1
|
Jain A, Ni Y, Zhang D, Simonsick EM, Metter EJ, Ogbureke KU, Fisher LW, Fedarko NS. Small Integrin binding Ligand N-linked Glycoproteins, prostate-specific antigen and time to prostate cancer diagnosis. Matrix Biol Plus 2025; 26:100171. [PMID: 40230486 PMCID: PMC11995099 DOI: 10.1016/j.mbplus.2025.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Small Integrin Binding Ligand N-linked Glycoproteins (SIBLINGs1) were associated with cancer in cross-sectional studies. Whether SIBLINGs associate with preclinical disease is unknown. METHODS A retrospective longitudinal case control study was performed to determine the association of SIBLINGs and prostate-specific antigen (PSA) with preclinical disease. Paired serum samples from 109 cancer-free Baltimore Longitudinal Study on Aging participants were divided into those that were either most distal or proximal to diagnosis (cases) or censored (controls). Dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP), osteopontin (OPN), and PSA were measured by immunoassay and dichotomized into low or high based on their respective cut-off values. Associations of time to diagnosis or death, modeled as disease-free survival (DFS) or overall survival (OS), were assessed using Kaplan Meier and Cox proportional hazard survival estimates on individual and aggregated biomarkers in distal or proximal sets separately. Models were adjusted for relevant covariates. A false discovery rate analysis assessed significance of hazard ratios (HRs) in sets. RESULTS Biomarkers/aggregates identified as true discoveries for DFS included DSPP + PSA, OPN + PSA, DSPP + BSP + PSA, DSPP + OPN + PSA, where unadjusted distal HRs ranged between 11 and 27 and after adjusting for age from 7 to 15, while proximal HRs ranged between 6 and 10 unadjusted and 5 to 12 after adjusting for age. For proximal OS, true discoveries included DSPP + BSP, DSPP + OPN, DSPP + BSP + OPN, and DSPP + OPN + PSA where unadjusted HRs ranged between 6 and 20 while age-adjusted HRs ranged between 5 and 12. CONCLUSIONS These observations support SIBLINGs as biomarkers that associate with DFS and OS in prediagnosis samples.
Collapse
Affiliation(s)
- Alka Jain
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
- Staff Scientist, ThermoFisher Scientific, Middletown, VA 22645, USA
| | - Ying Ni
- Research Laboratory Core, Institute for Clinical and Translational Research, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Daisy Zhang
- Research Laboratory Core, Institute for Clinical and Translational Research, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Eleanor M. Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
| | - E. Jeffrey Metter
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, USA
| | - Kalu U. Ogbureke
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Larry W. Fisher
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neal S. Fedarko
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| |
Collapse
|
2
|
Azarkina K, Gromova E, Malashicheva A. "A Friend Among Strangers" or the Ambiguous Roles of Runx2. Biomolecules 2024; 14:1392. [PMID: 39595568 PMCID: PMC11591759 DOI: 10.3390/biom14111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The transcription factor Runx2 plays a crucial role in regulating osteogenic differentiation and skeletal development. This factor not only controls the expression of genes involved in bone formation, but also interacts with signaling pathways such as the Notch pathway, which are essential for body development. However, studies have produced conflicting results regarding the relationship between Runx2 and the Notch pathway. Some studies suggest a synergistic interaction between these molecules, while others suggest an inhibitory one, for example, the interplay between Notch signaling, Runx2, and vitamin D3 in osteogenic differentiation and bone remodeling. The findings suggest a complex relationship between Notch signaling and osteogenic differentiation, with ongoing research needed to clarify the mechanisms involved and resolve existing contradictions regarding role of Notch in this process. Additionally, there is increasing evidence of contradictory roles for Runx2 in various tissues and organs, both under normal conditions and in pathological states. This diversity of roles makes Runx2 a potential therapeutic target, offering new directions for research. In this review, we have discussed the mechanisms of osteogenic differentiation and the important role of Runx2 in this process. We have also examined its relationship with different signaling pathways. However, there are still many uncertainties and inconsistencies in our current understanding of these interactions. Additionally, given that Runx2 is also involved in numerous other events in various tissues, we have tried to comprehensively examine its functions outside the skeletal system.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia
| |
Collapse
|
3
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Tong YW, Chen ACY, Lei KF. Analysis of Cellular Crosstalk and Molecular Signal between Periosteum-Derived Precursor Cells and Peripheral Cells During Bone Healing Process Using a Paper-Based Osteogenesis-On-A-Chip Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49051-49059. [PMID: 37846857 DOI: 10.1021/acsami.3c12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Periosteum-derived progenitor cells (PDPCs) are highly promising cell sources that are indispensable in the bone healing process. Adipose-derived stem cells (ADSCs) are physiologically close to periosteum tissue and release multiple growth factors to promote the bone healing process. Co-culturing PDPCs and ADSCs can construct periosteum-bone tissue microenvironments for the study of cellular crosstalk and molecular signal in the bone healing process. In the current work, a paper-based osteogenesis-on-a-chip platform was successfully developed to provide an in vitro three-dimensional coculture model. The platform was a paper substrate sandwiched between PDPC-hydrogel and ADSC-hydrogel suspensions. Cell secretion could be transferred through the paper substrate from one side to another side. Growth factors including BMP2, TGF-β, POSTN, Wnt proteins, PDGFA, and VEGFA were directly analyzed by a paper-based immunoassay. Cellular crosstalk was studied by protein expression on the paper substrate. Moreover, osteogenesis of PDPCs was investigated by examining the mRNA expressions of PDPCs after culture. Neutralizing and competitive assays were conducted to understand the correlation between growth factors secreted from ADSCs and the osteogenesis of PDPCs. In vitro periosteum-bone tissue microenvironment was established by the paper-based osteogenesis-on-a-chip platform. The proposed approach provides a promising assay of cellular crosstalk and molecular signal in 3D coculture microenvironment that may potentially lead to the development of effective bone regeneration therapy.
