1
|
Singh P, Anandani G, Parmar R. Primary paratesticular embryonal rhabdomyosarcoma - An unusual presentation. J Family Med Prim Care 2023; 12:2176-2180. [PMID: 38024875 PMCID: PMC10657067 DOI: 10.4103/jfmpc.jfmpc_397_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 12/01/2023] Open
Abstract
Paratesticular embryonal rhabdomyosarcoma (RMS) is a very rare and aggressive mesenchymal tumor. It is usually seen in children and adolescents presenting as a painless intrascrotal mass, localized in the paratesticular region. Hereby, we report two cases of paratesticular embryonal RMS in adults. One case was clinically suspected to be a testicular abscess, whereas the other presented with testicular swelling and lung metastasis. Localized forms have a good prognosis, whereas tumors presenting with metastases show a poor outcome. A treatment based on surgery and chemotherapy yields good results. Sperm cryopreservation and endocrine follow-up improve the overall survival and quality of life of these patients.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Pathology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Garima Anandani
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Riddhi Parmar
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
2
|
Zhu Y, Zhu Z, Xiao Y, Zhu Z. Case Report: Paratesticular Rhabdomyosarcoma. Front Oncol 2021; 11:629878. [PMID: 33816267 PMCID: PMC8010692 DOI: 10.3389/fonc.2021.629878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Paratesticular rhabdomyosarcoma (RMS) accounts for only 7% of all the RMS cases. Due to the limited available data, there is no consensus on the diagnosis and management of the paratesticular tumors. Here, we interrogated two paratesticular RMS cases in 25 and 27-year-old men presenting with painless and rapidly growing mass in the scrotum. Whereas the data showed no upregulation of tumor markers such as β-human chorionic gonadotropin (β-HCG), alpha-fetoprotein (AFP), and lactate dehydrogenase (LDH), scrotal ultrasonography and magnetic resonance imaging indicated the existence of paratesticular and inguinal lesions respectively. There was local recurrence in one patient who underwent radical orchiectomy for the sarcoma one year ago. In addition, the CT scans showed no occurrence of distant metastasis. The two patients underwent radical inguinal orchiectomy or resection of the recurrent tumors with nerve-sparing retroperitoneal lymph node dissection. Histologic examination revealed embryonal RMS (eRMS) without lymph node metastasis. We highlight the importance of multi-disciplinary participation for paratesticular RMS detection and preoperative ultrasound-guided needle biopsy (UNB) for rapid confirmatory diagnosis. Complete surgical resection coupled with chemotherapy and radiotherapy is the main treatment option for the paratesticular RMS. In addition, sperm cryopreservation treatment and endocrine follow-up could increase the overall survival and quality of life of the patients.
Collapse
Affiliation(s)
- Yiyi Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziwei Zhu
- Department of Urology, Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| | - Yunyuan Xiao
- Department of Urology, Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| | - Zaisheng Zhu
- Department of Urology, Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
3
|
Gasparini P, Ferrari A, Casanova M, Limido F, Massimino M, Sozzi G, Fortunato O. MiRNAs as Players in Rhabdomyosarcoma Development. Int J Mol Sci 2019; 20:ijms20225818. [PMID: 31752446 PMCID: PMC6888285 DOI: 10.3390/ijms20225818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma of childhood and adolescence, is a rare but aggressive malignancy that originates from immature mesenchymal cells committed to skeletal muscle differentiation. Although RMS is, generally, responsive to the modern multimodal therapeutic approaches, the prognosis of RMS depends on multiple variables and for some patients the outcome remains dismal. Further comprehension of the molecular and cellular biology of RMS would lead to identification of novel therapeutic targets. MicroRNAs (miRNAs) are small non-coding RNAs proved to function as key regulators of skeletal muscle cell fate determination and to play important roles in RMS pathogenesis. The purpose of this review is to better delineate the role of miRNAs as a biomarkers or functional leaders in RMS development, so to possibly elucidate some of RMS molecular mechanisms and potentially therapeutically target them to improve clinical management of pediatric RMS.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| | - Andrea Ferrari
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Michela Casanova
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Francesca Limido
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Maura Massimino
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| |
Collapse
|
4
|
El Demellawy D, McGowan-Jordan J, de Nanassy J, Chernetsova E, Nasr A. Update on molecular findings in rhabdomyosarcoma. Pathology 2017; 49:238-246. [PMID: 28256213 DOI: 10.1016/j.pathol.2016.12.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumour in children and adolescents. Histologically RMS resembles developing fetal striated skeletal muscle. RMS is stratified into different histological subtypes which appear to influence management plans and patient outcome. Importantly, molecular classification of RMS seems to more accurately capture the true biology and clinical course and prognosis of RMS to guide therapeutic decisions. The identification of PAX-FOXO1 fusion status in RMS is one of the most important updates in the risk stratification of RMS. There are several genes close to PAX that are frequently altered including the RAS family, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. As with most paediatric blue round cell tumours and sarcomas, chemotherapy is the key regimen for RMS therapy. Currently there are no direct inhibitors against PAX-FOXO1 fusion oncoproteins and targeting epigenetic cofactors is limited to clinical trials. Failure of therapy in RMS is usually related to drug resistance and metastatic disease. Through this review we have highlighted most of the molecular aspects in RMS and have attempted to correlate with RMS classification, treatment and prognosis.
Collapse
Affiliation(s)
- Dina El Demellawy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada.
| | - Jean McGowan-Jordan
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Genetics, Children's Hospital of Eastern Ontario, Ontario, Canada
| | - Joseph de Nanassy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada
| | | | - Ahmed Nasr
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Robbins KM, Stabley DL, Holbrook J, Sahraoui R, Sadreameli A, Conard K, Baker L, Gripp KW, Sol-Church K. Paternal uniparental disomy with segmental loss of heterozygosity of chromosome 11 are hallmark characteristics of syndromic and sporadic embryonal rhabdomyosarcoma. Am J Med Genet A 2016; 170:3197-3206. [PMID: 27589201 DOI: 10.1002/ajmg.a.37949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/14/2016] [Indexed: 01/22/2023]
Abstract
Costello syndrome (CS) arises from a typically paternally derived germline mutation in the proto-oncogene HRAS, and is considered a rasopathy. CS results in failure-to-thrive, intellectual disabilities, short stature, coarse facial features, skeletal abnormalities, congenital heart disease, and a predisposition for cancer, most commonly embryonal rhabdomyosarcoma (ERMS). The goal of this study was to characterize CS ERMS at the molecular level and to determine how divergent it is from sporadic ERMS. We characterized eleven ERMS tumors from eight unrelated CS patients, carrying paternally derived HRAS c.34G>A (p.Gly12Ser; 6) or c.35G>C (p.Gly12Ala; 2) mutations. Loss of heterozygosity (LOH) was evaluated in all CS ERMS by microarray and/or short tandem repeat (STR) markers spanning the entire chromosome 11. Eight CS ERMS tumors displayed complete paternal uniparental disomy of chromosome 11 (pUPD11), whereas two displayed UPD only at 11p and a second primary ERMS tumor showed UPD limited to 11p15.5, the classical hallmark for ERMS. Three sporadic ERMS cell lines (RD, Rh36, Rh18) and eight formalin fixed paraffin embedded (FFPE) ERMS tumors were also analyzed for RAS mutations and LOH status. We found a higher than anticipated frequency of RAS mutations (HRAS or NRAS; 50%) in sporadic ERMS cell lines/tumors. Unexpectedly, complete uniparental disomy (UPD11) was observed in five specimens, while the other six showed LOH extending across the p and q arms of chromosome 11. In this study, we are able to clearly demonstrate complete UPD11 in both syndromic and sporadic ERMS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine M Robbins
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware.,Biological Sciences, University of Delaware, Newark, Delaware
| | - Deborah L Stabley
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jennifer Holbrook
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Rebecca Sahraoui
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware.,Delaware State University, Dover, Delaware
| | - Alexa Sadreameli
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Katrina Conard
- Department of Pathology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Laura Baker
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Karen W Gripp
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Katia Sol-Church
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
6
|
Kuda M, Kohashi K, Yamada Y, Maekawa A, Kinoshita Y, Nakatsura T, Iwamoto Y, Taguchi T, Oda Y. FOXM1 expression in rhabdomyosarcoma: a novel prognostic factor and therapeutic target. Tumour Biol 2015; 37:5213-23. [PMID: 26553361 DOI: 10.1007/s13277-015-4351-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/30/2015] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Forkhead box M1 (FOXM1) is known to play critical roles in the development and progression of various types of cancer, but the clinical significance of FOXM1 expression in rhabdomyosarcoma (RMS) is unknown. This study aimed to determine the role of FOXM1 in RMS. We investigated the expression levels of FOXM1 and vascular endothelial growth factor (VEGF) and angiogenesis in a large series of RMS clinical cases using immunohistochemistry (n = 92), and we performed clinicopathologic and prognostic analyses. In vitro studies were conducted to examine the effect of FOXM1 knock-down on VEGF expression, cell proliferation, migration, and invasion in embryonal RMS (ERMS) and alveolar RMS (ARMS) cell lines, using small interference RNA (siRNA). High FOXM1 expression was significantly increased in the cases of ARMS, which has an adverse prognosis compared to ERMS (p = 0.0310). The ERMS patients with high FOXM1 expression (n = 25) had a significantly shorter survival than those with low FOXM1 expression (n = 24; p = 0.0310). FOXM1 expression was statistically correlated with VEGF expression in ERMS at the protein level as shown by immunohistochemistry and at the mRNA level by RT-PCR. The in vitro study demonstrated that VEGF mRNA levels were decreased in the FOXM1 siRNA-transfected ERMS and ARMS cells. FOXM1 knock-down resulted in a significant decrease of cell proliferation and migration in all four RMS cell lines and invasion in three of the four cell lines. Our results indicate that FOXM1 overexpression may be a prognostic factor of RMS and that FOXM1 may be a promising therapeutic target for the inhibition of RMS progression.
