1
|
D’Agostino M, Di Cecco M, Marani C, Vigili MG, Sileno S, Volpi CC, Gloghini A, Avitabile D, Magenta A, Rahimi S. Positive Linear Relationship between Nucleophosmin Protein Expression and the Viral Load in HPV-Associated Oropharyngeal Squamous Cell Carcinoma: A Possible Tool for Stratification of Patients. Int J Mol Sci 2023; 24:ijms24043482. [PMID: 36834892 PMCID: PMC9967283 DOI: 10.3390/ijms24043482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Most oropharyngeal squamous cell carcinomas (OPSCCs) are human papillomavirus (HPV)-associated, high-risk (HR) cancers that show a better response to chemoradiotherapy and are associated with improved survival. Nucleophosmin (NPM, also called NPM1/B23) is a nucleolar phosphoprotein that plays different roles within the cell, such as ribosomal synthesis, cell cycle regulation, DNA damage repair and centrosome duplication. NPM is also known as an activator of inflammatory pathways. An increase in NPM expression has been observed in vitro in E6/E7 overexpressing cells and is involved in HPV assembly. In this retrospective study, we investigated the relationship between the immunohistochemical (IHC) expression of NPM and HR-HPV viral load, assayed by RNAScope in situ hybridization (ISH), in ten patients with histologically confirmed p16-positive OPSCC. Our findings show that there is a positive correlation between NPM expression and HR-HPV mRNA (Rs = 0.70, p = 0.03), and a linear regression (r2 = 0.55; p = 0.01). These data support the hypothesis that NPM IHC, together with HPV RNAScope, could be used as a predictor of transcriptionally active HPV presence and tumor progression, which is useful for therapy decisions. This study includes a small cohort of patients and, cannot report conclusive findings. Further studies with large series of patients are needed to support our hypothesis.
Collapse
Affiliation(s)
- Marco D’Agostino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Marco Di Cecco
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Carla Marani
- Division of Histopathology, Ospedale San Carlo di Nancy, 00165 Rome, Italy
| | - Maurizio Giovanni Vigili
- Head and Neck Surgery Departments, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Sara Sileno
- Institute of Translational Pharmacology IFT, National Research Council of Italy (CNR), 00133 Rome, Italy
| | - Chiara Costanza Volpi
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Annunziata Gloghini
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | | | - Alessandra Magenta
- Institute of Translational Pharmacology IFT, National Research Council of Italy (CNR), 00133 Rome, Italy
- Correspondence: (A.M.); (S.R.)
| | - Siavash Rahimi
- Anatomic Pathology Department, Istituto Dermopatico dell’Immacolata IDI-IRCCS, 00167 Rome, Italy
- Correspondence: (A.M.); (S.R.)
| |
Collapse
|
2
|
Lou H, Boland JF, Li H, Burk R, Yeager M, Anderson SK, Wentzensen N, Schiffman M, Mirabello L, Dean M. HPV16 E7 Nucleotide Variants Found in Cancer-Free Subjects Affect E7 Protein Expression and Transformation. Cancers (Basel) 2022; 14:4895. [PMID: 36230818 PMCID: PMC9562847 DOI: 10.3390/cancers14194895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The human papillomavirus (HPV) type 16 E7 oncogene is critical to carcinogenesis and highly conserved. Previous studies identified a preponderance of non-synonymous E7 variants amongst HPV16-positive cancer-free controls compared to those with cervical cancer. To investigate the function of E7 variants, we constructed full-length HPV16 E7 genes and tested variants at positions H9R, D21N, N29S, E33K, T56I, D62N, S63F, S63P, T64M, E80K, D81N, P92L, and P92S (found only in controls); D14E, N29H cervical intraepithelial neoplasia (CIN2), and P6L, H51N, R77S (CIN3). We determined the steady-state level of cytoplasmic and nuclear HPV16 E7 protein. All variants from controls showed a reduced level of E7 protein, with 7/13 variants having lower protein levels. In contrast, 2/3 variants from the CIN3 precancer group had near-wild type E7 levels. We assayed the activity of representative variants in stably transfected NIH3T3 cells. The H9R, E33K, P92L, and P92S variants found in control subjects had lower transforming activity than D14E and N29H variants (CIN2), and the R77S (CIN3) had activity only slightly reduced from wild-type E7. In addition, R77S and WT E7 caused increased migration of NIH3T3 cells in a wound-healing assay compared with H9R, E33K, P92L, and P92S (controls) and D14E (CIN2). These data provide evidence that the E7 variants found in HPV16-positive cancer-free women are partially defective for transformation and cell migration, further demonstrating the importance of fully active E7 in cancer development.
