1
|
Magnussen JH, Ettrup A, Lehel S, Peters D, Dyssegaard A, Thomsen MS, Mikkelsen JD, Knudsen GM. Characterizing the binding of TC-5619 and encenicline on the alpha7 nicotinic acetylcholine receptor using PET imaging in the pig. FRONTIERS IN NEUROIMAGING 2024; 3:1358221. [PMID: 38601007 PMCID: PMC11004359 DOI: 10.3389/fnimg.2024.1358221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The alpha7 nicotinic acetylcholine receptor (α7-nAChR) has has long been considered a promising therapeutic target for addressing cognitive impairments associated with a spectrum of neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, despite this potential, clinical trials employing α7-nAChR (partial) agonists such as TC-5619 and encenicline (EVP-6124) have fallen short in demonstrating sufficient efficacy. We here investigate the target engagement of TC-5619 and encenicline in the pig brain by use of the α7-nAChR radioligand 11C-NS14492 to characterize binding both with in vitro autoradiography and in vivo occupancy using positron emission tomography (PET). In vitro autoradiography demonstrates significant concentration-dependent binding of 11C-NS14492, and both TC-5619 and encenicline can block this binding. Of particular significance, our in vivo investigations demonstrate that TC-5619 achieves substantial α7-nAChR occupancy, effectively blocking approximately 40% of α7-nAChR binding, whereas encenicline exhibits more limited α7-nAChR occupancy. This study underscores the importance of preclinical PET imaging and target engagement analysis in informing clinical trial strategies, including dosing decisions.
Collapse
Affiliation(s)
- Janus H. Magnussen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Szabolcs Lehel
- PET and Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Morten S. Thomsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Burns LH, Pei Z, Wang HY. Targeting α7 nicotinic acetylcholine receptors and their protein interactions in Alzheimer's disease drug development. Drug Dev Res 2023; 84:1085-1095. [PMID: 37291958 DOI: 10.1002/ddr.22085] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid β1-42 (Aβ42 ) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau-containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra-high-affinity interaction between Aβ42 and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug-related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aβ42 's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A-α7nAChR interaction, reduces Aβ42 's high-affinity binding to α7nAChR, and suppresses Aβ42 's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease-modifying treatment for AD.
Collapse
Affiliation(s)
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
| | - Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
- Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, New York, USA
| |
Collapse
|
3
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
5
|
Bruno JP. Enhancing the resolution of behavioral measures: Key observations during a forty year career in behavioral neuroscience. Neurosci Biobehav Rev 2023; 145:105004. [PMID: 36549379 DOI: 10.1016/j.neubiorev.2022.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reviews several key observations from the research program of Professor John P. Bruno that are believed to have significantly advanced our understanding of the brain's mediation of behavior. This review focuses on findings within several important research areas in behavioral neuroscience, including a) age-dependent neurobehavioral plasticity following brain damage; b) the role of the cortical cholinergic system in attentional processing and cognitive flexibility; and c) the design and validation of animal models of cognitive deficits in schizophrenia. In selecting these observations, emphasis was given to examples in which the heuristic potency was increased by maximizing the resolution and microanalysis of behavioral assays in the same fashion as one typically refines neuronal manipulations. Professor Bruno served the International Behavioral Neuroscience Society (IBNS) as an IBNS Fellow (1995-present) and President of the IBNS (2001-02).
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Potasiewicz A, Faron-Gorecka A, Popik P, Nikiforuk A. Repeated treatment with alpha 7 nicotinic acetylcholine receptor ligands enhances cognitive processes and stimulates Erk1/2 and Arc genes in rats. Behav Brain Res 2021; 409:113338. [PMID: 33940049 DOI: 10.1016/j.bbr.2021.113338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the treatment of cognitive decline in patients with schizophrenia, Alzheimer's disease, and attention-deficit/hyperactivity disorder. Here we examined the promnesic activity of the α7 nAChR agonist (A582941), the type I (CCMI), and the type II (PNU120596) positive allosteric modulators (PAMs) in rats following single and repeated (once daily for seven days) treatment. To determine the neuronal mechanisms underlying the procognitive activity of the tested compounds, levels of the extracellular signal-regulated kinases (Erk1/2) and the activity-regulated cytoskeleton-associated protein (Arc) mRNAs were assessed in the frontal cortical and hippocampal brain regions. Using the novel object recognition test, we demonstrate that the lower doses of A582941 (0.1 mg/kg), CCMI (1 mg/kg), and PNU120596 (0.3 mg/kg) improved recognition memory after repeated but not single administration, suggesting a cumulative effect of repeated dosing. In contrast, the higher doses of A582941 (0.3 mg/kg), CCMI (3 mg/kg) and PNU120596 (1 mg/kg) demonstrated promnesic efficacy following both single and repeated administration. Subsequent in situ hybridization revealed that repeated treatment with A582941 and CCMI, but not PNU120596 enhanced mRNA expression of the Erk1/2 and Arc in the frontal cortex and hippocampus. Present data suggest that both the α7 nAChR agonist and PAMs exhibit procognitive effects after single and repeated administration. The increased level of the Erk1/2 and Arc genes is likely to be at least partially involved in this effect.
Collapse
Affiliation(s)
- Agnieszka Potasiewicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland.
| | - Agata Faron-Gorecka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Krakow, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Krakow, Poland
| |
Collapse
|
8
|
Guo J, Yang G, He Y, Xu H, Fan H, An J, Zhang L, Zhang R, Cao G, Hao D, Yang H. Involvement of α7nAChR in the Protective Effects of Genistein Against β-Amyloid-Induced Oxidative Stress in Neurons via a PI3K/Akt/Nrf2 Pathway-Related Mechanism. Cell Mol Neurobiol 2021; 41:377-393. [PMID: 33215356 DOI: 10.1007/s10571-020-01009-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Abnormal excessive production and deposition of β-amyloid (Aβ) peptides in selectively susceptible brain regions are thought to be a key pathogenic mechanism underlying Alzheimer's disease (AD), resulting in memory deficits and cognitive impairment. Genistein is a phytoestrogen with great promise for counteracting diverse Aβ-induced insults, including oxidative stress and mitochondrial dysfunction. However, the exact molecular mechanism or mechanisms underlying the neuroprotective effects of genistein against Aβ-induced insults are largely uncharacterized. To further elucidate the possible mechanism(s) underlying these protective effects, we investigated the neuroprotective effects of genistein against Aβ-induced oxidative stress mediated by orchestrating α7 nicotinic acetylcholine receptor (α7nAChR) signaling in rat primary hippocampal neurons. Genistein significantly increased cell viability, reduced the number of apoptotic cells, decreased accumulation of reactive oxygen species (ROS), decreased contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), upregulated BCL-2 expression, and suppressed Caspase-3 activity occurring after treatment with 25 μM Aβ25-35. Simultaneously, genistein markedly inhibited the decreases in α7nAChR mRNA and protein expression in cells treated with Aβ25-35. In addition, α7nAChR signaling was intimately involved in the genistein-mediated activation of phosphatidylinositol 3-kinase (PI3K)/Akt and Nrf2/keap1 signaling. Thus, α7nAChR activity together with the PI3K/Akt/Nrf2 signaling cascade likely orchestrates the molecular mechanism underlying the neuroprotective effects of genistein against Aβ-induced oxidative injury.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Guoqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yuqing He
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiming Xu
- Stem Cell Research Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Hong Fan
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Guihua Cao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710069, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
9
|
Martín-Sánchez C, Alés E, Balseiro-Gómez S, Atienza G, Arnalich F, Bordas A, Cedillo JL, Extremera M, Chávez-Reyes A, Montiel C. The human-specific duplicated α7 gene inhibits the ancestral α7, negatively regulating nicotinic acetylcholine receptor-mediated transmitter release. J Biol Chem 2021; 296:100341. [PMID: 33515545 PMCID: PMC7949125 DOI: 10.1016/j.jbc.2021.100341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Gene duplication generates new functions and traits, enabling evolution. Human-specific duplicated genes in particular are primary sources of innovation during our evolution although they have very few known functions. Here we examine the brain function of one of these genes (CHRFAM7A) and its product (dupα7 subunit). This gene results from a partial duplication of the ancestral CHRNA7 gene encoding the α7 subunit that forms the homopentameric α7 nicotinic acetylcholine receptor (α7-nAChR). The functions of α7-nAChR in the brain are well defined, including the modulation of synaptic transmission and plasticity underlying normal attention, cognition, learning, and memory processes. However, the role of the dupα7 subunit remains unexplored at the neuronal level. Here, we characterize that role by combining immunoblotting, quantitative RT-PCR and FRET techniques with functional assays of α7-nAChR activity using human neuroblastoma SH-SY5Y cell variants with different dupα7 expression levels. Our findings reveal a physical interaction between dupα7 and α7 subunits in fluorescent protein-tagged dupα7/α7 transfected cells that negatively affects normal α7-nAChR activity. Specifically, in both single cells and cell populations, the [Ca2+]i signal and the exocytotic response induced by selective stimulation of α7-nAChR were either significantly inhibited by stable dupα7 overexpression or augmented after silencing dupα7 gene expression with specific siRNAs. These findings identify a new role for the dupα7 subunit as a negative regulator of α7-nAChR-mediated control of exocytotic neurotransmitter release. If this effect is excessive, it would result in an impaired synaptic transmission that could underlie the neurocognitive and neuropsychiatric disorders associated with α7-nAChR dysfunction.