Collapse
Affiliation(s)
- Yun-Wen Tong
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Alvin Chao-Yu Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Bone and Joint Research Center and Comprehensive Sports Medicine Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Si W, Kan C, Zhang L, Li F. Role of RUNX2 in breast cancer development and drug resistance (Review). Oncol Lett 2023; 25:176. [PMID: 37033103 PMCID: PMC10079821 DOI: 10.3892/ol.2023.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Breast cancer is the most common malignancy and ranks second among the causes of tumor-associated death in females. The recurrence and drug resistance of breast cancer are intractable due to the presence of breast cancer stem cells (BCSCs), which are adequate to initiate tumor formation and refractory to conventional remedies. Runt-related transcription factor 2 (RUNX2), a pivotal transcription factor in mammary gland and bone development, has also been related to metastatic cancer and BCSCs. State-of-the-art research has indicated the retention of RUNX2 expression in a more invasive subtype of breast cancer, and in particular, triple-negative breast cancer development and drug resistance are associated with estrogen receptor signaling pathways. The present review mainly focused on the latest updates on RUNX2 in BCSCs and their roles in breast cancer progression and drug resistance, providing insight that may aid the development of RUNX2-based diagnostics and treatments for breast cancer in clinical practice.
Collapse
Affiliation(s)
- Wentao Si
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Feifei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
6
|
Bartholf DeWitt S, Hoskinson Plumlee S, Brighton HE, Sivaraj D, Martz E, Zand M, Kumar V, Sheth MU, Floyd W, Spruance JV, Hawkey N, Varghese S, Ruan J, Kirsch DG, Somarelli JA, Alman B, Eward WC. Loss of ATRX promotes aggressive features of osteosarcoma with increased NF-κB signaling and integrin binding. JCI Insight 2022; 7:e151583. [PMID: 36073547 PMCID: PMC9536280 DOI: 10.1172/jci.insight.151583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS) is a lethal disease with few known targeted therapies. Here, we show that decreased ATRX expression is associated with more aggressive tumor cell phenotypes, including increased growth, migration, invasion, and metastasis. These phenotypic changes correspond with activation of NF-κB signaling, extracellular matrix remodeling, increased integrin αvβ3 expression, and ETS family transcription factor binding. Here, we characterize these changes in vitro, in vivo, and in a data set of human OS patients. This increased aggression substantially sensitizes ATRX-deficient OS cells to integrin signaling inhibition. Thus, ATRX plays an important tumor-suppression role in OS, and loss of function of this gene may underlie new therapeutic vulnerabilities. The relationship between ATRX expression and integrin binding, NF-κB activation, and ETS family transcription factor binding has not been described in previous studies and may impact the pathophysiology of other diseases with ATRX loss, including other cancers and the ATR-X α thalassemia intellectual disability syndrome.
Collapse
Affiliation(s)
- Suzanne Bartholf DeWitt
- Department of Orthopaedic Surgery and
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | - Maryam Zand
- Computer Science Department, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Maya U. Sheth
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Warren Floyd
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacob V. Spruance
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathan Hawkey
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery and
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Jianhua Ruan
- Computer Science Department, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - David G. Kirsch
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason A. Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ben Alman
- Department of Orthopaedic Surgery and
| | - William C. Eward
- Department of Orthopaedic Surgery and
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Whole Aspect of Runx2 Functions in Skeletal Development. Int J Mol Sci 2022; 23:ijms23105776. [PMID: 35628587 PMCID: PMC9144571 DOI: 10.3390/ijms23105776] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Runt-related transcription factor 2 (Runx2) is a fundamental transcription factor for bone development. In endochondral ossification, Runx2 induces chondrocyte maturation, enhances chondrocyte proliferation through Indian hedgehog (Ihh) induction, and induces the expression of vascular endothelial growth factor A (Vegfa), secreted phosphoprotein 1 (Spp1), integrin-binding sialoprotein (Ibsp), and matrix metallopeptidase 13 (Mmp13) in the terminal hypertrophic chondrocytes. Runx2 inhibits the apoptosis of the terminal hypertrophic chondrocytes and induces their transdifferentiation into osteoblasts and osteoblast progenitors. The transdifferentiation is required for trabecular bone formation during embryonic and newborn stages but is dispensable for acquiring normal bone mass in young and adult mice. Runx2 enhances the proliferation of osteoblast progenitors and induces their commitment to osteoblast lineage cells through the direct regulation of the expressions of a hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathway genes and distal-less homeobox 5 (Dlx5), which all regulate Runx2 expression and/or protein activity. Runx2, Sp7, and Wnt signaling further induce osteoblast differentiation. In immature osteoblasts, Runx2 regulates the expression of bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and bone gamma carboxyglutamate protein (Bglap)/Bglap2, and induces osteoblast maturation. Osteocalcin (Bglap/Bglap2) is required for the alignment of apatite crystals parallel to the collagen fibers; however, it does not physiologically work as a hormone that regulates glucose metabolism, testosterone synthesis, or muscle mass. Thus, Runx2 exerts multiple functions essential for skeletal development.