Collapse
Affiliation(s)
- Hong Lou
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Joseph F. Boland
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert Burk
- Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Meredith Yeager
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Stephen K. Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nicolas Wentzensen
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Mark Schiffman
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Lisa Mirabello
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| |
Collapse
|
3
|
The Subcellular Localisation of the Human Papillomavirus (HPV) 16 E7 Protein in Cervical Cancer Cells and Its Perturbation by RNA Aptamers. Viruses 2015; 7:3443-61. [PMID: 26131956 PMCID: PMC4517109 DOI: 10.3390/v7072780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/04/2023] Open
Abstract
Human papillomavirus (HPV) is the most common viral infection of the reproductive tract, affecting both men and women. High-risk oncogenic types are responsible for almost 90% of anogenital and oropharyngeal cancers including cervical cancer. Some of the HPV "early" genes, particularly E6 and E7, are known to act as oncogenes that promote tumour growth and malignant transformation. Most notably, HPV-16 E7 interacts with the tumour suppressor protein pRb, promoting its degradation, leading to cell cycle dysregulation in infected cells. We have previously shown that an RNA aptamer (termed A2) selectively binds to HPV16 E7 and is able to induce apoptosis in HPV16-transformed cervical carcinoma cell lines (SiHa) through reduction of E7 levels. In this study, we investigated the effects of the A2 aptamer on E7 localisation in order to define its effects on E7 activity. We demonstrate for the first time that E7 localised to the plasma membrane. In addition, we show that A2 enhanced E7 localisation in the ER and that the A2-mediated reduction of E7 was not associated with proteasomal degradation. These data suggest that A2 perturbs normal E7 trafficking through promoting E7 ER retention.
Collapse
|
4
|
Dichamp I, Séité P, Agius G, Barbarin A, Beby-Defaux A. Human papillomavirus 16 oncoprotein E7 stimulates UBF1-mediated rDNA gene transcription, inhibiting a p53-independent activity of p14ARF. PLoS One 2014; 9:e96136. [PMID: 24798431 PMCID: PMC4010441 DOI: 10.1371/journal.pone.0096136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus oncoproteins E6 and E7 play a major role in HPV-related cancers. One of the main functions of E7 is the degradation of pRb, while E6 promotes the degradation of p53, inactivating the p14ARF-p53 pathway. pRb and p14ARF can repress ribosomal DNA (rDNA) transcription in part by targeting the Upstream Binding Factor 1 (UBF1), a key factor in the activation of RNA polymerase I machinery. We showed, through ectopic expression and siRNA silencing of p14ARF and/or E7, that E7 stimulates UBF1-mediated rDNA gene transcription, partly because of increased levels of phosphorylated UBF1, preventing the inhibitory function of p14ARF. Unexpectedly, activation of rDNA gene transcription was higher in cells co-expressing p14ARF and E7, compared to cells expressing E7 alone. We did not find a difference in P-UBF1 levels that could explain this data. However, p14ARF expression induced E7 to accumulate into the nucleolus, where rDNA transcription takes place, providing an opportunity for E7 to interact with nucleolar proteins involved in this process. GST-pull down and co-immunoprecipitation assays showed interactions between p14ARF, UBF1 and E7, although p14ARF and E7 are not able to directly interact. Co-expression of a pRb-binding-deficient mutant (E7C24G) and p14ARF resulted in EC24G nucleolar accumulation, but not in a significant higher activation of rDNA transcription, suggesting that the inactivation of pRb is involved in this phenomenon. Thus, p14ARF fails to prevent E7-mediated UBF1 phosphorylation, but could facilitate nucleolar pRb inactivation by targeting E7 to the nucleolus. While others have reported that p19ARF, the mouse homologue of p14ARF, inhibits some functions of E7, we showed that E7 inhibits a p53-independent function of p14ARF. These results point to a mutually functional interaction between p14ARF and E7 that might partly explain why the sustained p14ARF expression observed in most cervical pre-malignant lesions and malignancies may be ineffective.