Collapse
Affiliation(s)
- Masaaki Kuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yukihide Iwamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Srivastava RK, Kaylani SZ, Edrees N, Li C, Talwelkar SS, Xu J, Palle K, Pressey JG, Athar M. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 2015; 5:12151-65. [PMID: 25432075 PMCID: PMC4322980 DOI: 10.18632/oncotarget.2569] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/02/2014] [Indexed: 12/04/2022] Open
Abstract
Rhabdomyosarcoma (RMS) typically arises from skeletal muscle. Currently, RMS in patients with recurrent and metastatic disease have no successful treatment. The molecular pathogenesis of RMS varies based on cancer sub-types. Some embryonal RMS but not other sub-types are driven by sonic hedgehog (Shh) signaling pathway. However, Shh pathway inhibitors particularly smoothened inhibitors are not highly effective in animals. Here, we show that Shh pathway effectors GLI1 and/or GLI2 are over-expressed in the majority of RMS cells and that GANT-61, a specific GLI1/2 inhibitor dampens the proliferation of both embryonal and alveolar RMS cells-derived xenograft tumors thereby blocking their growth. As compared to vehicle-treated control, about 50% tumor growth inhibition occurs in mice receiving GANT-61 treatment. The proliferation inhibition was associated with slowing of cell cycle progression which was mediated by the reduced expression of cyclins D1/2/3 & E and the concomitant induction of p21. GANT-61 not only reduced expression of GLI1/2 in these RMS but also significantly diminished AKT/mTOR signaling. The therapeutic action of GANT-61 was significantly augmented when combined with chemotherapeutic agents employed for RMS therapy such as temsirolimus or vincristine. Finally, reduced expression of proteins driving epithelial mesenchymal transition (EMT) characterized the residual tumors.
Collapse
Affiliation(s)
- Ritesh K Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Samer Zaid Kaylani
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Nayf Edrees
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Sarang S Talwelkar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604
| | - Joseph G Pressey
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| |
Collapse
|
8
|
Rhabdomyosarcoma: Advances in Molecular and Cellular Biology. Sarcoma 2015; 2015:232010. [PMID: 26420980 PMCID: PMC4569767 DOI: 10.1155/2015/232010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/16/2015] [Indexed: 12/19/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR), in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS.
Collapse
|
9
|
Phelps DA, Bondra K, Seum S, Chronowski C, Leasure J, Kurmasheva RT, Middleton S, Wang D, Mo X, Houghton PJ. Inhibition of MDM2 by RG7388 confers hypersensitivity to X-radiation in xenograft models of childhood sarcoma. Pediatr Blood Cancer 2015; 62:1345-52. [PMID: 25832557 PMCID: PMC4563820 DOI: 10.1002/pbc.25465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 11/05/2022]
Abstract
BACKGROUND Curative therapy for childhood sarcoma presents challenges when complete resection is not possible. Ionizing radiation (XRT) is used as a standard modality at diagnosis or recurrence for childhood sarcoma; however, local recurrence is still problematic. Most childhood sarcomas are TP53 wild type at diagnosis, although approximately 5-10% have MDM2 amplification or overexpression. PROCEDURES The MDM2 inhibitor, RG7388, was examined alone or in combination with XRT (20Gy given in 2 Gy daily fractions) to immune-deficient mice bearing Rh18 (embryonal) or a total of 30 Gy in 2 Gy fractions to mice bearing Rh30 (alveolar) rhabdomyosarcoma xenografts. RG7388 was administered by oral gavage using two schedules (daily ×5; schedule 1 or once weekly; schedule 2). TP53-responsive gene products (p21, PUMA, DDB2, and MIC1) as well as markers of apoptosis were analyzed. RESULTS RG7388 showed no significant single agent antitumor activity. Twenty Grays XRT induced complete regressions (CR) of Rh18 with 100 percent tumor regrowth by week 7, but no tumor regrowth at 20 weeks when combined with RG7388. RG7388 enhanced time to recurrence combined with XRT in Rh30 xenografts compared to 30 Gy XRT alone. RG7388 did not enhance XRT-induced local skin toxicity. Combination treatments induced TP53 responsive genes more rapidly and to a greater magnitude than single agent treatments. CONCLUSIONS RG7388 enhanced the activity of XRT in both rhabdomyosarcoma models without increasing local XRT-induced skin toxicity. Changes in TP53-responsive genes were consistent with the synergistic activity of RG7388 and XRT in the Rh18 model.
Collapse
Affiliation(s)
- Doris A. Phelps
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Kathryn Bondra
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Star Seum
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Christopher Chronowski
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Justin Leasure
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Raushan T. Kurmasheva
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205
| | | | - Dian Wang
- Department of Radiation Oncology, Rush University Medical Center Chicago, IL
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University
| | - Peter J. Houghton
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205
| |
Collapse
|
10
|
Huang HJ, Liu J, Hua H, Li SE, Zhao J, Yue S, Yu TT, Jin YC, Cheng SY. MiR-214 and N-ras regulatory loop suppresses rhabdomyosarcoma cell growth and xenograft tumorigenesis. Oncotarget 2015; 5:2161-75. [PMID: 24811402 PMCID: PMC4039153 DOI: 10.18632/oncotarget.1855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood malignant soft tissue cancer that is derived from myogenic progenitors trapped in a permanent mode of growth. Here, we report that miR-214 is markedly down-regulated in human RMS cell lines. Although not required for embryogenesis in mice, miR-214 suppresses mouse embryonic fibroblast (MEF) proliferation. When re-introduced into RD cells, a line of human embryonal RMS cells, miR-214 showed inhibition of tumor cell growth, induction of myogenic differentiation and apoptosis, as well as suppression of colony formation and xenograft tumorigenesis. We show that in the absence of miR-214, expression of proto-oncogene N-ras is markedly elevated in miR-214−/− MEFs, and manipulations of miR-214 levels using microRNA mimics or inhibitor in RD cells reciprocally altered N-ras expression. We further demonstrate that forced expression of N-ras from a cDNA that lacks its 3'-untranslated region neutralized the pro-myogenic and anti-proliferative activities of miR-214. Finally, we show that N-ras is a conserved target of miR-214 in its suppression of xenograft tumor growth, and N-ras expression is up-regulated in xenograft tumor models as well as actual human RMS tissue sections. Taken together, these data indicate that miR-214 is a bona fide suppressor of human RMS tumorigensis.
Collapse
Affiliation(s)
- Hui-jie Huang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Feng Y, Zhao Q, Chen W, Wang Y, Crowder K, Dimitrov DS. A new bispecific antibody targeting non-overlapping epitopes on IGF2: design, in vitro characterization and pharmacokinetics in macaques. Exp Mol Pathol 2014; 97:359-67. [PMID: 25220345 DOI: 10.1016/j.yexmp.2014.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
The insulin-like growth factor 2 (IGF2) is an important target for cancer therapy. We have previously proposed an approach for fast and irreversible removal of IGF2 from the circulation by using monoclonal antibodies (mAbs) that bind to two or more non-overlapping epitopes on the same molecule. We provided initial evidence for the formation of oligomeric antibody-ligand complexes that can bind to cells expressing Fc gamma receptors (FcγRs) with high avidity using an antibody domain with relatively low affinity as one of the anti-IGF2 mAbs. Recently, we identified a mAb, m708.5, in a scFv format which binds to both IGF2 and IGF1 with very high (pM) affinity. Interestingly, and rather surprisingly, this mAb did not compete with our other high affinity mAb, m610.27, for binding to IGF2. Therefore, we generated a new bispecific mAb, m67, by combining m708.5 and m610.27. As expected m67 potently inhibited binding of IGF2 to cells expressing the IGF1R and its phosphorylation, and resulted in formation of multimolecular complexes when incubated with IGF2 and bound with high avidity to cells expressing FcγRII; the complexes were internalized in a macrophage-like cell line. However, although m67 exhibited a reasonably long half-life (6.4 ± 0.6 days) in cynomolgus macaques and high stability in serum, its administration to three animals did not result in any measurable decrease in the IGF2 concentration likely due to the complexity of the IGF2 interactions in the blood and the relatively low (2mg/kg) dose of the mAb leading to a relatively low maximal blood concentration of 120nM. In spite of the lack of effect on the IGF2 concentration in this particular experimental setup, m67 exhibited good drugability properties and could be highly effective in other animal models and in humans. Studies with animal models of cancer are ongoing to evaluate the potential of m67 as a new candidate mAb-based therapeutic.
