1
|
Hu P, Cao Q, Feng H, Liu Y, Chen Y, Xu J, Feng W, Sun H, Ding H, Wang C, Gao J, Xiao M. MicroRNA-451a is a candidate biomarker and therapeutic target for major depressive disorder. Gen Psychiatr 2024; 37:e101291. [PMID: 38304710 PMCID: PMC10831421 DOI: 10.1136/gpsych-2023-101291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024] Open
Abstract
Background Increasing evidence supports the role of microRNAs (miRNAs) in major depressive disorder (MDD), but the pathophysiological mechanism remains elusive. Aims To explore the mechanism of microRNA-451a (miR-451a) in the pathology and behaviours of depression. Methods Abnormal miRNAs such as miR-451a reported previously in the serum of patients with MDD were screened and then confirmed in a mouse model of depression induced by chronic restraint stress (CRS). Eight-week-old male C57BL/6 mice had miR-451a overexpression in the medial prefrontal cortex (mPFC) via adeno-associated virus serotype 9 vectors encoding a pri-mmu-miR-451a-GFP fusion protein followed by behavioural and pathological analyses. Finally, molecular biological experiments were conducted to investigate the potential mechanism of miR-451a against depression. Results The serum levels of miRNA-451a were significantly lower in patients with MDD, with a negative correlation with the Hamilton Depression Scale scores. Additionally, a negative association between serum miR-451a and behavioural despair or anhedonia was observed in CRS mice. Notably, miR-451a expression was significantly downregulated in the mPFC of CRS-susceptible mice. Overexpressing miR-451a in the mPFC reversed the loss of dendritic spines and the depression-like phenotype of CRS mice. Mechanistically, miR-451a could inhibit CRS-induced corticotropin-releasing factor receptor 1 expression via targeting transcription factor 2, subsequently protecting dendritic spine plasticity. Conclusions Together, these results highlighted miR-451a as a candidate biomarker and therapeutic target for MDD.
Collapse
Affiliation(s)
- Panpan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiuchen Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hu Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Liu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfan Xu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huaiqing Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Nicotine rebalances NAD + homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat Commun 2023; 14:900. [PMID: 36797299 PMCID: PMC9935903 DOI: 10.1038/s41467-023-36543-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Imbalances in NAD+ homeostasis have been linked to aging and various diseases. Nicotine, a metabolite of the NAD+ metabolic pathway, has been found to possess anti-inflammatory and neuroprotective properties, yet the underlying molecular mechanisms remained unknown. Here we find that, independent of nicotinic acetylcholine receptors, low-dose nicotine can restore the age-related decline of NAMPT activity through SIRT1 binding and subsequent deacetylation of NAMPT, thus increasing NAD+ synthesis. 18F-FDG PET imaging revealed that nicotine is also capable of efficiently inhibiting glucose hypermetabolism in aging male mice. Additionally, nicotine ameliorated cellular energy metabolism disorders and deferred age-related deterioration and cognitive decline by stimulating neurogenesis, inhibiting neuroinflammation, and protecting organs from oxidative stress and telomere shortening. Collectively, these findings provide evidence for a mechanism by which low-dose nicotine can activate NAD+ salvage pathways and improve age-related symptoms.
Collapse
|
3
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|
4
|
Xu FL, Yao J, Wu X, Xia X, Xing JX, Xuan JF, Liu YP, Wang BJ. Association Analysis Between SNPs in the Promoter Region of RGS4 and Schizophrenia in the Northern Chinese Han Population. Neuropsychiatr Dis Treat 2020; 16:985-992. [PMID: 32346293 PMCID: PMC7169994 DOI: 10.2147/ndt.s250282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Abnormal RGS4 gene expression may cause neurotransmitter disorders, resulting in schizophrenia. The association between RGS4 and the risk of schizophrenia is controversial, and there has been little research on the SNPs in the promoter region of RGS4. PURPOSE The present study was performed to detect the association between SNPs in the promoter region of the RGS4 gene and the risk of schizophrenia. MATERIALS AND METHODS In this study, the 1757-bp fragment (-1119-+600, TSS+1) of RGS4 was amplified and sequenced in 198 schizophrenia patients and 264 healthy controls of the northern Chinese Han population. Allele, genotype and haplotype frequencies were analyzed by chi-square test. RESULTS Four SNPs were detected in the region. LD analysis determined that rs7515900 was linked to rs10917671 (D' = 1, r2 = 1). Therefore, the data for rs10917671 were eliminated from further analysis. Genotype TT of rs12041948 (P = 0.009, OR = 1.829, and 95% CI = 0.038-0.766) was significantly different between the two groups in the northern Chinese Han population. In males, genotype GG of rs6678136 (P = 0.009, OR = 2.292, and 95% CI = 1.256-4.18) and CC of rs7515900 (P = 0.003, OR = 2.523, and 95% CI = 1.332-4.778) were significantly different. CONCLUSION The results of this study suggested that genotype TT of rs12041948 in the pooled male and female samples and GG of rs6678136 and CC of rs7515900 in the male samples could be risk factors for schizophrenia. The present study is the first to detect an association between SNPs in the promoter region of the RGS4 gene and the risk of schizophrenia in the northern Chinese Han population. Functional studies are required to confirm these findings.
