1
|
Arrigo A, Regua AT, Najjar MK, Lo HW. Tumor Suppressor Candidate 2 (TUSC2): Discovery, Functions, and Cancer Therapy. Cancers (Basel) 2023; 15:2455. [PMID: 37173921 PMCID: PMC10177220 DOI: 10.3390/cancers15092455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor Suppressor Candidate 2 (TUSC2) was first discovered as a potential tumor suppressor gene residing in the frequently deleted 3p21.3 chromosomal region. Since its discovery, TUSC2 has been found to play vital roles in normal immune function, and TUSC2 loss is associated with the development of autoimmune diseases as well as impaired responses within the innate immune system. TUSC2 also plays a vital role in regulating normal cellular mitochondrial calcium movement and homeostasis. Moreover, TUSC2 serves as an important factor in premature aging. In addition to TUSC2's normal cellular functions, TUSC2 has been studied as a tumor suppressor gene that is frequently deleted or lost in a multitude of cancers, including glioma, sarcoma, and cancers of the lung, breast, ovaries, and thyroid. TUSC2 is frequently lost in cancer due to somatic deletion within the 3p21.3 region, transcriptional inactivation via TUSC2 promoter methylation, post-transcriptional regulation via microRNAs, and post-translational regulation via polyubiquitination and proteasomal degradation. Additionally, restoration of TUSC2 expression promotes tumor suppression, eventuating in decreased cell proliferation, stemness, and tumor growth, as well as increased apoptosis. Consequently, TUSC2 gene therapy has been tested in patients with non-small cell lung cancer. This review will focus on the current understanding of TUSC2 functions in both normal and cancerous tissues, mechanisms of TUSC2 loss, TUSC2 cancer therapeutics, open questions, and future directions.
Collapse
Affiliation(s)
- Austin Arrigo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Angelina T. Regua
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| | - Mariana K. Najjar
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| |
Collapse
|
2
|
Uzhachenko R, Shimamoto A, Chirwa SS, Ivanov SV, Ivanova AV, Shanker A. Mitochondrial Fus1/Tusc2 and cellular Ca2 + homeostasis: tumor suppressor, anti-inflammatory and anti-aging implications. Cancer Gene Ther 2022; 29:1307-1320. [PMID: 35181743 PMCID: PMC9576590 DOI: 10.1038/s41417-022-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
FUS1/TUSC2 (FUSion1/TUmor Suppressor Candidate 2) is a tumor suppressor gene (TSG) originally described as a member of the TSG cluster from human 3p21.3 chromosomal region frequently deleted in lung cancer. Its role as a TSG in lung, breast, bone, and other cancers was demonstrated by several groups, but molecular mechanisms of its activities are starting to unveil lately. They suggest that Fus1-dependent mechanisms are relevant in etiologies of diseases beyond cancer, such as chronic inflammation, bacterial and viral infections, premature aging, and geriatric diseases. Here, we revisit the discovery of FUS1 gene in the context of tumor initiation and progression, and review 20 years of research into FUS1 functions and its molecular, structural, and biological aspects that have led to its use in clinical trials and gene therapy. We present a data-driven view on how interactions of Fus1 with the mitochondrial Ca2+ (mitoCa2+) transport machinery maintain cellular Ca2+ homeostasis and control cell apoptosis and senescence. This Fus1-mediated cellular homeostasis is at the crux of tumor suppressor, anti-inflammatory and anti-aging activities.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sergey V Ivanov
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA.
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Liu W, Xie A, Tu C, Liu W. REX-1 Represses RASSF1a and Activates the MEK/ERK Pathway to Promote Tumorigenesis in Prostate Cancer. Mol Cancer Res 2021; 19:1666-1675. [PMID: 34183450 DOI: 10.1158/1541-7786.mcr-20-0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Epigenetics play an important role in the pathogenesis of prostate cancer; it is urgent to investigate vital transcription factors in methylation regulation with the aim to develop novel treatment strategies targeting prostate cancer. As a member of the zinc finger protein family, REX-1 (reduced expression-1) is a transcription factor that has been reported to be closely linked to the development of several cancers. So far, the expression level and precise function of REX-1 in prostate cancer remain largely unknown. Here, we show that REX-1 was overexpressed in prostate cancer clinical tissues, and its expression level was closely correlated with patient prognosis. REX-1 affected prostate tumor growth in vivo by MEK/ERK phosphorylation. Mechanistic studies indicated that REX-1 recruited DNMT3b (DNA methyltransferase 3b), inhibited the transcription of RASSF1a (RAS association domain family 1a), and further modulated methylation of RASSF1a promoter. Intervention of the REX-1/DNMT3b/RASSF1a axis may shed light on the development of novel therapeutic approaches for prostate cancer treatment. IMPLICATIONS: REX1 overexpression recruits DNMT3b and downregulates RASSF1a by promoter methylation, suggesting that epigenetic intervention may contribute to prostate cancer treatment.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Reproductive Medicine, Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Chunhua Tu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Weipeng Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
4
|
Fan JB, Miyauchi S, Xu HZ, Liu D, Kim LJY, Burkart C, Cheng H, Arimoto KI, Yan M, Zhou Y, Győrffy B, Knobeloch KP, Rich JN, Cang H, Fu XD, Zhang DE. Type I Interferon Regulates a Coordinated Gene Network to Enhance Cytotoxic T Cell-Mediated Tumor Killing. Cancer Discov 2020; 10:382-393. [PMID: 31974171 PMCID: PMC7058499 DOI: 10.1158/2159-8290.cd-19-0608] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/15/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
Type I interferons (IFN), which activate many IFN-stimulated genes (ISG), are known to regulate tumorigenesis. However, little is known regarding how various ISGs coordinate with one another in developing antitumor effects. Here, we report that the ISG UBA7 is a tumor suppressor in breast cancer. UBA7 encodes an enzyme that catalyzes the covalent conjugation of the ubiquitin-like protein product of another ISG (ISG15) to cellular proteins in a process known as "ISGylation." ISGylation of other ISGs, including STAT1 and STAT2, synergistically facilitates production of chemokine-receptor ligands to attract cytotoxic T cells. These gene-activation events are further linked to clustering and nuclear relocalization of STAT1/2 within IFN-induced promyelocytic leukemia (PML) bodies. Importantly, this coordinated ISG-ISGylation network plays a central role in suppressing murine breast cancer growth and metastasis, which parallels improved survival in patients with breast cancer. These findings reveal a cooperative IFN-inducible gene network in orchestrating a tumor-suppressive microenvironment. SIGNIFICANCE: We report a highly cooperative ISG network, in which UBA7-mediated ISGylation facilitates clustering of transcription factors and activates an antitumor gene-expression program. These findings provide mechanistic insights into immune evasion in breast cancer associated with UBA7 loss, emphasizing the importance of a functional ISG-ISGylation network in tumor suppression.This article is highlighted in the In This Issue feature, p. 327.
Collapse
Affiliation(s)
- Jun-Bao Fan
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California.
| | - Sayuri Miyauchi
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California
| | - Hui-Zhong Xu
- The Salk Institute for Biological Sciences, La Jolla, California
| | - Dan Liu
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Medical Scientist Training Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Christoph Burkart
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California
| | - Hua Cheng
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California
| | - Ming Yan
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | | | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Hu Cang
- The Salk Institute for Biological Sciences, La Jolla, California
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California.
- Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
MUC1-C represses the RASSF1A tumor suppressor in human carcinoma cells. Oncogene 2019; 38:7266-7277. [PMID: 31435022 PMCID: PMC6872931 DOI: 10.1038/s41388-019-0940-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
RASSF1A encodes a tumor suppressor that inhibits the RAS→RAF→MEK→ERK pathway and is one of the most frequently inactivated genes in human cancers. MUC1-C is an oncogenic effector of the cancer cell epigenome that is overexpressed in diverse carcinomas. We show here that MUC1-C represses RASSF1A expression in KRAS wild-type and mutant cancer cells. Mechanistically, MUC1-C occupies the RASSF1A promoter in a complex with the ZEB1 transcriptional repressor. In turn, MUC1-C/ZEB1 complexes recruit DNA methyltransferase 3b (DNMT3b) to the CpG island in the RASSF1A promoter. Targeting MUC1-C, ZEB1 and DNMT3b thereby decreases methylation of the CpG island and derepresses RASSF1A transcription. We also show that targeting MUC1-C regulates KRAS signaling, as evidenced by RNA-seq analysis, and decreases MEK/ERK activation, which is of importance for RAS-mediated tumorigenicity. These findings define a previously unrecognized role for MUC1-C in suppression of RASSF1A and support targeting MUC1-C as an approach for inhibiting MEK→ERK signaling.
Collapse
|
6
|
Kinney N, Varghese RT, Anandakrishnan R, Garner HR“S. ZDHHC3 as a Risk and Mortality Marker for Breast Cancer in African American Women. Cancer Inform 2017; 16:1176935117746644. [PMID: 29276372 PMCID: PMC5734450 DOI: 10.1177/1176935117746644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
African American woman are 43% more likely to die from breast cancer than white women and have increased the risk of tumor recurrence despite lower incidence. We investigate variations in microsatellite genomic regions-a type of repetitive DNA-and possible links to the breast cancer mortality gap. We screen 33 854 microsatellites in germline DNA of African American women with and without breast cancer: 4 are statistically significant. These are located in the 3' UTR (untranslated region) of gene ZDHHC3, an intron of transcribed pseudogene INTS4L1, an intron of ribosomal gene RNA5-8S5, and an intergenic region of chromosome 16. The marker in ZDHHC3 is interesting for 3 reasons: (a) the ZDHHC3 gene is located in region 3p21 which has already been linked to early invasive breast cancer, (b) the Kaplan-Meier estimator demonstrates that ZDHHC3 alterations are associated with poor breast cancer survival in all racial/ethnic groups combined, and (c) data from cBioPortal suggest that ZDHHC3 messenger RNA expression is significantly lower in African Americans compared with whites. These independent lines of evidence make ZDHHC3 a candidate for further investigation.
