1
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
2
|
Moya L, Walpole C, Rae F, Srinivasan S, Seim I, Lai J, Nicol D, Williams ED, Clements JA, Batra J. Characterisation of cell lines derived from prostate cancer patients with localised disease. Prostate Cancer Prostatic Dis 2023; 26:614-624. [PMID: 37264224 PMCID: PMC10449630 DOI: 10.1038/s41391-023-00679-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Prostate cancer is a broad-spectrum disease, spanning from indolent to a highly aggressive lethal malignancy. Prostate cancer cell lines are essential tools to understanding the basic features of this malignancy, as well as in identifying novel therapeutic strategies. However, most cell lines routinely used in prostate cancer research are derived from metastatic disease and may not fully elucidate the molecular events underlying the early stages of cancer development and progression. Thus, there is a need for new cell lines derived from localised disease to better span the disease spectrum. METHODS Prostatic tissue from the primary site, and adjacent non-cancerous tissue was obtained from four patients with localised disease undergoing radical prostatectomy. Epithelial cell outgrowths were immortalised with human papillomavirus type 16 (HPV16) E6 and E7 to establish monoclonal cell lines. Chromosomal ploidy was imaged and STR profiles were determined. Cell morphology, colony formation and cell proliferation characteristics were assessed. Androgen receptor (AR) expression and AR-responsiveness to androgen treatment were analysed by immunofluorescence and RT-qPCR, respectively. RNA-seq analysis was performed to identify prostate lineage markers and expression of prostate cancer tumorigenesis-related genes. RESULTS Two benign cell lines derived from non-cancer cells (AQ0420 and AQ0396) and two tumour tissue derived cancer cell lines (AQ0411 and AQ0415) were immortalised from four patients with localised prostatic adenocarcinoma. The cell lines presented an epithelial morphology and a slow to moderate proliferative rate. None of the cell lines formed anchorage independent colonies or displayed AR-responsiveness. Comparative RNA-seq expression analysis confirmed the prostatic lineage of the four cell lines, with a distinct gene expression profile from that of the metastatic prostate cancer cell lines, PC-3 and LNCaP. CONCLUSIONS Comprehensive characterization of these cell lines may provide new in vitro tools that could bridge the current knowledge gap between benign, early-stage and metastatic disease.
Collapse
Affiliation(s)
- Leire Moya
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Carina Walpole
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
- Cancer Immunotherapies Group, Mater Research, Translational Research Institute, Brisbane, Australia
| | - Fiona Rae
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Australia
| | - John Lai
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
- Australian Genome Research Facility Ltd, Gehrmann Laboratories, the University of Queensland, Brisbane, Australia
| | - David Nicol
- Urology Department, Princess Alexandra Hospital, Brisbane, Australia
- Urology Unit, The Royal Marsden, London, UK
| | - Elizabeth D Williams
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
- Center for genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Saito S, Ishikawa T, Ninagawa S, Okada T, Mori K. A motor neuron disease-associated mutation produces non-glycosylated Seipin that induces ER stress and apoptosis by inactivating SERCA2b. eLife 2022; 11:74805. [PMID: 36444643 PMCID: PMC9708084 DOI: 10.7554/elife.74805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/06/2022] [Indexed: 11/30/2022] Open
Abstract
A causal relationship between endoplasmic reticulum (ER) stress and the development of neurodegenerative diseases remains controversial. Here, we focused on Seipinopathy, a dominant motor neuron disease, based on the finding that its causal gene product, Seipin, is a protein that spans the ER membrane twice. Gain-of-function mutations of Seipin produce non-glycosylated Seipin (ngSeipin), which was previously shown to induce ER stress and apoptosis at both cell and mouse levels albeit with no clarified mechanism. We found that aggregation-prone ngSeipin dominantly inactivated SERCA2b, the major calcium pump in the ER, and decreased the calcium concentration in the ER, leading to ER stress and apoptosis in human colorectal carcinoma-derived cells (HCT116). This inactivation required oligomerization of ngSeipin and direct interaction of the C-terminus of ngSeipin with SERCA2b, and was observed in Seipin-deficient neuroblastoma (SH-SY5Y) cells expressing ngSeipin at an endogenous protein level. Our results thus provide a new direction to the controversy noted above.
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Cisneros LH, Vaske C, Bussey KJ. Identification of a signature of evolutionarily conserved stress-induced mutagenesis in cancer. Front Genet 2022; 13:932763. [PMID: 36147501 PMCID: PMC9488704 DOI: 10.3389/fgene.2022.932763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The clustering of mutations observed in cancer cells is reminiscent of the stress-induced mutagenesis (SIM) response in bacteria. Bacteria deploy SIM when faced with DNA double-strand breaks in the presence of conditions that elicit an SOS response. SIM employs DinB, the evolutionary precursor to human trans-lesion synthesis (TLS) error-prone polymerases, and results in mutations concentrated around DNA double-strand breaks with an abundance that decays with distance. We performed a quantitative study on single nucleotide variant calls for whole-genome sequencing data from 1950 tumors, non-inherited mutations from 129 normal samples, and acquired mutations in 3 cell line models of stress-induced adaptive mutation. We introduce statistical methods to identify mutational clusters, quantify their shapes and tease out the potential mechanism that produced them. Our results show that mutations in both normal and cancer samples are indeed clustered and have shapes indicative of SIM. Clusters in normal samples occur more often in the same genomic location across samples than in cancer suggesting loss of regulation over the mutational process during carcinogenesis. Additionally, the signatures of TLS contribute the most to mutational cluster formation in both patient samples as well as experimental models of SIM. Furthermore, a measure of cluster shape heterogeneity was associated with cancer patient survival with a hazard ratio of 5.744 (Cox Proportional Hazard Regression, 95% CI: 1.824-18.09). Our results support the conclusion that the ancient and evolutionary-conserved adaptive mutation response found in bacteria is a source of genomic instability in cancer. Biological adaptation through SIM might explain the ability of tumors to evolve in the face of strong selective pressures such as treatment and suggests that the conventional 'hit it hard' approaches to therapy could prove themselves counterproductive.
Collapse
Affiliation(s)
- Luis H. Cisneros
- NantOmics, LLC, Santa Cruz, CA, United States
- The Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, United States
| | | | - Kimberly J. Bussey
- NantOmics, LLC, Santa Cruz, CA, United States
- The Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, United States
- Precision Medicine, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
5
|
Heath NG, O’Geen H, Halmai NB, Corn JE, Segal DJ. Imaging Unique DNA Sequences in Individual Cells Using a CRISPR-Cas9-Based, Split Luciferase Biosensor. Front Genome Ed 2022; 4:867390. [PMID: 35403097 PMCID: PMC8990833 DOI: 10.3389/fgeed.2022.867390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
An extensive arsenal of biosensing tools has been developed based on the clustered regularly interspaced short palindromic repeat (CRISPR) platform, including those that detect specific DNA sequences both in vitro and in live cells. To date, DNA imaging approaches have traditionally used full fluorescent reporter-based fusion probes. Such “always-on” probes differentiate poorly between bound and unbound probe and are unable to sensitively detect unique copies of a target sequence in individual cells. Herein we describe a DNA biosensor that provides a sensitive readout for such low-copy DNA sequences through proximity-mediated reassembly of two independently optimized fragments of NanoLuc luciferase (NLuc), a small, bright luminescent reporter. Applying this “turn-on” probe in live cells, we demonstrate an application not easily achieved by fluorescent reporter-based probes, detection of individual endogenous genomic loci using standard epifluorescence microscopy. This approach could enable detection of gene edits during ex vivo editing procedures and should be a useful platform for many other live cell DNA biosensing applications.
Collapse
Affiliation(s)
- Nicholas G. Heath
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Integrative Genetics and Genomics, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Henriette O’Geen
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Nicole B. Halmai
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Jacob E. Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Biology, ETH, Zürich, Switzerland
| | - David J. Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Integrative Genetics and Genomics, University of California, Davis, Davis, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: David J. Segal,
| |
Collapse
|
6
|
Scarborough AM, Govindan A, Conrad NK. Genome-Wide CRISPR Screening to Identify Mammalian Factors that Regulate Intron Retention. Methods Mol Biol 2022; 2537:263-284. [PMID: 35895270 DOI: 10.1007/978-1-0716-2521-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intron retention (IR) regulates gene expression to control fundamental biological processes like metabolism, differentiation, and cell cycle. Despite a wide variety of genes controlled by IR, few techniques are available to identify regulators of IR in an unbiased manner. Here, we describe a CRISPR knockout screening method that can be applied to uncover regulators of IR. This method uses GFP reporter constructs containing a retained intron from a gene of interest such that GFP signal is regulated by IR in the same fashion as the endogenous gene. The GFP levels are then used as a readout for genome-wide CRISPR screening. We have successfully used this approach to identify novel regulator of IR of the MAT2A transcript and propose that similar screens will be broadly applicable for the identification of novel factors that control IR of specific transcripts.