Collapse
Affiliation(s)
- Isabelle Dichamp
- Unité de Virologie, Centre Hospitalier Universitaire de Poitiers, Faculté de Médecine et Pharmacie, Poitiers, France
| | - Paule Séité
- Equipe Emergente 2RCT «Récepteurs, Régulations, Cellules Tumorales», Université de Poitiers, Poitiers, France
| | - Gérard Agius
- Unité de Virologie, Centre Hospitalier Universitaire de Poitiers, Faculté de Médecine et Pharmacie, Poitiers, France
| | - Alice Barbarin
- Equipe Emergente 2RCT «Récepteurs, Régulations, Cellules Tumorales», Université de Poitiers, Poitiers, France
| | - Agnès Beby-Defaux
- Unité de Virologie, Centre Hospitalier Universitaire de Poitiers, Faculté de Médecine et Pharmacie, Poitiers, France
- Equipe Emergente 2RCT «Récepteurs, Régulations, Cellules Tumorales», Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
5
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|
6
|
Detection of human papillomavirus type 18 E7 oncoprotein in cervical smears: a feasibility study. J Clin Microbiol 2011; 50:246-57. [PMID: 22135254 DOI: 10.1128/jcm.01108-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistent infections by high-risk human papillomaviruses (HPVs) are the main etiological factor for cervical cancer, and expression of HPV E7 oncoproteins was suggested to be a potential marker for tumor progression. The objective of this study was to generate new reagents for the detection of the HPV18 E7 oncoprotein in cervical smears. Rabbit monoclonal antibodies against recombinant E7 protein of HPV type 18 (HPV18) were generated and characterized using Western blotting, epitope mapping, indirect immunofluorescence, and immunohistochemistry. One clone specifically recognizing HPV18 E7 was used for the development of a sandwich enzyme-linked immunosorbent assay (ELISA). The assay was validated using recombinant E7 proteins of various HPV types and lysates from E7-positive cervical carcinoma cells. A total of 14 HPV18 DNA-positive cervical swab specimens and 24 HPV DNA-negative-control specimens were used for the determination of E7 protein levels by the newly established sandwich ELISA. On the basis of the average absorbance values obtained from all 24 negative controls, a cutoff above which a clinical sample can be judged E7 positive was established. Significant E7 signals 6- to 30-fold over background were found in 7 out of 14 abnormal HPV18 DNA-positive cervical smear specimens. This feasibility study demonstrates for the first time that HPV18 E7 oncoprotein can be detected in cervical smears.
Collapse
|
7
|
Laurson J, Raj K. Localisation of human papillomavirus 16 E7 oncoprotein changes with cell confluence. PLoS One 2011; 6:e21501. [PMID: 21738683 PMCID: PMC3126820 DOI: 10.1371/journal.pone.0021501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/30/2011] [Indexed: 01/19/2023] Open
Abstract
E7 is one of the best studied proteins of human papillomavirus type 16, largely because of its oncogenic potential linked to cervical cancer. Yet the sub-cellular location of E7 remains confounding, even though it has been shown to be able to shuttle between the nucleus and the cytoplasm. Here we show with immunocytochemistry that E7 proteins are located in the nucleus and cytoplasm in sub-confluent cells, but becomes cytoplasmic in confluent cells. The change in E7's location is independent of time in culture, cell division, cell cycle phase or cellular differentiation. Levels of E7 are also increased in confluent cells as determined by Western blotting. Our investigations have also uncovered how different analytical techniques influence the observation of where E7 is localised, highlighting the importance of technical choice in such analysis. Understanding the localisation of E7 will help us to better comprehend the function of E7 on its target proteins.
Collapse
Affiliation(s)
- Joanna Laurson
- Division of Virology, National Institute for Medical Research, Medical Research Council, London, United Kingdom.
| | | |
Collapse
|
8
|
Dreier K, Scheiden R, Lener B, Ehehalt D, Pircher H, Müller-Holzner E, Rostek U, Kaiser A, Fiedler M, Ressler S, Lechner S, Widschwendter A, Even J, Capesius C, Jansen-Dürr P, Zwerschke W. Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ. Virology 2010; 409:54-68. [PMID: 20970819 PMCID: PMC3003157 DOI: 10.1016/j.virol.2010.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/17/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022]
Abstract
E7 is the major oncoprotein of high-risk human papillomaviruses (HPV) which causes cervical cancer. To date E7 oncoproteins have not been investigated in cervical adenocarcinoma. In this study we generated a rabbit monoclonal anti-HPV-16 E7 antibody, RabMab42-3, which recognizes a conformational epitope in the E7 carboxy-terminal zinc-finger resulting in a strong increase in the sensitivity for the detection of cell-associated HPV-16 E7 protein relative to conventional polyclonal anti-HPV-16 E7 antibodies. Using RabMab42-3, we show that the subcellular localization of endogenous HPV-16 E7 oncoprotein varies during the cell cycle in cervical cancer cells. Moreover, we demonstrate for the first time that the HPV-16 E7 oncoprotein is abundantly expressed in cervical adenocarcinoma in situ and adenocarcinoma, suggesting an important role of HPV-16 E7 for the development of these tumors. Our findings suggest that the HPV-16 E7 oncoprotein could be a useful marker for the detection of cervical adenocarcinoma and their precursors.
