1
|
Souza JR, Machado BH. Cardiovascular and respiratory evaluation in adenosine A 2A receptor knockout mice submitted to short-term sustained hypoxia. Exp Physiol 2023; 108:1434-1445. [PMID: 37632713 PMCID: PMC10988442 DOI: 10.1113/ep091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Sustained hypoxia (SH) in mice induces changes in the respiratory pattern and increase in the parasympathetic tone to the heart. Among adenosine G-protein-coupled receptors (GPCRs), the A2A receptors are especially important in mediating adenosine actions during hypoxia due to their expression in neurons involved with the generation and modulation of the autonomic and respiratory functions. Herein, we performed an in vivo evaluation of the baseline cardiovascular and respiratory parameters and their changes in response to SH in knockout mice for A2A receptors (A2A KO). SH produced similar and significant reductions in mean arterial pressure and heart rate in both wild-type (WT) and A2A KO mice when compared to their respective normoxic controls. Mice from WT and A2A KO groups submitted to normoxia or SH presented similar cardiovascular responses to peripheral chemoreflex activation (KCN). Under normoxic conditions A2A KO mice presented a respiratory frequency (fR ) significantly higher in relation to the WT group, which was reduced in response to SH. These data show that the lack of adenosine A2A receptors in mice does not affect the cardiovascular parameters and the autonomic responses to chemoreflex activation in control (normoxia) and SH mice. We conclude that the A2A receptors play a major role in the control of respiratory frequency and in the tachypnoeic response to SH in mice. NEW FINDINGS: What is the central question of this study? Are cardiovascular and respiratory parameters and their changes in response to sustained hypoxia (SH) altered in adenosine A2A receptor knockout mice? What is the main finding and its importance? Cardiovascular parameters and their changes in response to SH were not altered in A2A KO mice. The respiratory frequency in A2A KO was higher than in WT mice. In response to SH the respiratory frequency increased in WT, while it was reduced in A2A KO mice. A2A receptors play a major role in the modulation of respiratory frequency and in the tachypnoeic response to SH in mice.
Collapse
Affiliation(s)
- Juliana R. Souza
- Department of Physiology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| |
Collapse
|
2
|
Defensor EB, Lim MA, Schaevitz LR. Biomonitoring and Digital Data Technology as an Opportunity for Enhancing Animal Study Translation. ILAR J 2021; 62:223-231. [PMID: 34097730 DOI: 10.1093/ilar/ilab018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The failure of animal studies to translate to effective clinical therapeutics has driven efforts to identify underlying cause and develop solutions that improve the reproducibility and translatability of preclinical research. Common issues revolve around study design, analysis, and reporting as well as standardization between preclinical and clinical endpoints. To address these needs, recent advancements in digital technology, including biomonitoring of digital biomarkers, development of software systems and database technologies, as well as application of artificial intelligence to preclinical datasets can be used to increase the translational relevance of preclinical animal research. In this review, we will describe how a number of innovative digital technologies are being applied to overcome recurring challenges in study design, execution, and data sharing as well as improving scientific outcome measures. Examples of how these technologies are applied to specific therapeutic areas are provided. Digital technologies can enhance the quality of preclinical research and encourage scientific collaboration, thus accelerating the development of novel therapeutics.