Collapse
Affiliation(s)
- Anna M Scarborough
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ashwin Govindan
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Bussey KJ, Davies PCW. Reverting to single-cell biology: The predictions of the atavism theory of cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:49-55. [PMID: 34371024 PMCID: PMC8833046 DOI: 10.1016/j.pbiomolbio.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Cancer or cancer-like phenomena pervade multicellular life, implying deep evolutionary roots. Many of the hallmarks of cancer recapitulate unicellular modalities, suggesting that cancer initiation and progression represent a systematic reversion to simpler ancestral phenotypes in response to a stress or insult. This so-called atavism theory may be tested using phylostratigraphy, which can be used to assign ages to genes. Several research groups have confirmed that cancer cells tend to over-express evolutionary older genes, and rewire the architecture linking unicellular and multicellular gene networks. In addition, some of the elevated mutation rate - a well-known hallmark of cancer - is actually self-inflicted, driven by genes found to be homologs of the ancient SOS genes activated in stressed bacteria, and employed to evolve biological workarounds. These findings have obvious implications for therapy.
Collapse
Affiliation(s)
- Kimberly J Bussey
- Precision Medicine, Midwestern University, Glendale, AZ, USA; The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Paul C W Davies
- The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
8
|
Murakami H, Tamura N, Enomoto Y, Shimasaki K, Kurosawa K, Hanada K. Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLoS One 2020; 15:e0243980. [PMID: 33347465 PMCID: PMC7751862 DOI: 10.1371/journal.pone.0243980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID) is a developmental disorder that includes both intellectual and adaptive functioning deficits in conceptual, social, and practical domains. Although evidence-based interventions for patients have long been desired, their progress has been hindered due to various determinants. One of these determinants is the complexity of the origins of ID. The ceramide transport protein (CERT) encoded by CERT1 mediates inter-organelle trafficking of ceramide for the synthesis of intracellular sphingomyelin. Utilizing whole exome sequencing analysis, we identified a novel CERT variant, which substitutes a serine at position 135 (S135) for a proline in a patient with severe ID. Biochemical analysis showed that S135 is essential for hyperphosphorylation of a serine-repeat motif of CERT, which is required for down-regulation of CERT activity. Amino acid replacements of S135 abnormally activated CERT and induced an intracellular punctate distribution pattern of this protein. These results identified specific ID-associated CERT1 mutations that induced gain-of-function effects on CERT activity. These findings provide a possible molecular basis for not only new diagnostics but also a conceivable pharmaceutical intervention for ID disorders caused by gain-of-function mutations in CERT1.
Collapse
Affiliation(s)
- Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Norito Tamura
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Kentaro Shimasaki
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
- * E-mail: (KK); (KH)
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (KK); (KH)
| |
Collapse
|
9
|
Ahrendsen JT, Hsu N, Wolf Z, Bryke C, Varma H. Multiple Whole Chromosomal Gains Define Angiomatous Meningiomas and Are Absent From the Tumor Vasculature. J Neuropathol Exp Neurol 2020; 79:618-625. [PMID: 32357369 DOI: 10.1093/jnen/nlaa031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Indexed: 01/27/2023] Open
Abstract
Angiomatous meningioma is a variant with prominent vascularity that can mimic other highly vascularized tumors and present diagnostic challenges. Unlike most meningioma variants, where NF2 gene loss on chromosome 22 is the most common genetic abnormality, angiomatous meningiomas are unique in having multiple whole chromosome gains (polysomies). We analyzed 38 meningiomas, 9 angiomatous (including 2 atypical and 1 anaplastic), and 29 nonangiomatous meningiomas, using array comparative genomic hybridization (aCGH). Angiomatous meningiomas showed multiple chromosomal alterations including polysomies and copy neutral loss of heterozygosity in comparison to nonangiomatous variants. The most frequent gains were of chromosomes 5 and 20 (100% and 89% of cases, respectively); none showed chromosome 22 loss. Furthermore, using fluorescence in situ hybridization we show that the vasculature lacked chromosomal polysomy. While generally benign, we present 2 grade II and the first cytogenetically confirmed grade III angiomatous meningioma, demonstrating their potentially aggressive behavior. Thus, multiple polysomies define angiomatous meningioma and aCGH can distinguish this variant from nonangiomatous meningiomas and other histological mimics in diagnostically challenging cases. Furthermore, the prominent vasculature is not neoplastic and likely induced by angiogenic factors. Together, these findings suggest a distinct tumorigenic pathway in angiomatous meningiomas.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Nancy Hsu
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Zena Wolf
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Christine Bryke
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Depletion of Trichoplein (TpMs) Causes Chromosome Mis-Segregation, DNA Damage and Chromosome Instability in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040993. [PMID: 32316593 PMCID: PMC7226535 DOI: 10.3390/cancers12040993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mitotic perturbations frequently lead to chromosome mis-segregation that generates genome instability, thereby triggering tumor onset and/or progression. Error-free mitosis depends on fidelity-monitoring systems that ensure the temporal and spatial coordination of chromosome segregation. Recent investigations are focused on mitotic DNA damage response (DDR) and chromosome mis-segregations with the aim of developing more efficient anti-cancer therapies. We previously demonstrated that trichoplein keratin filament binding protein (TpMs) exhibits hallmarks of a tumor suppressor gene in cancer-derived cells and human tumors. Here, we show that silencing of TpMs expression results in chromosome mis-segregation, DNA damage and chromosomal instability. TpMs interacts with Mad2, and TpMs depletion results in decreased levels of Mad2 and Cyclin B1 proteins. All the genetic alterations observed are consistent with both defective activation of the spindle assembly checkpoint and mitotic progression. Thus, low levels of TpMs found in certain human tumors may contribute to cellular transformation by promoting genomic instability.
Collapse
|
11
|
Raftopoulou C, Roumelioti FM, Dragona E, Gimelli S, Sloan-Béna F, Gorgoulis V, Antonarakis SE, Gagos S. Karyotypic Flexibility of the Complex Cancer Genome and the Role of Polyploidization in Maintenance of Structural Integrity of Cancer Chromosomes. Cancers (Basel) 2020; 12:cancers12030591. [PMID: 32150835 PMCID: PMC7139464 DOI: 10.3390/cancers12030591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/09/2023] Open
Abstract
Ongoing chromosomal instability in neoplasia (CIN) generates intratumor genomic heterogeneity and limits the efficiency of oncotherapeutics. Neoplastic human cells utilizing the alternative lengthening of telomeres (ALT)-pathway, display extensive structural and numerical CIN. To unravel patterns of genome evolution driven by oncogene-replication stress, telomere dysfunction, or genotoxic therapeutic interventions, we examined by comparative genomic hybridization five karyotypically-diverse outcomes of the ALT osteosarcoma cell line U2-OS. These results demonstrate a high tendency of the complex cancer genome to perpetuate specific genomic imbalances despite the karyotypic evolution, indicating an ongoing process of genome dosage maintenance. Molecular karyotyping in four ALT human cell lines showed that mitotic cells with low levels of random structural CIN display frequent evidence of whole genome doubling (WGD), suggesting that WGD may protect clonal chromosome aberrations from hypermutation. We tested this longstanding hypothesis in ALT cells exposed to gamma irradiation or to inducible DNA replication stress under overexpression of p21. Single-cell cytogenomic analyses revealed that although polyploidization promotes genomic heterogeneity, it also protects the complex cancer genome and hence confers genotoxic therapy resistance by generating identical extra copies of driver chromosomal aberrations, which can be spared in the process of tumor evolution if they undergo unstable or unfit rearrangements.
Collapse
Affiliation(s)
- Christina Raftopoulou
- Laboratory of Genetics, Center of Experimental Medicine and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece (BRFAA); (C.R.); (F.-M.R.); (E.D.)
| | - Fani-Marlen Roumelioti
- Laboratory of Genetics, Center of Experimental Medicine and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece (BRFAA); (C.R.); (F.-M.R.); (E.D.)
| | - Eleni Dragona
- Laboratory of Genetics, Center of Experimental Medicine and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece (BRFAA); (C.R.); (F.-M.R.); (E.D.)
| | - Stefanie Gimelli
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; (S.G.); (F.S.-B.); (S.E.A.)
| | - Frédérique Sloan-Béna
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; (S.G.); (F.S.-B.); (S.E.A.)
| | - Vasilis Gorgoulis
- Histology-Embryology Laboratory, Medical School, National Kapodistrian University of Athens, 11517 Athens, Greece;
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; (S.G.); (F.S.-B.); (S.E.A.)
| | - Sarantis Gagos
- Laboratory of Genetics, Center of Experimental Medicine and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece (BRFAA); (C.R.); (F.-M.R.); (E.D.)