Collapse
Affiliation(s)
- Yang Feng
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| | - Qi Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518000, China
| | - Weizao Chen
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Yanping Wang
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States; Geneva Foundation, 917 Pacific Ave, Suite 600, Tacoma, WA 98402, United States
| | - Karalyne Crowder
- SNBL USA, 6605 Merrill Creek Parkway, Everett, WA 98203, United States
| | - Dimiter S Dimitrov
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| |
Collapse
|
12
|
Egas-Bejar D, Huh WW. Rhabdomyosarcoma in adolescent and young adult patients: current perspectives. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2014; 5:115-25. [PMID: 24966711 PMCID: PMC4069040 DOI: 10.2147/ahmt.s44582] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhabdomyosarcoma (RMS), a malignant tumor of mesenchymal origin, is the third most common extracranial malignant solid tumor in children and adolescents. However, in adults, RMS represents <1% of all solid tumor malignancies. The embryonal and alveolar histologic variants are more commonly seen in pediatric patients, while the pleomorphic variant is rare in children and seen more often in adults. Advances in the research of the embryonal and alveolar variants have improved our understanding of certain genes and biologic pathways that are involved in RMS, but much less is known for the other variants. Multimodality therapy that includes surgery and chemotherapy with or without radiation therapy is the mainstay of treatment for RMS. Improvements in the risk stratification of the pediatric patients based on presurgical (primary tumor site, tumor size, regional lymph node involvement, presence of metastasis) and postsurgical parameters (completeness of resection or presence of residual disease or metastasis) has allowed for the treatment assignment of patients in different studies and therapeutic trials, leading to increases in 5-year survival from 25%–70% over the past 40 years. However, for adult patients, in great part due to rarity of the disease and the lack of consensus on optimal treatment, clinical outcome is still poor. Many factors have been implicated for the differing outcomes between pediatric RMS versus adult RMS, such as the lack of standardized treatment protocols for adult RMS patients and the increased prevalence of advanced presentations. Now that there are increased numbers of survivors, we can appreciate the sequelae from therapy in these patients, such as bone growth abnormalities, endocrinopathies, and infertility. Improvements in risk stratification have led to clinical trials using lower doses of chemotherapy or radiation therapy with the intention of decreasing the incidence of side effects without compromising survival outcome.
Collapse
Affiliation(s)
- Daniela Egas-Bejar
- Division of Pediatrics, The Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Winston W Huh
- Division of Pediatrics, The Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, has traditionally been classified into embryonal rhabdomyosarcoma (ERMS) and alveolar rhabdomyosarcoma (ARMS) for pediatric oncology practice. This review outlines the historical development of classification of childhood RMS and the challenges that have been associated with it, particularly problems with the diagnosis of "solid variant" ARMS and its distinction from ERMS. In addition to differences in clinical presentation and outcome, a number of genetic features underpin separation of ERMS from ARMS. Genetic differences associated with RMS subclassification include the presence of reciprocal translocations and their associated fusions in ARMS, amplification of genes in ARMS and its fusion subsets, chromosomal losses and gains that mostly occur in ERMS, and allelic losses and mutations usually associated with ERMS. Chimeric proteins encoded in most ARMS from the fusion of PAX3 or PAX7 with FOXO1 are expressed, result in a distinct pattern of downstream protein expression, and appear to be the proximate cause of the bad outcome associated with this subtype. A sizeable minority of ARMS lacks these fusions and shares the clinical and biological features of ERMS. A battery of immunohistochemical tests may prove useful in separating ERMS from ARMS and fusion-positive ARMS from fusion-negative ARMS. Because of limitation of predicting outcome solely based on histologic classification, treatment protocols will begin to utilize fusion testing for stratification of affected patients into low-risk, intermediate-risk, and high-risk groups.
Collapse
Affiliation(s)
- David M. Parham
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK
| | - Frederic G. Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
14
|
Fu P, Yang Z, Bach LA. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J Biol Chem 2013; 288:29890-900. [PMID: 24003225 DOI: 10.1074/jbc.m113.510826] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF)-binding protein (IGFBP)-6 decreases cancer cell proliferation and survival by inhibiting the effects of IGF-II. More recently, IGFBP-6 was found to promote the migration of rhabdomyosarcoma (RMS) cells in an IGF-independent manner, and MAPK pathways were involved in this process. However, the precise molecular mechanisms of these IGF-independent migratory actions of IGFBP-6 are largely unknown. Here, we report that prohibitin-2 (PHB2), a single-span membrane protein, is a key regulator of IGFBP-6-induced RMS cell migration. PHB2 and IGFBP-6 co-localize on the RMS cell surface, and they specifically interact, as demonstrated by affinity chromatography, co-immunoprecipitation, biosensor analysis, and confocal microscopy. Binding affinities for PHB2 are 9.0 ± 1.0 nM for IGFBP-6 and 10.2 ± 0.5 nM for mIGFBP-6, a non-IGF-binding mutant of IGFBP-6. The C-domain but not the N-domain of IGFBP-6 is involved in PHB2 binding. In addition, IGFBP-6 indirectly increases PHB2 tyrosine phosphorylation on RMS membranes. Importantly, PHB2 knockdown completely abolished IGFBP-6-mediated RMS cell migration. In contrast, IGFBP-6-induced MAPK pathway activation was not affected, suggesting that PHB2 may act as a downstream effector of these pathways. These results indicate that PHB2 plays a key role in this IGF-independent action of IGFBP-6 and suggest a possible therapeutic target for RMS.
Collapse
Affiliation(s)
- Ping Fu
- From the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Prahran, Victoria 3181, Australia and
| | | | | |
Collapse
|
15
|
Lost miRNA surveillance of Notch, IGFR pathway—road to sarcomagenesis. Tumour Biol 2013; 35:483-92. [DOI: 10.1007/s13277-013-1068-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 12/16/2022] Open
|
16
|
Ahn EH, Mercado GE, Laé M, Ladanyi M. Identification of target genes of PAX3-FOXO1 in alveolar rhabdomyosarcoma. Oncol Rep 2013; 30:968-78. [PMID: 23733015 PMCID: PMC3776721 DOI: 10.3892/or.2013.2513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma categorized into two major subtypes: alveolar RMS (ARMS) and embryonal RMS (ERMS). Most ARMS express the PAX3-FOXO1 (P3F) fusion oncoprotein generated by the 2;13 chromosomal translocation. In the present study, the downstream target genes of P3F were identified by analyzing two independent sets of gene expression profiles: primary RMS tumors and RD ERMS cells transduced with inducible P3F constructs. We found 34 potential target genes (27 upregulated and 7 downregulated) that were significantly and differentially expressed between P3F-positive and P3F-negative categories, both in primary RMS tumors and in the inducible P3F cell culture system. Gene ontology analysis of microarray data of the inducible P3F cell culture system employed indicated apoptosis, cell death, development, and signal transduction as overrepresented significant functional categories found in both upregulated and downregulated genes. Therefore, among the 34 potential target genes, the expression of cell death-related [Gremlin1, cysteine knot superfamily 1, BMP antagonist 1 (GREM1) and death-associated protein kinase 1 (DAPK1)] and development-related [myogenic differentiation 1 (MYOD1) and hairy/enhancer-of-split related with YRPW motif 1 (HEY1)] genes were further investigated. The differential expression of GREM1, DAPK1, MYOD1 and HEY1 was confirmed in independent tumors and inducible cell culture systems. The expression of GREM1, DAPK1 and MYOD1 were significantly upregulated; HEY1 was significantly downregulated in independent P3F-positive ARMS tumors and transcriptionally active P3F cells, compared to those in ERMS tumors and transcriptionally inactive P3F cells. This study identified target genes of P3F and suggested that four downstream targets (GREM1, DAPK1, MYOD1 and HEY1) can contribute to the biological activities of P3F involved in growth suppression or cell death and myogenic differentiation.
Collapse
Affiliation(s)
- Eun Hyun Ahn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
17
|
Nishimura R, Takita J, Sato-Otsubo A, Kato M, Koh K, Hanada R, Tanaka Y, Kato K, Maeda D, Fukayama M, Sanada M, Hayashi Y, Ogawa S. Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci 2013; 104:856-64. [PMID: 23578105 DOI: 10.1111/cas.12173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/19/2013] [Accepted: 03/30/2013] [Indexed: 12/20/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a common solid tumor in childhood divided into two histological subtypes, embryonal (ERMS) and alveolar (ARMS). The ARMS subtype shows aggressive clinical behavior with poor prognosis, while the ERMS subtype has a more favorable outcome. Because of the rarity, diagnostic diversity and heterogeneity of this tumor, its etiology remains to be completely elucidated. Thus, to identify genetic alterations associated with RMS development, we performed single nucleotide polymorphism array analyses of 55 RMS samples including eight RMS-derived cell lines. The ERMS subtype was characterized by hyperploidy, significantly associated with gains of chromosomes 2, 8 and 12, whereas the majority of ARMS cases exhibited near-diploid copy number profiles. Loss of heterozygosity of 15q was detected in 45.5% of ARMS that had been unrecognized in RMS to date. Novel amplifications were also detected, including IRS2 locus in two fusion-positive tumors, and KRAS or NRAS loci in three ERMS cases. Of note, gain of 13q was significantly associated with good patient outcome in ERMS. We also identified possible application of an ALK inhibitor to RMS, as ALK amplification and frequent expression of ALK were detected in our RMS cohort. These findings enhance our understanding of the genetic mechanisms underlying RMS pathogenesis and support further studies for therapeutic development of RMS.
Collapse
Affiliation(s)
- Riki Nishimura
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Olanich ME, Barr FG. A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma. Expert Opin Ther Targets 2013; 17:607-23. [PMID: 23432728 DOI: 10.1517/14728222.2013.772136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Expression of fusion oncoproteins generated by recurrent chromosomal translocations represents a major tumorigenic mechanism characteristic of multiple cancers, including one-third of all sarcomas. Oncogenic fusion genes provide novel targets for therapeutic intervention. The PAX3-FOXO1 oncoprotein in alveolar rhabdomyosarcoma (ARMS) is presented as a paradigm to examine therapeutic strategies for targeting sarcoma-associated fusion genes. AREAS COVERED This review discusses the role of PAX3-FOXO1 in ARMS tumors. Besides evaluating various approaches to molecularly target PAX3-FOXO1 itself, this review highlights therapeutically attractive downstream genes activated by PAX3-FOXO1. EXPERT OPINION Oncogenic fusion proteins represent desirable therapeutic targets because their expression is specific to tumor cells, but these fusions generally characterize rare malignancies. Full development and testing of potential drugs targeted to these fusions are complicated by the small numbers of patients in these disease categories. Although efforts to develop targeted therapies against fusion proteins should continue, molecular targets that are applicable to a broader tumor landscape should be pursued. A shift of the traditional paradigm to view therapeutic intervention as target-specific rather than tumor-specific will help to circumvent the challenges posed by rare tumors and maximize the possibility of developing successful new treatments for patients with these rare translocation-associated sarcomas.