Collapse
Affiliation(s)
- Carolina Martín-Sánchez
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Alés
- Department of Medical Physiology and Biophysics, Medical School, Universidad de Sevilla, Sevilla, Spain
| | - Santiago Balseiro-Gómez
- Department of Medical Physiology and Biophysics, Medical School, Universidad de Sevilla, Sevilla, Spain
| | - Gema Atienza
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Arnalich
- Internal Medicine Service, University Hospital La Paz-IdiPAZ, Madrid, Spain
| | - Anna Bordas
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - José L Cedillo
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Extremera
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Carmen Montiel
- Department of Pharmacology and Therapeutics, Medical School, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT 3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 2020; 40:1593-1678. [PMID: 32115745 DOI: 10.1002/med.21666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptophan [5-HT]) is a biologically active amine expressed in platelets, in gastrointestinal (GI) cells and, to a lesser extent, in the central nervous system (CNS). This biogenic compound acts through the activation of seven 5-HT receptors (5-HT1-7 Rs). The 5-HT3 R is a ligand-gated ion channel belonging to the Cys-loop receptor family. There is a wide variety of 5-HT3 R modulators, but only receptor antagonists (known as setrons) have been used clinically for chemotherapy-induced nausea and vomiting and irritable bowel syndrome treatment. However, since the discovery of the setrons in the mid-1980s, a large number of studies have been published exploring new potential applications due their potency in the CNS and mild side effects. The results of these studies have revealed new potential applications, including the treatment of neuropsychiatric disorders such as schizophrenia, depression, anxiety, and drug abuse. In this review, we provide information related to therapeutic potential of 5-HT3 R antagonists on GI and neuropsychiatric disorders. The major attention is paid to the structure, function, and pharmacology of novel 5-HT3 R modulators developed over the past 10 years.
Collapse
Affiliation(s)
- Radomir Juza
- National Institute of Mental Health, Klecany, Czech Republic
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- National Institute of Mental Health, Klecany, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Shenkarev ZO, Shulepko MA, Bychkov ML, Kulbatskii DS, Shlepova OV, Vasilyeva NA, Andreev-Andrievskiy AA, Popova AS, Lagereva EA, Loktyushov EV, Koshelev SG, Thomsen MS, Dolgikh DA, Kozlov SA, Balaban PM, Kirpichnikov MP, Lyukmanova EN. Water-soluble variant of human Lynx1 positively modulates synaptic plasticity and ameliorates cognitive impairment associated with α7-nAChR dysfunction. J Neurochem 2020; 155:45-61. [PMID: 32222974 DOI: 10.1111/jnc.15018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Abstract
Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC50 ~ 50 µM. In mice, ws-Lynx1 penetrated the blood-brain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.
Collapse
Affiliation(s)
- Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Shlepova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| | - Nathalia A Vasilyeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Andreev-Andrievskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anfisa S Popova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeniya A Lagereva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| |
Collapse
|
12
|
Donat CK, Hansen HH, Hansen HD, Mease RC, Horti AG, Pomper MG, L’Estrade ET, Herth MM, Peters D, Knudsen GM, Mikkelsen JD. In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [ 125I]Iodo-ASEM and [ 18F]ASEM as Radiotracers of Homo- and Heteromeric α7 Nicotinic Acetylcholine Receptors. Molecules 2020; 25:molecules25061425. [PMID: 32245032 PMCID: PMC7144377 DOI: 10.3390/molecules25061425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in several cognitive and physiologic processes; its expression levels and patterns change in neurologic and psychiatric diseases, such as schizophrenia and Alzheimer’s disease, which makes it a relevant drug target. Development of selective radioligands is important for defining binding properties and occupancy of novel molecules targeting the receptor. We tested the in vitro binding properties of [125I]Iodo-ASEM [(3-(1,4-diazabycyclo[3.2.2]nonan-4-yl)-6-(125I-iododibenzo[b,d]thiopentene 5,5-dioxide)] in the mouse, rat and pig brain using autoradiography. The in vivo binding properties of [18F]ASEM were investigated using positron emission tomography (PET) in the pig brain. [125I]Iodo-ASEM showed specific and displaceable high affinity (~1 nM) binding in mouse, rat, and pig brain. Binding pattern overlapped with [125I]α-bungarotoxin, specific binding was absent in α7 nAChR gene-deficient mice and binding was blocked by a range of α7 nAChR orthosteric modulators in an affinity-dependent order in the pig brain. Interestingly, relative to the wild-type, binding in β2 nAChR gene-deficient mice was lower for [125I]Iodo-ASEM (58% ± 2.7%) than [125I]α-bungarotoxin (23% ± 0.2%), potentially indicating different binding properties to heteromeric α7β2 nAChR. [18F]ASEM PET in the pig showed high brain uptake and reversible tracer kinetics with a similar spatial distribution as previously reported for α7 nAChR. Blocking with SSR-180,711 resulted in a significant decrease in [18F]ASEM binding. Our findings indicate that [125I]Iodo-ASEM allows sensitive and selective imaging of α7 nAChR in vitro, with better signal-to-noise ratio than previous tracers. Preliminary data of [18F]ASEM in the pig brain demonstrated principal suitable kinetic properties for in vivo quantification of α7 nAChR, comparable to previously published data.
Collapse
Affiliation(s)
- Cornelius K. Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Brain Sciences, Imperial College London, London W12 0 LS, UK
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| | - Henrik H. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Hanne D. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Elina T. L’Estrade
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Gitte M. Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| |
Collapse
|
13
|
Wang X, Daley C, Gakhar V, Lange HS, Vardigan JD, Pearson M, Zhou X, Warren L, Miller CO, Belden M, Harvey AJ, Grishin AA, Coles CJ, O'Connor SM, Thomson F, Duffy JL, Bell IM, Uslaner JM. Pharmacological Characterization of the Novel and Selective α7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375. J Pharmacol Exp Ther 2020; 373:311-324. [PMID: 32094294 DOI: 10.1124/jpet.119.263483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases. SIGNIFICANCE STATEMENT: BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.
Collapse
Affiliation(s)
- Xiaohai Wang
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Christopher Daley
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Vanita Gakhar
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Henry S Lange
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joshua D Vardigan
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Pearson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Xiaoping Zhou
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Lee Warren
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Corin O Miller
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Belden
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Andrew J Harvey
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Anton A Grishin
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Carolyn J Coles
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Susan M O'Connor
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Fiona Thomson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joseph L Duffy
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Ian M Bell
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Jason M Uslaner
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| |
Collapse
|
14
|
Gao H, Wang S, Qiang B, Wang S, Zhang H. Radioiodinated 9-fluorenone derivatives for imaging α7-nicotinic acetylcholine receptors. MEDCHEMCOMM 2019; 10:2102-2110. [PMID: 32904124 DOI: 10.1039/c9md00415g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022]
Abstract
A series of 9H-fluoren-9-one substituents were synthesized and evaluated for imaging cerebral α7-nAChRs. Meta-iodine substituted 9-fluorenone 5 with high binding affinity (K i = 9.3 nM) and selectivity was radiolabeled with 125I. Fully in vitro and in vivo studies of [125I]5 have been performed. [125I]5 exhibited well brain uptake with a peak concentration of 7.5 ± 0.9% ID/g in mice brains. Moreover, ex vivo autoradiography studies and micro single-photon emission computed tomography (micro-SPECT/CT) dynamic imaging in mice confirmed its in vivo imaging properties. Besides, molecular docking and MD studies were also performed to interpret the binding mechanisms of the two series of ligands towards α7-nAChRs. To conclude, the meta-iodine substituted 9-fluorenone [125I]5 could be a promising tracer for imaging α7-nAChRs.