Collapse
Affiliation(s)
- Kerstin Dreier
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pozzi E, Basavecchia V, Zanotto C, Pacchioni S, Morghen CDG, Radaelli A. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J Virol Methods 2009; 158:184-9. [PMID: 19428588 DOI: 10.1016/j.jviromet.2009.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 01/16/2009] [Accepted: 01/22/2009] [Indexed: 02/03/2023]
Abstract
Human papilloma virus (HPV)-16 is the most prevalent high-risk mucosal genotype and the expression of the E6 and E7 proteins, which can bind to the p53 and p105Rb host cell-cycle regulatory proteins, is related to its tumorigenicity. Virus-like-particle (VLP)-based immunogens developed recently are successful as prophylactic HPV vaccines. However, given the high number of individuals infected already with HPV and the absence of expression of the L1 structural protein in HPV-infected or HPV-transformed cells, an efficient therapeutic vaccine targeting the non-structural E6 and E7 oncoproteins is required. In this study, two new fowlpox virus (FPV) recombinants encoding the HPV-16 E6 and E7 proteins were engineered and evaluated for their correct expression in vitro, with the final aim of developing a therapeutic vaccine against HPV-related cervical tumors. Although vaccinia viruses expressing the HPV-16 and HPV-18 E6 and E7 oncoproteins have already been studied, due to their natural host-range restriction to avian species and their ability to elicit a complete immune response, FPV recombinants may represent efficient and safer vectors also for immunocompromised hosts. The results indicate that FPV recombinants can express correctly the E6 and E7 oncoproteins, and they should represent appropriate vectors for the expression of these oncoproteins in human cells.
Collapse
Affiliation(s)
- Eleana Pozzi
- Department of Medical Pharmacology, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
10
|
McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology 2008; 384:335-44. [PMID: 19007963 DOI: 10.1016/j.virol.2008.10.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 10/03/2008] [Indexed: 01/01/2023]
Abstract
The human papillomavirus (HPV) E7 oncoprotein shares functional similarities with such proteins as adenovirus E1A and SV40 large tumor antigen. As one of only two viral proteins always expressed in HPV-associated cancers, E7 plays a central role in both the viral life cycle and carcinogenic transformation. In the HPV viral life cycle, E7 disrupts the intimate association between cellular differentiation and proliferation in normal epithelium, allowing for viral replication in cells that would no longer be in the dividing population. This function is directly reflected in the transforming activities of E7, including tumor initiation and induction of genomic instability.
Collapse
|
11
|
Valdovinos-Torres H, Orozco-Morales M, Pedroza-Saavedra A, Padilla-Noriega L, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. Different Isoforms of HPV-16 E7 Protein are Present in Cytoplasm and Nucleus. Open Virol J 2008; 2:15-23. [PMID: 19440460 PMCID: PMC2678815 DOI: 10.2174/1874357900802010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/14/2008] [Accepted: 03/05/2008] [Indexed: 11/22/2022] Open
Abstract
The E7 protein of high risk HPV types has been found with different molecular weights, mainly because of phosphorylation, an event that changes protein charge and mobility in SDS-PAGE. Distribution of E7 protein in the cellular compartments has also been subject of debate as some groups report the protein in nucleus and others in cytoplasm. The different subcellular distribution and molecular weights reported for the E7 protein suggest the presence of isoforms. We examined this possibility by using several antibodies that recognize different epitopes on the HPV-16 E7 protein. We showed that E7 is processed in 3 isoforms with different molecular weights and isoelectric points (IEP), and described as E7a1 (17.5 kDa, IEP 4.68), E7a (17 kDa, IEP 6.18) and E7b (16 kDa, IEP 6.96). The immunofluorescense results also showed that E7 is distributed into different compartments (ER, Golgi and nucleus), which suggest the presence of other posttranslational modifications, besides phosphorylation.