Collapse
|
8
|
Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells. Mol Cell Biochem 2021; 477:455-468. [PMID: 34783964 DOI: 10.1007/s11010-021-04292-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
SNP rs3755955 (major/minor allele: G/A) located in Iduronidase-Alpha-L- (IDUA) gene was reported to be significant for human bone mineral density (BMD). This follow-up study was to uncover the underlying association mechanism through molecular and cellular functional assays relevant to bone. We tested the effects of single nucleotide polymorphisms (SNP) rs3755955 (defined allele G as wild-type and allele A as variant-type) on osteoblastic and osteoclastic functions, as well as protein phosphorylation in stably transfected human fetal osteoblast (hFOB) cell and mononuclear-macrophage (RAW264.7) cell. In hFOB cells, transfection with variant-type IDUA significantly decreased osteoblastic gene expression (OPN, COL1A1 and RANKL) (p < 0.01), impeded cell proliferation (p < 0.05), stimulated cell apoptosis (p < 0.001) and decreased ALP enzyme activity, as compared with that of wild-type IDUA transfection. In RAW264.7 cells, transfection with variant-type IDUA significantly inhibited cell apoptosis (p < 0.01), promoted osteoclastic precursor cell migration (p < 0.0001), growth (p < 0.01), osteoclastic gene expression (TRAP, RANK, Inte-αv and Cath-K) (p < 0.05) and TRAP enzyme activity (p < 0.001), as compared with that of wild-type IDUA transfection. In both hFOB and RAW264.7 cells, the total protein and IDUA protein-specific phosphorylation levels were significantly reduced by variant IDUA transfection, as compared with that of wild-type IDUA transfection (p < 0.05). Variant allele A of phosSNP rs3755955 in IDUA gene regulates protein phosphorylation, inhibits osteoblast function and promotes osteoclastic activity. The SNP rs3755955 could alter IDUA protein phosphorylation, significantly regulates human osteoblastic and osteoclastic gene expression, and influences the growth, differentiation and activity of osteoblast and osteoclast, hence to affect BMD.
Collapse
|
9
|
Ren L, Guo L, Kou N, Lv J, Wang Z, Yang K. LncRNA LINC00963 promotes osteogenic differentiation of hBMSCs and alleviates osteoporosis progression by targeting miRNA-760/ETS1 axis. Autoimmunity 2021; 54:313-325. [PMID: 34184952 DOI: 10.1080/08916934.2021.1922890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although long non-coding RNA LINC00963 has been reported to play a crucial regulatory role in osteoporosis (OP), its specific mechanism has not been well studied. Cell viability of human bone marrow mesenchymal stem cells (hBMSCs) transfected with short hairpin RNA targeting LINC00963 (sh-LINC00963) and negative control (sh-NC) was analysed by cell counting kit-8 (CCK-8) assay. Alkaline phosphatase (ALP) activity in hBMSCs transfected with sh-LINC00963 and sh-NC after induction by osteogenic medium (OM) on day 7 was detected. The protein expression levels of osteocalcin (OCN) and osteopontin (OPN) in hBMSCs transfected with sh-LINC00963 and sh-NC during OM induction on day 3 were detected by western blot. The relationship among LINC00963, miR-760, and E26 transformation specific-1 (ETS1) was determined by bioinformatics analysis, luciferase reporter assay, and RNA-binding protein immunoprecipitation (RIP) assay. A rat model with OP was established to confirm the role of LINC00963 in vivo. The expression level of LINC00963 was much lower in hBMSCs isolated from the discarded femoral head tissues of OP patients compared with that in health patients. Meanwhile, the expression level of LINC00963 was significantly increased and the expression level of miR-760 was decreased in hBMSCs during osteogenic induction. LINC00963 could bind to the 3'-untranslated region (3'-UTR) of miR-760 and negatively regulate the expression of miR-760, then promote the osteogenic differentiation in hBMSCs. ETS1 was identified as a target of miR-760. Moreover, overexpression of LINC00963 obviously reduced bone mineral density (BMD) of the left femur in OP rats and alleviated OP progression in vivo. Our results demonstrated that LINC00963 positively regulated the expression of ETS1 by directly targeting miR-760, and then promoted osteogenic differentiation of hBMSCs in vitro, and also attenuated OP progression in vivo, suggesting that LINC00963 might be a potential therapeutic target for OP.