Collapse
Affiliation(s)
- Nick Kinney
- Center for Bioinformatics and Genetics & Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Robin T Varghese
- Center for Bioinformatics and Genetics & Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Ramu Anandakrishnan
- Center for Bioinformatics and Genetics & Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Harold R “Skip” Garner
- Center for Bioinformatics and Genetics & Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
- Gibbs Cancer Center & Research Institute, Spartanburg, SC, USA
| |
Collapse
|
7
|
Impact of Natural Compounds on DNA Methylation Levels of the Tumor Suppressor Gene RASSF1A in Cancer. Int J Mol Sci 2017; 18:ijms18102160. [PMID: 29039788 PMCID: PMC5666841 DOI: 10.3390/ijms18102160] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of tumor suppressor genes (TSG) is a fundamental event in the pathogenesis of human cancer. This silencing is accomplished by aberrant chromatin modifications including DNA hypermethylation of the gene promoter. One of the most frequently hypermethylated TSG in human cancer is the Ras Association Domain Family 1A (RASSF1A) gene. Aberrant methylation of RASSF1A has been reported in melanoma, sarcoma and carcinoma of different tissues. RASSF1A hypermethylation has been correlated with tumor progression and poor prognosis. Reactivation of epigenetically silenced TSG has been suggested as a therapy in cancer treatment. In particular, natural compounds isolated from herbal extracts have been tested for their capacity to induce RASSF1A in cancer cells, through demethylation. Here, we review the treatment of cancer cells with natural supplements (e.g., methyl donors, vitamins and polyphenols) that have been utilized to revert or prevent the epigenetic silencing of RASSF1A. Moreover, we specify pathways that were involved in RASSF1A reactivation. Several of these compounds (e.g., reseveratol and curcumin) act by inhibiting the activity or expression of DNA methyltransferases and reactive RASSF1A in cancer. Thus natural compounds could serve as important agents in tumor prevention or cancer therapy. However, the exact epigenetic reactivation mechanism is still under investigation.
Collapse
|
8
|
Zhan L, Zhang B, Tan Y, Yang C, Huang C, Wu Q, Zhang Y, Chen X, Zhou M, Shu A. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA). Medicine (Baltimore) 2017; 96:e6097. [PMID: 28207521 PMCID: PMC5319510 DOI: 10.1097/md.0000000000006097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Methylation of the Ras-association domain family 1 isoform A (RASSF1A) gene promoter region is thought to participate in the initiation and development of many different cancers. However, in bladder cancer the role of RASSF1A methylation was unclear. To evaluate the relationship between RASSF1A methylation and bladder cancer, a quantitative assessment of an independent meta-analysis was performed. In addition, a DNA methylation microarray database from the cancer genome atlas (TCGA) project was used to validate the results of the meta-analysis. METHODS We searched published articles from computerized databases, and DNA methylation data were extracted from TCGA project. All data were analyzed by R software. RESULTS The results of the meta-analysis indicated that the frequency of RASSF1A gene methylation in bladder cancer patients is significantly higher than in healthy controls. The hazard ratio (HR) was 2.24 (95% CI = [1.45; 3.48], P = 0.0003) for overall survival (OS), and the RASSF1A gene promoter methylation status was strongly associated with the TNM stage and differentiation grade of the tumor. The similar results were also found by the data from TCGA project. CONCLUSION There was a significant relationship between the methylation of the RASSF1A gene promoter and bladder cancer. Therefore, RASSF1A gene promoter methylation will be a potential biomarker for the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Leyun Zhan
- Anesthesia department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Bingyi Zhang
- Ultrasound department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Yaojun Tan
- Anesthesia department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Chengliang Yang
- Cardiothoracic surgery, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Chenhong Huang
- Anesthesia department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Qiongya Wu
- Anesthesia department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Yulin Zhang
- Department of science and education, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Xiaobo Chen
- Anesthesia department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Mi Zhou
- Anesthesia department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| | - Aihua Shu
- Anesthesia department, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei, P.R. China
| |
Collapse
|
9
|
Doçi CL, Mikelis CM, Lionakis MS, Molinolo AA, Gutkind JS. Genetic Identification of SEMA3F as an Antilymphangiogenic Metastasis Suppressor Gene in Head and Neck Squamous Carcinoma. Cancer Res 2015; 75:2937-48. [PMID: 25952650 DOI: 10.1158/0008-5472.can-14-3121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/27/2015] [Indexed: 01/08/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) often metastasize to locoregional lymph nodes, and lymph node involvement represents one of the most important prognostic factors of poor clinical outcome. HNSCCs are remarkably lymphangiogenic and represent a clear example of a cancer that utilizes the lymphatic vasculature for malignant dissemination; however, the molecular mechanisms underlying lymphangiogenesis in HNSCC is still poorly understood. Of interest, we found that an axon guidance molecule, Semaphorin 3F (SEMA3F), is among the top 1% underexpressed genes in HNSCC, and that genomic loss of SEMA3F correlates with increased metastasis and decreased survival. SEMA3F acts on its coreceptors, plexins and neuropilins, among which neuropilin-2 (NRP2) is highly expressed in lymphatic endothelial cells (LEC) but not in oral epithelium and most HNSCCs. We show that recombinant SEMA3F promotes LEC collapse and potently inhibits lymphangiogenesis in vivo. By reconstituting all possible plexin and neuropilin combinations, we found that SEMA3F acts through multiple receptors, but predominantly requires NRP2 to signal in LECs. Using orthotopic HNSCC metastasis mouse models, we provide direct evidence that SEMA3F re-expression diminishes lymphangiogenesis and lymph node metastasis. Furthermore, analysis of a large tissue collection revealed that SEMA3F is progressively lost during HNSCC progression, concomitant with increased tumor lymphangiogenesis. SEMA3F is localized to 3p21, an early and frequently deleted locus in HNSCC and many other prevalent human malignancies. Thus, SEMA3F may represent an antilymphangiogenic metastasis suppressor gene widely lost during cancer progression, hence serving as a prognostic biomarker and an attractive target for therapeutic intervention to halt metastasis.
Collapse
Affiliation(s)
- Colleen L Doçi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Constantinos M Mikelis
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland.
| |
Collapse
|
10
|
Tanaka K, Kondo K, Kitajima K, Muraoka M, Nozawa A, Hara T. Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. J Biol Chem 2013; 288:23990-9. [PMID: 23843459 DOI: 10.1074/jbc.m113.478891] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein-tyrosine phosphatase non-receptor type 23 (PTPN23) is a candidate tumor suppressor involved in the tumorigenesis of various organs. However, its physiological role(s) and detailed expression profile(s) have not yet been elucidated. We investigated the function and regulation of PTPN23 in the formation of testicular germ cell tumors (TGCTs). Expression of PTPN23 in human TGCT cell lines was significantly lower than that in spermatogonial stem cells in mice. Overexpression of PTPN23 in NEC8, a human TGCT cell line, suppressed soft agar colony formation in vitro and tumor formation in nude mice in vivo. These data indicate that PTPN23 functions as a tumor suppressor in TGCTs. Multiple computational algorithms predicted that the 3' UTR of human PTPN23 is a target for miR-142-3p. A luciferase reporter assay confirmed that miR-142-3p bound directly to the 3' UTR of PTPN23. Introduction of pre-miR-142 in the PTPN23 transfectant of NEC8 led to suppressed expression of PTPN23 and increased soft agar colony formation. Quantitative RT-PCR data revealed a significantly higher expression of miR-142-3p in human seminomas compared with normal testes. No difference in mRNA expression between seminoma and non-seminoma samples was detected by in situ hybridization. Both quantitative RT-PCR and immunohistochemical analyses revealed that PTPN23 expression was significantly lower in TGCTs than in normal testicular tissues. Finally, a lack of PTPN23 protein expression in human TGCTs correlated with a relatively higher miR-142-3p expression. These data suggest that PTPN23 is a tumor suppressor and that repression of PTPN23 expression by miR-142-3p plays an important role in the pathogenesis of TGCTs.
Collapse
Affiliation(s)
- Kiyoko Tanaka
- Stem Cell Project Group, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
RASSF Signalling and DNA Damage: Monitoring the Integrity of the Genome? Mol Biol Int 2012; 2012:141732. [PMID: 22577550 PMCID: PMC3337673 DOI: 10.1155/2012/141732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/27/2012] [Indexed: 12/14/2022] Open
Abstract
The RASSF family of proteins has been extensively studied in terms of their genetics, structure and function. One of the functions that has been increasingly studied is the role of the RASSF proteins in the DNA damage response. Surprisingly, this research, which encompasses both the classical and N-terminal RASSF proteins, has revealed an involvement of the RASSFs in oncogenic pathways as well as the more familiar tumour suppressor pathways usually associated with the RASSF family members. The most studied protein with respect to DNA damage is RASSF1A, which has been shown, not only to be activated by ATM, a major regulator of the DNA damage response, but also to bind to and activate a number of different pathways which all lead to and feedback from the guardian of the genome, p53. In this review we discuss the latest research linking the RASSF proteins to DNA damage signalling and maintenance of genomic integrity and look at how this knowledge is being utilised in the clinic to enhance the effectiveness of traditional cancer therapies such as radiotherapy.