Collapse
Affiliation(s)
- Mary E Olanich
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology , Bethesda, MD 20892, USA
| | | |
Collapse
|
19
|
Abstract
The IGF (insulin-like growth factor) system is essential for physiological growth and it is also implicated in a number of diseases including cancer. IGF activity is modulated by a family of high-affinity IGF-binding proteins, and IGFBP-6 is distinctive because of its marked binding preference for IGF-II over IGF-I. A principal role for IGFBP-6 is inhibition of IGF-II actions, but recent studies have indicated that IGFBP-6 also has IGF-independent effects, including inhibition of angiogenesis and promotion of cancer cell migration. The present review briefly summarizes the IGF system in physiology and disease before focusing on recent studies on the regulation and actions of IGFBP-6, and its potential roles in cancer cells. Given the widespread interest in IGF inhibition in cancer therapeutics, increasing our understanding of the mechanisms underlying the actions of the IGF ligands, receptors and binding proteins, including IGFBP-6, will enhance our ability to develop optimal treatments that can be targeted to the most appropriate patients.
Collapse
|
20
|
Pressey JG, Haas MC, Pressey CS, Kelly VM, Parker JN, Gillespie GY, Friedman GK. CD133 marks a myogenically primitive subpopulation in rhabdomyosarcoma cell lines that are relatively chemoresistant but sensitive to mutant HSV. Pediatr Blood Cancer 2013; 60:45-52. [PMID: 22408058 PMCID: PMC3374896 DOI: 10.1002/pbc.24117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/02/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is characterized by features of skeletal muscle and is comprised of two major histological subtypes, embryonal (E-RMS), and alveolar (A-RMS). Subsets of each RMS subtype demonstrate resistance to multimodal therapy leading to treatment failure. Cancer stem cells or cancer-initiating cells (CIC) represent a theorized population of cells that give rise to tumors and are responsible for treatment resistance. PROCEDURE We investigated the ability of CD133, a putative CIC marker, to distinguish a chemoresistant, myogenically primitive population in alveolar (RH30), and embryonal (RD) RMS cell lines. We tested CD133+/- cells for sensitivity to engineered herpes simplex virus (oHSV). RESULTS Relative to CD133- cells, CD133+ A-RMS, and E-RMS cells demonstrate an enhanced colony-forming ability, are less differentiated myogenically, and are more resistant to cytotoxic chemotherapy but equally sensitive to oHSV oncolysis. Compared to CD133- RD cells, CD133+ cells express relatively high levels of genes typically expressed in skeletal muscle progenitor satellite cells including PAX7, c-MET, and the GLI effectors of the hedgehog signaling pathway. In contrast, CD133+ RH30 cells were not associated with enhanced expression of satellite cell markers or Hh targets. CONCLUSIONS Our findings demonstrate that CD133+ cells from A-RMS and E-RMS cell lines are characterized by a myogenically primitive phenotype. These cells have the capacity to form colonies in vitro and are more resistant to chemotherapy than CD133- cells. CD133 expression may denote a subset of RMS cells with an important role in tumorigenesis and treatment failure. These resistant cells may be effectively targeted by oHSV therapy.
Collapse
Affiliation(s)
- Joseph G. Pressey
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Marilyn C. Haas
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Christine S. Pressey
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Virginia M. Kelly
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Jacqueline N. Parker
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Gregory K. Friedman
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
21
|
Marshall AD, Grosveld GC. Alveolar rhabdomyosarcoma - The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle 2012. [PMID: 23206814 PMCID: PMC3564712 DOI: 10.1186/2044-5040-2-25] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhabdomyosarcoma is a soft tissue sarcoma arising from cells of a mesenchymal or skeletal muscle lineage. Alveolar rhabdomyosarcoma (ARMS) is more aggressive than the more common embryonal (ERMS) subtype. ARMS is more prone to metastasis and carries a poorer prognosis. In contrast to ERMS, the majority of ARMS tumors carry one of several characteristic chromosomal translocations, such as t(2;13)(q35;q14), which results in the expression of a PAX3-FOXO1 fusion transcription factor. In this review we discuss the genes that cooperate with PAX3-FOXO1, as well as the target genes of the fusion transcription factor that contribute to various aspects of ARMS tumorigenesis. The characterization of these pathways will lead to a better understanding of ARMS tumorigenesis and will allow the design of novel targeted therapies that will lead to better treatment for this aggressive pediatric tumor.
Collapse
Affiliation(s)
- Amy D Marshall
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | | |
Collapse
|
22
|
Martín Liberal J, Lagares-Tena L, Sáinz-Jaspeado M, Mateo-Lozano S, García del Muro X, Tirado OM. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012; 2012:626094. [PMID: 22701332 PMCID: PMC3372278 DOI: 10.1155/2012/626094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease.
Collapse
Affiliation(s)
- Juan Martín Liberal
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Laura Lagares-Tena
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Miguel Sáinz-Jaspeado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Silvia Mateo-Lozano
- Nanomedicine Research Program, Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, 08035 Barcelona, Spain
| | - Xavier García del Muro
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Oscar M. Tirado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
23
|
Rengaswamy V, Kontny U, Rössler J. New approaches for pediatric rhabdomyosarcoma drug discovery: targeting combinatorial signaling. Expert Opin Drug Discov 2011; 6:1103-25. [PMID: 22646865 DOI: 10.1517/17460441.2011.611498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rhabdomyosarcomas (RMS) are rare heterogeneous pediatric tumors that are treated by surgery, chemotherapy and irradiation. New therapeutic approaches are needed, especially in the advanced stages to target the pro-oncogenic signals. Exploring the molecular interactions of the regulatory signals and their roles in the developmental aspects of different subtypes of RMS is essential to identify potential targets and develop new therapeutic drugs. AREAS COVERED Insights into different drug discovery approaches are discussed with specific emphasis on gene expression profiling, fusion protein, role of small interfering RNA (siRNA)- and microRNA (miRNA)-based discovery approaches, targeting cancer stem cells, and in vitro and in vivo model systems. Targeting some overexpressed signals along with the possibilities of combination therapy of validated drug targets is discussed. Additionally, methods to overcome the limitations of discovery-based research are briefly discussed. EXPERT OPINION Due to drug resistance, ineffective therapy in advanced stages and relapse, there is a demand to explore new drug targets and discovery approaches. Implementing miRNA-based profiling would reveal the extent of miR-based regulation, various biomarkers and potential targets in RMS. A suitable combination of innovative techniques and the use of model systems might assist the identification and validation of novel targets and drug discovery methods. Combining specific drugs along with type-specific target inhibition of overexpressed mRNAs through siRNA approaches would enable the development of personalized therapy.
Collapse
Affiliation(s)
- Venkatesh Rengaswamy
- University Hospital Freiburg, Center for Pediatrics and Adolescent Medicine, Clinic IV: Pediatric Hematology and Oncology, Mathildenstr. 1, 79106 Freiburg , Germany +49 761 270 43000 ; +49 761 270 45180 ;
| | | | | |
Collapse
|
24
|
Saab R, Spunt SL, Skapek SX. Myogenesis and rhabdomyosarcoma the Jekyll and Hyde of skeletal muscle. Curr Top Dev Biol 2011; 94:197-234. [PMID: 21295688 DOI: 10.1016/b978-0-12-380916-2.00007-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rhabdomyosarcoma, a neoplasm composed of skeletal myoblast-like cells, represents the most common soft tissue sarcoma in children. The application of intensive chemotherapeutics and refined surgical and radiation therapy approaches have improved survival for children with localized disease over the past 3 decades; however, these approaches have not improved the dismal outcome for children with metastatic and recurrent rhabdomyosarcoma. Elegant studies have defined the molecular mechanisms driving skeletal muscle lineage commitment and differentiation, and the machinery that couples differentiation with irreversible cell proliferation arrest. Further, detailed molecular analyses indicate that rhabdomyosarcoma cells have lost the capacity to fully differentiate when challenged to do so in experimental models. We review the intersection of normal skeletal muscle developmental biology and the molecular genetic defects in rhabdomyosarcoma with the underlying premise that understanding how the differentiation process has gone awry will lead to new treatment strategies aimed at promoting myogenic differentiation and concomitant cell cycle arrest.
Collapse
Affiliation(s)
- Raya Saab
- Children's Cancer Center of Lebanon, Department of Pediatrics, American University of Beirut, Beirut, Lebanon
| | | | | |
Collapse
|
25
|
Olmos D, Tan DSW, Jones RL, Judson IR. Biological rationale and current clinical experience with anti-insulin-like growth factor 1 receptor monoclonal antibodies in treating sarcoma: twenty years from the bench to the bedside. Cancer J 2010; 16:183-94. [PMID: 20526094 DOI: 10.1097/ppo.0b013e3181dbebf9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two decades have elapsed since insulin-like growth factor-1 receptor (IGF-1R) signaling was initially implicated in sarcoma biology to the first clinical experience of IGF-1R blockade in sarcoma. During these 21 years, the IGF pathway and its key mediator IGF-1R have been implicated in the genesis, growth, proliferation, metastasis, and resistance to conventional treatment in several sarcoma subtypes. In addition, IGF-1R has been validated, both in vitro and in vivo, as a target for the treatment of sarcoma. Several radiologic and clinical responses to IGF-1R monoclonal antibodies have been reported in Ewing sarcoma patients enrolled in early clinical studies. Furthermore, these therapies were well tolerated, and thus far severe toxicity has been rare. The early clinical evidence of antitumor activity has supported the initiation of various phase II clinical trials in Ewing and other sarcoma subtypes, the results of which are eagerly awaited, as well as studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies. Despite these encouraging results, not all patients benefit from IGF-1R inhibition and consequently there is an urgent need for the identification of predictive markers of response.