Collapse
|
3
|
Jackson EK, Gillespie DG, Mi Z, Cheng D. Adenosine Receptors Influence Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2018; 72:511-521. [DOI: 10.1161/hypertensionaha.117.10765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/03/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Edwin K. Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Delbert G. Gillespie
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Zaichuan Mi
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Dongmei Cheng
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
4
|
Reply. Pain 2018; 159:997-999. [DOI: 10.1097/j.pain.0000000000001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ruffle JK, Aziz Q, Farmer AD. Pronociceptive effects mediated by adenosinergic A2A activity at the nucleus accumbens, but what about the autonomic nervous system? Pain 2018; 159:997. [PMID: 29672454 DOI: 10.1097/j.pain.0000000000001179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- James K Ruffle
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Qasim Aziz
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adam D Farmer
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Gastroenterology, University Hospitals Midlands NHS Trust, Stoke on Trent, Staffordshire, United Kingdom
| |
Collapse
|
6
|
Bjorness TE, Greene RW. Adenosine and sleep. Curr Neuropharmacol 2010; 7:238-45. [PMID: 20190965 PMCID: PMC2769007 DOI: 10.2174/157015909789152182] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/22/2022] Open
Abstract
Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity that is both tightly coupled to thalamocortical activation and under tonic inhibitory control by Ado. Most recently, genetic tools have been used to show that Ado receptors regulate a key aspect of sleep, the slow wave activity expressed during slow wave sleep. This review will briefly introduce some of the phenomenology of sleep and then summarize the effect of Ado levels on sleep, the effect of sleep on Ado levels, and recent experiments using mutant mouse models to characterize the role for Ado in sleep control and end with a discussion of which Ado receptors are involved in such control. When taken together, these various experiments suggest that while Ado does play a role in sleep control, it is a specific role with specific functional implications and it is one of many neurotransmitters and neuromodulators affecting the complex behavior of sleep. Finally, since the majority of adenosine-related experiments in the sleep field have focused on SWS, this review will focus largely on SWS; however, the role of adenosine in REM sleep behavior will be addressed.
Collapse
|
7
|
Yang JN, Chen JF, Fredholm BB. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol 2009; 296:H1141-9. [PMID: 19218506 DOI: 10.1152/ajpheart.00754.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart rate (HR), body temperature (Temp), locomotor activity (LA), and oxygen consumption (O(2)C) were studied in awake mice lacking one or both of the adenosine A(1) or A(2A) receptors (A(1)R or A(2A)R, respectively) using telemetry and respirometry, before and after caffeine administration. All parameters were lower during day than night and higher in females than males. When compared with wild-type (WT) littermates, HR was higher in male A(1)R knockout (A(1)RKO) mice but lower in A(2A)RKO mice and intermediate in A(1)-A(2A)R double KO mice. A single dose of an unselective beta-blocker (timolol; 1 mg/kg) abolished the HR differences between these genotypes. Deletion of A(1)Rs had little effect on Temp, whereas deletion of A(2A)Rs increased it in females and decreased it in males. A(1)-A(2A)RKO mice had lower Temp than WT mice. LA was unaltered in A(1)RKO mice and lower in A(2A)RKO and A(1)-A(2A)RKO mice than in WT mice. Caffeine injection increased LA but only in mice expressing A(2A)R. Caffeine ingestion also increased LA in an A(2A)R-dependent manner in male mice. Caffeine ingestion significantly increased O(2)C in WT mice, but less in the different KO mice. Injection of 30 mg/kg caffeine decreased Temp, especially in KO mice, and hence in a manner unrelated to A(1)R or A(2A)R blockade. Selective A(2B) antagonism had little or no effect. Thus A(1)R and A(2A)R influence HR, Temp, LA, and O(2)C in mice in a sex-dependent manner, indicating effects of endogenous adenosine. The A(2A)R plays an important role in the modulation of O(2)C and LA by acute and chronic caffeine administration. There is also evidence for effects of higher doses of caffeine being independent of both A(1)R and A(2A)R.
Collapse
Affiliation(s)
- Jiang-Ning Yang
- Karolinska Institutet, Nanna Svartz väg 2, Stockholm S-171 77 Sweden.