- Correspondence: ; Tel.: +003-021-0659-7471
| |
Collapse
|
12
|
George G, Ninagawa S, Yagi H, Saito T, Ishikawa T, Sakuma T, Yamamoto T, Imami K, Ishihama Y, Kato K, Okada T, Mori K. EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD. eLife 2020; 9:53455. [PMID: 32065582 PMCID: PMC7039678 DOI: 10.7554/elife.53455] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Sequential mannose trimming of N-glycan (Man9GlcNAc2 -> Man8GlcNAc2 -> Man7GlcNAc2) facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). Our gene knockout experiments in human HCT116 cells have revealed that EDEM2 is required for the first step. However, it was previously shown that purified EDEM2 exhibited no α1,2-mannosidase activity toward Man9GlcNAc2 in vitro. Here, we found that EDEM2 was stably disulfide-bonded to TXNDC11, an endoplasmic reticulum protein containing five thioredoxin (Trx)-like domains. C558 present outside of the mannosidase homology domain of EDEM2 was linked to C692 in Trx5, which solely contains the CXXC motif in TXNDC11. This covalent bonding was essential for mannose trimming and subsequent gpERAD in HCT116 cells. Furthermore, EDEM2-TXNDC11 complex purified from transfected HCT116 cells converted Man9GlcNAc2 to Man8GlcNAc2(isomerB) in vitro. Our results establish the role of EDEM2 as an initiator of gpERAD, and represent the first clear demonstration of in vitro mannosidase activity of EDEM family proteins.
Collapse
Affiliation(s)
- Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiki Saito
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Koshi Imami
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Jin B, Ishikawa T, Taniguchi M, Ninagawa S, Okada T, Kagaya S, Mori K. Development of a Rapid in vivo Assay to Evaluate the Efficacy of IRE1-specific Inhibitors of the Unfolded Protein Response Using Medaka Fish. Cell Struct Funct 2020; 45:23-31. [PMID: 31875595 PMCID: PMC10749220 DOI: 10.1247/csf.19032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/20/2019] [Indexed: 11/11/2022] Open
Abstract
Three types of transmembrane protein, IRE1α/IRE1β, PERK, and ATF6α/ATF6β, are expressed ubiquitously in vertebrates as transducers of the unfolded protein response (UPR), which maintains the homeostasis of the endoplasmic reticulum. IRE1 is highly conserved from yeast to mammals, and transmits a signal by a unique mechanism, namely splicing of mRNA encoding XBP1, the transcription factor downstream of IRE1 in metazoans. IRE1 contains a ribonuclease domain in its cytoplasmic region which initiates splicing reaction by direct cleavage of XBP1 mRNA at the two stem loop structures. As the UPR is considered to be involved in the development and progression of various diseases, as well as in the survival and growth of tumor cells, UPR inhibitors have been sought. To date, IRE1 inhibitors have been screened using cell-based reporter assays and fluorescent-based in vitro cleavage assays. Here, we used medaka fish to develop an in vivo assay for IRE1α inhibitors. IRE1α, IRE1β, ATF6α and ATF6β are ubiquitously expressed in medaka. We found that IRE1α/ATF6α-double knockout is lethal, similarly to IRE1α/IRE1β- and ATF6α/ATF6β-double knockout. Therefore, IRE1 inhibitors are expected to confer lethality to ATF6α-knockout medaka but not to wild-type medaka. One compound named K114 was obtained from 1,280 compounds using this phenotypic screening. K114 inhibited ER stress-induced splicing of XBP1 mRNA as well as reporter luciferase expression in HCT116 cells derived from human colorectal carcinoma, and inhibited ribonuclease activity of human IRE1α in vitro. Thus, this phenotypic assay can be used as a quick test for the efficacy of IRE1α inhibitors in vivo.Key words: endoplasmic reticulum, inhibitor screening, mRNA splicing, phenotypic assay, unfolded protein response.
Collapse
Affiliation(s)
- Byungseok Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Mai Taniguchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Koba H, Jin S, Imada N, Ishikawa T, Ninagawa S, Okada T, Sakuma T, Yamamoto T, Mori K. Reinvestigation of Disulfide-bonded Oligomeric Forms of the Unfolded Protein Response Transducer ATF6. Cell Struct Funct 2020; 45:9-21. [PMID: 31852864 PMCID: PMC10739154 DOI: 10.1247/csf.19030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2023] Open
Abstract
ATF6α is an endoplasmic reticulum (ER)-embedded transcription factor which is rapidly activated by ER stress, and a major regulator of ER chaperone levels in vertebrates. We previously suggested that ATF6α occurs as a monomer, dimer and oligomer in the unstressed ER of Chinese hamster ovary cells due to the presence of two evolutionarily conserved cysteine residues in its luminal region (C467 and C618), and showed that ATF6α is reduced upon ER stress, such that only reduced monomer ATF6α is translocated to the Golgi apparatus for activation by proteolysis. However, mutagenesis analysis (C467A and C618A) revealed that the C618A mutant behaves in an unexpected manner (monomer and oligomer) during non-reducing SDS-PAGE, for reasons which remained unclear. Here, we used human colorectal carcinoma-derived HCT116 cells deficient in ATF6α and its relevant ATF6β, and found that ATF6α dimer and oligomer are both dimers, which we designated C618-dimer and C467-dimer, respectively. We demonstrated that C467-dimer (previously considered an oligomer) behaved bigger than C618-dimer (previously considered a dimer) during non-reducing SDS-PAGE, based on their disulfide-bonded structures. Furthermore, ATF6α monomer physically associates with another ATF6α monomer in the absence of disulfide bonding, which renders two C467 residues in close proximity so that formation of C467-dimer is much easier than that of C618-dimer. In contrast, C618-dimer is more easily reduced upon ER stress. Thus, our analysis revealed that all forms of ATF6α, namely monomer, C618-dimer and C467-dimer, are activated by single reduction of a disulfide bond in response to ER stress, ensuring the rapidity of ATF6α activation.Key words: disulfide-bonded structure, endoplasmic reticulum, membrane-bound transcription factor, non-reducing SDS-PAGE, unfolded protein response.
Collapse
Affiliation(s)
- Hibiki Koba
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shengyu Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Nanami Imada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Abubakar SD. Characterization of Chromosomal Abnormalities in Cancer by Spectral Karyotyping. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
16
|
Spiegel A, Bachmann M, Jurado Jiménez G, Sarov M. CRISPR/Cas9-based knockout pipeline for reverse genetics in mammalian cell culture. Methods 2019; 164-165:49-58. [PMID: 31051255 DOI: 10.1016/j.ymeth.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
We present a straightforward protocol for reverse genetics in cultured mammalian cells, using CRISPR/Cas9-mediated homology-dependent repair (HDR) based insertion of a protein trap cassette, resulting in a termination of the endogenous gene expression. Complete loss of function can be achieved with monoallelic trap cassette insertion, as the second allele is frequently disrupted by an error-prone non-homologous end joining (NHEJ) mechanism. The method should be applicable to any expressed gene in most cell lines, including those with low HDR efficiency, as the knockout alleles can be directly selected for.
Collapse
Affiliation(s)
- Aleksandra Spiegel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Mandy Bachmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Gabriel Jurado Jiménez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Shu S, Iimori M, Wakasa T, Ando K, Saeki H, Oda Y, Oki E, Maehara Y. The balance of forces generated by kinesins controls spindle polarity and chromosomal heterogeneity in tetraploid cells. J Cell Sci 2019; 132:jcs.231530. [DOI: 10.1242/jcs.231530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability, one of the most prominent features of tumour cells, causes aneuploidy. Tetraploidy is thought to be an intermediate on the path to aneuploidy, but the mechanistic relationship between the two states is poorly understood. Here, we show that spindle polarity (e.g., bipolarity or multipolarity) in tetraploid cells depends on the level of functional phospho-Eg5, a mitotic kinesin, localised at the spindle. Multipolar spindles are formed in cells with high levels of phospho-Eg5. This process is suppressed by inhibition of Eg5 or expression of a non-phosphorylatable Eg5 mutant, as well as by changing the balance between opposing forces required for centrosome separation. Tetraploid cells with high levels of functional Eg5 give rise to a heterogeneous aneuploid population via multipolar division, whereas those with low levels of functional Eg5 continue to undergo bipolar division and remain tetraploid. Furthermore, Eg5 expression levels correlate with ploidy status in tumour specimens. We provide a novel explanation for the tetraploid intermediate model: spindle polarity and subsequent tetraploid cell behaviour are determined by the balance of forces generated by mitotic kinesins at the spindle.