Collapse
Affiliation(s)
- H Valdovinos-Torres
- Research Center of Infectious Diseases, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|
12
|
Mirecka EA, Rudolph R, Hey T. Expression and purification of His-tagged HPV16 E7 protein active in pRb binding. Protein Expr Purif 2006; 48:281-91. [PMID: 16814565 DOI: 10.1016/j.pep.2006.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/16/2006] [Accepted: 04/17/2006] [Indexed: 12/23/2022]
Abstract
Human papillomavirus type 16 (HPV16) protein E7 is the major oncogenic factor associated with the development of human cervical cancer. The transforming activity of the E7 protein is linked to its interaction with host regulatory proteins such as the retinoblastoma tumor suppressor protein. The recombinant production of E7 protein is a prerequisite for its structural and functional characterization as well as for the development of various preventive and therapeutic strategies. We present an approach to enhance the soluble expression of His-tagged E7 protein by optimization of the E7 gene and the expression conditions in the host Escherichia coli. We also report a detailed protocol for the purification of E7 protein by standard chromatographic methods. The binding of E7 protein to the recombinant non-phosphorylated form of retinoblastoma protein was examined by ELISA and surface plasmon resonance analysis. These studies confirm that the recombinant His-tagged E7 protein retains its conformational properties and biological activity.
Collapse
Affiliation(s)
- Ewa A Mirecka
- Institut für Biotechnologie, Martin-Luther-Universität Halle/Wittenberg, Halle (Saale), Germany
| | | | | |
Collapse
|
13
|
Abstract
Transcription of rRNA and tRNA genes by RNA polymerases I and III is essential for sustained protein synthesis and is therefore a fundamental determinant of the capacity of a cell to grow. When cell growth is not required, this transcription is repressed by retinoblastoma protein, p53 and ARF. However, inactivation of these tumour suppressors in cancers deregulates RNA polymerases I and III, and oncoproteins such as Myc can stimulate these systems further. Such events might have a significant impact on the growth potential of tumours.
Collapse
Affiliation(s)
- Robert J White
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
14
|
Ning B, Shih C. Nucleolar localization of human hepatitis B virus capsid protein. J Virol 2004; 78:13653-68. [PMID: 15564475 PMCID: PMC533942 DOI: 10.1128/jvi.78.24.13653-13668.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 08/12/2004] [Indexed: 01/02/2023] Open
Abstract
Wild-type human hepatitis B virus (HBV) exhibits selective export of virions containing mature genomes. In contrast, changing an isoleucine to a leucine at amino acid 97 (I97L) of the HBV core antigen (HBcAg) causes it to release immature genomes. To elucidate the structure-function relationship of HBcAg at amino acid 97, we systematically replaced the isoleucine residue at this position with 18 other amino acids via mutagenesis. Twelve of the 18 mutants exhibited no significant phenotype, while five new mutants displayed strong phenotypes. The I97D mutant had a near lethal phenotype, the I97P mutant exhibited a significantly reduced level of virion secretion, and the I97G mutant lacked the full-length relaxed circular form of viral DNA. The tip of the spike of the capsid particle is known to contain a predominant B-cell epitope. However, the recognition of this exposed epitope by an anti-HBc antibody appeared to be affected by the I97E mutation or by histidine tagging at the C terminus of mutant HBcAg, which is presumably in the capsid interior. Surprisingly, the nuclear HBcAg of mutants I97E and I97W, produced from either a replicon or an expression vector, was found to be colocalized with nucleolin and B23 at a frequency of nearly 100% by confocal immunofluorescence microscopy. In contrast, this colocalization occurred with wild-type HBcAg only to a limited extent. We also noted that nucleolin-colocalizing cells were often binucleated or apoptotic, suggesting that the presence of HBcAg in the nucleolus may perturb cytokinesis. The mechanism of this phenomenon and its potential involvement in liver pathogenesis are discussed. To our knowledge, this is the first report of nucleolar HBcAg in culture.
Collapse
Affiliation(s)
- Bo Ning
- Department of Pathology, WHO Collaborating Center for Tropical Diseases and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | |
Collapse
|
15
|
Edmondson SR, Thumiger SP, Werther GA, Wraight CJ. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev 2003; 24:737-64. [PMID: 14671001 DOI: 10.1210/er.2002-0021] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GH and IGF-I and -II were first identified by their endocrine activity. Specifically, IGF-I was found to mediate the linear growth-promoting actions of GH. It is now evident that these two growth factor systems also exert widespread activity throughout the body and that their actions are not always interconnected. The literature highlights the importance of the GH and IGF systems in normal skin homeostasis, including dermal/epidermal cross-talk. GH activity, sometimes mediated via IGF-I, is primarily evident in the dermis, particularly affecting collagen synthesis. In contrast, IGF action is an important feature of the dermal and epidermal compartments, predominantly enhancing cell proliferation, survival, and migration. The locally expressed IGF binding proteins play significant and complex roles, primarily via modulation of IGF actions. Disturbances in GH and IGF signaling pathways are implicated in the pathophysiology of several skin perturbations, particularly those exhibiting epidermal hyperplasia (e.g., psoriasis, carcinomas). Additionally, many studies emphasize the potential use of both growth factors in the treatment of skin wounds; for example, burn patients. This overview concerns the role and mechanisms of action of the GH and IGF systems in skin and maintenance of epidermal integrity in both health and disease.