Collapse
Affiliation(s)
- Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
5
|
Wang XS, Zhang S, Xu Z, Zheng SQ, Long J, Wang DS. Genome-wide identification, evolution of ATF/CREB family and their expression in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110324. [DOI: 10.1016/j.cbpb.2019.110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
|
6
|
Lo Iacono L, Ielpo D, Accoto A, Di Segni M, Babicola L, D’Addario SL, Ferlazzo F, Pascucci T, Ventura R, Andolina D. MicroRNA-34a Regulates the Depression-like Behavior in Mice by Modulating the Expression of Target Genes in the Dorsal Raphè. Mol Neurobiol 2019; 57:823-836. [DOI: 10.1007/s12035-019-01750-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023]
|
7
|
Potter HG, Ashbrook DG, Hager R. Offspring genetic effects on maternal care. Front Neuroendocrinol 2019; 52:195-205. [PMID: 30576700 DOI: 10.1016/j.yfrne.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Parental care is found widely across animal taxa and is manifest in a range of behaviours from basic provisioning in cockroaches to highly complex behaviours seen in mammals. The evolution of parental care is viewed as the outcome of an evolutionary cost/benefit trade-off between investing in current and future offspring, leading to the selection of traits in offspring that influence parental behaviour. Thus, level and quality of parental care are affected by both parental and offspring genetic differences that directly and indirectly influence parental care behaviour. While significant research effort has gone into understanding how parental genomes affect parental, and mostly maternal, behaviour, few studies have investigated how offspring genomes affect parental care. In this review, we bring together recent findings across different fields focussing on the mechanism and genetics of offspring effects on maternal care in mammals.
Collapse
Affiliation(s)
- Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, Translational Science Research Building, Room 415, University of Tennessee Health Science Center, 71 S Manassas St, Memphis, TN 38103, United States
| | - Reinmar Hager
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
8
|
Kucharczyk M, Kurek A, Pomierny B, Detka J, Papp M, Tota K, Budziszewska B. The reduced level of growth factors in an animal model of depression is accompanied by regulated necrosis in the frontal cortex but not in the hippocampus. Psychoneuroendocrinology 2018; 94:121-133. [PMID: 29775875 DOI: 10.1016/j.psyneuen.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
In the present study, we asked if the different types of stress alter neuronal plasticity markers distinctively in the frontal cortex (FCx) and in the hippocampus (Hp). To do so, we implemented various stress regimens to analyze changes evoked in these rat brain structures. We utilized several molecular techniques, including western blot, ELISA, quantitative RT-PCR, and various biochemical assays, to examine a range of proteins and subjected rats to behavioral tests to evaluate potential maladaptive alterations. A decrease in the level of growth factors in the FCx was accompanied by changes suggesting damage of this structure in the manner of regulated necrosis, while the Hp appeared to be protected. The observed changes in the brain region-specific alterations in neurotrophin processing may also depend on the period of life, in which an animal experiences stress and the duration of the stressful stimuli. We conclude that chronic stress during pregnancy can result in serious alterations in the functioning of the FCx of the progeny, facilitating the development of depressive behavior later in life. We also suggest that the altered energy metabolism may redirect pro-NGF/p75NTR/ATF2 signaling in the cortical neurons towards cellular death resembling regulated necrosis, rather than apoptosis.