Collapse
Affiliation(s)
- Sei Shu
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Makoto Iimori
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Wakasa
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Taiho Pharmaceutical Co. Ltd., 1-27 Kandanishiki-cho, Chiyoda-ku, Tokyo 101-8444, Japan
| | - Koji Ando
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Saeki
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eiji Oki
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiko Maehara
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, 3-23-1 Shiobaru, Minami-ku, Fukuoka, 815-8588, Japan
| |
Collapse
|
18
|
Aramburú Junior JS, Eilers Treichel TL, Lemos Pinto Filho ST, Gehrke SA, Machado AK, Cadoná FC, Mânica da Cruz IB, Pippi NL. DNA damage in dental pulp mesenchymal stem cells: An in vitro study. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:293-299. [PMID: 30713606 PMCID: PMC6346493 DOI: 10.30466/vrf.2018.33083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
The aim of this study was to evaluate the potential use of a DNA comet assay, DNA fragmentation fluorimetric assay and reactive oxygen species levels as potential biomarkers of genome conditions of dental pulp stem cells (DPSCs) isolated from dog canine teeth. Mesenchymal stem cells were isolated from the dental pulp collected from dog teeth. The results obtained suggest the ideal moment for clinical application of cellular therapy for this type of cell. The cell culture was maintained with Dulbecco’s modified Eagle’s medium supplemented with 10.00% fetal bovine serum for eight passages. During each passage, cell proliferation, oxidative stress and level of DNA fragmentation were assessed by3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium (MTT) assay, testing 2,7 dichlorodihydro-fluorescein-diacetate and PicoGreen®, respectively. There were important differences among the first three DPSC passages compared to passages 4–8 and a large number of nuclei with some levels of DNA damage (30.00 to 40.00% in initial DPSC passages and > 50.00% in late passages), indicating in vitro DPSC genomic fragility. Within the limitations of this study, the results suggest these relatively simple and inexpensive approaches - comet and DNA fragmentation assays - could help sort stem cells with less DNA damage for use in research or therapies.
Collapse
Affiliation(s)
- Jaime Sardá Aramburú Junior
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil.,Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil; Catholic University of Uruguay, Montevideo, Uruguay
| | | | | | - Sergio Alexandre Gehrke
- Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil; Catholic University of Uruguay, Montevideo, Uruguay
| | | | | | | | - Ney Luis Pippi
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
19
|
Miyamoto T, Akutsu SN, Matsuura S. Updated summary of genome editing technology in human cultured cells linked to human genetics studies. J Hum Genet 2017; 63:133-143. [PMID: 29167553 DOI: 10.1038/s10038-017-0349-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
Current deep-sequencing technology provides a mass of nucleotide variations associated with human genetic disorders to accelerate the identification of causative mutations. To understand the etiology of genetic disorders, reverse genetics in human cultured cells is a useful approach for modeling a disease in vitro. However, gene targeting in human cultured cells is difficult because of their low activity of homologous recombination. Engineered endonucleases enable enhancement of the local activation of DNA repair pathways at the human genome target site to rewrite the desired sequence, thereby efficiently generating disease-modeling cultured cell clones. These edited cells can be used to explore the molecular functions of a causative gene product to uncover the etiological mechanisms. The correction of mutations in patient cells using genome editing technology could contribute to the development of unique gene therapies. This technology can also be applied to screening causative mutations. Rare genetic disorders and non-exonic mutation-caused diseases remain frontier in the field of human genetics as it is difficult to validate whether the extracted nucleotide variants are mutation or polymorphism. When isogenic human cultured cells with a candidate variant reproduce the pathogenic phenotypes, it is confirmed that the variant is a causative mutation.
Collapse
Affiliation(s)
- Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Silvia Natsuko Akutsu
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinya Matsuura
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
20
|
Jia P, Chastain M, Zou Y, Her C, Chai W. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells. Nucleic Acids Res 2017; 45:1219-1232. [PMID: 28180301 PMCID: PMC5388398 DOI: 10.1093/nar/gkw1170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022] Open
Abstract
Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability.
Collapse
Affiliation(s)
- Pingping Jia
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Ying Zou
- Cytogenetics Laboratory, Department of Pathology, the University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chengtao Her
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
21
|
Funk LC, Zasadil LM, Weaver BA. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression. Dev Cell 2017; 39:638-652. [PMID: 27997823 DOI: 10.1016/j.devcel.2016.10.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy.
Collapse
Affiliation(s)
- Laura C Funk
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lauren M Zasadil
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, 6109 WIMR I, Madison, WI 53705-2275, USA.
| |
Collapse
|
22
|
Influence of Repressive Histone and DNA Methylation upon D4Z4 Transcription in Non-Myogenic Cells. PLoS One 2016; 11:e0160022. [PMID: 27467759 PMCID: PMC4965136 DOI: 10.1371/journal.pone.0160022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
We looked at a disease-associated macrosatellite array D4Z4 and focused on epigenetic factors influencing its chromatin state outside of the disease-context. We used the HCT116 cell line that contains the non-canonical polyadenylation (poly-A) signal required to stabilize somatic transcripts of the human double homeobox gene DUX4, encoded from D4Z4. In HCT116, D4Z4 is packaged into constitutive heterochromatin, characterized by DNA methylation and histone H3 tri-methylation at lysine 9 (H3K9me3), resulting in low basal levels of D4Z4-derived transcripts. However, a double knockout (DKO) of DNA methyltransferase genes, DNMT1 and DNMT3B, but not either alone, results in significant loss of DNA and H3K9 methylation. This is coupled with upregulation of transcript levels from the array, including DUX4 isoforms (DUX4-fl) that are abnormally expressed in somatic muscle in the disease Facioscapulohumeral muscular dystrophy (FSHD) along with DUX4 protein, as indicated indirectly by upregulation of bondafide targets of DUX4 in DKO but not HCT116 cells. Results from treatment with a chemical inhibitor of histone methylation in HCT116 suggest that in the absence of DNA hypomethylation, H3K9me3 loss alone is sufficient to facilitate DUX4-fl transcription. Additionally, characterization of a cell line from a patient with Immunodeficiency, Centromeric instability and Facial anomalies syndrome 1 (ICF1) possessing a non-canonical poly-A signal and DNA hypomethylation at D4Z4 showed DUX4 target gene upregulation in the patient when compared to controls in spite of retention of H3K9me3. Taken together, these data suggest that both DNA methylation and H3K9me3 are determinants of D4Z4 silencing. Moreover, we show that in addition to testis, there is appreciable expression of spliced and polyadenylated D4Z4 derived transcripts that contain the complete DUX4 open reading frame (ORF) along with DUX4 target gene expression in the thymus, suggesting that DUX4 may provide normal function in this somatic tissue.
Collapse
|
23
|
Zasadil LM, Britigan EMC, Ryan SD, Kaur C, Guckenberger DJ, Beebe DJ, Moser AR, Weaver BA. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation. Mol Biol Cell 2016; 27:1981-9. [PMID: 27146113 PMCID: PMC4927272 DOI: 10.1091/mbc.e15-10-0747] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/23/2016] [Indexed: 11/11/2022] Open
Abstract
Aneuploidy, an abnormal chromosome number that deviates from a multiple of the haploid, has been recognized as a common feature of cancers for >100 yr. Previously, we showed that the rate of chromosome missegregation/chromosomal instability (CIN) determines the effect of aneuploidy on tumors; whereas low rates of CIN are weakly tumor promoting, higher rates of CIN cause cell death and tumor suppression. However, whether high CIN inhibits tumor initiation or suppresses the growth and progression of already initiated tumors remained unclear. We tested this using the Apc(Min/+) mouse intestinal tumor model, in which effects on tumor initiation versus progression can be discriminated. Apc(Min/+) cells exhibit low CIN, and we generated high CIN by reducing expression of the kinesin-like mitotic motor protein CENP-E. CENP-E(+/-);Apc(Min/+) doubly heterozygous cells had higher rates of chromosome missegregation than singly heterozygous cells, resulting in increased cell death and a substantial reduction in tumor progression compared with Apc(Min/+) animals. Intestinal organoid studies confirmed that high CIN does not inhibit tumor cell initiation but does inhibit subsequent cell growth. These findings support the conclusion that increasing the rate of chromosome missegregation could serve as a successful chemotherapeutic strategy.
Collapse
Affiliation(s)
- Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Eric M C Britigan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Charanjeet Kaur
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - David J Guckenberger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705 Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| | - Amy R Moser
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705 Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705 Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
24
|
Abstract
The evolutionary conserved chromosomal passenger complex (CPC) is essential for faithful transmission of the genome during cell division. Perturbation of this complex in cultured cells gives rise to chromosome segregation errors and cytokinesis failure and as a consequence the ploidy status of the next generation of cells is changed. Aneuploidy and chromosomal instability (CIN) is observed in many human cancers, but whether this may be caused by deregulation of the CPC is unknown. In the present review, we discuss if and how a dysfunctional CPC could contribute to CIN in cancer.