Collapse
Affiliation(s)
- Lirong Ren
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, PR China
| | - Limin Guo
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Nannan Kou
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Jia Lv
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Zhihua Wang
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Kaishun Yang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, PR China
| |
Collapse
|
10
|
Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcell Biochem 2021; 97:297-361. [PMID: 33779922 DOI: 10.1007/978-3-030-67171-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastasis is the tendency of certain primary tumors to spawn and dictate secondary neoplasia in the bone. The process of bone metastasis is regulated by the dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment (osteoblasts, osteoclasts, and osteocytes), and the bone matrix. The feed-forward loop mechanisms governs the co-option of homeostatic bone remodeling by cancer cells in bone. Recent developments have highlighted the discovery of extracellular vesicles (EVs) and their diverse roles in distant outgrowths. Several studies have implicated EV-mediated interactions between cancer cells and the bone microenvironment in synergistically promoting pathological skeletal metabolism in the metastatic site. Nevertheless, the potential role that EVs serve in arbitrating intricate sequences of coordinated events within the bone microenvironment remains an emerging field. In this chapter, we review the role of cellular participants and molecular mechanisms in regulating normal bone physiology and explore the progress of current research into bone-derived EVs in directly triggering and coordinating the processes of physiological bone remodeling. In view of the emerging role of EVs in interorgan crosstalk, this review also highlights the multiple systemic pathophysiological processes orchestrated by the EVs to direct organotropism in bone in prostate cancer. Given the deleterious consequences of bone metastasis and its clinical importance, in-depth knowledge of the multifarious role of EVs in distant organ metastasis is expected to open new possibilities for prognostic evaluation and therapeutic intervention for advanced bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Kalyani C Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Fanaee S, Labbaf S, Enayati MH, Karamali F, Esfahani MHN. A nano approach towards the creation of a biointerface as stimulator of osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111746. [PMID: 33545888 DOI: 10.1016/j.msec.2020.111746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/21/2023]
Abstract
There is a great need for tissue engineering constructs with the ability to modulate stem cell behavior. The initial adhesion, growth and differentiation of stem cell are a key strategy in bone tissue engineering and it can be controlled through biomaterial-cell interface. Here we engineered a polycaprolactone/gelatin/bioactive glass (PCL/GT/BG) nanocomposite scaffold coated with Fibronectin (FN) as a potential candidate to aid the bone regeneration process by giving cells a temporary template to grow into. For this purpose, initially BG nanoparticles (nBG) of 70 ± 15 nm were synthesized, characterized and then impregnated into PCL/GT matrix to create a nanocomposite fibrous mesh. An optimized structure was selected based on fiber uniformity, diameter, and the mechanical properties. Cell adhesion, growth, and the expression of osteogenic-related genes as a result of FN tethering, through specific surface interactions, was evaluated. Furthermore, the potential of optimized nanofiberous structure as a drug delivery vehicle for the local release of therapeutic agents was studied by using amoxicillin as a model drug. The release profile revealed that around 70% of drug was released in an hour for non-crosslinked fibers (burst release) followed by a gradual release up to 72 h. The release profile was steadier for crosslinked fibers. The scaffold also showed an antibacterial effect against ubiquitous gram-positive Staphylococcus aureus. The current study provides an insight for future researchers who aim to create nanocomposite materials as multifunctional scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sajjad Fanaee
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Hossein Enayati
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fereshteh Karamali
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
12
|
Chen A, Tong YW, Chiu CH, Lei KF. Osteogenic Effect of Rabbit Periosteum-Derived Precursor Cells Co-Induced by Electric Stimulation and Adipose-Derived Stem Cells in a 3D Co-Culture System. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2021; 2:153-160. [DOI: 10.1109/ojnano.2021.3131653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
13
|
Tissue Engineering of Cartilage Using a Random Positioning Machine. Int J Mol Sci 2020; 21:ijms21249596. [PMID: 33339388 PMCID: PMC7765923 DOI: 10.3390/ijms21249596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.
Collapse
|
14
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
15
|
Hojo H, Ohba S. Gene regulatory landscape in osteoblast differentiation. Bone 2020; 137:115458. [PMID: 32474244 DOI: 10.1016/j.bone.2020.115458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
The development of osteoblasts, a bone-forming cell population, occurs in conjunction with development of the skeleton, which creates our physical framework and shapes the body. In the past two decades, genetic studies have uncovered the molecular framework of this process-namely, transcriptional regulators and signaling pathways coordinate the cell fate determination and differentiation of osteoblasts in a spatial and temporal manner. Recently emerging genome-wide studies provide additional layers of understanding of the gene regulatory landscape during osteoblast differentiation, allowing us to gain novel insight into the modes of action of the key regulators, functional interaction among the regulator-bound enhancers, epigenetic regulations, and the complex nature of regulatory inputs. In this review, we summarize current understanding of the transcriptional regulation in osteoblasts, in terms of the gene regulatory landscape.
Collapse
Affiliation(s)
- Hironori Hojo
- Department of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| |
Collapse
|
16
|
Kinoshita K, Suzuki T, Koike M, Nishida C, Koike A, Nunome M, Uemura T, Ichiyanagi K, Matsuda Y. Combined deletions of IHH and NHEJ1 cause chondrodystrophy and embryonic lethality in the Creeper chicken. Commun Biol 2020; 3:144. [PMID: 32214226 PMCID: PMC7096424 DOI: 10.1038/s42003-020-0870-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/27/2020] [Indexed: 11/18/2022] Open
Abstract
The Creeper (Cp) chicken is characterized by chondrodystrophy in Cp/+ heterozygotes and embryonic lethality in Cp/Cp homozygotes. However, the genes underlying the phenotypes have not been fully known. Here, we show that a 25 kb deletion on chromosome 7, which contains the Indian hedgehog (IHH) and non-homologous end-joining factor 1 (NHEJ1) genes, is responsible for the Cp trait in Japanese bantam chickens. IHH is essential for chondrocyte maturation and is downregulated in the Cp/+ embryos and completely lost in the Cp/Cp embryos. This indicates that chondrodystrophy is caused by the loss of IHH and that chondrocyte maturation is delayed in Cp/+ heterozygotes. The Cp/Cp homozygotes exhibit impaired DNA double-strand break (DSB) repair due to the loss of NHEJ1, resulting in DSB accumulation in the vascular and nervous systems, which leads to apoptosis and early embryonic death. Kinoshita et al find that the classical Creeper (Cp) phenotype in chicken is caused by a deletion containing not only the gene encoding Indian hedgehog, previously implicated in the Cp trait, but also the NHEJ1 gene encoding a DNA repair factor. They show that early death in Cp/Cp chicken is caused by impaired DNA repair and abnormalities of the vascular and nervous systems.