Collapse
Affiliation(s)
- Mateusz Kucharczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Anna Kurek
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Chair of Toxicology, Faculty of Pharmacy, Medical College, Jagiellonian University, Kraków, Poland
| | - Jan Detka
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Mariusz Papp
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Tota
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bogusława Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
9
|
Association of variants in SH2B1 and RABEP1 with worsening of low-density lipoprotein and glucose parameters in patients treated with psychotropic drugs. Gene 2017; 628:8-15. [DOI: 10.1016/j.gene.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 07/02/2017] [Indexed: 12/22/2022]
|
10
|
Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment. Transl Psychiatry 2016; 6:e821. [PMID: 27219347 PMCID: PMC5070063 DOI: 10.1038/tp.2016.79] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is associated with a significantly elevated risk of developing serious medical illnesses such as cardiovascular disease, immune impairments, infection, dementia and premature death. Previous work has demonstrated immune dysregulation in subjects with MDD. Using genome-wide transcriptional profiling and promoter-based bioinformatic strategies, we assessed leukocyte transcription factor (TF) activity in leukocytes from 20 unmedicated MDD subjects versus 20 age-, sex- and ethnicity-matched healthy controls, before initiation of antidepressant therapy, and in 17 of the MDD subjects after 8 weeks of sertraline treatment. In leukocytes from unmedicated MDD subjects, bioinformatic analysis of transcription control pathway activity indicated an increased transcriptional activity of cAMP response element-binding/activating TF (CREB/ATF) and increased activity of TFs associated with cellular responses to oxidative stress (nuclear factor erythroid-derived 2-like 2, NFE2l2 or NRF2). Eight weeks of antidepressant therapy was associated with significant reductions in Hamilton Depression Rating Scale scores and reduced activity of NRF2, but not in CREB/ATF activity. Several other transcriptional regulation pathways, including the glucocorticoid receptor (GR), nuclear factor kappa-B cells (NF-κB), early growth response proteins 1-4 (EGR1-4) and interferon-responsive TFs, showed either no significant differences as a function of disease or treatment, or activities that were opposite to those previously hypothesized to be involved in the etiology of MDD or effective treatment. Our results suggest that CREB/ATF and NRF2 signaling may contribute to MDD by activating immune cell transcriptome dynamics that ultimately influence central nervous system (CNS) motivational and affective processes via circulating mediators.
Collapse
|
11
|
Vaidya VA, Fernandes K, Jha S. Regulation of adult hippocampal neurogenesis: relevance to depression. Expert Rev Neurother 2014; 7:853-64. [PMID: 17610392 DOI: 10.1586/14737175.7.7.853] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent hypotheses suggest that depression may involve an inability to mount adaptive structural changes in key neuronal networks. In particular, the addition of new neurons within the hippocampus, a limbic region implicated in mood disorders, is compromised in animal models of depression. Adult hippocampal neurogenesis is also a target for chronic antidepressant treatments, and an increase in adult hippocampal neurogenesis is implicated in the behavioral effects of antidepressants in animal models. The 'neurogenic' hypothesis of depression raises the intriguing possibility that hippocampal neurogenesis may contribute to the pathogenesis and treatment of depressive disorders. While there remains substantial debate about the precise relevance of hippocampal neurogenesis to mood disorders, this provocative hypothesis has been the focus of many recent studies. In this review, we discuss the pathways that may mediate the effects of depression models and antidepressants on adult hippocampal neurogenesis, and the promise of these studies in the development of novel antidepressants.
Collapse
Affiliation(s)
- Vidita A Vaidya
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | | | | |
Collapse
|
12
|
Monje FJ, Kim EJ, Cabatic M, Lubec G, Herkner KR, Pollak DD. A role for glucocorticoid-signaling in depression-like behavior of gastrin-releasing peptide receptor knock-out mice. Ann Med 2011; 43:389-402. [PMID: 21254899 DOI: 10.3109/07853890.2010.538716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract Background. The gastrin-releasing peptide receptor (GRPR) is highly expressed in the limbic system, where it importantly regulates emotional functions and in the suprachiasmatic nucleus, where it is central for the photic resetting of the circadian clock. Mice lacking GRPR presented with deficient light-induced phase shift in activity as well altered emotional learning and amygdala function. The effect of GRPR deletion on depression-like behavior and its molecular signature in the amygdala, however, has not yet been evaluated. Methods. GRPR knock-out mice (GRPR-KO) were tested in the forced-swim test and the sucrose preference test for depression-like behavior. Gene expression in the basolateral nucleus of the amygdala was evaluated by micorarray analysis subsequent to laser-capture microdissection-assisted extraction of mRNA. The expression of selected genes was confirmed by RT-PCR. Results. GRPR-KO mice were found to present with increased depression-like behavior. Microarray analysis revealed down-regulation of several glucocorticoid-responsive genes in the basolateral amygdala. Acute administration of dexamethasone reversed the behavioral phenotype and alterations in gene expression. Discussion. We propose that deletion of GRPR leads to the induction of depression-like behavior which is paralleled by dysregulation of amygdala gene expression, potentially resulting from deficient light-induced corticosterone release in GRPR-KO.