Collapse
Affiliation(s)
- Hang Gao
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Shuxia Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Bingchao Qiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Sixuan Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Huabei Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| |
Collapse
|
15
|
Larsen HM, Hansen SK, Mikkelsen JD, Hyttel P, Stummann TC. Alpha7 nicotinic acetylcholine receptors and neural network synaptic transmission in human induced pluripotent stem cell-derived neurons. Stem Cell Res 2019; 41:101642. [PMID: 31707211 DOI: 10.1016/j.scr.2019.101642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor has been extensively researched as a target for treatment of cognitive impairment in Alzheimer's disease and schizophrenia. Investigation of the α7 receptor is commonly performed in animals but it is critical to increase the biologically relevance of the model systems to fully capture the physiological role of the α7 receptor in humans. For example most humans, in contrast to animals, express the hybrid gene CHRFAM7A, the product of which modulates α7 receptor activity. In the present study, we used human induced pluripotent stem cell (hiPSC) derived neurons to establish a humanized α7 model. We established a cryobank of neural stem cells (NSCs) that could reproducibly be matured into neurons expressing neuronal markers and CHRNA7 and CHRFAM7A. The neurons responded to NMDA, GABA, and acetylcholine and exhibited synchronized spontaneous calcium oscillations. Gene expression studies and application of a range of α7 positive allosteric modulators (PNU-120595, TQS, JNJ-39393406 and AF58801) together with the α7 agonist PNU-282987 during measurement of intracellular calcium levels demonstrated the presence of functional α7 receptors in matured hiPSC-derived neuronal cultures. Pharmacological α7 activation also resulted in intracellular signaling as measured by ERK 1/2 phosphorylation and c-Fos protein expression. Moreover, PNU-120596 increased the frequency of the spontaneous calcium oscillations demonstrating implication of α7 receptors in human synaptic networks activity. Overall, we show that hiPSC derived neurons are an advanced in vitro model for studying human α7 receptor pharmacology and the involvement of this receptor in cellular processes as intracellular signaling and synaptic transmission.
Collapse
Affiliation(s)
- Hjalte M Larsen
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne K Hansen
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Denmark
| | - Poul Hyttel
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
16
|
Design, synthesis and biological evaluation of 1,4-Diazobicylco[3.2.2]nonane derivatives as α7-Nicotinic acetylcholine receptor PET/CT imaging agents and agonists for Alzheimer's disease. Eur J Med Chem 2018; 159:255-266. [PMID: 30296684 DOI: 10.1016/j.ejmech.2018.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022]
Abstract
α7-Nicotinic acetylcholine receptor (α7-nAChR) agonists are promising therapeutic drug candidates for treating the cognitive impairment associated with Alzheimer's disease (AD). Thus, a novel class of derivatives of 1,4-diazobicylco[3.2.2]nonane has been synthesized and evaluated as α7-nAChR ligands. Five of them displayed high binding affinity (Ki = 0.001-25 nM). In particular, the Ki of 14 was 0.0069 nM, which is superior to that of the most potent ligand that was previously reported by an order of magnitude. Four of them had high selectivity for α7-nAChRs over α4β2-nAChRs and no significant hERG (human ether-a-go-go-related gene) inhibition. Their agonist activity was also discussed preliminarily. One of the compounds, 15 (Ki = 2.98 ± 1.41 nM), was further radiolabeled with 18F to afford [18F]15 for PET imaging, which exhibited high initial brain uptake (11.60 ± 0.14%ID/g at 15 min post injection), brain/blood value (9.57 at 30 min post injection), specific labeling of α7-nAChRs and fast clearance from the brain. Blocking studies demonstrated that [18F]15 was α7-nAChR selective. In addition, micro-PET/CT imaging in normal rats further indicated that [18F]15 had obvious accumulation in the brain. Therefore, [18F]15 was proved to be a potential PET radiotracer for α7-nAChR imaging.
Collapse
|
17
|
Pujol CN, Paasche C, Laprevote V, Trojak B, Vidailhet P, Bacon E, Lalanne L. Cognitive effects of labeled addictolytic medications. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:306-332. [PMID: 28919445 DOI: 10.1016/j.pnpbp.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Alcohol, tobacco, and illegal drug usage is pervasive throughout the world, and abuse of these substances is a major contributor to the global disease burden. Many pharmacotherapies have been developed over the last 50years to target addictive disorders. While the efficacy of these pharmacotherapies is largely recognized, their cognitive impact is less known. However, all substance abuse disorders are known to promote cognitive disorders like executive dysfunction and memory impairment. These impairments are critical for the maintenance of addictive behaviors and impede cognitive behavioral therapies that are regularly administered in association with pharmacotherapies. It is also unknown if addictolytic medications have an impact on preexisting cognitive disorders, and if this impact is modulated by the indication of prescription, i.e. abstinence, reduction or substitution, or by the specific action of the medication. METHOD We reviewed the cognitive effects of labeled medications for tobacco addiction (varenicline, bupropion, nicotine patch and nicotine gums), alcohol addiction (naltrexone, nalmefene, baclofen, disulfiram, sodium oxybate, acamprosate), and opioid addiction (methadone, buprenorphine) in human studies. Studies were selected following MOOSE guidelines for systematic reviews of observational studies, using the keywords [Cognition] and [Cognitive disorders] and [treatment] for each medication. RESULTS 971 articles were screened and 77 studies met the inclusion criteria and were reported in this review (for alcohol abuse, n=21, for tobacco n=22, for opioid n=34. However, very few comparative clinical trials have explored the chronic effects of addictolytic medications on cognition in addictive behaviors, and there are no clinical trials on the cognitive impact of nalmefene in patients suffering from alcohol use disorders. DISCUSSION Although some medications seem to enhance cognition in patients suffering from cognitive disorders, others could promote cognitive impairments, and our work highlights a lack of literature on this subject. In conclusion, more comparative clinical trials are needed to better understand the cognitive impact of addictolytic medications.
Collapse
Affiliation(s)
- Camille Noélie Pujol
- Department of Neurosciences, Institute for Functional Genomics, INSERM U-661, CNRS UMR-5203, 34094 Montpellier, France
| | - Cecilia Paasche
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Laxou, F-54520, France.; EA 7298, INGRES, Université de Lorraine, Vandoeuvre-lès-, Nancy F-54000, France; CHU Nancy, Maison des Addictions, Nancy, F-54000, France.
| | - Benoit Trojak
- Department of Psychiatry and Addictology, University Hospital of Dijon, France; EA 4452, LPPM, University of Burgundy, France.
| | - Pierre Vidailhet
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| | - Elisabeth Bacon
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laurence Lalanne
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| |
Collapse
|
18
|
Physiological and pathological processes of synaptic plasticity and memory in drug discovery: Do not forget the dose-response curve. Eur J Pharmacol 2017; 817:59-70. [DOI: 10.1016/j.ejphar.2017.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 01/24/2023]
|
19
|
The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials. Acta Pharm Sin B 2017; 7:611-622. [PMID: 29159020 PMCID: PMC5687317 DOI: 10.1016/j.apsb.2017.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 01/06/2023] Open
Abstract
The alpha-7 nicotinic acetylcholine receptor (α7 nAChR), consisting of homomeric α7 subunits, is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7 nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Currently, a number of α7 nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the α7 nAChR in multiple neuropsychiatric disorders and the pharmacological effects of α7 nAChR modulators used in clinical trials.
Collapse
Key Words
- 5-CSRTT, five-choice serial reaction time task
- 5-HT, serotonin
- ACh, acetylcholine
- AD, Alzheimer's disease
- ADHD, attention deficit hyperactivity disorder
- Acetylcholine
- Alpha7
- Alzheimer's disease
- Aβ, amyloid-β peptide
- CNS, central nervous system
- DMTS, delayed matching-to-sample
- ECD, extracellular domain
- GABA, γ-aminobutyric acid
- Ion channel
- MLA, methyllycaconitine
- NOR, novel object recognition
- PAMs, positive allosteric modulators
- PCP, neonatal phencyclidine
- PD, Parkinson's disease
- PPI, prepulse inhibition
- Positive allosteric modulators
- SAR, structure–activity relationship
- Schizophrenia
- TMD, transmembrane domains
- nAChR
- nAChR, nicotinic acetylcholine receptor
- α-Btx, α-bungarotoxin
Collapse
|
20
|
|
21
|
Post-Munson DJ, Pieschl RL, Molski TF, Graef JD, Hendricson AW, Knox RJ, McDonald IM, Olson RE, Macor JE, Weed MR, Bristow LJ, Kiss L, Ahlijanian MK, Herrington J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur J Pharmacol 2017; 799:16-25. [PMID: 28132910 DOI: 10.1016/j.ejphar.2017.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [3H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation.