Collapse
|
25
|
Wang Z, Yin H, Zhang Y, Feng Y, Yan Z, Jiang X, Bukhari I, Iqbal F, Cooke HJ, Shi Q. miR-214-mediated downregulation of RNF8 induces chromosomal instability in ovarian cancer cells. Cell Cycle 2015; 13:3519-28. [PMID: 25483088 DOI: 10.4161/15384101.2014.958413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defective DNA damage response (DDR) is frequently associated with carcinogenesis. Abrogation of DDR leads to chromosomal instability, a most common characteristic of tumors. However, the molecular mechanisms underlying regulation of DDR are still elusive. The ubiquitin ligase RNF8 mediates the ubiquitination of γH2AX and recruits 53BP1 and BRCA1 to DNA damage sites which promotes DDR and inhibits chromosomal instability. Though RNF8 is a key player involved in DDR, regulation of its expression is still poorly understood. Here, we show that miR-214 could abrogate DDR by repressing RNF8 expression through direct binding to 3'-untranslated region (3' UTR) of RNF8 mRNA in human ovarian cancer cells. Antagonizing miR-214 by expressing its inhibitors in A2780 cells significantly increased RNF8 expression and thus promoted DNA damage repair. Consistent with the role of miR-214 in regulating RNF8 expression, the impaired DNA repair induced by miR-214 overexpression can be rescued by overexpressing RNF8 mRNA lacking the 3' UTR. Together, our results indicate that down-regulation of RNF8 mediated by miR-214 impedes DNA damage response to induce chromosomal instability in ovarian cancers, which may facilitate the understanding of mechanisms underlying chromosomal instability.
Collapse
Affiliation(s)
- Zheng Wang
- a Laboratory of Molecular and Cell Genetics; CAS Key Laboratory of Innate Immunity and Chronic Disease; CAS Institute of Physics; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science & Technology of China ; Hefei , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stepanenko A, Dmitrenko V. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 2015; 569:182-90. [DOI: 10.1016/j.gene.2015.05.065] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023]
|
27
|
Stepanenko A, Andreieva S, Korets K, Mykytenko D, Huleyuk N, Vassetzky Y, Kavsan V. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells. Mutat Res 2015; 771:56-69. [PMID: 25771981 DOI: 10.1016/j.mrfmmm.2014.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1_CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa_CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293_pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293_CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293_CHI3L1 and HeLa_CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by genome context. Temozolomide treatment of 293_pcDNA3.1 cells intensified the stochastic punctuated genome changes and CNAs, and significantly reduced viability and CFE. In contrast, temozolomide treatment of HeLa_CHI3L1 cells promoted the step-wise genome changes, CNAs, and increased viability and CFE, which did not correlate with the ectopic CHI3L1 production. Thus, consistent coevolution of karyotypes and phenotypes was observed. CIN as a driving force of genome evolution significantly influences growth characteristics of tumor cells and should be always taken into consideration during the different experimental manipulations.
Collapse
Affiliation(s)
- Aleksei Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.
| | - Svitlana Andreieva
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Kateryna Korets
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Dmytro Mykytenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008, Ukraine
| | - Yegor Vassetzky
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805, France
| | - Vadym Kavsan
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| |
Collapse
|
28
|
Skowronki K, Andrews J, Rodenhiser DI, Coomber BL. Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PLoS One 2014; 9:e103243. [PMID: 25079072 PMCID: PMC4117527 DOI: 10.1371/journal.pone.0103243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022] Open
Abstract
DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.
Collapse
Affiliation(s)
- Karolina Skowronki
- Department of Biomedical Sciences; Ontario Veterinary College; University of Guelph; Guelph, ON, Canada
| | - Joseph Andrews
- Departments of Biochemistry, Oncology and Paediatrics; University of Western Ontario; London Regional Cancer Centre and Children’s Health Research Institute; London, ON, Canada
| | - David I. Rodenhiser
- Departments of Biochemistry, Oncology and Paediatrics; University of Western Ontario; London Regional Cancer Centre and Children’s Health Research Institute; London, ON, Canada
| | - Brenda L. Coomber
- Department of Biomedical Sciences; Ontario Veterinary College; University of Guelph; Guelph, ON, Canada
| |
Collapse
|
29
|
Li Z, Pei XH, Yan J, Yan F, Cappell KM, Whitehurst AW, Xiong Y. CUL9 mediates the functions of the 3M complex and ubiquitylates survivin to maintain genome integrity. Mol Cell 2014; 54:805-19. [PMID: 24793696 DOI: 10.1016/j.molcel.2014.03.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/22/2014] [Accepted: 03/28/2014] [Indexed: 11/16/2022]
Abstract
The Cullin 9 (CUL9) gene encodes a putative E3 ligase that localizes in the cytoplasm. Cul9 null mice develop spontaneous tumors in multiple organs; however, both the cellular and the molecular mechanisms of CUL9 in tumor suppression are currently unknown. We show here that deletion of Cul9 leads to abnormal nuclear morphology, increased DNA damage, and aneuploidy. CUL9 knockdown rescues the microtubule and mitosis defects in cells depleted for CUL7 or OBSL1, two genes that are mutated in a mutually exclusive manner in 3M growth retardation syndrome and function in microtubule dynamics. CUL9 promotes the ubiquitylation and degradation of survivin and is inhibited by CUL7. Depletion of CUL7 decreases survivin level, and overexpression of survivin rescues the defects caused by CUL7 depletion. We propose a 3M-CUL9-survivin pathway in maintaining microtubule and genome integrity, normal development, and tumor suppression.
Collapse
Affiliation(s)
- Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Xin-Hai Pei
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Jun Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Kathryn M Cappell
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Angelique W Whitehurst
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA; Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
30
|
Roschke AV, Rozenblum E. Multi-layered cancer chromosomal instability phenotype. Front Oncol 2013; 3:302. [PMID: 24377086 PMCID: PMC3858786 DOI: 10.3389/fonc.2013.00302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/27/2013] [Indexed: 01/13/2023] Open
Abstract
Whole-chromosomal instability (W-CIN) – unequal chromosome distribution during cell division – is a characteristic feature of a majority of cancer cells distinguishing them from their normal counterparts. The precise molecular mechanisms that may cause mis-segregation of chromosomes in tumor cells just recently became more evident. The consequences of W-CIN are numerous and play a critical role in carcinogenesis. W-CIN mediates evolution of cancer cell population under selective pressure and can facilitate the accumulation of genetic changes that promote malignancy. It has both tumor-promoting and tumor-suppressive effects, and their balance could be beneficial or detrimental for carcinogenesis. The characterization of W-CIN as a complex multi-layered adaptive phenotype highlights the intra- and extracellular adaptations to the consequences of genome reshuffling. It also provides a framework for targeting aggressive chromosomally unstable cancers.
Collapse
Affiliation(s)
- Anna V Roschke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Ester Rozenblum
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
31
|
Janbandhu VC, Moik D, Fässler R. Cre recombinase induces DNA damage and tetraploidy in the absence of loxP sites. Cell Cycle 2013; 13:462-70. [PMID: 24280829 DOI: 10.4161/cc.27271] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The spatiotemporal manipulations of gene expression by the Cre recombinase (Cre) of bacteriophage P1 has become an essential asset to understanding mammalian genetics. Accumulating evidence suggests that Cre activity can, in addition to excising targeted loxP sites, induce cytotoxic effects, including abnormal cell cycle progression, genomic instability, and apoptosis, which can accelerate cancer progression. It is speculated that these defects are caused by Cre-induced DNA damage at off-target sites. Here we report the formation of tetraploid keratinocytes in the epidermis of keratin 5 and/or keratin 14 promoter-driven Cre (KRT5- and KRT14-Cre) expressing mouse skin. Biochemical analyses and flow cytometry demonstrated that Cre expression also induces DNA damage, genomic instability, and tetraploidy in HCT116 cells, and live-cell imaging revealed an extension of the G 2 cell cycle phase followed by defective or skipping of mitosis as cause for the tetraploidy. Since tetraploidy eventually leads to aneuploidy, a hallmark of cancer, our findings highlight the importance of distinguishing non-specific cytopathic effects from specific Cre/loxP-driven genetic manipulations when using Cre-mediated gene deletions.