Collapse
Affiliation(s)
- Keiji Kinoshita
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Takayuki Suzuki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,Laboratory of Avian Bioscience, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| | - Chizuko Nishida
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Aki Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Takeo Uemura
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Yoichi Matsuda
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan. .,Laboratory of Avian Bioscience, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
17
|
Manzotti G, Torricelli F, Donati B, Sancisi V, Gugnoni M, Ciarrocchi A. HDACs control RUNX2 expression in cancer cells through redundant and cell context-dependent mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:346. [PMID: 31395086 PMCID: PMC6686443 DOI: 10.1186/s13046-019-1350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Background RUNX2 is a Runt-related transcription factor required during embryogenesis for skeletal development and morphogenesis of other organs including thyroid and breast gland. Consistent evidence indicates that RUNX2 expression is aberrantly reactivated in cancer and supports tumor progression. The mechanisms leading to RUNX2 expression in cancer has only recently began to emerge. Previously, we showed that suppressing the activity of the epigenetic regulators HDACs significantly represses RUNX2 expression highlighting a role for these enzymes in RUNX2 reactivation in cancer. However, the molecular mechanisms by which HDACs control RUNX2 are still largely unexplored. Here, to fill this gap, we investigated the role of different HDACs in RUNX2 expression regulation in breast and thyroid cancer, tumors that majorly rely on RUNX2 for their development and progression. Methods Proliferation assays and evaluation of RUNX2 mRNA levels by qRT-PCR were used to evaluate the effect of several HDACi and specific siRNAs on a panel of cancer cell lines. Moreover, ChIP and co-IP assays were performed to elucidate the molecular mechanism underneath the RUNX2 transcriptional regulation. Finally, RNA-sequencing unveiled a new subset of genes whose transcription is regulated by the complex RUNX2-HDAC6. Results In this study, we showed that Class I HDACs and in particular HDAC1 are required for RUNX2 efficient transcription in cancer. Furthermore, we found an additional and cell-specific function of HDAC6 in driving RUNX2 expression in thyroid cancer cells. In this model, HDAC6 likely stabilizes the assembly of the transcriptional complex, which includes HDAC1, on the RUNX2 P2 promoter potentiating its transcription. Since a functional interplay between RUNX2 and HDAC6 has been suggested, we used RNA-Seq profiling to consolidate this evidence in thyroid cancer and to extend the knowledge on this cooperation in a setting in which HDAC6 also controls RUNX2 expression. Conclusions Overall, our data provide new insights into the molecular mechanisms controlling RUNX2 in cancer and consolidate the rationale for the use of HDACi as potential pharmacological strategy to counteract the pro-oncogenic program controlled by RUNX2 in cancer cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1350-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| |
Collapse
|
18
|
Moghaddam T, Neshati Z. Role of microRNAs in osteogenesis of stem cells. J Cell Biochem 2019; 120:14136-14155. [PMID: 31069839 DOI: 10.1002/jcb.28689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a controlled developmental process in which external and internal factors including cytokines, growth factors, transcription factors (TFs), signaling pathways and microRNAs (miRNAs) play important roles. Various stimulatory and inhibitory TFs contribute to osteogenic differentiation and are responsible for bone development. In addition, cross-talk between several complex signaling pathways regulates the osteogenic differentiation of some stem cells. Although much is known about regulatory genes and signaling pathways in osteogenesis, the role of miRNAs in osteogenic differentiation still needs to be explored. miRNAs are small, approximately 22 nucleotides, single-stranded nonprotein coding RNAs which are abundant in many mammalian cell types. They paly significant regulated roles in various biological processes and serve as promising biomarkers for disease states. Recently, emerging evidence have shown that miRNAs are the key regulators of osteogenesis of stem cells. They may endogenously regulate osteogenic differentiation of stem cells through direct targeting of positive or negative directors of osteogenesis and depending on the target result in the promotion or inhibition of osteogenic differentiation. This review aims to provide a general overview of miRNAs participating in osteogenic differentiation of stem cells and explain their regulatory effect based on the genes targeted with these miRNAs.
Collapse
Affiliation(s)
- Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
19
|
Komori T. Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2. Int J Mol Sci 2019; 20:ijms20071694. [PMID: 30987410 PMCID: PMC6480215 DOI: 10.3390/ijms20071694] [Citation(s) in RCA: 480] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 11/25/2022] Open
Abstract
Runx2 is essential for osteoblast differentiation and chondrocyte maturation. During osteoblast differentiation, Runx2 is weakly expressed in uncommitted mesenchymal cells, and its expression is upregulated in preosteoblasts, reaches the maximal level in immature osteoblasts, and is down-regulated in mature osteoblasts. Runx2 enhances the proliferation of osteoblast progenitors by directly regulating Fgfr2 and Fgfr3. Runx2 enhances the proliferation of suture mesenchymal cells and induces their commitment into osteoblast lineage cells through the direct regulation of hedgehog (Ihh, Gli1, and Ptch1), Fgf (Fgfr2 and Fgfr3), Wnt (Tcf7, Wnt10b, and Wnt1), and Pthlh (Pthr1) signaling pathway genes, and Dlx5. Runx2 heterozygous mutation causes open fontanelle and sutures because more than half of the Runx2 gene dosage is required for the induction of these genes in suture mesenchymal cells. Runx2 regulates the proliferation of osteoblast progenitors and their differentiation into osteoblasts via reciprocal regulation with hedgehog, Fgf, Wnt, and Pthlh signaling molecules, and transcription factors, including Dlx5 and Sp7. Runx2 induces the expression of major bone matrix protein genes, including Col1a1, Spp1, Ibsp, Bglap2, and Fn1, in vitro. However, the functions of Runx2 in differentiated osteoblasts in the expression of these genes in vivo require further investigation.