Collapse
Affiliation(s)
- David Olmos
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Abstract
Background: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood with the ability to resist apoptosis by the activation of survival promoting and anti-apoptotic proteins. Methods: Efficacy of the apoptosis-inducing agent betulinic acid (BA) was determined in RMS cell cultures and in vivo by measuring cell viability, survival, apoptosis, hedgehog signalling activity, and neovascularisation. Results: Betulinic acid had a strong cytotoxic effect on RMS cells in a dose-dependent manner. The BA treatment caused a massive induction of apoptosis mediated by the intrinsic mitochondrial pathway, which could be inhibited by the broad-range caspase inhibitor zVAD.fmk. Exposure of hedgehog-activated RMS-13 cells to BA resulted in a strong decrease in GLI1, GLI2, PTCH1, and IGF2 expression as well as hedgehog-responsive luciferase activity. Intraperitoneal injection of 20 mg BA per kg per day significantly retarded growth of RMS-13 xenografts in association with markedly higher counts of apoptotic cells and down-regulation of GLI1 expression compared with control tumours, while leaving microvascular density, cell proliferation, and myogenic differentiation unaffected. Conclusion: Our data show that induction of apoptosis and inhibition of hedgehog signalling are important features of the anti-tumourigenic effect of BA in RMS and advices this compound for the use in a multimodal therapy of this highly aggressive paediatric tumour.
Collapse
|
27
|
Jongmans MCJ, Hoogerbrugge PM, Hilkens L, Flucke U, van der Burgt I, Noordam K, Ruiterkamp-Versteeg M, Yntema HG, Nillesen WM, Ligtenberg MJL, van Kessel AG, Kuiper RP, Hoogerbrugge N. Noonan syndrome, the SOS1 gene and embryonal rhabdomyosarcoma. Genes Chromosomes Cancer 2010; 49:635-41. [DOI: 10.1002/gcc.20773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
28
|
Manor E, Bodner L, Kachko P, Kapelushnik J. Trisomy 8 as a sole aberration in embryonal rhabdomyosarcoma (sarcoma botryoides) of the vagina. ACTA ACUST UNITED AC 2009; 195:172-4. [DOI: 10.1016/j.cancergencyto.2009.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/16/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
|
29
|
De Giovanni C, Landuzzi L, Nicoletti G, Lollini PL, Nanni P. Molecular and cellular biology of rhabdomyosarcoma. Future Oncol 2009; 5:1449-75. [DOI: 10.2217/fon.09.97] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma is a group of soft-tissue sarcomas that share features of skeletal myogenesis, but show extensive heterogeneity in histology, age and site of onset, and prognosis. This review matches recent molecular data with biological features of rhabdomyosarcoma. Alterations in molecular pathways, animal models, cell of origin and potential new therapeutic targets are discussed.
Collapse
Affiliation(s)
- Carla De Giovanni
- Department of Experimental Pathology, Cancer Research Section, University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Hematology and Oncological Sciences ‘L. e A. Seragnoli’, Viale Filopanti 22, Bologna 40126, Italy
| | - Patrizia Nanni
- Department of Experimental Pathology, Cancer Research Section, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Missiaglia E, Selfe J, Hamdi M, Williamson D, Schaaf G, Fang C, Koster J, Summersgill B, Messahel B, Versteeg R, Pritchard-Jones K, Kool M, Shipley J. Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development. Genes Chromosomes Cancer 2009; 48:455-67. [PMID: 19235922 DOI: 10.1002/gcc.20655] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are the most common pediatric soft tissue sarcomas. They resemble developing skeletal muscle and are histologically divided into two main subtypes; alveolar and embryonal RMS. Characteristic genomic aberrations, including the PAX3- and PAX7-FOXO1 fusion genes in alveolar cases, have led to increased understanding of their molecular biology. Here, we determined the effect of genomic copy number on gene expression levels through array comparative genomic hybridization (CGH) analysis of 13 RMS cell lines, confirmed by multiplex ligation-dependent probe amplification copy number analyses, combined with their corresponding expression profiles. Genes altered at the transcriptional level by genomic imbalances were identified and the effect on expression was proportional to the level of genomic imbalance. Extrapolating to a public expression profiling dataset for 132 primary RMS identified features common to the cell lines and primary samples and associations with subtypes and fusion gene status. Genes identified such as CDK4 and MYCN are known to be amplified, overexpressed, and involved in RMS tumorigenesis. Of the many genes identified, those with likely functional relevance included CENPF, DTL, MYC, EYA2, and FGFR1. Copy number and expression of FGFR1 was validated in additional primary material and found amplified in 6 out of 196 cases and overexpressed relative to skeletal muscle and myoblasts, with significantly higher expression levels in the embryonal compared with alveolar subtypes. This illustrates the ability to identify genes of potential significance in tumor development through combining genomic and transcriptomic profiles from representative cell lines with publicly available expression profiling data from primary tumors.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Molecular Cytogenetics Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Friedman GK, Pressey JG, Reddy AT, Markert JM, Gillespie GY. Herpes simplex virus oncolytic therapy for pediatric malignancies. Mol Ther 2009; 17:1125-35. [PMID: 19367259 DOI: 10.1038/mt.2009.73] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite improving survival rates for children with cancer, a subset of patients exist with disease resistant to traditional therapies such as surgery, chemotherapy, and radiation. These patients require newer, targeted treatments used alone or in combination with more traditional approaches. Oncolytic herpes simplex virus (HSV) is one of these newer therapies that offer promise for several difficult to treat pediatric malignancies. The potential benefit of HSV therapy in pediatric solid tumors including brain tumors, neuroblastomas, and sarcomas is reviewed along with the many challenges that need to be addressed prior to moving oncolytic HSV therapy from the laboratory to the beside in the pediatric population.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, Children's Hospital of Alabama, University of Alabama at Birmingham, USA.
| | | | | | | | | |
Collapse
|
32
|
Rikhof B, de Jong S, Suurmeijer AJH, Meijer C, van der Graaf WTA. The insulin-like growth factor system and sarcomas. J Pathol 2009; 217:469-82. [PMID: 19148905 DOI: 10.1002/path.2499] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sarcomas are a diverse group of malignant mesenchymal tumours arising from bone and soft tissues. The identification of critical cellular signalling pathways in sarcomas is an important issue for the development of new targeted therapies. This review highlights the experimental and clinical evidence supporting the role of the insulin-like growth factor (IGF) signalling system in the cellular transformation and progression of several types of sarcoma, including rhabdomyosarcoma, synovial sarcoma, leiomyosarcoma, Ewing's sarcoma and osteosarcoma. Preclinical data suggest that the IGF system could be a promising target for therapy in these sarcomas. Currently, therapies interrupting IGF signalling have been or are being developed. In recent phase 1 clinical studies with humanized monoclonal antibodies directed against IGF receptor type 1 (IGF-1R), objective tumour responses were observed in several patients with Ewing's sarcoma, encouraging further clinical testing in Ewing's sarcoma and other sarcoma (sub)types. Moreover, the occasional occurrence of paraneoplastic hypoglycaemia as a result of the secretion of incompletely processed forms of pro-IGF-II by sarcomas is discussed.
Collapse
Affiliation(s)
- Bart Rikhof
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Hosoi H, Kakazu N, Konishi E, Tsuchihashi Y, Hada S, Amaya E, Nakabayahi Y, Misawa-Furihata A, Tabata-Maruyama H, Iehara T, Sugimoto T, Yamane H, Yamasaki M, Shiwaku K, Yanagisawa A, Ono M, Tokiwa K, Iwai N, Hashiba M, Abe T, Sawada T. A novel PAX3 rearrangement in embryonal rhabdomyosarcoma. ACTA ACUST UNITED AC 2009; 189:98-104. [PMID: 19215790 DOI: 10.1016/j.cancergencyto.2008.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
Rhabdomyosarcoma is the most common soft tissue tumor seen in children and young adults, and it can be classified into 2 major histological subtypes, alveolar and embryonal. In the alveolar subtype, 2 recurrent chromosomal translocations, t(2;13)(q35;q14) and its variant t(1;13)(p36;q14), have been identified as the specific cytogenetic abnormalities. These translocations produce the PAX3-FOXO1 and PAX7-FOXO1 fusion genes, respectively. In the embryonal subtype, however, no recurrent chromosomal abnormalities have been identified. In this study, we analyzed the complex chromosomal translocation in one case with embryonal rhabdomyosarcoma by means of spectral karyotyping (SKY) and identified a novel translocation involving chromosome band 2q35, which is the locus of PAX3 gene. Furthermore, we identified the novel PAX3 rearrangement using fluorescence in situ hybridization (FISH) analysis. Additional identification of the partner gene may help disclose the molecular mechanism of the development of this embryonal subtype.