Collapse
|
12
|
da Costa Prando E, Cavalli LR, Rainho CA. Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics 2012; 6:1413-24. [PMID: 22139571 DOI: 10.4161/epi.6.12.18271] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetic mechanisms are frequently deregulated in cancer cells and can lead to the silencing of genes with tumor suppressor activities. The isoform A of the Ras-association domain family member 1 (RASSF1A) gene is one of the most frequently silenced transcripts in human tumors, however, few studies have simultaneously investigated epigenetic abnormalities associated with the 3p21.3 tumor suppressor gene cluster flanking RASSF1 (i.e., SEMA3B, HYAL3, HYAL2, HYAL1, TUSC2, RASSF1, ZMYND10, NPRL2, TMEM115, and CACNA2D2). This study aimed to investigate the role of epigenetic changes to these genes in seventeen breast cancer cell lines and in three non-tumorigenic epithelial breast cell lines (184A1, 184B5, and MCF 10A) and to evaluate the effect on gene expression of treatment with the demethylating agent 5-Aza-2'-deoxycytidine and/or Trichostatin A (TSA), a histone deacetylase inhibitor. We report that, although the RASSF1A isoform was determined to be epigenetically silenced in 15 of the 17 breast cancer cell lines, all the cell lines expressed the RASSF1C isoform. Five breast cancer cell lines overexpressed RASSF1C, when compared to the normal epithelial cell line 184A1. Furthermore, the genes HYAL1 and CACNA2D2 were significantly overexpressed after the treatments. After the combinated treatment, RASSF1A re-expression was accompanied by an increase in expression levels of the flanking genes. The Spearman's correlation coefficient indicated a positive co-regulation of the following gene pairs: RASSF1 and TUSC2 (r=0.64, p=0.002), RASSF1 and ZMYND10 (r=0.58, p=0.07), RASSF1 and NPRL2 (r=0.48, p=0.03), ZMYND10 and NPRL2 (r=0.71; p=0,0004), and NPRL2 and TMEM115 (r=0.66, p=0.001). Interestingly, the genes TUSC2, NPRL2 and TMEM115 were found to be unmethylated in each of the untreated cell lines. Chromatin immunoprecipitation using antibodies against the acetylated and trimethylated lysine 9 of histone H3 demonstrated low levels of histone methylation in these genes, which are located closest to RASSF1. These results provide evidence that epigenetic repression is involved in the down-regulation of multiple genes at 3p21.3 in breast cancer cells.
Collapse
Affiliation(s)
- Erika da Costa Prando
- Department of Genetics, Biosciences Institute, Sao Paulo State University, Sao Paulo, Brazil
| | | | | |
Collapse
|
13
|
Yee KS, Grochola L, Hamilton G, Grawenda A, Bond EE, Taubert H, Wurl P, Bond GL, O'Neill E. A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. Cancer Res 2012; 72:2206-17. [PMID: 22389451 DOI: 10.1158/0008-5472.can-11-2906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RASSF1A (Ras association domain containing family 1A), a tumor suppressor gene that is frequently inactivated in human cancers, is phosphorylated by ataxia telangiectasia mutated (ATM) on Ser131 upon DNA damage, leading to activation of a p73-dependent apoptotic response. A single-nucleotide polymorphism located in the region of the key ATM activation site of RASSF1A predicts the conversion of alanine (encoded by the major G allele) to serine (encoded by the minor T allele) at residue 133 of RASSF1A (p.Ala133Ser). Secondary protein structure prediction studies suggest that an alpha helix containing the ATM recognition site is disrupted in the serine isoform of RASSF1A (RASSF1A-p.133Ser). In this study, we observed a reduced ability of ATM to recruit and phosphorylate RASSF1A-p.133Ser upon DNA damage. RASSF1A-p.133Ser failed to activate the MST2/LATS pathway, which is required for YAP/p73-mediated apoptosis, and negatively affected the activation of p53, culminating in a defective cellular response to DNA damage. Consistent with a defective p53 response, we found that male soft tissue sarcoma patients carrying the minor T allele encoding RASSF1A-p.133Ser exhibited poorer tumor-specific survival and earlier age of onset compared with patients homozygous for the major G allele. Our findings propose a model that suggests a certain subset of the population have inherently weaker p73/p53 activation due to inefficient signaling through RASSF1A, which affects both cancer incidence and survival.
Collapse
Affiliation(s)
- Karen S Yee
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dyrsø T, Li J, Wang K, Lindebjerg J, Kølvraa S, Bolund L, Jakobsen A, Bruun-Petersen G, Li S, Crüger DG. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization. Cancer Genet 2011; 204:84-95. [PMID: 21504706 DOI: 10.1016/j.cancergencyto.2010.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/27/2010] [Accepted: 08/18/2010] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material comprised fresh samples from 40 MSS tumors and 20 MSI tumors obtained from 60 Danish CRC patients. We identified five small genomic regions (<15 megabases) exhibiting recurrent copy number loss, which, to our knowledge, have not been reported in previously published aCGH studies of CRC: 3p25.3, 3p21.2-p21.31, 5q13.2, 12q24.23-q24.31, and 12q24.23-q24.31. These regions contain several potentially important tumor suppressor genes that may play a role in a significant proportion of both sporadic MSS CRC and MSI CRC. Furthermore, the generated aCGH data are in support of the recently proposed classification of sporadic CRC into MSS CIN+, MSI CIN-, MSI CIN+, and MSS CIN- cancers.
Collapse
Affiliation(s)
- Thomas Dyrsø
- Department of Clinical Genetics, Vejle Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Verma SK, Ganesan TS, Kishore U, Parker PJ. The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A. Protein Cell 2011; 2:237-49. [PMID: 21468893 DOI: 10.1007/s13238-011-1028-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/13/2011] [Indexed: 10/25/2022] Open
Abstract
Rap1A is a small G protein implicated in a spectrum of biological processes such as cell proliferation, adhesion, differentiation, and embryogenesis. The downstream effectors through which Rap1A mediates its diverse effects are largely unknown. Here we show that Rap1A, but not the related small G proteins Rap2 or Ras, binds the tumor suppressor Ras association domain family 1A (RASSF1A) in a manner that is regulated by phosphorylation of RASSF1A. Interaction with Rap1A is shown to influence the effect of RASSF1A on microtubule behavior.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Medical Oncology, Medical Sciences Division, The University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
16
|
Richter AM, Schagdarsurengin U, Rastetter M, Steinmann K, Dammann RH. Protein kinase A-mediated phosphorylation of the RASSF1A tumour suppressor at Serine 203 and regulation of RASSF1A function. Eur J Cancer 2010; 46:2986-95. [PMID: 20655196 DOI: 10.1016/j.ejca.2010.06.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
Abstract
Epigenetic inactivation of the Ras-Association Domain Family 1A (RASSF1A) gene is one of the most frequent alterations detected in cancer. The tumour suppressor function of RASSF1A contributes to cell cycle progression, microtubule stabilisation and apoptotic signalling. Here we investigated the putative phosphorylation sites of RASSF1A and the functional consequences. RASSF1A is mainly phosphorylated at Serine 203 within its Ras association domain. Phosphorylation at this site is accomplished by protein kinase A (PKA) and is reduced and elevated by PKA-specific inhibitors and activators, respectively. Functionally, an alanine substitution of Serine 203 (S203A) slightly affected the microtubule stability mediated by RASSF1A (p<0.05). Interestingly, the inhibition of PKA and the S203A substitution of RASSF1A resulted in a reduced rate of apoptotic cells induced by RASSF1A. Moreover, RASSF1A-mediated upregulation of p21 and BAX was observed. This induction was reduced when the S203A substitution was present or when PKA activity was inhibited. In summary our data show that RASSF1A is phosphorylated by PKA and this phosphorylation may affect apoptotic signalling of RASSF1A. Thus epigenetic silencing of RASSF1A may counteract its proapoptotic function in cancer.
Collapse
Affiliation(s)
- Antje M Richter
- Institute for Genetics, Justus-Liebig University Giessen, Germany
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Richter AM, Pfeifer GP, Dammann RH. The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta Rev Cancer 2009; 1796:114-28. [DOI: 10.1016/j.bbcan.2009.03.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/19/2009] [Accepted: 03/21/2009] [Indexed: 01/22/2023]
|
19
|
Patra SK, Szyf M. DNA methylation-mediated nucleosome dynamics and oncogenic Ras signaling: insights from FAS, FAS ligand and RASSF1A. FEBS J 2008; 275:5217-35. [PMID: 18803665 DOI: 10.1111/j.1742-4658.2008.06658.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytosine methylation at the 5-carbon position is the only known stable base modification found in the mammalian genome. The organization and modification of chromatin is a key factor in programming gene expression patterns. Recent findings suggest that DNA methylation at the junction of transcription initiation and elongation plays a critical role in suppression of transcription. This effect is mechanistically mediated by the state of chromatin modification. DNA methylation attracts binding of methyl-CpG-binding domain proteins that trigger repression of transcription, whereas DNA demethylation facilitates transcription activation. Understanding the rules that guide differential gene expression, as well as transcription dynamics and transcript abundance, has proven to be a taxing problem for molecular biologists and oncologists alike. The use of novel molecular modeling methods is providing exciting insights into the challenging problem of how methylation mediates chromatin dynamics. New data implicate lipid rafts as the coordinators of signals emanating from the cell membrane and are converging on the mechanisms linking DNA methylation and chromatin dynamics. This review focuses on some of these recent advances and uses lipid-raft-facilitated Ras signaling as a paradigm for understanding DNA methylation, chromatin dynamics and apoptosis.