Collapse
Affiliation(s)
- Debra J Post-Munson
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Rick L Pieschl
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Thaddeus F Molski
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John D Graef
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Adam W Hendricson
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ronald J Knox
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ivar M McDonald
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Richard E Olson
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John E Macor
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael R Weed
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Linda J Bristow
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Laszlo Kiss
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael K Ahlijanian
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - James Herrington
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA.
| |
Collapse
|
22
|
Wichern F, Jensen MM, Christensen DZ, Mikkelsen JD, Gondré-Lewis MC, Thomsen MS. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex. Neuroscience 2017; 346:278-283. [PMID: 28131622 DOI: 10.1016/j.neuroscience.2017.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/16/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during early (PND8-14) or late (PND54-60) postnatal stages did not affect NACHO protein levels in the FC or HIP, neither did exposure to high doses of the selective α7 nAChR agonists SSR180711, A-582941, or PNU-282987. However, we found significantly increased NACHO protein levels in the FC of PND36 rats after a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal development. The effect of PNU-120596 further suggests that the increase in NACHO expression is caused by activation rather than desensitization of nAChRs.
Collapse
Affiliation(s)
- Franziska Wichern
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ditte Z Christensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., USA; Neuropsychopharmacology Laboratory, Dept. of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington D.C., USA
| | - Morten S Thomsen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Triazolopyridine ethers as potent, orally active mGlu2 positive allosteric modulators for treating schizophrenia. Bioorg Med Chem 2017; 25:496-513. [DOI: 10.1016/j.bmc.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
|
24
|
Cook J, Zusi FC, McDonald IM, King D, Hill MD, Iwuagwu C, Mate RA, Fang H, Zhao R, Wang B, Cutrone J, Ma B, Gao Q, Knox RJ, Matchett M, Gallagher L, Ferrante M, Post-Munson D, Molski T, Easton A, Miller R, Jones K, Digavalli S, Healy F, Lentz K, Benitex Y, Clarke W, Natale J, Siuciak JA, Lodge N, Zaczek R, Denton R, Morgan D, Bristow LJ, Macor JE, Olson RE. Design and Synthesis of a New Series of 4-Heteroarylamino-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octanes as α7 Nicotinic Receptor Agonists. 1. Development of Pharmacophore and Early Structure-Activity Relationship. J Med Chem 2016; 59:11171-11181. [PMID: 27958732 DOI: 10.1021/acs.jmedchem.6b01506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.
Collapse
Affiliation(s)
- James Cook
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - F Christopher Zusi
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ivar M McDonald
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dalton King
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matthew D Hill
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Christiana Iwuagwu
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert A Mate
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Haiquan Fang
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rulin Zhao
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Bei Wang
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jingfang Cutrone
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Baoqing Ma
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Qi Gao
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ronald J Knox
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michele Matchett
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lizbeth Gallagher
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Meredith Ferrante
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Debra Post-Munson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Thaddeus Molski
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy Easton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Regina Miller
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kelli Jones
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Siva Digavalli
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Francine Healy
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kimberley Lentz
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yulia Benitex
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wendy Clarke
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne Natale
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Judith A Siuciak
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas Lodge
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert Zaczek
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rex Denton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Daniel Morgan
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Linda J Bristow
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E Macor
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Richard E Olson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
25
|
Bürgi JJ, Bertrand S, Marger F, Bertrand D, Reymond J. Fluorescent Agonists of the
α
7 Nicotinic Acetylcholine Receptor Derived from 3‐Amino‐Quinuclidine. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus J. Bürgi
- Department of Chemistry and Biochemistry University of Berne Freiestrasse 3 CH‐3012 Berne
| | - Sonia Bertrand
- HiQScreen Sàrl 6 route de Compois CH‐1222 Vésenaz Geneva
| | - Fabrice Marger
- HiQScreen Sàrl 6 route de Compois CH‐1222 Vésenaz Geneva
| | | | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Berne Freiestrasse 3 CH‐3012 Berne
| |
Collapse
|
26
|
Townsend M, Whyment A, Walczak JS, Jeggo R, van den Top M, Flood DG, Leventhal L, Patzke H, Koenig G. α7-nAChR agonist enhances neural plasticity in the hippocampus via a GABAergic circuit. J Neurophysiol 2016; 116:2663-2675. [PMID: 27655963 DOI: 10.1152/jn.00243.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/18/2016] [Indexed: 11/22/2022] Open
Abstract
Agonists of the α7-nicotinic acetylcholine receptor (α7-nAChR) have entered clinical trials as procognitive agents for treating schizophrenia and Alzheimer's disease. The most advanced compounds are orthosteric agonists, which occupy the ligand binding site. At the molecular level, agonist activation of α7-nAChR is reasonably well understood. However, the consequences of activating α7-nAChRs on neural circuits underlying cognition remain elusive. Here we report that an α7-nAChR agonist (FRM-17848) enhances long-term potentiation (LTP) in rat septo-hippocampal slices far below the cellular EC50 but at a concentration that coincides with multiple functional outcome measures as we reported in Stoiljkovic M, Leventhal L, Chen A, Chen T, Driscoll R, Flood D, Hodgdon H, Hurst R, Nagy D, Piser T, Tang C, Townsend M, Tu Z, Bertrand D, Koenig G, Hajós M. Biochem Pharmacol 97: 576-589, 2015. In this same concentration range, we observed a significant increase in spontaneous γ-aminobutyric acid (GABA) inhibitory postsynaptic currents and a moderate suppression of excitability in whole cell recordings from rat CA1 pyramidal neurons. This modulation of GABAergic activity is necessary for the LTP-enhancing effects of FRM-17848, since inhibiting GABAA α5-subunit-containing receptors fully reversed the effects of the α7-nAChR agonist. These data suggest that α7-nAChR agonists may increase synaptic plasticity in hippocampal slices, at least in part, through a circuit-level enhancement of a specific subtype of GABAergic receptor.
Collapse
Affiliation(s)
| | | | | | - Ross Jeggo
- Cerebrasol, Ltd., Montreal, Quebec City, Canada
| | | | | | - Liza Leventhal
- FORUM Pharmaceuticals, Inc., Waltham, Massachusetts; and
| | - Holger Patzke
- FORUM Pharmaceuticals, Inc., Waltham, Massachusetts; and
| | - Gerhard Koenig
- FORUM Pharmaceuticals, Inc., Waltham, Massachusetts; and
| |
Collapse
|
27
|
The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia. PLoS One 2016; 11:e0159996. [PMID: 27467081 PMCID: PMC4965148 DOI: 10.1371/journal.pone.0159996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.
Collapse
|
28
|
Targowska-Duda KM, Wnorowski A, Budzynska B, Jozwiak K, Biala G, Arias HR. The positive allosteric modulator of α7 nicotinic acetylcholine receptors, 3-furan-2-yl-N-p-tolyl-acrylamide, enhances memory processes and stimulates ERK1/2 phosphorylation in mice. Behav Brain Res 2016; 302:142-51. [DOI: 10.1016/j.bbr.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
|
29
|
Manetti D, Bellucci C, Dei S, Teodori E, Varani K, Spirova E, Kudryavtsev D, Shelukhina I, Tsetlin V, Romanelli MN. New quinoline derivatives as nicotinic receptor modulators. Eur J Med Chem 2016; 110:246-58. [DOI: 10.1016/j.ejmech.2016.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
|
30
|
Robert B, Perrin MA, Barrio M, Tamarit JL, Coquerel G, Ceolin R, Rietveld IB. Crystal Structures and Phase Relationships of 2 Polymorphs of 1,4-Diazabicyclo[3.2.2]nonane-4-Carboxylic Acid 4-Bromophenyl Ester Fumarate, A Selective α-7 Nicotinic Receptor Partial Agonist. J Pharm Sci 2016; 105:64-70. [PMID: 26852840 DOI: 10.1016/j.xphs.2015.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Abstract
Two polymorphs of the 1:1 fumarate salt of 1,4-diazabicyclo[3.2.2]nonane-4-carboxylic acid 4-bromophenyl ester, developed for the treatment of cognitive symptoms of schizophrenia and Alzheimer disease, have been characterized. The 2 crystal structures have been solved, and their phase relationships have been established. The space group of form I is P2₁/c with a unit-cell volume of 1811.6 (5) Å(3) with Z = 4. The crystals of form I were 2-component nonmerohedral twins. The space group of form II is P2₁/n with a unit-cell volume of 1818.6 (3) Å(3) with Z = 4. Relative stabilities have been inferred from experimental and topological P-T diagrams exhibiting an overall enantiotropic relationship between forms I and II although the solid-solid transition has never been observed. The slope of the I-II equilibrium in the P-T diagram is negative, form II is the stable phase below the solid-solid transition temperature of 371 K, and form I exhibits a stable melting equilibrium. The I-II transition temperature has been obtained from the intersection of the sublimation curves of the 2 solid forms.