Collapse
Affiliation(s)
- Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
20
|
Villanueva F, Araya H, Briceño P, Varela N, Stevenson A, Jerez S, Tempio F, Chnaiderman J, Perez C, Villarroel M, Concha E, Khani F, Thaler R, Salazar-Onfray F, Stein GS, van Wijnen AJ, Galindo M. The cancer-related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis. J Cell Physiol 2019; 234:13659-13679. [PMID: 30637720 DOI: 10.1002/jcp.28046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Osteosarcomas are bone tumors that frequently metastasize to the lung. Aberrant expression of the transcription factor, runt-related transcription factor 2 (RUNX2), is a key pathological feature in osteosarcoma and associated with loss of p53 and miR-34 expression. Elevated RUNX2 may transcriptionally activate genes mediating tumor progression and metastasis, including the RUNX2 target gene osteopontin (OPN/SPP1). This gene encodes a secreted matricellular protein produced by osteoblasts to regulate bone matrix remodeling and tissue calcification. Here we investigated whether and how the RUNX2/OPN axis regulates lung metastasis of osteosarcoma. Importantly, RUNX2 depletion attenuates lung metastasis of osteosarcoma cells in vivo. Using next-generation RNA-sequencing, protein-based assays, as well as the loss- and gain-of-function approaches in selected osteosarcoma cell lines, we show that osteopontin messenger RNA levels closely correlate with RUNX2 expression and that RUNX2 controls the levels of secreted osteopontin. Elevated osteopontin levels promote heterotypic cell-cell adhesion of osteosarcoma cells to human pulmonary microvascular endothelial cells, but not in the presence of neutralizing antibodies. Collectively, these findings indicate that the RUNX2/OPN axis regulates the ability of osteosarcoma cells to attach to pulmonary endothelial cells as a key step in metastasis of osteosarcoma cells to the lung.
Collapse
Affiliation(s)
- Francisco Villanueva
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hector Araya
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro Briceño
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nelson Varela
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andres Stevenson
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabian Tempio
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jonas Chnaiderman
- Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carola Perez
- Laboratory Animal Facility, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Milena Villarroel
- Department of Oncology, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile.,National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Emma Concha
- Department of Oncology, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Cancer Center, The Robert Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
21
|
Liu Y, Wang Y, Sun X, Zhang X, Wang X, Zhang C, Zheng S. RUNX2 mutation reduces osteogenic differentiation of dental follicle cells in cleidocranial dysplasia. Mutagenesis 2018; 33:203-214. [PMID: 29947791 DOI: 10.1093/mutage/gey010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Disturbed permanent tooth eruption is common in cleidocranial dysplasia (CCD), a skeletal disorder caused by heterozygous mutation of RUNX2, but the mechanism underlying is still unclear. As it is well known that dental follicle cells (DFCs) play a critical role in tooth eruption, the changed biological characteristics of DFCs might give rise to disturbance of permanent tooth eruption in CCD patients. Thus, primary DFCs from one CCD patient and normal controls were collected to investigate the effect of RUNX2 mutation on the bone remodeling activity of DFCs and explore the mechanism of impaired permanent tooth eruption in this disease. Conservation and secondary structure analysis revealed that the RUNX2 mutation (c.514delT, p.172fs) found in the present CCD patient was located in the highly conserved RUNT domain and converted the structure of RUNX2. After osteogenic induction, we found that the mineralised capacity of DFCs and the expression of osteoblast-related genes, including RUNX2, ALP, OSX, OCN and Col Iα1, in DFCs was severely interfered by the RUNX2 mutation found in CCD patients. To investigate whether the osteogenic deficiency of DFCs from the CCD patient can be rescued by RUNX2 restoration, we performed 'rescue' experiments. Surprisingly, the osteogenic deficiency and the abnormal expression of osteoblast-associated genes in DFCs from the CCD patient were almost rescued by overexpression of wild-type RUNX2 using lentivirus. All these findings indicate that RUNX2 mutation can reduce the osteogenic capacity of DFCs through inhibiting osteoblast-associated genes, thereby disturbing alveolar bone formation, which serves as a motive force for tooth eruption. This effect may provide valuable explanations and implications for the mechanism of delayed permanent tooth eruption in CCD patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Xianli Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
- Department of Stomatology, Xuanwu Hospital Capital Medical University, Xicheng District, Beijing, PR China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| |
Collapse
|
22
|
Kawane T, Qin X, Jiang Q, Miyazaki T, Komori H, Yoshida CA, Matsuura-Kawata VKDS, Sakane C, Matsuo Y, Nagai K, Maeno T, Date Y, Nishimura R, Komori T. Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci Rep 2018; 8:13551. [PMID: 30202094 PMCID: PMC6131145 DOI: 10.1038/s41598-018-31853-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/28/2018] [Indexed: 01/18/2023] Open
Abstract
Runx2 and Sp7 are essential transcription factors for osteoblast differentiation. However, the molecular mechanisms responsible for the proliferation of osteoblast progenitors remain unclear. The early onset of Runx2 expression caused limb defects through the Fgfr1–3 regulation by Runx2. To investigate the physiological role of Runx2 in the regulation of Fgfr1–3, we compared osteoblast progenitors in Sp7−/− and Runx2−/− mice. Osteoblast progenitors accumulated and actively proliferated in calvariae and mandibles of Sp7−/− but not of Runx2−/− mice, and the number of osteoblast progenitors and their proliferation were dependent on the gene dosage of Runx2 in Sp7−/− background. The expression of Fgfr2 and Fgfr3, which were responsible for the proliferation of osteoblast progenitors, was severely reduced in Runx2−/− but not in Sp7−/− calvariae. Runx2 directly regulated Fgfr2 and Fgfr3, increased the proliferation of osteoblast progenitors, and augmented the FGF2-induced proliferation. The proliferation of Sp7−/− osteoblast progenitors was enhanced and strongly augmented by FGF2, and Runx2 knockdown reduced the FGF2-induced proliferation. Fgfr inhibitor AZD4547 abrogated all of the enhanced proliferation. These results indicate that Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation, at least partly, by regulating Fgfr2 and Fgfr3 expression.