Collapse
|
20
|
Kurata A, Katayama R, Watanabe T, Tsuruo T, Fujita N. TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling. Cancer Sci 2008; 99:1827-34. [PMID: 18616680 PMCID: PMC11159638 DOI: 10.1111/j.1349-7006.2008.00874.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a key regulator of cell proliferation and survival signal transduction. PDK1 is known to be constitutively active and is further activated by Src-mediated phosphorylation at the tyrosine-9, -373, and -376 residues. To identify novel regulators of PDK1, we performed E. coli-based two-hybrid screening and revealed that tumor suppressor candidate 4 (TUSC4), also known as nitrogen permease regulator-like 2 (NPRL2), formed a complex with PDK1 and suppressed Src-dependent tyrosine phosphorylation and activation of PDK1 in vitro and in cells. The NH(2)-terminal 133 amino acid residues of TUSC4 were involved in binding to PDK1. The deletion mutant of TUSC4 that lacked the NH(2)-terminal domain showed no inhibitory effects on PDK1 tyrosine phosphorylation or activation. Thus, complex formation is indispensable for TUSC4-mediated PDK1 inactivation. The siRNA-mediated down-regulation of TUSC4 induced cell proliferation, while ectopic TUSC4 expression inactivated the PDK1 downstream signaling pathway, including Akt and p70 ribosomal protein S6 kinase, and increased cancer cell sensitivity to several anticancer drugs. Our results suggest that TUSC4/NPRL2, a novel PDK1-interacting protein, plays a role in regulating the Src/PDK1 signaling pathway and cell sensitivity to multiple cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Atsuo Kurata
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | |
Collapse
|
21
|
A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers. PLoS Genet 2008; 4:e1000129. [PMID: 18636107 PMCID: PMC2444049 DOI: 10.1371/journal.pgen.1000129] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 06/17/2008] [Indexed: 01/10/2023] Open
Abstract
Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270) compared to nonmalignant tissues (n = 71). Comprising genes linked to multiple cancer-related pathways, the restricted expression of this "Poised Gene Cassette" (PGC) was robustly validated across 11 independent cohorts of approximately 1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP), which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.
Collapse
|
22
|
Verma SK, Ganesan TS, Parker PJ. The tumour suppressor RASSF1A is a novel substrate of PKC. FEBS Lett 2008; 582:2270-6. [PMID: 18514071 DOI: 10.1016/j.febslet.2008.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 05/18/2008] [Indexed: 11/15/2022]
Abstract
Ras association domain family 1A (RASSF1A) is a tumour suppressor that contains an amino-terminal cysteine-rich region, similar to the diacylglycerol (DAG)-binding domain (C1 domain) found in the protein kinase C (PKC) family of proteins, and a carboxy-terminal Ras-association (RA) domain. In the present study, RASSF1A was identified as a substrate for PKC. Using classical biochemical approaches, it was established that S197 and S203 within the RA domain of RASSF1A are phosphorylated by PKC in vitro and in vivo. Unlike the WT protein, the S197, 203D double mutant of RASSF1A failed to modulate microtubule organization and perinuclear vimentin collapse. By contrast, the equivalent AA mutant of RASSF1A phenocopied the WT protein. These findings indicate that PKC phosphorylation of RASSF1A regulates its ability to reorganize the microtubule network.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Medical Oncology, Medical Sciences Division, The University of Oxford, Oxford, UK
| | | | | |
Collapse
|
23
|
Abstract
Chromosomal rearrangements are frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the ease with which its genome can be manipulated. Through chromosome engineering, defined rearrangements can be introduced into the mouse genome. The resulting mouse models are leading to a better understanding of the molecular and cellular basis of dosage alterations in human disease phenotypes, in turn opening new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Louise van der Weyden
- Mouse Genomics Lab, Wellcome Trust Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom.
| | | |
Collapse
|
24
|
Michels E, De Preter K, Van Roy N, Speleman F. Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med 2007; 9:574-84. [PMID: 17873645 DOI: 10.1097/gim.0b013e318145b25b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Over the past few years, various reliable platforms for high-resolution detection of DNA copy number changes have become widely available. Together with optimized protocols for labeling and hybridization and algorithms for data analysis and representation, this has lead to a rapid increase in the application of this technology in the study of copy number variation in the human genome in normal cells and copy number imbalances in genetic diseases, including cancer. In this review, we briefly discuss specific technical issues relevant for array comparative genomic hybridization analysis in cancer tissues. We specifically focus on recent successes of array comparative genomic hybridization technology in the progress of our understanding of oncogenesis in a variety of cancer types. A third section highlights the potential of sensitive genome-wide detection of patterns of DNA imbalances or molecular portraits for class discovery and therapeutic stratification.
Collapse
Affiliation(s)
- Evi Michels
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
25
|
van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta Rev Cancer 2007; 1776:58-85. [PMID: 17692468 PMCID: PMC2586335 DOI: 10.1016/j.bbcan.2007.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 12/13/2022]
Abstract
Ras proteins play a direct causal role in human cancer with activating mutations in Ras occurring in approximately 30% of tumours. Ras effectors also contribute to cancer, as mutations occur in Ras effectors, notably B-Raf and PI3-K, and drugs blocking elements of these pathways are in clinical development. In 2000, a new Ras effector was identified, RAS-association domain family 1 (RASSF1), and expression of the RASSF1A isoform of this gene is silenced in tumours by methylation of its promoter. Since methylation is reversible and demethylating agents are currently being used in clinical trials, detection of RASSF1A silencing by promoter hypermethylation has potential clinical uses in cancer diagnosis, prognosis and treatment. RASSF1A belongs to a new family of RAS effectors, of which there are currently 8 members (RASSF1-8). RASSF1-6 each contain a variable N-terminal segment followed by a Ras-association (RA) domain of the Ral-GDS/AF6 type, and a specialised coiled-coil structure known as a SARAH domain extending to the C-terminus. RASSF7-8 contain an N-terminal RA domain and a variable C-terminus. Members of the RASSF family are thought to function as tumour suppressors by regulating the cell cycle and apoptosis. This review will summarise our current knowledge of each member of the RASSF family and in particular what role they play in tumourigenesis, with a special focus on RASSF1A, whose promoter methylation is one of the most frequent alterations found in human tumours.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
| | | |
Collapse
|
26
|
Abstract
Deletions of the 3p21.3 region are a frequent and early event in the formation of lung, breast, kidney and other cancers. Intense investigation of allelic losses and the discovery of overlapping homozygous deletions in lung and breast tumour-cell lines have defined a minimal critical 120 kb deletion region containing eight genes and likely to harbor one or more tumour-suppressor genes (TSGs). The candidate genes are HYAL2, FUS1, Ras-associated factor 1 (RASSF1), BLU/ZMYND10, NPR2L, 101F6, PL6 and CACNA2D2. Recent research indicates that several of these genes can suppress the growth of lung and other tumour cells. Furthermore, some genes (RASSF1A and BLU/ZMYND10) are very frequently inactivated by non-classical mechanisms such as promoter hypermethylation resulting in loss of expression. These data indicate that the 120 kb critical deletion region at 3p21.3 may represent a TSG cluster with preferential inactivation of particular genes depending on tumour type. The eight genes within this region and their potential role in cancer will be the focus of this review.
Collapse
Affiliation(s)
- L B Hesson
- Department of Medical and Molecular Genetics, MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Centre, Dow Street, University of Dundee, Dundee, UK.
| | | | | |
Collapse
|
27
|
Dehan E, Ben-Dor A, Liao W, Lipson D, Frimer H, Rienstein S, Simansky D, Krupsky M, Yaron P, Friedman E, Rechavi G, Perlman M, Aviram-Goldring A, Izraeli S, Bittner M, Yakhini Z, Kaminski N. Chromosomal aberrations and gene expression profiles in non-small cell lung cancer. Lung Cancer 2007; 56:175-84. [PMID: 17258348 DOI: 10.1016/j.lungcan.2006.12.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 12/05/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
Alterations in genomic content and changes in gene expression levels are central characteristics of tumors and pivotal to the tumorigenic process. We analyzed 23 non-small cell lung cancer (NSCLC) tumors by array comparative genomic hybridization (array CGH). Aberrant regions identified included well-characterized chromosomal aberrations such as amplifications of 3q and 8q and deletions of 3p21.31. Less frequently identified aberrations such as amplifications of 7q22.3-31.31 and 12p11.23-13.2, and previously unidentified aberrations such as deletion of 11q12.3-13.3 were also detected. To enhance our ability to identify key acting genes residing in these regions, we combined array CGH results with gene expression profiling performed on the same tumor samples. We identified a set of genes with concordant changes in DNA copy number and expression levels, i.e. overexpressed genes located in amplified regions and underexpressed genes located in deleted regions. This set included members of the Wnt/beta-catenin pathway, genes involved in DNA replication, and matrix metalloproteases (MMPs). Functional enrichment analysis of the genes both overexpressed and amplified revealed a significant enrichment for DNA replication and repair, and extracellular matrix component gene ontology annotations. We verified the changes in expressions of MCM2, MCM6, RUVBL1, MMP1, MMP12 by real-time quantitative PCR. Our results provide a high resolution map of copy number changes in non-small cell lung cancer. The joint analysis of array CGH and gene expression analysis highlights genes with concordant changes in expression and copy number that may be critical to lung cancer development and progression.
Collapse
Affiliation(s)
- E Dehan
- Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hoebeeck J, Michels E, Menten B, Van Roy N, Eggert A, Schramm A, De Preter K, Yigit N, De Smet E, De Paepe A, Laureys G, Vandesompele J, Speleman F. High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors. Int J Cancer 2007; 120:533-8. [PMID: 17096344 DOI: 10.1002/ijc.22326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The recurrent loss of 3p segments in neuroblastoma suggests the implication of 1 or more tumor suppressor genes but thus far few efforts have been made to pinpoint their detailed chromosomal position. To achieve this goal, array-based comparative genomic hybridization was performed on a panel of 23 neuroblastoma cell lines and 75 primary tumors using a tiling-path bacterial artificial chromosome array for chromosome 3p. A total of 45 chromosome 3 losses were detected, including whole chromosome losses, large terminal deletions and interstitial deletions. The latter, observed in cell lines as well as a number of distal deletions detected in primary tumors, allowed us to demarcate 3 minimal regions of loss of 3.6 Mb [3p21.31-p21.2, shortest regions of overlap (SRO)1], 1.4 Mb (3p22.3-3p22.2, SRO2) and 3.8 Mb (3p25.3-p25.1, SRO3) in size. The present data significantly extend previous findings and now firmly establish critical regions on 3p implicated in neuroblastoma. Interestingly, the 2 proximal regions coincide with previously defined SROs on 3p21.3 in more frequent tumors including lung and breast cancer. As such, similar tumor suppressor genes may play a critical role in development or progression of a variety of neoplasms, including neuroblastoma.