Collapse
Affiliation(s)
- Benoît Robert
- Normandie University, SMS EA3233, University of Rouen, rue Lucien Tesnière, 76821, Mont Saint Aignan Cedex, France; Sanofi R&D, Lead Generation and Compound Realization/Analytical Sciences/Solid State group, F-94400 Vitry sur Seine, France
| | - Marc-Antoine Perrin
- Sanofi R&D, Lead Generation and Compound Realization/Analytical Sciences/Solid State group, F-94400 Vitry sur Seine, France
| | - Maria Barrio
- Grup de Caracterització de Materials (GCM), Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, ETSEIB, 08028 Barcelona, Spain
| | - Josep-Lluis Tamarit
- Grup de Caracterització de Materials (GCM), Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, ETSEIB, 08028 Barcelona, Spain
| | - Gérard Coquerel
- Normandie University, SMS EA3233, University of Rouen, rue Lucien Tesnière, 76821, Mont Saint Aignan Cedex, France
| | - René Ceolin
- Caractérisation des Matériaux à Activité Thérapeutique (CAMMAT), Faculté de Pharmacie de l'Université Paris Descartes, F-75006 Paris, France
| | - Ivo B Rietveld
- Caractérisation des Matériaux à Activité Thérapeutique (CAMMAT), Faculté de Pharmacie de l'Université Paris Descartes, F-75006 Paris, France.
| |
Collapse
|
31
|
Wood C, Kohli S, Malcolm E, Allison C, Shoaib M. Subtype-selective nicotinic acetylcholine receptor agonists can improve cognitive flexibility in an attentional set shifting task. Neuropharmacology 2016; 105:106-113. [PMID: 26772970 DOI: 10.1016/j.neuropharm.2016.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 11/26/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are considered to be viable targets to enhance cognition in patients diagnosed with schizophrenia. Activation of nAChRs with selective nicotinic receptor agonists may provide effective means to pharmacologically treat cognitive deficits observed in schizophrenia. Cognitive flexibility is one aspect of cognition, which can be assessed in a rodent model of the attentional set-shifting task (ASST). The aim of the present study was two-fold, firstly, to evaluate the efficacy of a series of subtype selective nAChR agonists, such as those that target α7 and α4β2 nAChR subtypes in non-compromised rodents. Secondly, nicotine as a prototypic agonist was evaluated for its effects to restore attentional deficits produced by sub-chronic ketamine exposure in the ASST. Male hooded Lister rats underwent habituation, consisting of a simple odour and medium discrimination with subsequent assessment 24 h later. In experimentally naïve rats, α7 subtype selective agonists, compound-A and SSR180711 along with PNU-120596, an α7 positive allosteric modulator (PAM), were compared against the β2* selective agonist, 5IA-85380. All compounds except for PNU-120596 were observed to significantly improve extra-dimensional (ED) shift performance, nicotine, 5IA-85380 and SSR180711 further enhanced the final reversal (REV3) stage of the task. In another experiment, sub-chronic ketamine treatment produced robust deficits during the ED and the REV3 stages of the discriminations; rodents required significantly more trials to reach criterion during these discriminations. These deficits were attenuated in rodents treated acutely with nicotine (0.1 mg/kg SC) 10 min prior to the ED shift. These results highlight the potential utility of targeting nAChRs to enhance cognitive flexibility, particularly the α7 and β2* receptor subtypes. The improvement with nicotine was much greater in rodents that were impaired following the sub-chronic ketamine exposure suggesting a greater therapeutic opportunity to target nicotinic receptors for patients diagnosed with schizophrenia.
Collapse
Affiliation(s)
- Christopher Wood
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle, NE2 4HH, UK
| | - Shivali Kohli
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle, NE2 4HH, UK
| | - Emma Malcolm
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle, NE2 4HH, UK
| | - Claire Allison
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle, NE2 4HH, UK
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle, NE2 4HH, UK.
| |
Collapse
|
32
|
Fond G, Micoulaud-Franchi JA, Brunel L, Macgregor A, Miot S, Lopez R, Richieri R, Abbar M, Lancon C, Repantis D. Innovative mechanisms of action for pharmaceutical cognitive enhancement: A systematic review. Psychiatry Res 2015; 229:12-20. [PMID: 26187342 DOI: 10.1016/j.psychres.2015.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 05/31/2015] [Accepted: 07/05/2015] [Indexed: 12/21/2022]
Abstract
Pharmacological cognitive enhancement refers to improvement in cognitive functions after drug use in healthy individuals. This popular topic attracts attention both from the general public and the scientific community. The objective was to explore innovative mechanisms of psychostimulant's action, whose potential effectiveness was assessed in randomized placebo-controlled trials (RCTs). A systematic review was carried out, using the words "attention", "memory", "learning", "executive functions", and "vigilance/wakefulness" combined to "cognitive enhancer" or "smart drug". Methylphenidate, amphetamines, modafinil, nicotine, acetylcholine esterase inhibitors and antidepressants were extensively studied in previous meta-analyses and were not included in the present work. Drugs were classified according to their primary mode of action, namely catecholaminergic drugs (tolcapone, pramipexole, guanfacine), cholinergic drugs (anticholinergics), glutamatergic drugs (ampakines), histaminergic drugs, and non-specified (glucocorticoids). Overall, 50 RCTs were included in the present review. In conclusion, a number of new active drugs were found to improve some cognitive functions, in particular verbal episodic memory. However the number of RCTs was limited, and most of the studies found negative results. Future studies should assess both effectiveness and tolerance of repeated doses administration, and individual variability in dose response (including baseline characteristics and potential genetic polymorphisms). One explanation for the limited number of recent RCTs with new psychostimulants seems to be the ethical debate surrounding pharmaceutical cognitive enhancement in healthy subjects.
Collapse
Affiliation(s)
- Guillaume Fond
- Université Paris EST-Créteil, AP-HP, Pôle de Psychiatrie ET d'addictologie des Hopitaux Universitaires Henri Mondor, INSERM U955, Eq 15 Psychiatrie Génétique, DHU PE-psy, Fondation Fondamental Fondation de Coopération Scientifique en Santé Mentale, F-94000 France.
| | | | - Lore Brunel
- Université Paris EST-Créteil, AP-HP, Pôle de Psychiatrie ET d'addictologie des Hopitaux Universitaires Henri Mondor, INSERM U955, Eq 15 Psychiatrie Génétique, DHU PE-psy, Fondation Fondamental Fondation de Coopération Scientifique en Santé Mentale, F-94000 France
| | - Alexandra Macgregor
- Université Montpellier 1, INSERM 1061, Service Universitaire de Psychiatrie, CHU Montpellier F-34000, France
| | - Stéphanie Miot
- INSERM U952, CNRS UMR 7224, UMPC Univ Paris 06, F-75000 Paris, France
| | - Régis Lopez
- Université Montpellier 1, INSERM 1061, Centre de Référence National Narcolepsie Hypersomnie Idiopathique, Unité des Troubles du Sommeil, CHU Montpellier F-34000, France
| | - Raphaëlle Richieri
- Pôle Psychiatrie Universitaire, CHU Sainte-marguerite, F-13274 Marseille Cedex 09, France; Faculté de Médecine, EA 3279, Laboratoire de Santé Publique, F-13385 Marseille Cedex 05, France
| | - Mocrane Abbar
- CHU Carémeau, Université de Nîmes, Nîmes F-31000, France
| | - Christophe Lancon
- Pôle Psychiatrie Universitaire, CHU Sainte-marguerite, F-13274 Marseille Cedex 09, France
| | - Dimitris Repantis
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin franklin, Eschenallee 3, 14050 Berlin, Germany
| |
Collapse
|
33
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
34
|
Wallace TL, Bertrand D. Neuronal α7 Nicotinic Receptors as a Target for the Treatment of Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:79-111. [PMID: 26472526 DOI: 10.1016/bs.irn.2015.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Schizophrenia is a lifelong disease, the burden of which is often underestimated. Characterized by positive (e.g., hallucinations) and negative (e.g., avolition, amotivation) symptoms, schizophrenia is also accompanied with profound impairments in cognitive function that progress throughout the development of the disease. Although treatment with antipsychotic medications can effectively dampen some of the positive symptoms, these medications largely fail to reverse cognitive deficits or to mitigate negative symptoms. With a worldwide prevalence of approximately 1%, schizophrenia remains a large unmet medical need that stands to benefit greatly from (1) continued research to better understand the biological underpinnings of the disease and (2) the targeted development of novel therapeutics to improve the lives of those affected individuals. Improvements in our understanding of the neuronal networks associated with schizophrenia as well as progress in identifying genetic risk factors and environmental conditions that may predispose individuals to developing the disease are advancing new strategies to study and treat it. Herein, we review the evidence that supports the role of α7 nicotinic acetylcholine receptors in the central nervous system and why these receptors constitute a promising target to treat some of the prominent symptoms of schizophrenia.