Collapse
Affiliation(s)
- Vaibhao C Janbandhu
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| | - Daniel Moik
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| | - Reinhard Fässler
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| |
Collapse
|
32
|
McCormack A, Fan JL, Duesberg M, Bloomfield M, Fiala C, Duesberg P. Individual karyotypes at the origins of cervical carcinomas. Mol Cytogenet 2013; 6:44. [PMID: 24134916 PMCID: PMC3879223 DOI: 10.1186/1755-8166-6-44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/01/2013] [Indexed: 01/08/2023] Open
Abstract
Background In 1952 Papanicolaou et al. first diagnosed and graded cervical carcinomas based on individual “abnormal DNA contents” and cellular phenotypes. Surprisingly current papilloma virus and mutation theories of carcinomas do not mention these individualities. The viral theory holds that randomly integrated, defective genomes of papilloma viruses, which are often untranscribed, cause cervical carcinomas with unknown cofactors 20–50 years after infection. Virus-free carcinomas are attributed to mutations of a few tumor-suppressor genes, especially the p53 gene. But the paradox of how a few mutations or latent defective viral DNAs would generate carcinomas with endless individual DNA contents, degrees of malignancies and cellular phenotypes is unsolved. Since speciation predicts individuality, we test here the theory that cancers are autonomous species with individual clonal karyotypes and phenotypes. This theory postulates that carcinogens induce aneuploidy. By unbalancing mitosis genes aneuploidy catalyzes chain reactions of karyotypic evolutions. Most such evolutions end with non-viable karyotypes but a few become new cancer karyotypes. Despite congenitally unbalanced mitosis genes cancer karyotypes are stabilized by clonal selections for cancer-specific autonomy. Results To test the prediction of the speciation theory that individual carcinomas have individual clonal karyotypes and phenotypes, we have analyzed here the phenotypes and karyotypes of nine cervical carcinomas. Seven of these contained papilloma virus sequences and two did not. We determined phenotypic individuality and clonality based on the morphology and sociology of carcinoma cells in vitro. Karyotypic individuality and clonality were determined by comparing all chromosomes of 20 karyotypes of carcinomas in three-dimensional arrays. Such arrays list chromosome numbers on the x-axis, chromosome copy numbers on the y-axis and the number of karyotypes arrayed on the z-axis. We found (1) individual clonal karyotypes and phenotypes in all nine carcinomas, but no virus-specific markers, (2) 1-to-1 variations between carcinoma-specific karyotypes and phenotypes, e.g. drug-resistance and cell morphology, (3) proportionality between the copy numbers of chromosomes and the copy numbers of hundreds of over- and under-expressed mRNAs, (4) evidence that tobacco-carcinogens induce cervical carcinomas via aneuploidy, consistent with the speciation theory. Conclusions Since the individual clonal karyotypes of nine carcinomas correlated and co-varied 1-to-1 with complex individual transcriptomes and phenotypes, we have classical genetic and functional transcriptomic evidence to conclude that these karyotypes encode carcinomas - much like the clonal karyotypes that encode conventional species. These individual karyotypes explain the individual “DNA contents”, the endless grades of malignancies and the complex individual transcriptomes and phenotypes of carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Duesberg
- Department of Molecular and Cell Biology; Donner Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
33
|
Kang H, Shibata D. Direct measurements of human colon crypt stem cell niche genetic fidelity: the role of chance in non-darwinian mutation selection. Front Oncol 2013; 3:264. [PMID: 24133655 PMCID: PMC3796283 DOI: 10.3389/fonc.2013.00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023] Open
Abstract
Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs) reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple “non-Darwinian” way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.
Collapse
Affiliation(s)
- Haeyoun Kang
- Department of Pathology, CHA Bundang Medical Center, CHA University , Seongnam-si , South Korea
| | | |
Collapse
|
34
|
Nicholson JM, Cimini D. Cancer karyotypes: survival of the fittest. Front Oncol 2013; 3:148. [PMID: 23760367 PMCID: PMC3675379 DOI: 10.3389/fonc.2013.00148] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are typically characterized by complex karyotypes including both structural and numerical changes, with aneuploidy being a ubiquitous feature. It is becoming increasingly evident that aneuploidy per se can cause chromosome mis-segregation, which explains the higher rates of chromosome gain/loss observed in aneuploid cancer cells compared to normal diploid cells, a phenotype termed chromosomal instability (CIN). CIN can be caused by various mechanisms and results in extensive karyotypic heterogeneity within a cancer cell population. However, despite such karyotypic heterogeneity, cancer cells also display predominant karyotypic patterns. In this review we discuss the mechanisms of CIN, with particular emphasis on the role of aneuploidy on CIN. Further, we discuss the potential functional role of karyotypic patterns in cancer.
Collapse
|
35
|
Zasadil LM, Britigan EMC, Weaver BA. 2n or not 2n: Aneuploidy, polyploidy and chromosomal instability in primary and tumor cells. Semin Cell Dev Biol 2013; 24:370-9. [PMID: 23416057 DOI: 10.1016/j.semcdb.2013.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022]
Abstract
Mitotic defects leading to aneuploidy have been recognized as a hallmark of tumor cells for over 100 years. Current data indicate that ∼85% of human cancers have missegregated chromosomes to become aneuploid. Some maintain a stable aneuploid karyotype, while others consistently missegregate chromosomes over multiple divisions due to chromosomal instability (CIN). Both aneuploidy and CIN serve as markers of poor prognosis in diverse human cancers. Despite this, aneuploidy is generally incompatible with viability during development, and some aneuploid karyotypes cause a proliferative disadvantage in somatic cells. In vivo, the intentional introduction of aneuploidy can promote tumors, suppress them, or do neither. Here, we summarize current knowledge of the effects of aneuploidy and CIN on proliferation and cell death in nontransformed cells, as well as on tumor promotion, suppression, and prognosis.
Collapse
Affiliation(s)
- Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | | | | |
Collapse
|
36
|
Toward personalized cell therapies by using stem cells: seven relevant topics for safety and success in stem cell therapy. J Biomed Biotechnol 2012; 2012:758102. [PMID: 23226945 PMCID: PMC3514047 DOI: 10.1155/2012/758102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Stem cells, both embryonic and adult, due to the potential for application in tissue regeneration have been the target of interest to the world scientific community. In fact, stem cells can be considered revolutionary in the field of medicine, especially in the treatment of a wide range of human diseases. However, caution is needed in the clinical application of such cells and this is an issue that demands more studies. This paper will discuss some controversial issues of importance for achieving cell therapy safety and success. Particularly, the following aspects of stem cell biology will be presented: methods for stem cells culture, teratogenic or tumorigenic potential, cellular dose, proliferation, senescence, karyotyping, and immunosuppressive activity.
Collapse
|
37
|
Huehls AM, Wagner JM, Huntoon CJ, Karnitz LM. Identification of DNA repair pathways that affect the survival of ovarian cancer cells treated with a poly(ADP-ribose) polymerase inhibitor in a novel drug combination. Mol Pharmacol 2012; 82:767-76. [PMID: 22833573 DOI: 10.1124/mol.112.080614] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Floxuridine (5-fluorodeoxyuridine, FdUrd), a U.S. Food and Drug Administration-approved drug and metabolite of 5-fluorouracil, causes DNA damage that is repaired by base excision repair (BER). Thus, poly(ADP-ribose) polymerase (PARP) inhibitors, which disrupt BER, markedly sensitize ovarian cancer cells to FdUrd, suggesting that this combination may have activity in this disease. It remains unclear, however, which DNA repair and checkpoint signaling pathways affect killing by these agents individually and in combination. Here we show that depleting ATR, BRCA1, BRCA2, or RAD51 sensitized to ABT-888 (veliparib) alone, FdUrd alone, and FdUrd + ABT-888 (F+A), suggesting that homologous recombination (HR) repair protects cells exposed to these agents. In contrast, disabling the mismatch, nucleotide excision, Fanconi anemia, nonhomologous end joining, or translesion synthesis repair pathways did not sensitize to these agents alone (including ABT-888) or in combination. Further studies demonstrated that in BRCA1-depleted cells, F+A was more effective than other chemotherapy+ABT-888 combinations. Taken together, these studies 1) identify DNA repair and checkpoint pathways that are important in ovarian cancer cells treated with FdUrd, ABT-888, and F+A, 2) show that disabling HR at the level of ATR, BRCA1, BRCA2, or RAD51, but not Chk1, ATM, PTEN, or FANCD2, sensitizes cells to ABT-888, and 3) demonstrate that even though ABT-888 sensitizes ovarian tumor cells with functional HR to FdUrd, the effects of this drug combination are more profound in tumors with HR defects, even compared with other chemotherapy + ABT-888 combinations, including cisplatin + ABT-888.
Collapse
Affiliation(s)
- Amelia M Huehls
- Division of Oncology Research, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
38
|
Sandhu S, Wu X, Nabi Z, Rastegar M, Kung S, Mai S, Ding H. Loss of HLTF function promotes intestinal carcinogenesis. Mol Cancer 2012; 11:18. [PMID: 22452792 PMCID: PMC3337324 DOI: 10.1186/1476-4598-11-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/27/2012] [Indexed: 11/23/2022] Open
Abstract
Background HLTF (Helicase-like Transcription Factor) is a DNA helicase protein homologous to the SWI/SNF family involved in the maintenance of genomic stability and the regulation of gene expression. HLTF has also been found to be frequently inactivated by promoter hypermethylation in human colon cancers. Whether this epigenetic event is required for intestinal carcinogenesis is unknown. Results To address the role of loss of HLTF function in the development of intestinal cancer, we generated Hltf deficient mice. These mutant mice showed normal development, and did not develop intestinal tumors, indicating that loss of Hltf function by itself is insufficient to induce the formation of intestinal cancer. On the Apcmin/+ mutant background, Hltf- deficiency was found to significantly increase the formation of intestinal adenocarcinoma and colon cancers. Cytogenetic analysis of colon tumor cells from Hltf -/-/Apcmin/+ mice revealed a high incidence of gross chromosomal instabilities, including Robertsonian fusions, chromosomal fragments and aneuploidy. None of these genetic alterations were observed in the colon tumor cells derived from Apcmin/+ mice. Increased tumor growth and genomic instability was also demonstrated in HCT116 human colon cancer cells in which HLTF expression was significantly decreased. Conclusion Taken together, our results demonstrate that loss of HLTF function promotes the malignant transformation of intestinal or colonic adenomas to carcinomas by inducing genomic instability. Our findings highly suggest that epigenetic inactivation of HLTF, as found in most human colon cancers, could play an important role in the progression of colon tumors to malignant cancer.