Collapse
Affiliation(s)
- Jasmien Hoebeeck
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shu Y, Rintala-Maki ND, Wall VE, Wang K, Goard CA, Langdon CE, Sutherland LC. The apoptosis modulator and tumour suppressor protein RBM5 is a phosphoprotein. Cell Biochem Funct 2007; 25:643-53. [PMID: 16927403 DOI: 10.1002/cbf.1366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
RBM5/LUCA-15/H37 is a nuclear SR-related RNA binding protein with the ability to modulate both apoptosis and the cell cycle, and retard tumour formation. How RBM5 functions to carry out these, potentially interrelated, biological activities is unknown. Since reversible phosphorylation has been shown to play an important role in the regulation of SR protein function, apoptosis and cell cycle control, in an attempt to elucidate the underlying mechanisms regulating RBM5 function, the phosphorylation status of RBM5 was investigated. Whole cell lysate from growing cell cultures was treated with the broad phosphatase spectrum of CIP, resulting in a decrease in the molecular mass of RBM5. A similar decrease in molecular mass, of a subset of RBM5 proteins, was observed during growth factor deprivation, in a manner consistent with partial dephosphorylation of RBM5. Molecular mass increased upon growth factor addition, demonstrating that this apoptosis-associated alteration in molecular mass was a reversible process. Immunoprecipitation and mutagenesis experiments strongly suggested that phosphotyrosines are not present in RBM5 under normal growth conditions, and that serine 69 is phosphorylated, but not by Akt kinase. Taken together, these results suggest that reversible phosphorylation of RBM5 is a mechanism capable of regulating RBM5 participation in modulating apoptosis, and perhaps tumour suppression.
Collapse
Affiliation(s)
- Yanjun Shu
- Tumour Biology Group, Regional Cancer Program of the Hôpital régional de Sudbury Regional Hospital, Sudbury, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Lázcoz P, Muñoz J, Nistal M, Pestaña Á, Encío I, Castresana JS. Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma. BMC Cancer 2006; 6:254. [PMID: 17064406 PMCID: PMC1634754 DOI: 10.1186/1471-2407-6-254] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/25/2006] [Indexed: 01/09/2023] Open
Abstract
Background Epigenetic alterations and loss of heterozygosity are mechanisms of tumor suppressor gene inactivation. A new carcinogenic pathway, targeting the RAS effectors has recently been documented. RASSF1A, on 3p21.3, and NORE1A, on 1q32.1, are among the most important, representative RAS effectors. Methods We screened the 3p21 locus for the loss of heterozygosity and the hypermethylation status of RASSF1A, NORE1A and BLU (the latter located at 3p21.3) in 41 neuroblastic tumors. The statistical relationship of these data was correlated with CASP8 hypermethylation. The expression levels of these genes, in cell lines, were analyzed by RT-PCR. Results Loss of heterozygosity and microsatellite instability at 3p21 were detected in 14% of the analyzed tumors. Methylation was different for tumors and cell lines (tumors: 83% in RASSF1A, 3% in NORE1A, 8% in BLU and 60% in CASP8; cell lines: 100% in RASSF1A, 50% in NORE1A, 66% in BLU and 92% in CASP8). In cell lines, a correlation with lack of expression was evident for RASSF1A, but less clear for NORE1A, BLU and CASP8. We could only demonstrate a statistically significant association between hypermethylation of RASSF1A and hypermethylation of CASP8, while no association with MYCN amplification, 1p deletion, and/or aggressive histological pattern of the tumor was demonstrated. Conclusion 1) LOH at 3p21 appears in a small percentage of neuroblastomas, indicating that a candidate tumor suppressor gene of neuroblastic tumors is not located in this region. 2) Promoter hypermethylation of RASSF1A and CASP8 occurs at a high frequency in neuroblastomas.
Collapse
Affiliation(s)
- Paula Lázcoz
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Jorge Muñoz
- Laboratorio de Neuro-Oncología Molecular, Universidad de Navarra, Pamplona, Spain
| | - Manuel Nistal
- Departamento de Anatomía Patológica, Hospital La Paz, Madrid, Spain
| | - Ángel Pestaña
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain
| | - Ignacio Encío
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Javier S Castresana
- Laboratorio de Neuro-Oncología Molecular, Universidad de Navarra, Pamplona, Spain
- Unidad de Biología de Tumores Cerebrales, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
31
|
Kohno T, Yokota J. Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 2006; 5:1273-81. [PMID: 16931177 DOI: 10.1016/j.dnarep.2006.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chromosome interstitial deletion (i.e., deletion of a chromosome segment in a chromosome arm) is a critical genetic event for the inactivation of tumor suppressor genes and activation of oncogenes leading to the carcinogenic conversion of human cells. The deletion at chromosome 9p21 removing the p16 tumor suppressor gene is a genetic alteration frequently observed in a variety of human cancers. Thus, structural analyses of breakpoints for p16 deletions in several kinds of human cancers have been performed to elucidate the molecular process of chromosome interstitial deletion consisting of formation of DNA double strand breaks (DSBs) and subsequent joining of DNA ends in human cells. The results indicated that DSBs triggering deletions in lymphoid leukemia are formed at a few defined sites by illegitimate action of the RAG protein complex, while DSBs in solid tumors are formed at unspecific sites by factors unidentified yet. In both types of tumors, the intra-nuclear architecture of chromatin was considered to affect the susceptibility of genomic segments of the p16 locus to DSBs. Broken DNA ends were joined by non-homologous end joining (NHEJ) repair in both types of tumors, however, microhomologies of DNA ends were preferentially utilized in the joining in solid tumors but not in lymphoid leukemia. The configuration of broken DNA ends as well as NHEJ activity in cells was thought to underlie the features of joining. Further structural analysis of other hot spots of chromosomal DNA breaks as well as the evaluation of the activity and specificity of NHEJ in human cells will elucidate the mechanisms of chromosome interstitial deletions in human cells.
Collapse
Affiliation(s)
- Takashi Kohno
- Biology Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | |
Collapse
|
32
|
Zhang DL, Su D, Bérczi A, Vargas A, Asard H. An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes. Biochim Biophys Acta Gen Subj 2006; 1760:1903-13. [PMID: 16996694 DOI: 10.1016/j.bbagen.2006.07.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 07/18/2006] [Accepted: 07/24/2006] [Indexed: 12/12/2022]
Abstract
Cytochromes b561 (Cyts b561) are a family of intrinsic membrane proteins involved in ascorbate-mediated transmembrane electron transport. The chromaffin granule Cyt b561 (CGCytb) is believed to transport electrons donated by extravesicular ascorbate (ASC) across the membrane to intravesicular monodehydroascorbate (MDA) supporting catecholamine synthesis in neuroendocrine tissues. Another isoform, the duodenal Cyt b561 (Dcytb), was reported to have ferric reductase activity, possibly facilitating intestinal iron uptake. Herein, a new Cyt b561 homologue, LCytb (for lysosomal Cytb561) was found expressed in the late endosomal-lysosomal membrane. LCytb shared high sequence similarity with CGCytb (45% identity) and Dcytb (42% identity). Moreover, four heme-coordinating His residues, and putative ASC and MDA binding sites were highly conserved. Recombinant LCytb exhibited an ASC-reducible b-type Cyt absorbance spectrum with alpha-band maximum at 561 nm in the spectrum of the reduced protein. Northern blots and Western blots revealed that LCytb was predominantly expressed in lung, spleen, thymus, testis and placenta. In situ hybridization and immunofluorescence studies further demonstrated that the protein was expressed in the alveolar macrophages of the lung, in the white pulp of the spleen, widespread in the thymus, and in the Sertoli cells of the testis. Sequence analysis indicated the presence of a (DE)XXXL(LI)-type signal in the C-terminal of the protein, predicting a late endosomal-lysosomal subcellular localization. This localization was confirmed by double labeling experiments in RAW264.7 and 293 cells, stably transfected with LCytb.
Collapse
Affiliation(s)
- De-liang Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | | | |
Collapse
|
33
|
Stern R. Hyaluronan metabolism: a major paradox in cancer biology. ACTA ACUST UNITED AC 2005; 53:372-82. [PMID: 16085113 DOI: 10.1016/j.patbio.2004.12.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 12/09/2004] [Indexed: 11/16/2022]
Abstract
Paradoxically, both hyaluronan (HA) and hyaluronidases, the enzymes that eliminate HA, can correlate with cancer progression. Levels of HA on the surface of tumor cells are indicators of poor outcome. Certain hyaluronidases, products of tumor suppressor genes eliminated in the course of tumor spread, are used clinically in anti-cancer chemotherapy regimens. Such information would indicate that cancer progression is inhibited by hyaluronidase. Yet progression of certain cancers correlates with levels of hyaluronidase activity. An attempt is made here to understand such apparent contradictions by examining details of HA metabolism. Anabolic and catabolic pathways are comprised of the HA synthases and hyaluronidases, respectively. There are several enzymes that synthesize HA, each under a different control mechanism, generating products of differing polymer size. The hyaluronidases degrade HA in step-wise fashion, the polymer decreasing in size in quantum steps, each size-specific polymer having a different biological activity. Superimposed on these are the potent hyaluronidase inhibitors, about which very little is known. These components of HA metabolism are reviewed here for possible roles in supporting or suppressing malignant transformation, growth, invasion and metastatic spread of tumors. Such a systematic approach may reveal mechanisms used in the course of cancer progression, resolve some of the apparent disparities, render new prognostic markers, and provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Stern
- Department of Pathology, UCSF Comprehensive Cancer Center, University of California San Francisco, CA 94143-0511, USA.