| | | | | |
Collapse
|
8
|
Silvani A, Bastianini S, Berteotti C, Franzini C, Lenzi P, Lo Martire V, Zoccoli G. Sleep Modulates Hypertension in Leptin-Deficient Obese Mice. Hypertension 2009; 53:251-5. [DOI: 10.1161/hypertensionaha.108.125542] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leptin increases sympathetic activity, possibly contributing to hypertension in obese subjects. Hypertension increases cardiovascular mortality, with nighttime (sleep) blood pressure having a substantial prognostic value. We measured blood pressure in male leptin-deficient obese mice (ob/ob; n=7) and their lean wild-type littermates (+/+; n=11) during wakefulness, non–rapid-eye-movement sleep, and rapid-eye-movement sleep to investigate whether, in the absence of leptin, derangements of blood pressure are still associated with obesity and depend on the wake-sleep state. Mice were implanted with a telemetric pressure transducer and electrodes for discriminating wake-sleep states. Mean blood pressure was significantly higher in ob/ob than in +/+ mice during wakefulness (7.3±2.6 mm Hg) and non–rapid-eye-movement sleep (6.7±2.8 mm Hg) but not during rapid-eye-movement sleep (2.6±2.6 mm Hg). In ob/ob and +/+ mice, mean blood pressure was substantially higher during wakefulness than during non–rapid-eye-movement sleep. On passing from non–rapid-eye-movement sleep to rapid-eye-movement sleep, mean blood pressure decreased significantly in ob/ob but not in +/+ mice. The time spent during wakefulness was lower in ob/ob than in +/+ mice during the dark (active) period, whereas the opposite occurred during the light (rest) period. Consequently, mean blood pressure was significantly higher in ob/ob than in +/+ mice during the light (8.2±2.4 mm Hg) but not during the dark (3.0±2.9 mm Hg) period. These data suggest that, in the absence of leptin, obesity may entail hypertensive derangements of blood pressure, which are substantially modulated by the cardiovascular effects of the wake-sleep states.
Collapse
Affiliation(s)
- Alessandro Silvani
- From the Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- From the Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- From the Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Carlo Franzini
- From the Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Pierluigi Lenzi
- From the Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- From the Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- From the Department of Human and General Physiology, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Silvani A. Physiological sleep-dependent changes in arterial blood pressure: central autonomic commands and baroreflex control. Clin Exp Pharmacol Physiol 2008; 35:987-94. [PMID: 18565197 DOI: 10.1111/j.1440-1681.2008.04985.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sleep is a heterogeneous behaviour. As a first approximation, it is subdivided objectively into two states: non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS). The mean value and variability of arterial blood pressure (ABP) decrease physiologically from wakefulness to NREMS. In REMS, there may be a further decrease or increase in mean ABP as well as phasic hypertensive events, which enhance the variability of ABP. The reduced mean ABP during NREMS results from a decrease in either heart rate or sympathetic vasoconstrictor tone. During REMS, sympathetic activity to the different cardiovascular effectors undergoes a substantial repatterning. Thus, the mean ABP in REMS reflects a balance between changes in cardiac output and constriction or dilatation of different vascular beds. In both sleep states, the phasic changes in ABP are driven by bursts of vasoconstriction, which may be accompanied by surges of heart rate. The available evidence supports the hypothesis that the sleep-dependent changes in ABP, either tonic or phasic, result from the integration between cardiovascular reflexes and central autonomic commands that are specific to each sleep state.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Human and General Physiology, University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Ashton KJ, Peart JN, Morrison RR, Matherne GP, Blackburn MR, Headrick JP. Genetic modulation of adenosine receptor function and adenosine handling in murine hearts: insights and issues. J Mol Cell Cardiol 2006; 42:693-705. [PMID: 17258765 DOI: 10.1016/j.yjmcc.2006.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 11/28/2022]
Abstract
The adenosine receptor system has been attributed with a broad range of both physiological and so-called 'retaliatory' functions in the heart and vessels. Despite many years of research, the precise roles of adenosine within the cardiovascular system continue to be debated, and new functions are continually emerging. Adenosine acts via 4 known G-protein-coupled receptor (GPCR) sub-types: A(1), A(2A), A(2B), and A(3) adenosine receptors (ARs). In addition to roles in cardiovascular control, these receptors may represent therapeutic targets, having been attributed with roles in modifying cell death and injury, inflammatory processes, and cardiac and vascular remodeling during/after ischemic or hypoxic insult. A number of models have been developed in which AR sub-types and adenosine handling enzymes have been genetically deleted or transgenically overexpressed in an attempt to more equivocally identify the regulatory functions of these proteins, to identify their potential value as therapeutic targets, and to uncover new regulatory functions of this receptor family. Findings generally support current dogma regarding cardioprotection via A(1) and A(3)ARs, and coronary vasoregulation via A(2)AR sub-types. However, some outcomes are both novel and controversial. This review outlines AR-modified murine models currently under study from the perspective of cardiovascular phenotype.
Collapse
Affiliation(s)
- Kevin J Ashton
- Heart Foundation Research Centre, Griffith University Southport, QLD 4217, Australia
| | | | | | | | | | | |
Collapse
|