Collapse
Affiliation(s)
- Stephanie R Edmondson
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia 3052.
| | | | | | | |
Collapse
|
16
|
Middleton K, Peh W, Southern S, Griffin H, Sotlar K, Nakahara T, El-Sherif A, Morris L, Seth R, Hibma M, Jenkins D, Lambert P, Coleman N, Doorbar J. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 2003; 77:10186-201. [PMID: 12970404 PMCID: PMC228472 DOI: 10.1128/jvi.77.19.10186-10201.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The productive cycle of human papillomaviruses (HPVs) can be divided into discrete phases. Cell proliferation and episomal maintenance in the lower epithelial layers are followed by genome amplification and the expression of capsid proteins. These events, which occur in all productive infections, can be distinguished by using antibodies to viral gene products or to surrogate markers of their expression. Here we have compared precancerous lesions caused by HPV type 16 (HPV16) with lesions caused by HPV types that are not generally associated with human cancer. These include HPV2 and HPV11, which are related to HPV16 (supergroup A), as well as HPV1 and HPV65, which are evolutionarily divergent (supergroups E and B). HPV16-induced low-grade squamous intraepithelial lesions (CIN1) are productive infections which resemble those caused by other HPV types. During progression to cancer, however, the activation of late events is delayed, and the thickness of the proliferative compartment is progressively increased. In many HPV16-induced high-grade squamous intraepithelial lesions (CIN3), late events are restricted to small areas close to the epithelial surface. Such heterogeneity in the organization of the productive cycle was seen only in lesions caused by HPV16 and was not apparent when lesions caused by other HPV types were compared. By contrast, the order in which events in the productive cycle were initiated was invariant and did not depend on the infecting HPV type or the severity of disease. The distribution of viral gene products in the infected cervix depends on the extent to which the virus can complete its productive cycle, which in turn reflects the severity of cervical neoplasia. It appears from our work that the presence of such proteins in cells at the epithelial surface allows the severity of the underlying disease to be predicted and that markers of viral gene expression may improve cervical screening.
Collapse
Affiliation(s)
- Kate Middleton
- National Institute for Medical Research, Mill Hill, London
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pan W, Datta A, Adami GR, Raychaudhuri P, Bagchi S. P19ARF inhibits the functions of the HPV16 E7 oncoprotein. Oncogene 2003; 22:5496-503. [PMID: 12934109 DOI: 10.1038/sj.onc.1206857] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The E7 oncoprotein encoded by high-risk types of human papillomavirus (HPV) plays a significant role in the development of HPV-related cancers. E7 is a potent stimulator of S phase and host DNA replication. These functions of E7 are linked to the deregulation of the Rb family of proteins. For example, E7 binds and induces proteolysis of Rb through the ubiquitin-proteasome pathway. Despite advances in our understanding of E7, reagents that inhibit E7 with promise in therapy have not been developed or identified. Here, we provide evidence that the tumor suppressor ARF can inhibit E7. We show that the expression of ARF causes a relocalization of E7 from the nucleoplasm to the nucleolus. Two distinct regions in ARF overlapping with the MDM2-binding sites are necessary for the relocalization of E7. Furthermore, we show that ARF blocks the proteolysis of Rb induced by E7. In addition, ARF expression inhibits DNA replication induced by E7. Although it is not known whether the endogenous ARF, which is expressed at a low level, interferes with E7, our results suggest that ARF is an effective inhibitor of E7. We speculate that ARF or an ARF-derived molecule might have a significant impact in therapy against HPV-related tumors.