| |
Collapse
|
34
|
Kanzaki H, Hanafusa H, Yamamoto H, Yasuda Y, Imai K, Yano M, Aoe M, Shimizu N, Nakachi K, Ouchida M, Shimizu K. Single nucleotide polymorphism at codon 133 of the RASSF1 gene is preferentially associated with human lung adenocarcinoma risk. Cancer Lett 2005; 238:128-34. [PMID: 16125301 DOI: 10.1016/j.canlet.2005.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 06/01/2005] [Accepted: 07/01/2005] [Indexed: 02/04/2023]
Abstract
The RASSF1 gene, a putative tumor suppressor gene located on human chromosome 3p21, garners much attention for the frequent allelic loss and gene silencing via promoter hypermethylation in a variety of human malignancies. An association between a single nucleotide polymorphism (SNP) at codon 133 of the RASSF1 gene, encoding either alanine (GCT) or serine (TCT), and human cancer risk remains undefined. We therefore, investigated the distribution of the Ala133Ser SNP in 101 patients with lung cancer, 63 with head and neck cancer, 72 with colorectal cancer, 56 with esophageal cancer and 110 healthy controls by polymerase chain reaction and restriction enzyme-digestion assay. The heterozygous Ala/Ser genotype was significantly more frequent in lung cancer patients than in healthy controls (P=0.028). The adjusted odds ratio (OR) for the patients with heterozygous Ala/Ser genotype as compared with the controls with the Ala/Ala genotype was 2.59 (95% confidence interval (CI); 1.11-6.04). The increased risk of the Ala/Ser genotype was found in lung cancer patients but not in other cancer patients we examined. The association was particularly strong in those lung cancer patients of male (adjusted OR; 3.33, 95% CI; 1.37-8.12), with adenocarcinoma (adjusted OR; 3.33, 95% CI; 1.36-8.15), early stages (adjusted OR; 3.42, 95% CI; 1.33-8.75) and with smoking habit (adjusted OR; 2.70, 95% CI; 1.06-6.83). These results suggest that the RASSF1 Ala133Ser SNP is associated with development of lung cancer, especially of lung adenocarcinoma. The increased risk of the heterozygous genotype is intriguing, implying a close relation with the dimerization feature of RASSF1 proteins.
Collapse
Affiliation(s)
- Hirotaka Kanzaki
- Department of Molecular Genetics, Graduate School of Medicine and Dentistry, Okayama University, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pfeifer GP, Dammann R. Methylation of the Tumor Suppressor Gene RASSF1A in Human Tumors. BIOCHEMISTRY (MOSCOW) 2005; 70:576-83. [PMID: 15948711 DOI: 10.1007/s10541-005-0151-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Loss of heterozygosity of a segment at 3p21.3 is frequently observed in lung cancer and several other carcinomas. We have identified the Ras-association domain family 1A gene (RASSF1A), which is localized at 3p21.3 in a minimum deletion sequence. De novo methylation of the RASSF1A promoter is one of the most frequent epigenetic inactivation events detected in human cancer and leads to silencing of RASSF1A expression. Hypermethylation of RASSF1A was frequently found in most major types of human tumors including lung, breast, prostate, pancreas, kidney, liver, cervical, thyroid and many other cancers. The detection of RASSF1A methylation in body fluids such as serum, urine, and sputum promises to be a useful marker for early cancer detection. The functional analysis of RASSF1A reveals a potential involvement of this protein in apoptotic signaling, microtubule stabilization, and cell cycle progression.
Collapse
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA.
| | | |
Collapse
|
36
|
Ito I, Ji L, Tanaka F, Saito Y, Gopalan B, Branch CD, Xu K, Atkinson EN, Bekele BN, Stephens LC, Minna JD, Roth JA, Ramesh R. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 2005; 11:733-9. [PMID: 15486560 DOI: 10.1038/sj.cgt.7700756] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lung cancer is one of the leading causes of death in the world. The underlying cause for lung cancer has been attributed to various factors that include alteration and mutation in the tumor suppressor genes. Restoration of normal function of the tumor suppressor gene is a potential therapeutic strategy. Recent studies have identified a group of candidate tumor suppressor genes on human chromosome 3p21.3 that are frequently deleted in human lung and breast cancers. Among the various genes identified in the 3p21.3 region, we tested the antitumor activity of the FUS1 gene in two human non-small-cell lung cancer (NSCLC) xenografts in vivo. Intratumoral administration of FUS1 gene complexed to DOTAP:cholesterol (DOTAP:Chol) liposome into subcutaneous H1299 and A549 lung tumor xenograft resulted in significant (P = .02) inhibition of tumor growth. Furthermore, intravenous injections of DOTAP:Chol-FUS1 complex into mice bearing experimental A549 lung metastasis demonstrated significant (P = .001) decrease in the number of metastatic tumor nodules. Finally, lung tumor-bearing animals when treated with DOTAP:Chol-FUS1 complex demonstrate prolonged survival (median survival time: 80 days, P = .01) compared to control animals. This result demonstrates the potent tumor suppressive activity of the FUS1 gene and is a promising therapeutic agent for treatment of primary and disseminated human lung cancer.
Collapse
Affiliation(s)
- Isao Ito
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Choi N, Son DS, Song I, Lee HS, Lim YS, Song MS, Lim DS, Lee J, Kim H, Kim J. RASSF1A
is not appropriate as an early detection marker or a prognostic marker for non‐small cell lung cancer. Int J Cancer 2005; 115:575-81. [PMID: 15700308 DOI: 10.1002/ijc.20916] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aberrant methylation of several tumor suppressor genes often occurs during the pathogenesis of lung cancer. RASSF1A is one of the tumor suppressor genes, and it is frequently inactivated by hypermethylation of its promoter region in a variety of human cancers, including lung cancer. It has recently been suggested that RASSF1A methylation was frequently observed in poorly differentiated tumors, and that it was correlated with adverse survival in lung adenocarcinoma (Tomizawa Y, et al., Clin Cancer Res 2002;8:2362-8). In this study, we investigated the pathogenetic and clinicopathologic significance of RASSF1A methylation for the development and/or progression of non small cell lung cancer (NSCLC). We examined 116 cases of NSCLC for the methylation status of RASSF1A. Methylation-specific analysis demonstrated that 40.5% (47 of 116) of the cases were methylated at the CpG sites in the promoter. Methylation of RASSF1A was associated with cellular differentiation (p = 0.0244) and it was related to survival (p = 0.0276). However, there was no association between RASSF1A methylation and the individual clinicopathologic features: TNM stage (p > 0.1), recurrence (p > 0.1), lymphatic permeation (p > 0.1) and smoking duration time (p > 0.1). Furthermore, we analyzed RASSF1A's probability as a prognostic marker by using stepwise Cox proportional hazard regression testing. As a result, the stage proved to be the most important factor (p = 0.0089), more than any other factors such as age, gender, cell type, methylation status, differentiation, smoking duration time, tumor size and lymph node permeation. There was no other significant factor other than stage and age. These results show that epigenetic inactivation of RASSF1A cannot be a prognostic marker of NSCLC.
Collapse
Affiliation(s)
- Naeyun Choi
- Cancer Research Center, Center for Clinical Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tommasi S, Dammann R, Zhang Z, Wang Y, Liu L, Tsark WM, Wilczynski SP, Li J, You M, Pfeifer GP. Tumor Susceptibility of Rassf1a Knockout Mice. Cancer Res 2005. [DOI: 10.1158/0008-5472.92.65.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The human Ras association domain family 1 (RASSF1) gene is located at 3p21.3 in an area that is believed to harbor at least one important tumor suppressor gene. The two major isoforms of RASSF1, RASSF1A and RASSF1C, are distinguished by alternative NH2-terminal exons and the two transcripts initiate in two separate CpG islands. RASSF1A is one of the most frequently inactivated genes described thus far in human solid tumors. Inactivation of RASSF1A most commonly involves methylation of the promoter and CpG island associated with the RASSF1A isoform. In contrast, RASSF1C is almost never inactivated in tumors. Here, we have derived Rassf1a knockout mice in which exon 1-α of the Rassf1 gene was deleted, leading to specific loss of Rassf1a but not Rassf1c transcripts. Rassf1a-targeted mice were viable and fertile. Rassf1a−/− mice were prone to spontaneous tumorigenesis in advanced age (18–20 months). Whereas only two tumors developed in 48 wild-type mice, six tumors were found in 35 Rassf1a+/− mice (P < 0.05) and thirteen tumors were found in 41 Rassf1a−/− mice (P < 0.001). The tumors in Rassf1a-targeted mice included lung adenomas, lymphomas, and one breast adenocarcinoma. Rassf1a−/− and wild-type mice were treated with two chemical carcinogens, benzo(a)pyrene and urethane, to induce skin tumors and lung tumors, respectively. Rassf1a−/− and Rassf1a+/− mice showed increased tumor multiplicity and tumor size relative to control animals. The data are consistent with the tumor-suppressive role of Rassf1a, which may explain its frequent epigenetic inactivation in human tumors.