Collapse
Affiliation(s)
- Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H, Schofield DE, Buckley JD, Meyer WH, Sorensen PHB, Triche TJ. Molecular classification of rhabdomyosarcoma--genotypic and phenotypic determinants of diagnosis: a report from the Children's Oncology Group. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:550-64. [PMID: 19147825 DOI: 10.2353/ajpath.2009.080631] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rhabdomyosarcoma (RMS) in children occurs as two major histological subtypes, embryonal (ERMS) and alveolar (ARMS). ERMS is associated with an 11p15.5 loss of heterozygosity (LOH) and may be confused with nonmyogenic, non-RMS soft tissue sarcomas. ARMS expresses the product of a genomic translocation that fuses FOXO1 (FKHR) with either PAX3 or PAX7 (P-F); however, at least 25% of cases lack these translocations. Here, we describe a genomic-based classification scheme that is derived from the combined gene expression profiling and LOH analysis of 160 cases of RMS and non-RMS soft tissue sarcomas that is at variance with conventional histopathological schemes. We found that gene expression profiles and patterns of LOH of ARMS cases lacking P-F translocations are indistinguishable from conventional ERMS cases. A subset of tumors that has been histologically classified as RMS lack myogenic gene expression. However, classification based on gene expression is possible using as few as five genes with an estimated error rate of less than 5%. Using immunohistochemistry, we characterized two markers, HMGA2 and TFAP2ss, which facilitate the differential diagnoses of ERMS and P-F RMS, respectively, using clinical material. These objectively derived molecular classes are based solely on genomic analysis at the time of diagnosis and are highly reproducible. Adoption of these molecular criteria may offer a more clinically relevant diagnostic scheme, thus potentially improving patient management and therapeutic RMS outcomes.
Collapse
Affiliation(s)
- Elai Davicioni
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pressey JG, Mroczek-Musulman E, Murata-Collins JL, Saito JM, Hammers Y. Embryonal rhabdomyosarcoma with a novel t(2;6)(p23;p21.1). ACTA ACUST UNITED AC 2008; 187:39-42. [PMID: 18992640 DOI: 10.1016/j.cancergencyto.2008.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/17/2008] [Accepted: 07/23/2008] [Indexed: 11/15/2022]
Abstract
Chromosomal translocations are infrequently encountered in embryonal rhabdomyosarcoma (E-RMS). Here, we present a case of an infant with a chest wall E-RMS in which t(2;6)(p23;p21.1) was detected. Despite the involvement of the 2p23 locus in the translocation, the tumor did not express ALK. The t(2;6)(p23;p21.1) is a novel finding in E-RMS that may provide insight into the pathogenesis of this relatively frequent childhood tumor.
Collapse
Affiliation(s)
- Joseph G Pressey
- Department of Pediatrics, Division of Hematology-Oncology, University of Alabama at Birmingham, 1600 7th Avenue South, ACC 512, Birmingham, AL 35233, USA.
| | | | | | | | | |
Collapse
|
36
|
Oda Y, Kohashi K, Yamamoto H, Tamiya S, Kohno K, Kuwano M, Iwamoto Y, Tajiri T, Taguchi T, Tsuneyoshi M. Different expression profiles of Y-box-binding protein-1 and multidrug resistance-associated proteins between alveolar and embryonal rhabdomyosarcoma. Cancer Sci 2008; 99:726-32. [PMID: 18377424 PMCID: PMC11158972 DOI: 10.1111/j.1349-7006.2008.00748.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nuclear expression of the Y-box-binding protein-1 (YB-1) has been reported to regulate the expression of both P-glycoprotein (P-gp) and major vault protein (MVP), and to regulate proliferative activities in human malignancies. Based on morphology and molecular biology, rhabdomyosarcoma (RMS) can be divided into two major types: embryonal type and the more aggressive alveolar type. Thirty-five cases of embryonal RMS (ERMS) and 28 cases of alveolar RMS (ARMS) were examined immunohistochemically for the nuclear expression of YB-1 and the intrinsic expression of P-gp, multidrug resistance (MDR)-associated protein (MRP) 1, 2, and 3, breast-cancer resistant protein (BCRP) and MVP, and the findings were compared with proliferative activities as evaluated by the MIB-1-labeling index (LI). Moreover, mRNA levels of these MDR-related molecules were assessed using a quantitative reverse transcriptase-PCR method in 18 concordant frozen materials. P-gp expression was more frequently observed ARMS, compared with ERMS (P = 0.0332), whereas immunoreactivity for BCRP was more frequently recognized in ERMS (P = 0.0184). Nuclear expression of YB-1 protein was correlated with P-gp (P = 0.0359) and MVP (P = 0.0044) expression, and a higher MIB-1-labeling index (P = 0.0244) in ERMS, however, in ARMS no such relationships were observed. These immunohistochemical results indicate that different expression profiles of MDR-related molecules and their correlation with YB-1 nuclear expression support the concept that ERMS and ARMS are molecular biologically distinct neoplasms. Apart from ERMS, frequent P-gp expression in ARMS may be independent from YB-1 regulation. However, YB-1 may be a candidate for a molecular target in rhabdomyosarcoma therapy, especially in ERMS.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adolescent
- Cell Nucleus/chemistry
- Cell Nucleus/metabolism
- Cell Proliferation
- Child
- Child, Preschool
- Female
- Humans
- Immunohistochemistry
- Male
- Multidrug Resistance-Associated Proteins/analysis
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rhabdomyosarcoma, Alveolar/classification
- Rhabdomyosarcoma, Alveolar/pathology
- Rhabdomyosarcoma, Embryonal/classification
- Rhabdomyosarcoma, Embryonal/pathology
- Vault Ribonucleoprotein Particles/genetics
- Vault Ribonucleoprotein Particles/metabolism
- Y-Box-Binding Protein 1/analysis
- Y-Box-Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Rhabdomyosarcoma (RMS) is one of the most common extracranial solid tumours in children. Embryonal and alveolar subtypes of RMS present completely different genetic abnormalities. Embryonal RMS (eRMS) is characterised by loss of heterozygosity on the short arm of chromosome 11 (11p15.5), suggesting inactivation of a tumour-suppressor gene. In contrast, the majority (80-85%) of the alveolar RMS (aRMS) have the reciprocal chromosomal translocations 't(2;13)(q35;q14) or t(1;13)(p36;q14). t(2;13) appears in approximately 70% of patients with the alveolar subtype. The molecular counterpart of this translocation consists of the generation of a chimeric fusion gene involving the /PAX3/ gene located in chromosome 2 and a member of the fork-head family, /FOXO1/ (formerly /FKHR/), located in chromosome 13. A less frequent variant translocation t(1;13) involves another PAX family gene, /PAX7/, located in chromosome 1 and /FOXO1/ and is present in 10-15% of cases of the alveolar subtype in RMS. Recently, many studies focused on cancer have demonstrated the great potential of the genomic approach based on tumour expression profiles. These technologies permit the identification of new regulatory pathways. Molecular detection of minimal disease by a sensitive method could contribute to better treatment stratification in these patients. In RMS, the advances in the knowledge of the biological characteristics of the tumour are slowly translated into the clinical management of children with this tumour.
Collapse
Affiliation(s)
- S Gallego Melcón
- Servicio de Oncología y Hematología Pediátrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | | |
Collapse
|
38
|
Laé M, Ahn EH, Mercado GE, Chuai S, Edgar M, Pawel BR, Olshen A, Barr FG, Ladanyi M. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 2007; 212:143-51. [PMID: 17471488 DOI: 10.1002/path.2170] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Paediatric rhabdomyosarcomas (RMS) are classified into two major subtypes based on histological appearance, embryonal (ERMS) and alveolar (ARMS), but this clinically critical distinction is often difficult on morphological grounds alone. ARMS, the more aggressive subtype, is associated in most cases with unique recurrent translocations fusing the PAX3 or PAX7 transcription factor genes to FKHR. In contrast, ERMS lacks unique genetic alterations. To identify novel diagnostic markers and potential therapeutic targets, we analysed the global gene expression profiles of these two RMS subtypes in 23 ARMS (16 PAX3-FKHR, 7 PAX7-FKHR) and 15 ERMS (all PAX-FKHR-negative) using Affymetrix HG-U133A oligonucleotide arrays. A statistically stringent supervised comparison of the ARMS and ERMS expression profiles revealed 121 genes that were significantly differentially expressed, of which 112 were higher in ARMS, including genes of interest as potential diagnostic markers or therapeutic targets, such as CNR1, PIPOX (sarcosine oxidase), and TFAPbeta. Interestingly, many known or putative downstream targets of PAX3-FKHR were highly overexpressed in ARMS relative to ERMS, including CNR1, DCX, ABAT, ASS, JAKMIP2, DKFZp762M127, and NRCAM. We validated the highly differential expression of five genes, including CNR1, DKFZp762M127, DCX, PIPOX, and FOXF1 in ARMS relative to ERMS by quantitative RT-PCR on an independent set of samples. Finally, we developed a ten-gene microarray-based predictor that distinguished ARMS from ERMS with approximately 95% accuracy both in our data by cross-validation and in an independent validation using a published dataset of 26 samples. The gene expression signature of ARMS provides a source of potential diagnostic markers, therapeutic targets, and PAX-FKHR downstream genes, and can be used to reliably distinguish these sarcomas from ERMS.
