbidopa + ibuprofen (30 mg/kg) or piroxicam (3 mg/kg). In general, drugs were administered daily for ten weeks. Rotenone-treated rats showed motor dysfunction, lower striatal dopamine, lower staining for nigral tyrosine hydroxylase but higher level of striatal cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) compared to vehicle-treated rats (P < 0.05). Treatment with l-dopa showed wearing-off over the course of the experiment in addition to development of abnormal involuntary movements and upregulated striatal VEGF level. Treatment with ibuprofen or piroxicam in combination with l-dopa preserved the effect of l-dopa at the end of week 10, delayed the development of dyskinesia and decreased striatal COX-2 and VEGF levels. In conclusion, the current study suggests that ibuprofen and piroxicam are promising candidates for neuroprotection in PD and may have utility in conjunction with l-dopa in order to ensure the longevity of its action and to delay the development of dyskinesia.
Collapse
Affiliation(s)
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
50
|
Mukesh C, Upadhyay KK, Devkar RV, Chudasama NA, Raol GG, Prasad K. Preparation of a Noncytotoxic Hemocompatible Ion Gel by Self-Polymerization of HEMA in a Green Deep Eutectic Solvent. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600122] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chandrakant Mukesh
- Natural Products and Green Chemistry Division; CSIR-Central Salt & Marine Chemicals Research Institute; G. B Marg, Bhavnagar 364002 Gujarat India
- AcSIR- Central Salt & Marine Chemicals Research Institute; G. B Marg, Bhavnagar 364002 Gujarat India
| | - Kapil K. Upadhyay
- Division of Phytotherapeutics and Metabolic Endocrinology; Department of Zoology; Faculty of Science; The M.S. University of Baroda; Vadodara 390 002 Gujarat India
| | - Ranjitsinh V. Devkar
- Division of Phytotherapeutics and Metabolic Endocrinology; Department of Zoology; Faculty of Science; The M.S. University of Baroda; Vadodara 390 002 Gujarat India
| | - Nishith A. Chudasama
- Natural Products and Green Chemistry Division; CSIR-Central Salt & Marine Chemicals Research Institute; G. B Marg, Bhavnagar 364002 Gujarat India
| | - Gopalkumar G. Raol
- Department of Microbiology; Shri A. N. Patel P. G. Institute; Sardar Patel University; Anand 388001 Gujarat India
| | - Kamalesh Prasad
- Natural Products and Green Chemistry Division; CSIR-Central Salt & Marine Chemicals Research Institute; G. B Marg, Bhavnagar 364002 Gujarat India
- AcSIR- Central Salt & Marine Chemicals Research Institute; G. B Marg, Bhavnagar 364002 Gujarat India
| |
Collapse
|