Collapse
Affiliation(s)
- Francisco J Monje
- Department of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna , Austria
| | | | | | | | | | | |
Collapse
|
13
|
Ren X, Dwivedi Y, Mondal AC, Pandey GN. Cyclic-AMP response element binding protein (CREB) in the neutrophils of depressed patients. Psychiatry Res 2011; 185:108-12. [PMID: 20494459 PMCID: PMC3000439 DOI: 10.1016/j.psychres.2010.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/25/2010] [Accepted: 04/11/2010] [Indexed: 11/19/2022]
Abstract
Cyclic-AMP response element binding (CREB) protein regulates the expression of many genes involved in the pathophysiology of depression. Increased CREB levels were found in the brain of antidepressant-treated rats and decreased protein and mRNA expression of CREB was reported in the postmortem brain of depressed suicide victims. We determined CREB protein expression, using Western blot technique, and CRE-DNA binding, using gel shift assay, in neutrophils obtained from 22 drug-free patients with major depressive disorder (MDD) and 23 normal control subjects. Diagnosis of patients was based on Diagnostic and Statistical Manual of Mental Disorders DSM-IV criteria; severity of illness was rated by Hamilton Depression Rating Scale (HDRS). We found that the CRE-DNA binding activity and CREB protein expression were significantly decreased in the neutrophils of drug-free MDD patients compared with normal control subjects. Our findings suggest that CREB may play an important role in the pathophysiology of depression and that it may be an important target for the therapeutic action of antidepressant drugs. Neutrophil CREB levels may also serve as a useful biomarker for patients with MDD.
Collapse
Affiliation(s)
- Xinguo Ren
- Department of Psychiatry, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Amal C. Mondal
- Raja Peary Mohan College, Uttarpara, Hooghly, Pin-712258, India
| | - Ghanshyam N. Pandey
- Department of Psychiatry, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| |
Collapse
|
14
|
Böer U, Noll C, Cierny I, Krause D, Hiemke C, Knepel W. A common mechanism of action of the selective serotonin reuptake inhibitors citalopram and fluoxetine: Reversal of chronic psychosocial stress-induced increase in CRE/CREB-directed gene transcription in transgenic reporter gene mice. Eur J Pharmacol 2010; 633:33-8. [DOI: 10.1016/j.ejphar.2010.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/15/2009] [Accepted: 01/20/2010] [Indexed: 12/28/2022]
|
15
|
The role of lithium in modulation of brain genes: relevance for aetiology and treatment of bipolar disorder. Biochem Soc Trans 2009; 37:1090-5. [PMID: 19754458 DOI: 10.1042/bst0371090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bipolar disorder is a debilitating disorder of the brain with a lifetime prevalence of 1.0% for bipolar I, 1.1% for bipolar II disorder and 2.4-4.7% for subthreshold bipolar disorder. Medications, including lithium, have demonstrated efficacy in the treatment of bipolar disorder, but their molecular targets and mode of action are largely unknown. A few studies have begun to shed light on potential targets of lithium treatment that may be involved in lithium's therapeutic effect. We have recently conducted a microarray study of rat frontal cortex following chronic treatment (21 days) with lithium. Chronic treatment with lithium led to a significant (at least 1.5-fold) down-regulation of 151 genes and up-regulation of 57 genes. We discuss our results in the context of previous microarray studies involving lithium and gene-association studies to identify key genes associated with chronic lithium treatment. A number of genes associated with bipolar disorder, including Comt (catechol-O-methyltransferase), Vapa (vesicle-associated membrane protein-associated protein A), Dtnb (dystrobrevin beta) and Pkd1 (polycystic kidney disease 1), were significantly altered in our microarray dataset along with genes associated with synaptic transmission, apoptosis and transport among other functions.