Collapse
Affiliation(s)
| | - Reinhard Dammann
- 3Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany; and
| | - Zhongqiu Zhang
- 4Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Yian Wang
- 4Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Sharon P. Wilczynski
- 2Department of Anatomic Pathology, City of Hope National Medical Center, Duarte, California
| | - Jie Li
- 4Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ming You
- 4Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
39
|
Bianco C, Strizzi L, Normanno N, Khan N, Salomon DS. Cripto-1: an oncofetal gene with many faces. Curr Top Dev Biol 2005; 67:85-133. [PMID: 15949532 DOI: 10.1016/s0070-2153(05)67003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human Cripto-1 (CR-1), a member of the epidermal growth factor (EGF)-CFC family, has been implicated in embryogenesis and in carcinogenesis. During early vertebrate development, CR-1 functions as a co-receptor for Nodal, a transforming growth factor beta (TGFbeta) family member and is essential for mesoderm and endoderm formation and anterior-posterior and left-right axis establishment. In adult tissues, CR-1 is expressed at a low level in all stages of mammary gland development and expression increases during pregnancy and lactation. Overexpression of CR-1 in mouse mammary epithelial cells leads to their transformation in vitro and, when injected into mammary glands, produces ductal hyperplasias. CR-1 can also enhance migration, invasion, branching morphogenesis and epithelial to mesenchymal transition (EMT) of several mouse mammary epithelial cell lines. Furthermore, transgenic mouse studies have shown that overexpression of a human CR-1 transgene in the mammary gland under the transcriptional control of the mouse mammary tumor virus (MMTV) promoter results in mammary hyperplasias and papillary adenocarcinomas. Finally, CR-1 is expressed at high levels in approximately 50 to 80% of different types of human carcinomas, including breast, cervix, colon, stomach, pancreas, lung, ovary, and testis. In conclusion, EGF-CFC proteins play dual roles as embryonic pattern formation genes and as oncogenes. While during embryogenesis EGF-CFC proteins perform specific and regulatory functions related to cell and tissue patterning, inappropriate expression of these molecules in adult tissues can lead to cellular proliferation and transformation and therefore may be important in the etiology and/or progression of cancer.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Ito M, Ito G, Kondo M, Uchiyama M, Fukui T, Mori S, Yoshioka H, Ueda Y, Shimokata K, Sekido Y. Frequent inactivation of RASSF1A, BLU, and SEMA3B on 3p21.3 by promoter hypermethylation and allele loss in non-small cell lung cancer. Cancer Lett 2004; 225:131-9. [PMID: 15922865 DOI: 10.1016/j.canlet.2004.10.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 10/25/2004] [Accepted: 10/28/2004] [Indexed: 02/04/2023]
Abstract
Non-small cell lung cancer frequently shows loss of heterozygosity of the chromosome 3p21.3 region and several genes such as RASSF1A, BLU, and SEMA3B have been identified as candidate tumor suppressor genes at this region since their downregulation and hypermethylation at their promoter regions were frequently detected in lung cancer. To determine whether these three genes are simultaneously inactivated during lung cancer development, we studied 138 primary non-small cell lung cancers for the promoter methylation status of these genes and allelic loss of the chromosome 3p21.3 region. We found promoter hypermethylation at 32% in RASSF1A, 30% in BLU, and 47% in SEMA3B. Allelic loss of 3p21.3 was detected in 54 (58%) of 93 informative tumors. Despite the weak association of methylation status among these three genes, there was no correlation between the methylation status of each gene and loss of heterozygosity. We also studied possible genes downstream of RASSF1A in 16 primary non-small cell lung cancers and found that the expressions of SM22 and SPARC were significantly downregulated in RASSF1A-hypermethylated tumors. Our results showed that, while candidate tumor suppressor genes at this locus can be simultaneously inactivated by epigenetic alterations, loss of heterozygosity without any hypermethylation of the three genes can also occur in some cases, suggesting that just one allelic loss might also be sufficient for the inactivation of any of these genes for lung cancer development.
Collapse
Affiliation(s)
- Masao Ito
- Department of Clinical Preventive Medicine, Nagoya University School of Medicine, Tsurumai 65, Nagoya 466-8560, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jones LC, Tefferi A, Idos GE, Kumagai T, Hofmann WK, Koeffler HP. RARbeta2 is a candidate tumor suppressor gene in myelofibrosis with myeloid metaplasia. Oncogene 2004; 23:7846-53. [PMID: 15361842 DOI: 10.1038/sj.onc.1207510] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myelofibrosis with myeloid metaplasia (MMM) is a clonal stem-cell disorder that leads to ineffective hematopoiesis, bone marrow fibrosis, and extramedullary hematopoiesis. The molecular mechanisms underlying the development of this myeloproliferative syndrome are currently unknown. In order to identify tumor suppressor genes that may be involved in the disease process, we performed an analysis for loss of heterozygosity (LOH) in CD34+ cells from 29 patients with MMM. We observed a frequency of allelic loss on chromosomal arm 3p in 24% of cases. Detailed mapping of 3p revealed a distinct region of deletion at 3p24. Among the genes known to map within this region is the retinoic acid receptor-beta (RARbeta2) gene. To determine whether RARbeta2 gene activity is diminished in this disease, we analysed its expression in CD34+ cells from 17 patients with MMM using quantitative PCR. Our results indicate that expression of RARbeta2 is significantly decreased in 100% of patient samples compared to that in CD34+ cells from 10 normal individuals. Since allelic loss at 3p24 occurs in <25% of patients, we investigated the contribution of epigenetic modifications to RARbeta2 inactivity. Using methylation-specific PCR, we found hypermethylation of RARbeta2 in 16 of 18 patients (89%), while the methylated form of the gene was absent in CD34+ cells from nine normal individuals. Our results suggest that RARbeta2 acts as a tumor suppressor gene in MMM and that epigenetic changes are the most significant determinants of RARbeta2 gene activity in these patients.
Collapse
Affiliation(s)
- Letetia C Jones
- Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Li J, Wang F, Protopopov A, Malyukova A, Kashuba V, Minna JD, Lerman MI, Klein G, Zabarovsky E. Inactivation of RASSF1C during in vivo tumor growth identifies it as a tumor suppressor gene. Oncogene 2004; 23:5941-9. [PMID: 15208682 DOI: 10.1038/sj.onc.1207789] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RASSF1A, a major member of the RASSF1 gene family, is silenced by promoter methylation at a high frequency in a large number of human solid tumors. Controlled expression of RASSF1A reverts the tumorigenic phenotype of several human cancer cell lines. Here we investigated another main isoform, RASSF1C, and compared it with RASSF1A in the gene inactivation test (GIT), based on a tetracycline regulation system. In the small-cell lung cancer (SCLC) line U2020, only RASSF1A has shown growth inhibitory activity in vitro, while in the prostate cell line LNCaP and renal cell carcinoma (RCC) line KRC/Y both RASSF1A and RASSF1C showed similar (approximately 90%) suppressing activity in vitro. Both RASSF1C and RASSF1A suppressed the tumorigenicity of the KRC/Y RCC cell line in SCID mice. Mutations, deletions and loss of expression of RASSF1A and RASSF1C transgenes were identified in all 15 grown SCID tumors. In contrast, the mutant RASSF1A containing Cys65Arg and Val211Ala had reduced growth suppression activity both in vitro and in vivo and did not show any further changes in four grown SCID tumors. In addition, RASSF1C was shown to induce cell cycle arrest in KRC/Y cells. These results strongly imply that like RASSF1A the RASSF1C gene could serve a tumor suppressor function.
Collapse
Affiliation(s)
- Jingfeng Li
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm 171 77, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chow LSN, Lo KW, Kwong J, To KF, Tsang KS, Lam CW, Dammann R, Huang DP. RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer 2004; 109:839-47. [PMID: 15027117 DOI: 10.1002/ijc.20079] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deletion on the short arm of chromosome 3 is one of the most important genetic abnormalities in the tumorigenesis of nasopharyngeal carcinoma (NPC). Both physical mapping and functional studies have targeted an NPC-related tumor suppressor gene(s) to chromosome 3p21.3. We have reported recently that RASSF1A gene, located on a 120-kb minimal deletion region on 3p21.3, was frequently inactivated by promoter hypermethylation in NPC. We further confirmed that RASSF1A is the critical target tumor suppressor from 3p21.3, with the evidence that loss of expression and aberrant methylation of the other 8 candidate genes/transcripts (HYAL2, FUS1, RASSF1C, BLU, NPRL2, 101F6, PL6 and CACNA2D2) in this 120-kb region were rare in NPC samples. The contribution of RASSF1A in NPC tumorigenesis was investigated by restoring its expression in a RASSF1A deficient cell line, C666-1. Transient transfection of wild-type RASSF1A resulted in marked growth inhibition in NPC cells. Isolated stable clones expressing wild-type RASSF1A demonstrated retarded cell proliferation in vitro. Soft-agar assay also showed decreased number and sizes of colony formed in these clones. In vivo nude mice assay demonstrated the dramatic reduction of tumorigenic potential in the RASSF1A-transfected clones. Our results provide strong evidence to support RASSF1A as a target tumor suppressor gene on 3p21.3 in NPC.
Collapse
MESH Headings
- Animals
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle
- Cell Division/genetics
- Chromosomes, Human, Pair 3/genetics
- Colony-Forming Units Assay
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nasopharyngeal Neoplasms/genetics
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/pathology
- Nasopharynx/metabolism
- Nasopharynx/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- Transduction, Genetic
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lillian Shuk-Nga Chow
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, Li XL, Hu DX, Tan C, Xiang JJ, Zhou J, Deng H, Fan SQ, Li WF, Wang R, Zhou M, Zhu SG, Lü HB, Qian J, Zhang BC, Wang JR, Ma J, Xiao BY, Huang H, Zhang QH, Zhou YH, Luo XM, Zhou HD, Yang YX, Dai HP, Feng GY, Pan Q, Wu LQ, He L, Li GY. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 2004; 64:1972-4. [PMID: 15026332 DOI: 10.1158/0008-5472.can-03-3253] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) poses one of the serious health problems in southern Chinese, with an incidence rate ranging from 15 to 50/100,000. Chromosome translocation t(1;3) and frequent loss of heterogeneity on short arms of chromosome 3 and 9 have been reported to be associated with NPC, and a genome-wide scan identified an NPC susceptibility locus on chromosome 4p15.1-q12 recently. In our study, we collected samples from 18 families at high risk of NPC from the Hunan province in southern China, genotyped with a panel of polymorphic markers on short arms of chromosomes 3, 9, and 4p15.1-q12. A locus on 3p21 was identified to link to NPC with a maximum logarithm of odds for linkage score of 4.18. Fine mapping located the locus to a 13.6-cM region on 3p21.31-21.2, where a tumor suppressor gene cluster resided. Our findings identified a novel locus for NPC and provided a map location for susceptibility genes candidates. In contrast to a recent study, no significant evidence for NPC linkage to chromosomes 4 and 9 was observed.