Collapse
Affiliation(s)
- M Laé
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kapels KM, Nishio J, Zhou M, Qualman SJ, Bridge JA. Embryonal rhabdomyosarcoma with a der(16)t(1;16) translocation. ACTA ACUST UNITED AC 2007; 174:68-73. [PMID: 17350470 DOI: 10.1016/j.cancergencyto.2006.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the most common subtype of RMS that predominantly involves the genitourinary tract and the head and neck regions in children younger than 10 years of age. Cytogenetically, ERMS is most frequently hyperdiploid, with extra copies of chromosomes 2, 7, 8, 11, 12, 13, and 20. No consistent structural chromosomal alteration has been identified in ERMS. In contrast, a t(2;13)(q35;q14) or t(1;13)(q36;q14) corresponding to PAX3-FOXO1A (previously FKHR) and PAX7-FOXO1A gene fusions are considered tumor-specific anomalies for alveolar RMS (ARMS). Occasionally, a recurrent secondary structural rearrangement involving chromosomes 1 and 16 is seen in translocation-positive ARMS, a der(16)t(1;16) resulting in an imbalance of 1q and 16q material. Conventional cytogenetic analysis of an ERMS arising in the urinary bladder of a 22-month-old male child revealed this nonrandom secondary chromosomal aberration, der(16)(1;16)(q22;q24), in a hyperdiploid complement with extra copies of chromosomes 2, 7, 8, 10, 12, 13, 19, and 20. Subsequent analyses showed tumor cells to be negative for FOXO1A, PAX3, or PAX7 gene locus rearrangements (by fluorescence in situ hybridization) and also negative for PAX3-FOXO1A and PAX7-FOXO1A fusion transcripts (by reverse transcriptase-polymerase chain reaction). These results suggest that the unbalanced t(1;16) translocation may be seen in RMSs lacking a primary genetic rearrangement.
Collapse
Affiliation(s)
- Kayla M Kapels
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | | | | | | | | |
Collapse
|
40
|
Kratz CP, Steinemann D, Niemeyer CM, Schlegelberger B, Koscielniak E, Kontny U, Zenker M. Uniparental disomy at chromosome 11p15.5 followed by HRAS mutations in embryonal rhabdomyosarcoma: lessons from Costello syndrome. Hum Mol Genet 2006; 16:374-9. [PMID: 17164262 DOI: 10.1093/hmg/ddl458] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Costello syndrome (CS; MIM 218040) is characterized by short stature, facial dysmorphism, cardiac defects and predisposition to embryonal rhabdomyosarcoma (CS/ERMS) and other neoplasias. CS is caused by germline mutations in the HRAS gene on chromosome 11p15.5, a region showing allelic imbalances in sporadic ERMS and CS/ERMS. The critical gene for ERMS development in this region is unknown. The association of CS and ERMS as well as previous reports illustrating that somatic HRAS mutations are found in a proportion of these tumors prompted us to clarify the significance and a possible correlation of HRAS mutations and genomic rearrangements at 11p15.5 in sporadic ERMS. We screened for somatic HRAS mutations and 11p15.5 imbalances in six sporadic ERMS samples. This analysis uncovered five ERMS samples with uniparental disomy (UPD) at the HRAS locus, two of which harbored HRAS mutations. By analyzing informative genetic variations in or at the HRAS gene locus, we show that one HRAS allele is entirely lost in specimens with UPD at 11p15.5. Notably, in both cases with UPD and HRAS mutations these mutations were heterozygous. Therefore, they must have succeeded the emergence of UPD. In contrast, HRAS germline mutations are the first step in CS/ERMS. Subsequent development of UPD at 11p15.5 may explain previous observations that CS/ERMS express mutant HRAS only. These data implicate that in sporadic ERMS, UPD at 11p15.5 is not driven by HRAS mutations and that imbalances at 11p15.5 and HRAS mutations represent independent but cooperating events during ERMS development.
Collapse
Affiliation(s)
- Christian P Kratz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Taube JM, Griffin CA, Yonescu R, Morsberger L, Argani P, Askin FB, Batista DAS. Pleuropulmonary blastoma: cytogenetic and spectral karyotype analysis. Pediatr Dev Pathol 2006; 9:453-61. [PMID: 17163790 DOI: 10.2350/06-02-0044.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/02/2006] [Indexed: 01/21/2023]
Abstract
Pleuropulmonary blastoma (PPB) is a rare neoplasm of the pleuropulmonary mesenchyme. The molecular mechanisms underlying the genesis of this tumor are of particular interest as a large number of affected patients as well as their relatives have concurrent disease including additional dysplasia or neoplasia. To date, detailed karyotypes have been published on a limited number of cases. We report clinical, pathologic, and cytogenetic data in 2 cases of PPB including spectral karyotyping in 1 of them. Additionally, we conducted a review of the literature and compiled 15 published karyotypes of this tumor. Gain of chromosome 8 material was a highly prevalent finding in PPB, most times occurring as trisomy, but tetrasomy of the long arm was also frequent. Other occurring abnormalities, in order of observed frequency, included loss of 17p, loss of chromosome 10 or 10q, rearrangement of 11p, loss of chromosome X or Xp, gain of chromosomes/arms 1q, 2, and 7q, and loss of 6q and 18p. Loss of 10q has not been previously emphasized in PPB. The significance of these chromosome findings is discussed in relation to tumorigenesis.
Collapse
Affiliation(s)
- Janis M Taube
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO. Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 2006; 45:527-35. [PMID: 16518845 DOI: 10.1002/gcc.20318] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Loss of heterozygosity on the long arm of chromosome 16 is one of the most frequent genetic events in breast cancer, suggesting the presence of one or more classic tumor-suppressor genes (TSGs). It has been shown that E-cadherin is the TSG on 16q in lobular tumors. In a search for the target genes in more frequently occurring low-grade nonlobular tumors, the smallest region of overlap (SRO) in this area of the genome has been exhaustively searched for. However, the results have demonstrated remarkable complexity, and so a clear consensus on identification of the SRO boundaries has not been reached. Several genes in the vicinity of these SROs have been scrutinized as putative TSGs in breast cancer, but so far, none has fulfilled the criteria for target genes. This review discusses the complexity of the 16q region and the different approaches that have been, are being, and will be used to detect the target genes in this area.
Collapse
Affiliation(s)
- Emad A Rakha
- Department of Histopathology, the Breast Unit, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Estep AL, Tidyman WE, Teitell MA, Cotter PD, Rauen KA. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 2006; 140:8-16. [PMID: 16372351 DOI: 10.1002/ajmg.a.31078] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort. No mutations were found which support a distinct genetic etiology between CS and CFC syndromes.
Collapse
Affiliation(s)
- Anne L Estep
- Comprehensive Cancer Center, Cancer Research Institute, University of California-San Francisco, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | | | |
Collapse
|
44
|
Fluiter K, Frieden M, Vreijling J, Koch T, Baas F. Evaluation of LNA-modified DNAzymes targeting a single nucleotide polymorphism in the large subunit of RNA polymerase II. Oligonucleotides 2006; 15:246-54. [PMID: 16396619 DOI: 10.1089/oli.2005.15.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Allele-specific inhibition (ASI) is a new strategy to treat cancer through a vulnerability created by the loss of large segments of chromosomal material by loss of heterozygosity (LOH). Using antisense approaches, it is possible to target single nucleotide polymorphisms (SNP) in the remaining allele of an essential gene in the tumor, thus killing the tumor while the heterozygous patient survives at the expense of the other nontargeted allele lost by the tumor. In this study, the feasibility of using locked nucleic acid (LNA)-modified DNAzymes (LNAzymes) of the 10-23 motif as allele-specific drugs was investigated. We demonstrate that incorporation of LNA into 10-23 motif DNAzymes increases their efficacy in mRNA degradation and that, in a cell-free system, the 10-23 motif LNAzyme can adequately discriminate and recognize an SNP in the large subunit of RNA polymerase II (POLR2A), an essential gene frequently involved in LOH in cancer cells. However, the LNAzymes, optimized under in vitro conditions, are not always efficient in cleaving their RNA target in cell culture, and the efficiency of RNA cleavage in cell culture is cell type dependent. The cleavage rate of the LNAzyme is also much slower than RNase H-recruiting DNA phosphorothioate antisense oligonucleotides. Moreover, compared with DNA phosphorothioates, the ability of the LNAzymes to differentially knock down two POLR2A alleles in cultured cancer cells is limited.
Collapse
Affiliation(s)
- Kees Fluiter
- Department of Neurogenetics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Quilichini B, Andre N, Bouvier C, Chrestian MA, Rome A, Intagliata D, Coze C, Lena G, Zattara H. Hidden chromosomal abnormalities in pleuropulmonary blastomas identified by multiplex FISH. BMC Cancer 2006; 6:4. [PMID: 16396677 PMCID: PMC1361803 DOI: 10.1186/1471-2407-6-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 01/05/2006] [Indexed: 01/05/2023] Open
Abstract
Background Pleuropulmonary blastoma (PPB) is a rare childhood dysontogenetic intrathoracic neoplasm associated with an unfavourable clinical behaviour. Cases presentation We report pathological and cytogenetic findings in two cases of PPB at initial diagnosis and recurrence. Both tumors were classified as type III pneumoblastoma and histological findings were similar at diagnosis and relapse. In both cases, conventional cytogenetic techniques revealed complex numerical and structural chromosomal abnormalities. Molecular cytogenetic analysis (interphase/metaphase FISH and multicolor FISH) identified accurately chromosomal aberrations. In one case, TP53 gene deletion was detected on metaphase FISH. To date, only few cytogenetic data have been published about PPB. Conclusion The PPB genetic profile remains to be established and compared to others embryonal neoplasia. Our cytogenetic data are discussed reviewing cytogenetics PPBs published cases, illustrating the contribution of multicolor FISH in order to identify pathogenetically important recurrent aberrations in PPB.