Collapse
|
16
|
Green TA, Alibhai IN, Unterberg S, Neve RL, Ghose S, Tamminga CA, Nestler EJ. Induction of activating transcription factors (ATFs) ATF2, ATF3, and ATF4 in the nucleus accumbens and their regulation of emotional behavior. J Neurosci 2008; 28:2025-32. [PMID: 18305237 PMCID: PMC6671840 DOI: 10.1523/jneurosci.5273-07.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 01/09/2008] [Accepted: 01/09/2008] [Indexed: 11/21/2022] Open
Abstract
Previous research has shown that cAMP response element (CRE) binding protein (CREB) in the nucleus accumbens gates behavioral responses to emotional stimuli. For example, overexpression of CREB decreases anxiety, sucrose preference, and sensitivity to drugs of abuse and increases depression-like behavior, whereas blocking CREB via overexpression of inducible cAMP early repressor (ICER) or other dominant-negative inhibitors of CRE-mediated transcription has the opposite effects. However, CREB and ICER are but two members of a larger family of leucine zipper-containing transcription factors composed of multiple products of the creb, crem (cAMP response element modulator), and atf (activating transcription factor) genes. We demonstrate here that ATF2, ATF3, and ATF4 are each robustly induced in the nucleus accumbens and dorsal striatum by restraint stress or by amphetamine administration. In contrast, little induction is seen for ATF1 or CREM. Using viral-mediated gene transfer, we show that ATF2 overexpression in nucleus accumbens produces increases in emotional reactivity and antidepressant-like responses, a behavioral phenotype similar to that caused by dominant-negative antagonists of CREB. In contrast, ATF3 or ATF4 overexpression in nucleus accumbens decreases emotional reactivity and increases depression-like behavior, consistent with the behavioral phenotype induced by CREB. Because amphetamine and stress induce ATF2, ATF3, and ATF4 in nucleus accumbens, and overexpression of these transcription factors in this brain region in turn alters behavioral responsiveness to amphetamine and stress, our findings support novel roles for these ATF family members in regulating emotional behavior.
Collapse
Affiliation(s)
- Thomas A. Green
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Imran N. Alibhai
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Stephen Unterberg
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Rachael L. Neve
- McLean Hospital, Department of Psychiatry, Harvard University School of Medicine, Belmont, Massachusetts 02478
| | - Subroto Ghose
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Carol A. Tamminga
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Eric J. Nestler
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| |
Collapse
|
17
|
Matthews DB, Bhave SV, Belknap JK, Brittingham C, Chesler EJ, Hitzemann RJ, Hoffmann PL, Lu L, McWeeney S, Miles MF, Tabakoff B, Williams RW. Complex Genetics of Interactions of Alcohol and CNS Function and Behavior. Alcohol Clin Exp Res 2006; 29:1706-19. [PMID: 16205371 DOI: 10.1097/01.alc.0000179209.44407.df] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This work summarizes the proceedings of a symposium at the 2004 RSA Meeting in Vancouver, Canada. The organizers were R. W. Williams and D. B. Matthews; the Chair was M. F. Miles. The presentations were (1) WebQTL: A resource for analysis of gene expression variation and the genetic dissection of alcohol related phenotypes, by E. J. Chesler, (2) The marriage of microarray and qtl analyses: what's to gain, by J. K. Belknap, (3) Use of WebQTL to identify QTLs associated with footshock stress and ethanol related behaviors, by D. B. Matthews, (4) A high throughput strategy for the detection of quantitative trait genes, by R. J. Hitzemann, and (5) The use of gene arrays in conjunction with transgenic and selected animals to understand anxiety in alcoholism, by. B. Tabakoff.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kamakura M, Tamaki K, Sakaki T, Yoneda Y. Increase of AMPA receptor glutamate receptor 1 subunit and B-cell receptor-associated protein 31 gene expression in hippocampus of fatigued mice. Neurosci Lett 2005; 387:1-4. [PMID: 16051435 DOI: 10.1016/j.neulet.2005.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 07/05/2005] [Accepted: 07/06/2005] [Indexed: 11/27/2022]
Abstract
Central fatigue is an indispensable biosignal for maintaining life, but the neuronal and molecular mechanisms involved remain unclear. In this study, we searched for genes differentially expressed in the hippocampus of fatigued mice to elucidate the mechanisms underlying fatigue. Mice were forced to swim in an adjustable-current water pool, and the maximum swimming time (endurance) until fatigue was measured thrice. Fatigued and nonfatigued mice with equal swimming capacity and body weight were compared. We found that the genes of GluR1 and B-cell receptor-associated protein 31 (Bap31), which acts as a transport molecule in the secretory pathway or as a mediator of apoptosis, were upregulated in the hippocampus of fatigued mice, and increases of GluR1 and Bap31 were confirmed by Northern blotting and real-time PCR. No change of gene expression of AMPA receptor subunits other than GluR1 was observed. These results suggest that a compositional change of AMPA receptor (increase of GluR1) and upregulation of the Bap31 gene may be implicated in fatigue in mice.
Collapse
Affiliation(s)
- Masaki Kamakura
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan.
| | | | | | | |
Collapse
|