Collapse
Affiliation(s)
- Wei Pan
- Center for the Molecular Biology of Oral Diseases, College of Dentistry (M/C 860), University of Illinois at Chicago, 801S Paulina Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
18
|
Cid-Arregui A, Juárez V, zur Hausen H. A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J Virol 2003; 77:4928-37. [PMID: 12663798 PMCID: PMC152128 DOI: 10.1128/jvi.77.8.4928-4937.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A synthetic E7 gene of human papillomavirus (HPV) type 16 was generated that consists entirely of preferred human codons. Expression analysis of the synthetic E7 gene in human and animal cells showed levels of E7 protein 20- to 100-fold higher than those obtained with wild-type E7. Enhanced expression of E7 protein resulted from highly efficient translation, as well as increased stability of the E7 mRNA due to its codon optimization. Higher levels of E7 protein in cells transfected with synthetic E7 correlated with significant loss of cell viability in various human cell lines. In contrast, lower E7 protein expression driven by the wild-type gene resulted in a slight induction of cell proliferation. Furthermore, mice inoculated with plasmids expressing the synthetic E7 gene produced significantly higher levels of E7 antibodies than littermates injected with wild-type E7, suggesting that synthetic E7 may be useful for DNA immunization studies and the development of genetic vaccines against HPV-16. In view of these results, we hypothesize that HPVs may have retained a pattern of G + C content and codon usage distinct from that of their host cells in response to selective pressure. Thus, the nonhuman codon bias may have been conserved by HPVs to prevent compromising viability of the host cells by excessive viral early protein expression, as well as to evade the immune system.
Collapse
Affiliation(s)
- Angel Cid-Arregui
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
19
|
Jarskaja OO, Medzhidova AA, Fedorova NE, Kusch AA, Zatsepina OV. Immunocytochemical reorganization of the nucleolus in human embryo fibroblasts infected with cytomegalovirus in vitro. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2002; 387:589-92. [PMID: 12577646 PMCID: PMC7087792 DOI: 10.1023/a:1021770314862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- O O Jarskaja
- Belozerskii Institute of Physicochemical Biology, Moscow State University, Vorob'evy gory, Moscow, 119899 Russia
| | | | | | | | | |
Collapse
|
20
|
Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 2001; 20:7888-98. [PMID: 11753671 DOI: 10.1038/sj.onc.1204860] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human papillomavirus (HPV) E7 protein is one of only two viral proteins that remain expressed in HPV-associated human cancers. HPV E7 proteins share structural and functional similarities with oncoproteins encoded by other small DNA tumor viruses such as adenovirus E1A and SV40 large tumor antigen. The HPV E7 protein plays an important role in the viral life cycle by subverting the tight link between cellular differentiation and proliferation in normal epithelium, thus allowing the virus to replicate in differentiating epithelial cells that would have normally withdrawn from the cell division cycle. The transforming activities of E7 largely reflect this important function.
Collapse
Affiliation(s)
- K Münger
- Department of Pathology and Harvard Center for Cancer Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bohl J, Hull B, Vande Pol SB. Cooperative transformation and coexpression of bovine papillomavirus type 1 E5 and E7 proteins. J Virol 2001; 75:513-21. [PMID: 11119620 PMCID: PMC113944 DOI: 10.1128/jvi.75.1.513-521.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Productively infected bovine fibropapillomas were examined for bovine papillomavirus type 1 (BPV-1) E7 localization. BPV-1 E7 was observed in the cytoplasm of basal and lower spinous epithelial cells, coexpressed in the cytoplasm of basal cells with the E5 oncoprotein. E7 was also observed in nucleoli throughout the basal and spinous layers but not in the granular cell layer. Ectopic expression of E7 in cultured epithelial cells gave rise to localization similar to that seen in productive fibropapillomas, with cytoplasmic and nucleolar expression observed. Consistent with the coexpression of E7 and E5 in basal keratinocytes, BPV-1 E7 cooperated with E5 as well as E6 in an anchorage independence transformation assay. While E5 is expressed in both basal and superficial differentiating keratinocytes, BPV-1 E7 is only observed in basal and lower spinous epithelial cells. Therefore, BPV-1 E7 may serve to modulate the cellular response of basal epithelial cells to E5 expression.
Collapse
Affiliation(s)
- J Bohl
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
22
|
Abstract
The function of the nucleolus as a factory for assembling ribosomal subunits is well established, but many unrelated activities have been discovered over the past decade. Our understanding of the dynamics of nucleolar structure and its reassembly at the end of mitosis has recently advanced and the small nucleolar RNAs have been shown to be major players in the processing and modification of preribosomal RNA. Unexpectedly, the nucleolus also seems to play a role in nuclear export, sequestering regulatory molecules, modifying small RNAs, assembling ribonucleoprotein (RNP) and controlling aging.