Collapse
|
35
|
Sharma R, Lodhi S, Sahota P, Thakkar MM. Nicotine administration in the wake-promoting basal forebrain attenuates sleep-promoting effects of alcohol. J Neurochem 2015; 135:323-31. [DOI: 10.1111/jnc.13219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/12/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital; Columbia Missouri USA
- Department of Neurology; University of Missouri; Columbia Missouri USA
| | - Shafi Lodhi
- Harry S. Truman Memorial Veterans Hospital; Columbia Missouri USA
- Department of Neurology; University of Missouri; Columbia Missouri USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital; Columbia Missouri USA
- Department of Neurology; University of Missouri; Columbia Missouri USA
| | - Mahesh M. Thakkar
- Harry S. Truman Memorial Veterans Hospital; Columbia Missouri USA
- Department of Neurology; University of Missouri; Columbia Missouri USA
| |
Collapse
|
36
|
Powles-Glover N, Mitchard T, Stewart J. Time Course for Onset and Recovery from Effects of a Novel Male Reproductive Toxicant: Implications for Apical Preclinical Study Designs. ACTA ACUST UNITED AC 2015. [PMID: 26194980 DOI: 10.1002/bdrb.21144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the pharmaceutic ICH S5(R2) guidelines for reproductive toxicity testing, a premating dose duration of 14 days is considered sufficient for assessment of male fertility for compounds that are not testicular toxicants. A novel α7 subtype of nicotinic acetylcholine receptor (α7nAChR) agonist, originally intended for treatment of Alzheimer's disease, did not cause changes in sperm counts, motility, or testicular histopathology in rat toxicity studies of up to 6 months duration. However, profound decrements in male fertility (reduced pregnancy rates and litter sizes) occurred after 11 weeks of dosing in male rats. In two time-course investigations, dosed male rats were paired with undosed females after 5, 14, and 28 daily doses and again after 2 and 4 weeks off-dose. Effects on male fertility were undetectable after 5 days. After 14 days, there was no effect on pregnancy rate, but preimplantation losses were increased. Effects on both pregnancy rates and preimplantation losses were clearly detectable after 28 days, but were of lesser magnitude than after 11 weeks of dosing. Fertility recovered rapidly after dose cessation. These studies illustrate the sensitivity of a long premating dose period at revealing hazard and determining the magnitude of effect on male fertility for compounds that are intended for chronic administration and do not affect testicular histopathology.
Collapse
Affiliation(s)
- Nicola Powles-Glover
- AstraZeneca, Mereside, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG
| | - Terri Mitchard
- AstraZeneca, Mereside, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG
| | - Jane Stewart
- AstraZeneca, Mereside, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG
| |
Collapse
|
37
|
Beinat C, Banister SD, Herrera M, Law V, Kassiou M. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs 2015; 29:529-42. [PMID: 26242477 DOI: 10.1007/s40263-015-0260-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homomeric α7 nicotinic acetylcholine receptors (α7 nAChRs) have implications in the regulation of cognitive processes such as memory and attention, and have shown promise as a therapeutic target for the treatment of the cognitive deficits associated with schizophrenia. Multiple α7 nAChR agonists have entered human trials; however, unfavorable side effects and pharmacokinetic issues have hindered the development of a clinical α7 nAChR agonist. Currently, EVP-6124 is in phase III clinical trials, and several other α7 nAChR agonists (GTS-21 and AQW051) are in earlier stages of development. This review will summarize the recent advances and failures of α7 nAChR agonists in clinical trials for the treatment of the aforementioned pathology.
Collapse
Affiliation(s)
- Corinne Beinat
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | |
Collapse
|
38
|
Magnussen JH, Ettrup A, Donat CK, Peters D, Pedersen MHF, Knudsen GM, Mikkelsen JD. Radiosynthesis and in vitro validation of (3)H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand. Eur J Pharmacol 2015; 762:35-41. [PMID: 25941084 DOI: 10.1016/j.ejphar.2015.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
The neuronal α7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer׳s disease and schizophrenia. We have previously described (11)C-NS14492 as a suitable agonist radioligand for in vivo positron emission tomography (PET) occupancy studies of the α7 nicotinic receptor in the pig brain. In order to investigate the utility of the same compound for in vitro studies, (3)H-NS14492 was synthesized and its binding properties were characterized using in vitro autoradiography and homogenate binding assays in pig frontal cortex. (3)H-NS14492 showed specific binding to α7 nicotinic receptors in autoradiography, revealing a dissociation constant (Kd) of 2.1±0.7nM and a maximum number of binding sites (Bmax) of 15.7±2.0fmol/mg tissue equivalent. Binding distribution was similar to that of another selective ligand (125)I-α-bungarotoxin ((125)I-BTX) in autoradiography, and unlabeled NS14492 displaced (125)I-BTX with an inhibition constant (Ki) of 23nM. (3)H-NS14492 bound to α7 nicotinic receptors in homogenized pig frontal cortex with a Kd of 0.8±0.3nM and a Bmax of 30.2±11.6fmol/mg protein. This binding assay further revealed the Ki rank order for a number of α7 nicotinic receptor agonists, and positive allosteric modulators (PAMs). Further, we saw increased binding of (3)H-NS14492 to pig frontal cortex membranes when co-incubated with PNU-120596, a type II PAM. Taken together, these findings show that (3)H-NS14492 is a useful new in vitro radioligand for the pig α7 nicotinic receptor.
Collapse
Affiliation(s)
- Janus H Magnussen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cornelius K Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Martin H F Pedersen
- The Hevesy Laboratory, DTU Nutech, The Technical University of Denmark, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
39
|
Beinat C, Reekie T, Banister SD, O'Brien-Brown J, Xie T, Olson TT, Xiao Y, Harvey A, O'Connor S, Coles C, Grishin A, Kolesik P, Tsanaktsidis J, Kassiou M. Structure-activity relationship studies of SEN12333 analogues: determination of the optimal requirements for binding affinities at α7 nAChRs through incorporation of known structural motifs. Eur J Med Chem 2015; 95:277-301. [PMID: 25827398 DOI: 10.1016/j.ejmech.2015.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) have implications in the regulation of cognitive processes such as memory and attention and have been identified as a promising therapeutic target for the treatment of the cognitive deficits associated with schizophrenia and Alzheimer's disease (AD). Structure affinity relationship studies of the previously described α7 agonist SEN12333 (8), have resulted in the identification of compound 45, a potent and selective agonist of the α7 nAChR with enhanced affinity and improved physicochemical properties over the parent compound (SEN12333, 8).
Collapse
Affiliation(s)
- Corinne Beinat
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tristan Reekie
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samuel D Banister
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Teresa Xie
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | - John Tsanaktsidis
- CSIRO Materials Science & Engineering, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
[(125)I]Iodo-ASEM, a specific in vivo radioligand for α7-nAChR. Nucl Med Biol 2015; 42:488-493. [PMID: 25687449 DOI: 10.1016/j.nucmedbio.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
Abstract
[(125)I]Iodo-ASEM, a new radioligand with high affinity and selectivity for α7-nAChRs (K(i) = 0.5 nM; α7/α4β2 = 3414), has been synthesized in radiochemical yield of 33 ± 6% from the corresponding di-butyltriazene derivative and at high specific radioactivity (1600Ci/mmol; 59.2 MBq/μmol). [(125)I]Iodo-ASEM readily entered the brains of normal CD-1 mice and specifically and selectively labeled cerebral α7-nAChRs. [(125)I]iodo-ASEM is a new useful tool for studying α7-nAChR.
Collapse
|
41
|
Feuerbach D, Pezous N, Weiss M, Shakeri-Nejad K, Lingenhoehl K, Hoyer D, Hurth K, Bilbe G, Pryce CR, McAllister K, Chaperon F, Kucher K, Johns D, Blaettler T, Lopez Lopez C. AQW051, a novel, potent and selective α7 nicotinic ACh receptor partial agonist: pharmacological characterization and phase I evaluation. Br J Pharmacol 2015; 172:1292-304. [PMID: 25363835 DOI: 10.1111/bph.13001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the α7 nicotinic ACh receptor (nACh receptor) is considered an attractive target for the treatment of cognitive impairment associated with neurological disorders. Here we describe the novel α7-nACh receptor agonist AQW051 as a promising drug candidate for this indication. EXPERIMENTAL APPROACH AQW051 was functionally characterized in vitro and cognitive effects evaluated in rodent behavioural models. Pharmacokinetics and tolerability were evaluated in three phase I placebo-controlled studies in 180 healthy subjects. KEY RESULTS In vitro, AQW051 bound with high affinity to α7-nACh receptors and stimulated calcium influx in cells recombinantly expressing the human α7-nACh receptor. In vivo, AQW051 demonstrated good oral bioavailability and rapid penetration into the rodent brain. AQW051 administered over a broad dose range facilitated learning/memory performance in the object recognition and social recognition test in mice and the water maze model in aged rats. Clinically, AQW051 was well tolerated in healthy young and elderly subjects, with an adverse event (AE) profile comparable with placebo. No serious AEs were reported and all AEs were either mild or moderate in severity at single oral doses up to 200 mg and multiple daily doses up to 75 mg. Once-daily oral administration of AQW051 resulted in continuous exposure and a two- to threefold accumulation compared with steady state was achieved by 1 week. CONCLUSIONS AND IMPLICATIONS These data support further development of AQW051 as a cognitive-enhancing agent, as a therapeutic, for example, in Alzheimer's disease or schizophrenia.