Collapse
Affiliation(s)
- Sumit Sandhu
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg MB R3E 0J9, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Imreh G, Norberg HV, Imreh S, Zhivotovsky B. Chromosomal breaks during mitotic catastrophe trigger γH2AX-ATM-p53-mediated apoptosis. J Cell Sci 2012; 124:2951-63. [PMID: 21878502 DOI: 10.1242/jcs.081612] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the cause and outcome of mitotic catastrophe (MC) has been thoroughly investigated, precisely how the ensuing lethality is regulated during or following this process and what signals are involved remain unknown. Moreover, the mechanism of the decision of cell death modalities following MC is still not well characterised. We demonstrate here a crucial role of the γH2AX-ATM-p53 pathway in the regulation of the apoptotic outcome of MC resulting from cells entering mitosis with damaged DNA. In addition to p53 deficiency, the depletion of ATM (ataxia telangiectasia mutated), but not ATR (ataxia telangiectasia and Rad3-related protein), protected against apoptosis and shifted cell death towards necrosis. Activation of this pathway is triggered by the augmented chromosomal damage acquired during anaphase in doxorubicin-treated cells lacking 14-3-3σ (also known as epithelial cell marker protein-1 or stratifin). Moreover, cells that enter mitosis with damaged DNA encounter segregation problems because of their abnormal chromosomes, leading to defects in mitotic exit, and they therefore accumulate in G1 phase. These multi- or micronucleated cells are prevented from cycling again in a p53- and p21-dependent manner, and subsequently die. Because increased chromosomal damage resulting in extensive H2AX phosphorylation appears to be a direct cause of catastrophic mitosis, our results describe a mechanism that involves generation of additional DNA damage during MC to eliminate chromosomally unstable cells.
Collapse
Affiliation(s)
- Gabriela Imreh
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
40
|
Duailibi MT, Kulikowski LD, Duailibi SE, Lipay MVN, Melaragno MI, Ferreira LM, Vacanti JP, Yelick PC. Cytogenetic instability of dental pulp stem cell lines. J Mol Histol 2011; 43:89-94. [PMID: 22109772 DOI: 10.1007/s10735-011-9373-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/09/2011] [Indexed: 11/26/2022]
Abstract
Human adult stem cells (hASCs) offer a potentially renewable source of cell types that are easily isolated and rapidly expanded for use in regenerative medicine and cell therapies without the complicating ethical problems that are associated with embryonic stem cells. However, the eventual therapeutic use of hASCs requires that these cells and their derivatives maintain their genomic stability. There is currently a lack of systematic studies that are aimed at characterising aberrant chromosomal changes in cultured ASCs over time. However, the presence of mosaicism and accumulation of karyotypic abnormalities within cultured cell subpopulations have been reported. To investigate cytogenetic integrity of cultured human dental stem cell (hDSC) lines, we analysed four expanded hDSC cultures using classical G banding and fluorescent in situ hybridisation (FISH) with X chromosome specific probe. Our preliminary results revealed that about 70% of the cells exhibited karyotypic abnormalities including polyploidy, aneuploidy and ring chromosomes. The heterogeneous spectrum of abnormalities indicates a high frequency of chromosomal mutations that continuously arise upon extended culture. These findings emphasise the need for the careful analysis of the cytogenetic stability of cultured hDSCs before they can be used in clinical therapies.
Collapse
Affiliation(s)
- Monica Talarico Duailibi
- Department of Plastic Surgery, Federal University of São Paulo, UNIFESP CTCMol, Center of Cellular and Molecular Therapy, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abdel-Rahman WM. Genomic instability and carcinogenesis: an update. Curr Genomics 2011; 9:535-41. [PMID: 19516960 PMCID: PMC2694557 DOI: 10.2174/138920208786847926] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/12/2008] [Accepted: 08/14/2008] [Indexed: 12/15/2022] Open
Abstract
Cancers arise as a result of stepwise accumulation of mutations which may occur at the nucleotide level and/or the gross chromosomal level. Many cancers particularly those of the colon display a form of genomic instability which may facilitate and speed up tumor initiation and development. In few instances, a "mutator mutation" has been clearly implicated in driving the accumulation of other carcinogenic mutations. For example, the post-replicative DNA mismatch repair deficiency results in dramatic increase in insertion/deletion mutations giving rise to the microsatellite instability (MSI) phenotype and may predispose to a spectrum of tumours when it occurs in the germline. Although many sporadic cancers show multiple mutations suggesting unstable genome, the role of this instability in carcinogenesis, as opposed to the power of natural selection, has been a matter of controversy. This review gives an update of the latest data on these issues particularly recent data from genome-wide, high throughput techniques as well as mathematical modelling. Throughout this review, reference will be made to the relevance of genomic instability to the pathogenesis of colorectal carcinoma particularly its hereditary and familial subsets.
Collapse
Affiliation(s)
- Wael M Abdel-Rahman
- Department of Medical Laboratory Technology, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
42
|
Roschke AV, Kirsch IR. Targeting karyotypic complexity and chromosomal instability of cancer cells. Curr Drug Targets 2011; 11:1341-50. [PMID: 20840077 DOI: 10.2174/1389450111007011341] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/12/2010] [Indexed: 11/22/2022]
Abstract
Multiple karyotypic abnormalities and chromosomal instability are characteristic features of many cancers that are relatively resistant to chemotherapeutic agents currently used in the clinic. These same features represent potentially targetable "states" that are essentially tumor specific. The assessment of the chromosomal state of a cancer cell population may provide a guide for the selection or development of drugs active against aggressive and intractable cancers.
Collapse
Affiliation(s)
- Anna V Roschke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Building NNMC8, Room 5101, Bethesda, MD 20889-5105, USA.
| | | |
Collapse
|
43
|
Genescà A, Pampalona J, Frías C, Domínguez D, Tusell L. Role of telomere dysfunction in genetic intratumor diversity. Adv Cancer Res 2011; 112:11-41. [PMID: 21925300 DOI: 10.1016/b978-0-12-387688-1.00002-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most solid tumors are unable to maintain the stability of their genomes at the chromosome level. Indeed, cancer cells display highly rearranged karyotypes containing translocations, amplifications, deletions, and gains and losses of whole chromosomes, which reshuffle steadily. This chromosomal instability most likely occurs early in the development of cancer, and may represent an important step in promoting the multiple genetic changes required for the initiation and/or progression of the disease. Different mechanisms may underlie chromosome instability in cancer cells, but a prominent role for telomeres, the tip of linear chromosomes, has been determined. Telomeres are ribonucleoprotein structures that prevent natural chromosome ends being recognized as DNA double-strand breaks, by adopting a loop structure. Loss of telomere function appears from either alteration on telomere-binding proteins or from the progressive telomere shortening that normally occurs under physiological conditions in the majority of cells in tissues. Importantly, unmasked telomeres may either trigger the senescent phenotype that has been linked to the aging process or may initiate the chromosome instability needed for cancer development, depending on the integrity of the DNA damage checkpoint responses. Telomere dysfunction contributes to chromosome instability through end-to-end chromosome fusions entering breakage-fusion-bridge (BFB) cycles. Resolution of chromatin bridge intermediates is likely to contribute greatly to the generation of segmental chromosome amplification events, unbalanced chromosome rearrangements, and whole chromosome aneuploidy. Noteworthy is the fact that telomere length heterogeneity among individuals may directly influence the scrambling of the genome at tumor initiation. However, reiterated BFB cycles would randomly reorganize the cell karyotype, thus increasing the genetic diversity that characterizes tumor cells. Even though a direct link is still lacking, multiple evidence lead one to believe that telomere dysfunction directly contributes to cancer development in humans. The expansion of highly unstable cells due to telomere dysfunction enhances the genetic diversity needed to fuel specific mutations that may promote cell immortalization and the acquisition of a tumor phenotype.