Collapse
Affiliation(s)
- Tetsuya Kawane
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Xin Qin
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Qing Jiang
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Toshihiro Miyazaki
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Hisato Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Carolina Andrea Yoshida
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | | | - Chiharu Sakane
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Yuki Matsuo
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Takafumi Maeno
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.,Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Yuki Date
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.,Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan. .,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.
| |
Collapse
|
23
|
Zeng L, Wei J, Han D, Liu H, Liu Y, Zhao N, Sun S, Wang Y, Feng H. Functional analysis of novel RUNX2 mutations in cleidocranial dysplasia. Mutagenesis 2018; 32:437-443. [PMID: 28505335 DOI: 10.1093/mutage/gex012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal disorder caused by mutation of runt-related transcription factor 2 (RUNX2) gene. The purpose of this study was to explore novel RUNX2 mutations in seven individuals with CCD and investigate the function of the mutant RUNX2 proteins. DNA samples were prepared from the peripheral blood of the CCD individuals, and then subjected to DNA sequencing. Conservation and secondary structure analysis were performed based on RUNX2 sequencing results. pEGFP-C1 plasmids containing GFP-tagged wild-type RUNX2 and three novel RUNX2 mutations expression cassettes were constructed, and then transfected into HEK293T cells. Cell fluorescence, luciferase assay and western blotting were used to analyse the subcellular distribution and function of the mutant RUNX2 proteins. Three novel mutations (R193G, 258fs, Y400X) were found in the seven CCD patients. Conservation and structure analysis show one novel mutation (R193G) in Runt domain and two novel mutations (258fs and Y400X) in PST domain of RUNX2. Western blotting confirmed that the 258fs and Y400X mutations produced truncated proteins. Fluorescence detection showed that the three novel mutants localised exclusively in the nucleus. However, luciferase assay indicated all mutants severely impaired the transactivation activities of RUNX2 on osteocalcin promoter. Our results broaden the spectrum of RUNX2 mutations in CCD individuals and demonstrated that loss of function in RUNX2 is responsible for CCD.
Collapse
Affiliation(s)
- Li Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jiahui Wei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Na Zhao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| |
Collapse
|
24
|
Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 2018; 149:313-323. [DOI: 10.1007/s00418-018-1640-6] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
|
25
|
Qin X, Yan M, Wang X, Xu Q, Wang X, Zhu X, Shi J, Li Z, Zhang J, Chen W. Cancer-associated Fibroblast-derived IL-6 Promotes Head and Neck Cancer Progression via the Osteopontin-NF-kappa B Signaling Pathway. Am J Cancer Res 2018; 8:921-940. [PMID: 29463991 PMCID: PMC5817102 DOI: 10.7150/thno.22182] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 01/09/2023] Open
Abstract
Osteopontin (OPN), a chemokine-like protein, plays a crucial role in the proliferation and metastasis of various cancers. However, how tumor stroma modulates the expression of neoplastic OPN and the multifaceted roles of OPN in head and neck cancer (HNC) are unclear. In this study, we tried to investigate the bridging role of OPN between tumor stroma and cancer cells. Methods: Immunohistochemical staining and quantitative real-time PCR were used to detect OPN expression in HNC tissues, and the correlations between OPN expression and clinicopathologic features were then analyzed. We used a co-culture assay to study the modulatory role of IL-6 on OPN expression and immunoprecipitation analysis was used to determine the endogenous interaction between OPN and integrin αvβ3. Furthermore, a xenograft assay was carried out to confirm the tumor-promoting role and the potential therapeutic value of OPN in HNC. Results: We found that OPN was significantly up-regulated in HNCs, and the elevated OPN was correlated with poor prognosis. Moreover, we identified IL-6 secreted by cancer-associated fibroblasts (CAFs) as the major upstream molecule that triggers the induction of neoplastic OPN. As such, during the interaction of fibroblasts and cancer cells, the increased neoplastic OPN induced by stromal IL-6 accelerated the growth, migration and invasion of cancer cells. More importantly, we also showed that soluble OPN could promote HNC progression via the integrin αvβ3-NF-kappa B pathway, and the combination of OPN and IL-6 had a better prognostic and diagnostic performance in HNC than either molecule alone. Conclusion: Our study identified a novel modulatory role for OPN in HNC progression and further demonstrated that the combination of OPN and IL-6 might be a promising prognostic and diagnostic indicator as well as a potential cancer therapeutic target.