Collapse
Affiliation(s)
- M O Olson
- Dept of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
23
|
Zwerschke W, Mannhardt B, Massimi P, Nauenburg S, Pim D, Nickel W, Banks L, Reuser AJ, Jansen-Dürr P. Allosteric activation of acid alpha-glucosidase by the human papillomavirus E7 protein. J Biol Chem 2000; 275:9534-41. [PMID: 10734102 DOI: 10.1074/jbc.275.13.9534] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the cellular carbohydrate metabolism are a hallmark of malignant transformation and represent one of the earliest discernible events in tumorigenesis. In the early stages of certain epithelial cancers, a metabolic switch is regularly observed, in which slowly growing glycogenotic cells are converted to highly proliferating basophilic cells. This step is accompanied by a rapid depletion of the intracellular glycogen stores, which in liver carcinogenesis results from the activation of the enzyme acid alpha-glucosidase by an as yet unknown mechanism. We show here that acid alpha-glucosidase is a target for the E7 protein encoded by human papillomavirus type 16, a human tumor virus that plays a key role in the genesis of cervical carcinoma. We show that expression of E7 induces the catalytic activity of acid alpha-glucosidase in vivo and wild type E7, but not transformation-deficient mutants bind directly to acid alpha-glucosidase and increase the catalytic activity of the enzyme in vitro. The data suggest that the E7 protein encoded by human papillomavirus type 16 can act as an allosteric activator of acid alpha-glucosidase.
Collapse
Affiliation(s)
- W Zwerschke
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung F0301, INF 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zwerschke W, Jansen-Dürr P. Cell transformation by the E7 oncoprotein of human papillomavirus type 16: interactions with nuclear and cytoplasmic target proteins. Adv Cancer Res 1999; 78:1-29. [PMID: 10547667 DOI: 10.1016/s0065-230x(08)61022-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The E7 oncoprotein of human papillomavirus type 16 (HPV-16) has long been known as a potent immortalizing and transforming agent. However, the molecular mechanisms underlying cell transformation and immortalization by E7 remain largely unknown. It is believed that E7 exerts its oncogenic function at least in part by modulating cellular growth regulatory pathways. Increasing experimental evidence suggests that cell transformation by E7 is mediated by the physical association of E7 with cellular regulatory proteins, whose functions are specifically altered by E7, as exemplified by the well-known interaction of E7 with the retinoblastoma protein. In this review, we summarize the available data on the interaction of E7 with cellular regulatory factors and functional consequences of these interactions. We will focus the review on a set of recently identified new target proteins for the E7 oncoprotein, which sheds new light on E7 functions required for cell transformation and immortalization. Similar to the case of the E6 protein of HPV-16, whose interaction with p53 was long considered its major activity, it now appears that the interaction of E7 with the retinoblastoma protein represents just one of many distinct interactions that are relevant for cell transformation.
Collapse
Affiliation(s)
- W Zwerschke
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Heidelberg, Germany
| | | |
Collapse
|
25
|
Stiegler P, Giordano A. Big brothers are watching: the retinoblastoma family and growth control. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:25-42. [PMID: 9928525 DOI: 10.1007/978-3-642-72149-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- P Stiegler
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
26
|
Braspenning J, Meschede W, Marchini A, Müller M, Gissmann L, Tommasino M. Secretion of heterologous proteins from Schizosaccharomyces pombe using the homologous leader sequence of pho1+ acid phosphatase. Biochem Biophys Res Commun 1998; 245:166-71. [PMID: 9535802 DOI: 10.1006/bbrc.1998.8402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we report the use of the S. pombe leader sequence of pho1+ acid phosphatase (Elliott et al., J. Biol. Chem. 216, 2916-2941, 1986) for the secretion of heterologous proteins into the medium. The green fluorescent protein (GFP) and the Human Papillomavirus (HPV) type 16 E7 protein are normally not secreted; fusion of the S. pombe pho1 leader peptide (SPL) to GFP and HPV 16 E7 resulted in an efficient secretion of these proteins although the latter contains a nuclear targeting sequence. These data suggest that SPL fused constructs could be applied for the production of other recombinant proteins using the S. pombe expression system. Furthermore, since GFP retains its intrinsic fluorescence during the secretion, this system may be useful to study the secretory pathway of fission yeast in vivo.
Collapse
Affiliation(s)
- J Braspenning
- Deutsches Krebsforschungszentrum, Angewandte Tumorvirologie, INF, 242, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|