Collapse
|
42
|
Hashimoto K. Targeting of α7 Nicotinic Acetylcholine Receptors in the Treatment of Schizophrenia and the Use of Auditory Sensory Gating as a Translational Biomarker. Curr Pharm Des 2015; 21:3797-806. [PMID: 26044974 PMCID: PMC5024727 DOI: 10.2174/1381612821666150605111345] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
Accumulating evidence suggests that the α7 subtype of nicotinic acetylcholine receptors (nAChRs) plays a key role in inflammatory processes, thought to be involved in the pathophysiology of neuropsychiatric diseases, such as schizophrenia and Alzheimer's disease. Preclinical and clinical studies showed that the diminished suppression of P50 auditory evoked potentials in patients with schizophrenia may be associated with a decreased density of α7 nAChRs in the brain. This points to a role for auditory sensory gating (P50) as a translational biomarker. A number of agonists and positive allosteric modulators (PAMs) for α7 nAChR promoted beneficial effects in animal models with sensory gating and cognitive deficits. Additionally, several clinical studies showed that α7 nAChR agonists could improve suppression in auditory P50 evoked potentials, as well as cognitive deficits, and negative symptoms in patients with schizophrenia. Taken together, α7 nAChR presents as an extremely attractive therapeutic target for schizophrenia. In this article, the author discusses recent findings on α7 nAChR agonists such as DMXB-A, RG3487, TC-5619, tropisetron, EVP-6124 (encenicline), ABT-126, AQW051 and α7 nAChR PAMs such as JNJ-39393406, PNU- 120596 and AVL-3288 (also known as UCI-4083), and their potential as therapeutic drugs for neuropsychiatric diseases, such as schizophrenia.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic, Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|
43
|
Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology 2014; 96:255-62. [PMID: 25514383 DOI: 10.1016/j.neuropharm.2014.11.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Sylvia Lombardo
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France.
| | - Uwe Maskos
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France
| |
Collapse
|
44
|
The novel α7 nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens. Psychopharmacology (Berl) 2014; 231:4541-51. [PMID: 24810107 DOI: 10.1007/s00213-014-3596-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Alpha7 and α4β2 nicotinic acetylcholine receptor (nAChR) agonists have been shown to improve cognition in various animal models of cognitive impairment and are of interest as treatments for schizophrenia, Alzheimer's disease, and other cognitive disorders. Increased release of dopamine (DA), acetylcholine (ACh), glutamate (Glu), and γ-aminobutyric acid (GABA) in cerebral cortex, hippocampus, and nucleus accumbens (NAC) has been suggested to contribute to their beneficial effects on cognition. RESULTS Using in vivo microdialysis, we found that EVP-6124 [(R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide], a high-affinity α7 nAChR partial agonist, at 0.1 mg/kg, s.c., increased DA efflux in the medial prefrontal cortex (mPFC) and NAC. EVP-6124, 0.1 and 0.3 mg/kg, also increased efflux of ACh in the mPFC but not in the NAC. Similarly, EVP-6124, 0.1 mg/kg, but not 0.03 and 0.3 mg/kg, significantly increased mPFC Glu efflux. Thus, EVP-6124 produced an inverted U-shaped curve for DA and Glu release, as previously reported for other α7 nAChR agonists. The three doses of EVP-6124 did not produce a significant effect on GABA efflux in either region. Pretreatment with the selective α7 nAChR antagonist, methyllycaconitine (MLA, 1.0 mg/kg), significantly blocked cortical DA and Glu efflux induced by EVP-6124 (0.1 mg/kg), suggesting that the effects of EVP-6124 on these neurotransmitters were due to α7 nAChR agonism. MLA only partially blocked the effects of EVP-6124 on ACh efflux in the mPFC. CONCLUSION These results suggest increased cortical DA, ACh, and Glu release, which may contribute to the ability of the α7 nAChR agonist, EVP-6124, to treat cognitive impairment and possibly other dimensions of psychopathology.
Collapse
|
45
|
Rötering S, Deuther-Conrad W, Cumming P, Donat CK, Scheunemann M, Fischer S, Xiong G, Steinbach J, Peters D, Sabri O, Bucerius J, Brust P. Imaging of α7 nicotinic acetylcholine receptors in brain and cerebral vasculature of juvenile pigs with [(18)F]NS14490. EJNMMI Res 2014; 4:43. [PMID: 25136512 PMCID: PMC4129469 DOI: 10.1186/s13550-014-0043-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022] Open
Abstract
Background The α7 nicotinic acetylcholine receptor (nAChR) is an important molecular target in neuropsychiatry and oncology. Development of applicable highly specific radiotracers has been challenging due to comparably low protein expression. To identify novel ligands as candidates for positron emission tomography (PET), a library of diazabicyclononane compounds was screened regarding affinity and specificity towards α7 nAChRs. From these, [18F]NS14490 has been shown to yield reliable results in organ distribution studies; however, the radiosynthesis of [18F]NS14490 required optimization and automation to obtain the radiotracer in quantities allowing dynamic PET studies in piglets. Methods Automated radiosynthesis of [18F]NS14490 has been performed by [18F]fluorination with the tosylate precursor in the TRACERlab™ FX F-N synthesis module (Waukesha, WI, USA). After optimization, the radiochemical yield of [18F]NS14490 was consistently approximately 35%, and the total synthesis time was about 90 min. The radiotracer was prepared with >92% radiochemical purity, and the specific activity at the end of the synthesis was 226 ± 68 GBq μmol−1. PET measurements were performed in young pigs to investigate the metabolic stability and cerebral binding of [18F]NS14490 without and with administration of the α7 nAChR partial agonist NS6740 in baseline and blocking conditions. Results The total distribution volume relative to the metabolite-corrected arterial input was 3.5 to 4.0 mL g−1 throughout the telencephalon and was reduced to 2.6 mL g−1 in animals treated with NS6740. Assuming complete blockade, this displacement indicated a binding potential (BPND) of approximately 0.5 in the brain of living pigs. In addition, evidence for specific binding in major brain arteries has been obtained. Conclusion [18F]NS14490 is not only comparable to other preclinically investigated PET radiotracers for imaging of α7 nAChR in brain but also could be a potential PET radiotracer for imaging of α7 nAChR in vulnerable plaques of diseased vessels.