Collapse
Affiliation(s)
- Wei Xiong
- Cancer Research Institute, National Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Uchiyama M, Usami N, Kondo M, Mori S, Ito M, Ito G, Yoshioka H, Imaizumi M, Ueda Y, Takahashi M, Minna JD, Shimokata K, Sekido Y. Loss of heterozygosity of chromosome 12p does not correlate with KRAS mutation in non-small cell lung cancer. Int J Cancer 2004; 107:962-9. [PMID: 14601056 DOI: 10.1002/ijc.11493] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activating mutations of RAS gene families have been found in a variety of human malignancies, including lung cancer, suggesting their dominant role in tumorigenesis. However, several studies have shown a frequent loss of the wild-type KRAS allele in the tumors of murine models and an inhibition of oncogenic phenotype in tumor cell lines by transfection of wild-type RAS, indicating that wild-type RAS may have oncosuppressive properties. To determine whether loss of wild-type KRAS is involved in the development of human lung cancer, we investigated the mutations of KRAS, NRAS and BRAF in 154 primary non-small cell lung cancers (NSCLCs) as well as 10 NSCLC cell lines that have been shown to have KRAS mutations. We also determined the loss of heterozygosity status of KRAS alleles in these tumors. We detected point mutations of KRAS in 11 (7%) of 154 NSCLCs, with 10 cases at codon 12 and 1 at codon 61, but no mutations of NRAS or BRAF were found. Using the laser capture microdissection technique, we confirmed that 9 of the 11 tumors and 7 of the 10 NSCLC cell lines retained the wild-type KRAS allele. Among the cell lines with heterozygosity of mutant and wild-type KRAS, all of the cell lines tested for expression were shown to express more mutated KRAS than wild-type mRNA, with higher amounts of KRAS protein also being expressed compared to the cell lines with a loss of wild-type KRAS allele. In addition, among 148 specimens available for immunohistochemical analysis, 113 (76%) showed positive staining of KRAS, indicating that the vast majority of NSCLCs continue to express wild-type KRAS. Our findings indicate that the wild-type KRAS allele is occasionally lost in human lung cancer, and that the oncogenic activation of mutant KRAS is more frequently associated with an overexpression of the mutant allele than with a loss of the wild-type allele in human NSCLC development.
Collapse
Affiliation(s)
- Mika Uchiyama
- Department of Clinical Preventive Medicine, Nagoya University School of Medicine, Tsurumai 65, Showa-ku, Nagoya 466-8560, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Imreh S, Klein G, Zabarovsky ER. Search for unknown tumor-antagonizing genes. Genes Chromosomes Cancer 2004; 38:307-21. [PMID: 14566849 DOI: 10.1002/gcc.10271] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following the ingenious prediction of Alfred Knudson in 1971, the first tumor suppressor gene, RB1, has been isolated. Its product, the RB1 protein, was found to play a major role in the control of the cell cycle. The loss of heterozygosity (LOH) technique, introduced by Cavenee and colleagues, was an important milestone toward the confirmation of Knudson's hypothesis and the identification of the gene. Subsequently, the LOH technique has provided important clues that have led to the discovery of other tumor suppressor genes. Most of them play important roles in the regulation of the cell cycle and/or of apoptosis. Circumstantial evidence suggests that still other and perhaps many unknown genes may participate in the protection of the organism against malignant growth. The numerous genome losses in tumors, detected by LOH, comparative genomic hybridization, and by cytogenetic techniques, support this possibility. The early work of one of us (G.K.), together with Henry Harris and Francis Wiener, had shown that the malignant phenotype can be suppressed by hybridizing malignant with low- or non-tumorigenic cells. However, analysis of this phenomenon failed to assign the inhibition of tumorigenicity to any particular gene. We have pursued the search for new tumor-antagonizing genes with two unconventional approaches, focusing on human chromosomal subband 3p21.3, a region frequently targeted by cytogenetically detectable deletions. We have detected four clusters of candidate tumor suppressor genes at 3p21.3 by a combination of deletion mapping and the "elimination test." These findings raise the question whether the number and variety of genes that may contribute to the defense against uncontrolled proliferation may have been underestimated.
Collapse
Affiliation(s)
- Stephan Imreh
- Karolinska Institutet, Microbiology and Tumor Biology Center, Stockholm, Sweden
| | | | | |
Collapse
|
47
|
Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP. Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 2003; 22:8125-36. [PMID: 14603253 DOI: 10.1038/sj.onc.1206984] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RAS association domain family 1A (RASSF1A) gene is silenced by DNA methylation in over 50% of all solid tumors of different histological types. However, the biochemical function of the RASSF1A protein is unknown. We show that RASSF1A colocalizes with microtubules in interphase and decorates spindles and centrosomes during mitosis. RASSF1A has a strong cytoprotective activity against the microtubule-destabilizing drug nocodazole, and against cold-treatment in vivo. Conversely, loss of RASSF1 in RASSF1-/- mouse embryonic fibroblasts renders the cells more sensitive to nocodazole-induced depolymerization of microtubules. The domain required for both microtubule association and stabilization was mapped to a 169 amino-acid fragment that contains the RAS association domain. Overexpression of RASSF1A induces mitotic arrest at metaphase with aberrant mitotic cells reminiscent of such produced by the microtubule-stabilizing drug paclitaxel (taxol), including monopolar spindles, or complete lack of a mitotic spindle. Altered microtubule stability in cells lacking RASSF1A is likely to affect spindle assembly and chromosome attachment, processes that need to be carefully controlled to protect cells from genomic instability and transformation. In addition, knowledge of the microtubule-targeting function of RASSF1 may aid in the development of new anticancer drugs.
Collapse
Affiliation(s)
- Limin Liu
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
48
|
Jia WH, Shao JY, Feng BJ, Zeng YX. Genetic Component Involved in Nasopharyngeal Carcinoma Development. ACTA ACUST UNITED AC 2003. [DOI: 10.1142/s0219836303000098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Sasaki S, Kitagawa Y, Sekido Y, Minna JD, Kuwano H, Yokota J, Kohno T. Molecular processes of chromosome 9p21 deletions in human cancers. Oncogene 2003; 22:3792-8. [PMID: 12802286 DOI: 10.1038/sj.onc.1206589] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interstitial deletions of the chromosome 9p21 segment encoding the p16/CDKN2A tumor suppressor gene (i.e., 9p21 deletions) are frequently observed in a variety of human cancers. A majority of these deletions in lymphoid leukemia have been indicated to be mediated by illegitimate V(D)J recombination. In the present study, to elucidate the molecular processes of 9p21 deletions in nonlymphocytic malignancies, breakpoints for these deletions were analysed in 21 lung cancer cell lines and 32 nonlymphocytic cancer cell lines of nine other histological types. In all, 32 breakpoints in 21 lung cancer cell lines and 56 breakpoints in 32 nonlung cancer cell lines were mapped in a 450-kb segment encompassing the CDKN2A locus with a 10-kb resolution. The largest number of breakpoints (i.e., seven breakpoints in lung cancer and 12 breakpoints in nonlung cancers) was mapped in a 10-kb region containing the CDKN2A gene. More precise mapping of these seven and 12 breakpoints revealed that none of these breakpoints were located within 50-bp intervals to each other in this 10 kb region. Cloning and sequencing of breakpoints in 18 representative cell lines (six lung and 12 nonlung cancers) further revealed that there were no significant homologies among breakpoints in these 18 cell lines. In 11 (61%) cell lines, 1-5-bp nucleotides were overlapped at breakpoint junctions. These results indicate that DNA double-strand breaks triggering 9p21 deletions do not occur at specific DNA sequences, although they preferentially occur in or near the CDKN2A locus. It was also indicated that two broken DNA ends are rejoined by nonhomologous end-joining repair, preferentially utilizing microhomologies of DNA ends, in the occurrence of 9p21 deletions.
Collapse
Affiliation(s)
- Shigeru Sasaki
- Biology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Senchenko V, Liu J, Braga E, Mazurenko N, Loginov W, Seryogin Y, Bazov I, Protopopov A, Kisseljov FL, Kashuba V, Lerman MI, Klein G, Zabarovsky ER. Deletion mapping using quantitative real-time PCR identifies two distinct 3p21.3 regions affected in most cervical carcinomas. Oncogene 2003; 22:2984-92. [PMID: 12771950 DOI: 10.1038/sj.onc.1206429] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report chromosome 3p deletion mapping of 32 cervical carcinoma (CC) biopsies using 26 microsatellite markers located in frequently deleted 3p regions to detect loss of heterozygosity and homozygous loss. In addition, two STS markers (NLJ-003 and NL3-001) located in the 3p21.3 telomeric (3p21.3T) and 3p21.3 centromeric (3p21.3C) regions, respectively, were used for quantitative real-time PCR as TaqMan probes. We show that quantitative real-time PCR is reliable and sensitive and allows discriminating between 0, 1 and 2 marker copies per human genome. For the first time, frequent (five of 32 cases, i.e. 15.6%) homozygous deletions were demonstrated in CCs in both 3p21.3T and 3p21.3C regions. The smallest region homozygously deleted in 3p21.3C was located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene) and contains 17 genes previously defined as lung cancer candidate Tumor suppressor genes (TSG(s)). The smallest region homozygously deleted in 3p21.3T was flanked by D3S1298 and NL1-024 (D3S4285), excluding DLEC1 and MYD88 as candidate TSGs involved in cervical carcinogenesis. Overall, this region contains five potential candidates, namely GOLGA4, APRG1, ITGA9, HYA22 and VILL, which need to be analysed. The data showed that aberrations of either NLJ-003 or NL3-001 were detected in 29 cases (90.6%) and most likely have a synergistic effect (P<0.01). The study also demonstrated that aberrations in 3p21.3 were complex and in addition to deletions, may involve gene amplification as well. The results strongly suggest that 3p21.3T and 3p21.3C regions harbor genes involved in the origin and/or development of CCs and imply that those genes might be multiple TSG(s).
Collapse
Affiliation(s)
- Vera Senchenko
- Microbiology and Tumor Biology Center, Center for Genomics and Bioinformatics, Karolinska Institute, Stockholm, 17177 Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|