Collapse
Affiliation(s)
- Benoit Quilichini
- Département de Génétique Médicale – Laboratoire de Cytogénétique Hémato-Oncologique, CHU – Hôpital d'Enfants « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Nicolas Andre
- Département d'Oncologie Pédiatrique, CHU – Hôpital d'Enfants « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
- FRE-Centre National de la Recherche Scientifique 2737, UFR de Pharmacie, Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Corinne Bouvier
- Département d'Anatomopathologie, CHU – Hôpital d'Adultes « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Marie-Anne Chrestian
- Département d'Anatomopathologie, CHU – Hôpital d'Adultes « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Angelique Rome
- Département d'Oncologie Pédiatrique, CHU – Hôpital d'Enfants « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Dominique Intagliata
- Département de Génétique Médicale – Laboratoire de Cytogénétique Hémato-Oncologique, CHU – Hôpital d'Enfants « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Carole Coze
- Département d'Oncologie Pédiatrique, CHU – Hôpital d'Enfants « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Gabriel Lena
- Département de Chirurgie Pédiatrique, CHU – Hôpital d'Enfants « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Helene Zattara
- Département de Génétique Médicale – Laboratoire de Cytogénétique Hémato-Oncologique, CHU – Hôpital d'Enfants « La Timone », Bd Jean Moulin, 13385 Marseille Cedex 5, France
| |
Collapse
|
46
|
Huh MS, Smid JK, Rudnicki MA. Muscle function and dysfunction in health and disease. ACTA ACUST UNITED AC 2005; 75:180-92. [PMID: 16187312 DOI: 10.1002/bdrc.20045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscles of the trunk and limbs developmentally originate from the cells of the dermomyotomal compartment of the somite. A wealth of knowledge has been accumulated with regard to understanding the molecular regulation of embryonic skeletal myogenesis. Myogenic induction is controlled through a complex series of spatiotemporal dependent signaling cascades. Secreted signaling molecules from surrounding structures not only initiate the myogenic program, but also influence proliferation and differentiation decisions. The proper coordination of these molecular events is thus critical for the formation of physiologically functional skeletal muscles. Hereditary congenital skeletal muscle defects arise due to genetics lesions in myogenic specific components. Understanding the mechanistic routes of congenital skeletal muscle disease therefore requires a comprehensive knowledge of the developmental system. Ultimately, the application of this knowledge will improve the diagnostic and therapeutic methodologies for such diseases. The aim of this review is to overview our current understanding of skeletal muscle development and associated human congenital diseases.
Collapse
Affiliation(s)
- Michael S Huh
- Ottawa Health Research Institute, Molecular Medicine Program, and the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
47
|
Fabre M, Yilmaz F, Buendia MA. [Hepatic tumors in childhood: experience on 245 tumors and review of literature]. Ann Pathol 2005; 24:536-55. [PMID: 15785401 DOI: 10.1016/s0242-6498(04)94017-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review on the pathology of hepatic tumors in childhood, from a personal series of 245 tumors, focuses on incidence, management, description of frequent tumors such as hepatoblastoma, fibrolamellar carcinoma, and undifferentiated sarcoma for malignant tumors, focal nodular hyperplasia, hepatocellular adenoma, and mesenchymal hamartoma for benign tumors. Malignant and benign entities of recent description, including the following: crowded, small cell undifferentiated and cholangioblastic variants of hepatoblastomas, mesenchymal hamartoma miming hepatoblastoma, liver adenoma and adenomatosis in diabete MODY3 families, gastrointestinal stromal tumor with liver metastasis associated to Carney triad, macronodules in non-cirrhotic portal fibrosis are reviewed. For each entity, the clinical presentation, the diagnostic criteria and the differential diagnosis are described. The role of immunohistochemistry and molecular biology in the diagnosis and identification of new molecular mechanisms triggered by oncogenic activation with new prognostic markers, and therapeutic targets is emphasized.
Collapse
Affiliation(s)
- Monique Fabre
- Service d'Anatomie et de Cytologie Pathologiques, Faculté de Médecine Paris XI et Hôpital de Bicêtre, 78, rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France.
| | | | | |
Collapse
|
48
|
Kurmasheva RT, Peterson CA, Parham DM, Chen B, McDonald RE, Cooney CA. Upstream CpG island methylation of the PAX3 gene in human rhabdomyosarcomas. Pediatr Blood Cancer 2005; 44:328-37. [PMID: 15602708 DOI: 10.1002/pbc.20285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adult tumors can be characterized by hypermethylation of CpG islands associated with 5'-upstream and coding regions of specific genes. This hypermethylation can also be part of the aging process. In contrast, much less is known about gene hypermethylation in childhood cancers, where methylation changes are not part of the aging process but likely represent developmental dysregulation. PAX3 is an important gene in muscle development and muscle-producing neoplasms such as rhabdomyosarcomas. PROCEDURES We examined the methylation status of a PAX3 5'-CpG island in rhabdomyosarcoma subtypes and in normal fetal skeletal muscle. PAX3 methylation was analyzed in 15 embryonal rhabdomyosarcomas, 12 alveolar rhabdomyosarcomas, and in six normal skeletal muscle samples, using semi-quantitative PCR analysis of DNA digested with methyl-sensitive restriction enzymes. RESULTS The CpG island in the upstream region of the human PAX3 gene was hypermethylated in the majority of ERMS examined (13 of 15 tumors, mean of 52% methylation), whereas most ARMS (9 of 12 tumors) and all normal muscle samples showed relative hypomethylation (both 18% mean methylation). Various CpG sites differ in contribution to overall PAX3 CpG island methylation, with methylation at a HaeII site being inversely correlated with PAX3 expression. CONCLUSIONS PAX3 CpG island methylation appears to distinguish embryonal subtype of rhabdomyosarcoma from alveolar, and methylation at certain sites within this CpG island is inversely correlated with PAX3 expression. In addition to exemplifying developmental dysregulation, methylation of PAX3 has potential in the development of an epigenetic profile for the diagnosis of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
49
|
Schaaf GJ, Ruijter JM, van Ruissen F, Zwijnenburg DA, Waaijer R, Valentijn LJ, Benit-Deekman J, van Kampen AHC, Baas F, Kool M. Full transcriptome analysis of rhabdomyosarcoma, normal, and fetal skeletal muscle: statistical comparison of multiple SAGE libraries. FASEB J 2005; 19:404-6. [PMID: 15629888 DOI: 10.1096/fj.04-2104fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. Improved treatment strategies have increased overall survival, but the response of approximately one-third of the patients is still poor. To increase the knowledge of RMS pathogenesis, we performed the first full transcriptome analysis of RMS using serial analysis of gene expression (SAGE). With a G-test for the simultaneous comparison of subsets of SAGE libraries of normal skeletal muscle, embryonal (ERMS) and alveolar (ARMS) RMS, we identified 251 differentially expressed genes. A literature-mining procedure demonstrated that 158 of these genes have not previously been associated with RMS or normal muscle. Gene Ontology (GO) analysis assigned 198 of the 251 genes to muscle-specific classes, including those involved in normal myogenic development, as well as tumor-related classes. Prominent GO classes were those associated with proliferation and actin reorganization, which are processes that play roles during early muscle development, muscle function, and tumor progression. Using custom microarrays, we confirmed the (up- or down-) regulation of 80% of 98 differentially expressed genes. Another SAGE library of 19- to 22-week-old fetal skeletal muscle was compared with the RMS and normal muscle transcriptomes. Cluster analysis showed that the RMS and fetal muscle SAGE libraries formed one cluster distinct from normal muscle samples. Moreover, the expression profile of 86% of the differentially expressed genes between normal muscle and RMS was highly similar in fetal muscle and RMS. In conclusion, the G-test is a robust tool for analyzing groups of SAGE libraries and correctly identifies genes marking the difference between fully differentiated skeletal muscle and RMS. This study not only substantiates the close association between embryonic myogenesis and RMS development but also provides a rich source of candidate genes to further elucidate the etiology of RMS or to identify diagnostic and/or prognostic markers.
Collapse
Affiliation(s)
- Gerben J Schaaf
- Department of Neurogenetics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sheng J, Organ EL, Hao C, Wells KS, Ruley HE, Rubin DH. Mutations in the IGF-II pathway that confer resistance to lytic reovirus infection. BMC Cell Biol 2004; 5:32. [PMID: 15333144 PMCID: PMC517494 DOI: 10.1186/1471-2121-5-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 08/27/2004] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Viruses are obligate intracellular parasites and rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. RESULTS A gene entrapment approach was used to identify candidate cellular genes that affect reovirus infection or virus induced cell lysis. Four of the 111 genes disrupted in clones selected for resistance to infection by reovirus type 1 involved the insulin growth factor-2 (IGF-II) pathway, including: the mannose-6-phosphate/IGF2 receptor (Igf2r), a protease associated with insulin growth factor binding protein 5 (Prss11), and the CTCF transcriptional regulator (Ctcf). The disruption of Ctcf, which encodes a repressor of Igf2, was associated with enhanced Igf2 gene expression. Plasmids expressing either the IGF-II pro-hormone or IGF-II without the carboxy terminal extension (E)-peptide sequence independently conferred high levels of cellular resistance to reovirus infection. Forced IGF-II expression results in a block in virus disassembly. In addition, Ctcf disruption and forced Igf2 expression both enabled cells to proliferate in soft agar, a phenotype associated with malignant growth in vivo. CONCLUSION These results indicate that IGF-II, and by inference other components of the IGF-II signalling pathway, can confer resistance to lytic reovirus infection. This report represents the first use of gene entrapment to identify host factors affecting virus infection. Concomitant transformation observed in some virus resistant cells illustrates a potential mechanism of carcinogenesis associated with chronic virus infection.
Collapse
Affiliation(s)
- Jinsong Sheng
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
| | - Edward L Organ
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chuanming Hao
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, 37232, USA
| | - K Sam Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - H Earl Ruley
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Donald H Rubin
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|