Collapse
Affiliation(s)
- Sven Rötering
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, Leipzig 04318, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, Leipzig 04318, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Friedrich-Alexander-Universität, Ulmenweg 18, Erlangen 91054, Germany ; Department of Pharmacology and Neuroscience, Copenhagen University, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Cornelius K Donat
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, Leipzig 04318, Germany
| | - Matthias Scheunemann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, Leipzig 04318, Germany
| | - Steffen Fischer
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, Leipzig 04318, Germany
| | - Guoming Xiong
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität, Marchioninistr. 15, Munich 83177, Germany
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, Leipzig 04318, Germany
| | - Dan Peters
- DanPET AB, Rosenstigen 7, Malmö SE-21619, Sweden
| | - Osama Sabri
- Department of Nuclear Medicine, Universität Leipzig, Liebigstr. 18, Leipzig 04103, Germany
| | - Jan Bucerius
- Department of Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, Maastricht 6229, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, P. Debeylaan 25, Maastricht 6229, The Netherlands ; Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelstr. 30, Aachen 52074, Germany
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, Leipzig 04318, Germany
| |
Collapse
|
46
|
Sahdeo S, Wallace T, Hirakawa R, Knoflach F, Bertrand D, Maag H, Misner D, Tombaugh GC, Santarelli L, Brameld K, Milla ME, Button DC. Characterization of RO5126946, a Novel α7 nicotinic acetylcholine receptor-positive allosteric modulator. J Pharmacol Exp Ther 2014; 350:455-68. [PMID: 24917542 DOI: 10.1124/jpet.113.210963] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both preclinical evidence and clinical evidence suggest that α7 nicotinic acetylcholine receptor activation (α7nAChR) improves cognitive function, the decline of which is associated with conditions such as Alzheimer's disease and schizophrenia. Moreover, allosteric modulation of α7nAChR is an emerging therapeutic strategy in an attempt to avoid the rapid desensitization properties associated with the α7nAChR after orthosteric activation. We used a calcium assay to screen for positive allosteric modulators (PAMs) of α7nAChR and report on the pharmacologic characterization of the novel compound RO5126946 (5-chloro-N-[(1S,3R)-2,2-dimethyl-3-(4-sulfamoyl-phenyl)-cyclopropyl]-2-methoxy-benzamide), which allosterically modulates α7nAChR activity. RO5126946 increased acetylcholine-evoked peak current and delayed current decay but did not affect the recovery of α7nAChRs from desensitization. In addition, RO5126946's effects were absent when nicotine-evoked currents were completely blocked by coapplication of the α7nAChR-selective antagonist methyl-lycaconitine. RO5126946 enhanced α7nAChR synaptic transmission and positively modulated GABAergic responses. The absence of RO5126946 effects at human α4β2nAChR and 5-hydroxytryptamine 3 receptors, among others, indicated selectivity for α7nAChRs. In vivo, RO5126946 is orally bioavailable and brain-penetrant and improves associative learning in a scopolamine-induced deficit model of fear conditioning in rats. In addition, procognitive effects of RO5126946 were investigated in the presence of nicotine to address potential pharmacologic interactions on behavior. RO5126946 potentiated nicotine's effects on fear memory when both compounds were administered at subthreshold doses and did not interfere with procognitive effects observed when both compounds were administered at effective doses. Overall, RO5126946 is a novel α7nAChR PAM with cognitive-enhancing properties.
Collapse
Affiliation(s)
- Sunil Sahdeo
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Tanya Wallace
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Ryoko Hirakawa
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Frederic Knoflach
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Daniel Bertrand
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Hans Maag
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Dinah Misner
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Geoffrey C Tombaugh
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Luca Santarelli
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Ken Brameld
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Marcos E Milla
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| | - Donald C Button
- Roche Palo Alto, Palo Alto, California (S.S., T.W., R.H., H.M., K.B., M.E.M., D.C.B.); F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, Discovery Neuroscience, Grenzacherstrasse, Basel, Switzerland (F.K., L.S.); gRED South San Francisco, California (D.M.); HiQScreen Sarl, Geneva, Switzerland (D.B.); and Psychogenics Inc., Tarrytown, New York (G.C.T.)
| |
Collapse
|
47
|
Zwart R, Strotton M, Ching J, Astles PC, Sher E. Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Eur J Pharmacol 2014; 726:77-86. [DOI: 10.1016/j.ejphar.2014.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 12/16/2022]
|
48
|
Horti AG, Gao Y, Kuwabara H, Wang Y, Abazyan S, Yasuda RP, Tran T, Xiao Y, Sahibzada N, Holt DP, Kellar KJ, Pletnikov MV, Pomper MG, Wong DF, Dannals RF. 18F-ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor with PET. J Nucl Med 2014; 55:672-7. [PMID: 24556591 DOI: 10.2967/jnumed.113.132068] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly because of insufficient specific binding. The goal of this study was to evaluate the potential of (18)F-ASEM ((18)F-JHU82132) as an α7-nAChR radioligand for PET. METHODS The inhibition binding assay and receptor functional properties of ASEM were assessed in vitro. The brain regional distribution of (18)F-ASEM in baseline and blockade were evaluated in DISC1 mice (dissection) and baboons (PET). RESULTS ASEM is an antagonist for the α7-nAChR with high binding affinity (Ki = 0.3 nM). (18)F-ASEM readily entered the baboon brain and specifically labeled α7-nAChR. The in vivo specific binding of (18)F-ASEM in the brain regions enriched with α7-nAChRs was 80%-90%. SSR180711, an α7-nAChR-selective partial agonist, blocked (18)F-ASEM binding in the baboon brain in a dose-dependent manner, suggesting that the binding of (18)F-ASEM was mediated by α7-nAChRs and the radioligand was suitable for drug evaluation studies. In the baboon baseline studies, the brain regional volume of distribution (VT) values for (18)F-ASEM were 23 (thalamus), 22 (insula), 18 (hippocampus), and 14 (cerebellum), whereas in the binding selectivity (blockade) scan, all regional VT values were reduced to less than 4. The range of regional binding potential values in the baboon brain was from 3.9 to 6.6. In vivo cerebral binding of (18)F-ASEM and α7-nAChR expression in mutant DISC1 mice, a rodent model of schizophrenia, was significantly lower than in control animals, which is in agreement with previous postmortem human data. CONCLUSION (18)F-ASEM holds promise as a radiotracer with suitable imaging properties for quantification of α7-nAChR in the human brain.
Collapse
Affiliation(s)
- Andrew G Horti
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sharma R, Sahota P, Thakkar MM. Nicotine administration in the cholinergic basal forebrain increases alcohol consumption in C57BL/6J mice. Alcohol Clin Exp Res 2014; 38:1315-20. [PMID: 24512005 DOI: 10.1111/acer.12353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alcohol and nicotine are the most commonly abused drugs. The frequent co-morbidity of alcohol and nicotine addiction has led to the hypothesis that they may act via a common substrate: the nicotinic acetylcholine receptors (nAChRs) especially α4β2 and α7 subtypes, the most prevalent nAChRs in the brain. Compelling evidence suggests that alcohol enhances the function of α4β2 subtype. The FDA approved smoking cessation drug, varenicline ("Chantix"), a partial agonist of α4β2 nAChR subtype, reduces alcohol self-administration and alcohol craving in humans and rodents. The cholinergic basal forebrain (BF) controls various functions including arousal, attention, and cognition, and there is a predominance of α4β2 and α7 subtypes. We have shown that the BF has an important role in mediating the effects of alcohol and local infusion of nicotine in the BF activates nucleus accumbens. Does BF have any role in mediating the effect of nicotine on alcohol consumption? This study was designed to address this question. METHODS Under standard surgical procedure, C57BL/6J mice were stereotaxically implanted with bilateral stainless steel guide cannula above the BF. Following post operative recovery and habituation, the animals were exposed to the "drinking-in-the-dark" paradigm whereby alcohol (20%) was presented for 2 hours daily for 3 days. On the fourth day, nicotine or artificial cerebrospinal fluid (ACSF) was microinjected bilaterally in the BF. After 1 hour, mice were exposed to alcohol and allowed to self-administer for 4 hours. The effect of BF nicotine infusion on sucrose consumption was also examined. On completion, mice were euthanized, brain removed and processed to localize the BF injection sites. RESULTS As compared with the ACSF, bilateral nicotine injections into the BF significantly (p < 0.05; n = 5/group) increased alcohol consumption. Sucrose consumption remained unaffected. CONCLUSIONS Based on our results, we believe that the BF may have an important role in nicotine-alcohol co-use.
Collapse
Affiliation(s)
- Rishi Sharma
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | | | | |
Collapse
|
50
|
Effect of alpha7 nicotinic acetylcholine receptor agonists on attentional set-shifting impairment in rats. Psychopharmacology (Berl) 2014; 231:673-83. [PMID: 24057763 DOI: 10.1007/s00213-013-3275-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
RATIONALE Attentional set shifting, a measure of executive function, is impaired in schizophrenia patients. Current standard of care has little therapeutic benefit for treating cognitive dysfunction in schizophrenia; therefore, novel drugs and animal models for testing novel therapies are needed. The NMDA receptor antagonist, MK-801, produces deficits in a rat maze-based set-shifting paradigm, an effect which parallels deficits observed on tests of executive function in schizophrenia patients. Alpha7 nicotinic acetylcholine receptor (nAChR) agonists, currently under clinical development by several companies, show promise in treating cognitive symptoms in schizophrenia patients and can improve cognition in various animal models. OBJECTIVES The objectives of the present study were to determine whether the MK-801 deficit in set shifting could be reproduced in a drug discovery setting and to determine whether cognitive improvement could be detected for the first time in this task with alpha7 nAChR agonists. RESULTS The data presented here replicate findings that a systemic injection of the NMDA receptor antagonist MK-801 can induce a deficit in set shifting in rats. Furthermore, the deficit could be reversed by the atypical antipsychotic clozapine as well as by several alpha7 nAch receptor agonists (SSR-180711, PNU-282987, GTS-21) with varying in vitro properties. CONCLUSIONS Results indicate that the MK-801 set-shift assay is a useful preclinical tool for measuring prefrontal cortical function in rodents and can be used to identify novel mechanisms for the potential treatment of cognitive deficits in schizophrenia.
Collapse
|