Collapse
|
44
|
Klein A, Li N, Nicholson JM, McCormack AA, Graessmann A, Duesberg P. Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes. ACTA ACUST UNITED AC 2010; 200:79-99. [PMID: 20620590 DOI: 10.1016/j.cancergencyto.2010.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
Cancers are clones of autonomous cells defined by individual karyotypes, much like species. Despite such karyotypic evidence for causality, three to six synergistic mutations, termed oncogenes, are generally thought to cause cancer. To test single oncogenes, they are artificially activated with heterologous promoters and spliced into the germ line of mice to initiate cancers with collaborating spontaneous oncogenes. Because such cancers are studied as models for the treatment of natural cancers with related oncogenes, the following must be answered: 1) which oncogenes collaborate with the transgenes in cancers; 2) how do single transgenic oncogenes induce diverse cancers and hyperplasias; 3) what maintains cancers that lose initiating transgenes; 4) why are cancers aneuploid, over- and underexpressing thousands of normal genes? Here we try to answer these questions with the theory that carcinogenesis is a form of speciation. We postulate that transgenic oncogenes initiate carcinogenesis by inducing aneuploidy. Aneuploidy destabilizes the karyotype by unbalancing teams of mitosis genes. This instability thus catalyzes the evolution of new cancer species with individual karyotypes. Depending on their degree of aneuploidy, these cancers then evolve new subspecies. To test this theory, we have analyzed the karyotypes and phenotypes of mammary carcinomas of mice with transgenic SV40 tumor virus- and hepatitis B virus-derived oncogenes. We found that (1) a given transgene induced diverse carcinomas with individual karyotypes and phenotypes; (2) these karyotypes coevolved with newly acquired phenotypes such as drug resistance; (3) 8 of 12 carcinomas were transgene negative. Having found one-to-one correlations between individual karyotypes and phenotypes and consistent coevolutions of karyotypes and phenotypes, we conclude that carcinogenesis is a form of speciation and that individual karyotypes maintain cancers as they maintain species. Because activated oncogenes destabilize karyotypes and are dispensable in cancers, we conclude that they function indirectly, like carcinogens. Such oncogenes would thus not be valid models for the treatment of cancers.
Collapse
Affiliation(s)
- Andreas Klein
- Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Institut für Biochemie, Monbijoustrasse 2, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Resistance to chemotherapy in ovarian cancer is poorly understood. Evolutionary models of cancer predict that, following treatment, resistance emerges either because of outgrowth of an intrinsically resistant sub-clone or evolves in residual disease under the selective pressure of treatment. To investigate genetic evolution in high-grade serous (HGS) ovarian cancers, we first analysed cell line series derived from three cases of HGS carcinoma before and after platinum resistance had developed (PEO1, PEO4 and PEO6; PEA1 and PEA2; and PEO14 and PEO23). Analysis with 24-colour fluorescence in situ hybridisation and single nucleotide polymorphism (SNP) array comparative genomic hybridisation (CGH) showed mutually exclusive endoreduplication and loss of heterozygosity events in clones present at different time points in the same individual. This implies that platinum-sensitive and -resistant disease was not linearly related, but shared a common ancestor at an early stage of tumour development. Array CGH analysis of six paired pre- and post-neoadjuvant treatment HGS samples from the CTCR-OV01 clinical study did not show extensive copy number differences, suggesting that one clone was strongly dominant at presentation. These data show that cisplatin resistance in HGS carcinoma develops from pre-existing minor clones but that enrichment for these clones is not apparent during short-term chemotherapy treatment.
Collapse
|
46
|
A dynamic ratio of the alpha+ and alpha- isoforms of the tight junction protein ZO-1 is characteristic of Caco-2 cells and correlates with their degree of differentiation. Cell Biol Int 2010; 34:669-78. [PMID: 20345370 DOI: 10.1042/cbi20090067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ZO-1 is a peripheral protein that plays a central role in the macromolecular assembly of tight junctions by interacting with integral proteins (occludin, claudins, JAMs) of the membrane of adjoining cells, with the actin cytoskeleton, and with nuclear factors. Human ZO-1 is expressed in all epithelia and some specialized endothelia as variable amounts of two related isoforms, which originate from the alternatively spliced mRNA transcripts alpha(+) and alpha(-) and whose specific differential role is still unknown. Moreover, little is known about the timing of expression of ZO-1 isoforms at the protein and mRNA level. This study shows that during growth of freshly plated Caco-2 cells, the alpha(+)/alpha(-) ratio increased as a result of simultaneous increase of alpha(+) and decrease of alpha(-). Differences in the isoform ratio also correlated with differences in epithelium differentiation. This was determined by aminopeptidase N measurements of cells grown on conventional substrates and on modified, micro/nano-patterned surfaces. A comparable shift of ZO-1 isoforms was not observed in other tumour cell lines of non-intestinal origin (A549, Calu-3). Pancreatic stem cells, propagated without exogenous differentiation stimuli, displayed a slight, stable prevalence of the alpha(-) isoform. Of the intestinal cell lines examined (Caco-2 and T84), only Caco-2 cells displayed a dramatic shift in isoform expression. This suggests that this tumour cell line retains to a higher degree a developmental programme related to the dynamic of enterocytic differentiation in vivo.
Collapse
|
47
|
Efficient repair of DNA double-strand breaks in malignant cells with structural instability. Mutat Res 2010; 683:115-22. [PMID: 19909760 DOI: 10.1016/j.mrfmmm.2009.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 10/22/2009] [Accepted: 10/30/2009] [Indexed: 01/08/2023]
Abstract
Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1alpha) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1alpha promoter from the TK gene, or deletion of either the EF1alpha promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.
Collapse
|
48
|
Sachs RK, Hlatky L. A Rapid-Mutation Approximation for Cell Population Dynamics. Bull Math Biol 2009; 72:359-74. [DOI: 10.1007/s11538-009-9450-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/14/2009] [Indexed: 01/07/2023]
|
49
|
Prosser GA, Copp JN, Syddall SP, Williams EM, Smaill JB, Wilson WR, Patterson AV, Ackerley DF. Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954. Biochem Pharmacol 2009; 79:678-87. [PMID: 19852945 DOI: 10.1016/j.bcp.2009.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) aims to achieve highly selective tumor-cell killing through the use of tumor-tropic gene delivery vectors coupled with systemic administration of otherwise inert prodrugs. Nitroaromatic prodrugs such as CB1954 hold promise for GDEPT as they are readily reduced to potent DNA alkylating agents by bacterial nitroreductase enzymes (NTRs). Transfection with the nfsB gene from Escherichia coli can increase the sensitivity of tumor cells to CB1954 by greater than 1000-fold. However, poor catalytic efficiency limits the activation of CB1954 by NfsB at clinically relevant doses. A lack of flexible, high-throughput screening technology has hindered efforts to discover superior NTR candidates. Here we demonstrate how the SOS chromotest and complementary screening technologies can be used to evaluate novel enzymes that activate CB1954 and other bioreductive and/or genotoxic prodrugs. We identify the major E. coli NTR, NfsA, as 10-fold more efficient than NfsB in activating CB1954 as purified protein (k(cat)/K(m)) and when over-expressed in an E. coli nfsA(-)/nfsB(-) gene deleted strain. NfsA also confers sensitivity to CB1954 when expressed in HCT-116 human colon carcinoma cells, with similar efficiency to NfsB. In addition, we identify two novel E. coli NTRs, AzoR and NemA, that have not previously been characterized in the context of nitroaromatic prodrug activation.
Collapse
Affiliation(s)
- G A Prosser
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Heilig CE, Löffler H, Mahlknecht U, Janssen JWG, Ho AD, Jauch A, Krämer A. Chromosomal instability correlates with poor outcome in patients with myelodysplastic syndromes irrespectively of the cytogenetic risk group. J Cell Mol Med 2009; 14:895-902. [PMID: 19754665 PMCID: PMC3823121 DOI: 10.1111/j.1582-4934.2009.00905.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomal instability (CIN), defined by an elevated frequency of the occurrence of novel chromosomal aberrations, is strongly implicated in the generation of aneuploidy, one of the hallmarks of human cancers. As for aneuploidy itself, the role of CIN in the evolution and progression of malignancy is a matter still open to debate. We investigated numerical as well as structural CIN in primary CD34-positive cells by determining the cell-to-cell variability of the chromosome content using fluorescence-in situ-hybridization (FISH). Thereby, CIN was measured in 65 patients with myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML) and control subjects. Among MDS patients, a subgroup with elevated levels of CIN was identified. At a median follow-up of 17.2 months, all patients within this ‘high CIN’ subgroup had died or progressed to AML, while 80% of MDS patients with normal CIN levels had stable disease (P < 0.001). Notably, there was no statistically significant difference between ‘normal CIN’ and ‘high CIN’ MDS patients regarding established risk factors. Hence, elevated CIN levels were associated with poor outcome, and our method provided additional prognostic information beyond conventional cytogenetics. Furthermore, in all three MDS patients for whom serial measurements were available, development of AML was preceded by increasing CIN levels. In conclusion, elevated CIN levels may be valuable as an early indicator of poor prognosis in MDS, hence corroborating the concept of CIN as a driving force in tumour progression.
Collapse
Affiliation(s)
- Christoph E Heilig
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|