Collapse
|
26
|
Jing S, Dapeng R, Shiguo Y, Jing L, Xiao Y, Qingyuan G, Xiangmin Q. [The role of extracellular signal regulated kinase 1/2 in mediating osteodifferentiation of human periodontal ligament cells induced by cyclic stretch]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:520-526. [PMID: 29188650 PMCID: PMC7030397 DOI: 10.7518/hxkq.2017.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/09/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate the mechanism of cyclic stretch that promotesthe osteogenic differentiation of human periodontal ligament cells (hPDLCs) through the mediation of extracellular-signal-regulated kinase 1/2 (ERK1/2). METHODS hPDLCs were isolated through the explant method and cultured in vitro. hPDLCs were mechanically stimulated by a multi-channel cell-stress-loading system for 1, 3, 6, 12, and 24 h. The magnitude of stretch was 10% deformation, and the frequency was 0.5 Hz. Nonloaded cells were used as control group. ERK1/2 activation was blocked by U0126, a specific ERK1/2 pathway inhibitor. Additionally, hPDLCs were transfected with adenoviral vector encoding dominant negative ERK1/2 (DN-ERK1/2) to continuouslyinhibit ERK1/2 activation. The mRNA and protein levels of target geneswere detected through real-time polymerase chain reaction and Western blot. RESULTS Cyclic stretching promoted the expression of ERK1/2, osteocalcin (OCN) mRNA, and bone sialoprotein (BSP) mRNA. The expression of runt-related transcription factor (Runx) 2 protein and mRNA also increased at 3 and 6 h of cyclic stretching. The inhibition of ERK1/2 by U0126 and DN-ERK1/2 suppressed the expressionof Runx2 mRNA, OCN mRNA, BSP mRNA, Runx 2 protein, and p-ERK1/2 protein relative to that in stretched cells without the ERK1/2 inhibitor. CONCLUSIONS ERK1/2 is a critical molecule in the mediation ofthe osteogenic differentiation of hPDLCs under mechanical stimulation. ERK1/2 activation induced the elevation of Runx2 protein levels, which may be involved in the stretch-induced expressions of OCN and BSP.
Collapse
Affiliation(s)
- Song Jing
- Stomatology Hospital of Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan 250012, China
| | - Ren Dapeng
- Stomatology College of Qingdao University, Dept. of Orthodontics, The Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, China
| | - Yan Shiguo
- Stomatology Hospital of Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan 250012, China
| | - Lan Jing
- Stomatology Hospital of Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan 250012, China
| | - Yuan Xiao
- Stomatology College of Qingdao University, Dept. of Orthodontics, The Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, China; 3. Dept. of Orthodontics, Stomatological Center, The Affiliated Qingdao Municipal Hospital, Qingdao 266075, China
| | - Guo Qingyuan
- Dept. of Orthodontics, Stomatological Center, The Affiliated Qingdao Municipal Hospital, Qingdao 266075, China
| | - Qi Xiangmin
- Stomatology Hospital of Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan 250012, China
| |
Collapse
|
27
|
Chiu CH, Liu JL, Chang CH, Lei KF, Chen ACY. Investigation of osteogenic activity of primary rabbit periosteal cells stimulated by multi-axial tensile strain. Biomed Microdevices 2017; 19:13. [PMID: 28229307 DOI: 10.1007/s10544-017-0154-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periosteum-derived cells was indicated to respond to mechanical force and have stem cell potential capable of differentiating into multiple tissue. Investigation of osteogenic activity under mechanical stimulation is important to understand the therapeutic conditions of fracture healing. In this work, a cell culture platform was developed for respectively providing isotropic and anisotropic axial strain. Primary rabbit periosteal cells were isolated and cultured in the chamber. Multi-axial tensile strain was received and osteogenic activity was investigated by mRNA expressions of CBFA1 and OPN. The highest mRNA expression was found in moderate strain (5-8%) under anisotropic axial strain. These results provided important foundation for further in vivo studies and development of tailor-made stretching rehabilitation equipment.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Tooyuan Branch, Taoyuan, Taiwan
| | - Jun-Liang Liu
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsuan Chang
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan
| | - Kin Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan. .,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan. .,Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.
| | - Alvin Chao-Yu Chen
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Tooyuan Branch, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Hojo H, Chung UI, Ohba S. Identification of the gene-regulatory landscape in skeletal development and potential links to skeletal regeneration. Regen Ther 2017; 6:100-107. [PMID: 30271844 PMCID: PMC6134913 DOI: 10.1016/j.reth.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
A class of gene-regulatory elements called enhancers are the main mediators controlling quantitative, temporal and spatial gene expressions. In the course of evolution, the enhancer landscape of higher organisms such as mammals has become quite complex, exerting biological functions precisely and coordinately. In mammalian skeletal development, the master transcription factors Sox9, Runx2 and Sp7/Osterix function primarily through enhancers on the genome to achieve specification and differentiation of skeletal cells. Recently developed genome-scale analyses have shed light on multiple layers of gene regulations, uncovering not only the primary mode of actions of these transcription factors on skeletal enhancers, but also the relation of the epigenetic landscape to three-dimensional chromatin architecture. Here, we review findings on the emerging framework of gene-regulatory networks involved in skeletal development. We further discuss the power of genome-scale analyses to provide new insights into genetic diseases and regenerative medicine in skeletal tissues. Skeletal development is coordinated by master transcription factors. ChIP-seq analyses for the skeletal regulators identified their modes of actions. Analyses of epigenetic landscape features distinct cell types in skeletal tissues. Integrated analyses of the gene regulatory networks link to skeletal regeneration.
Collapse
Affiliation(s)
- Hironori Hojo
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-Il Chung
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Runx Family Genes in Tissue Stem Cell Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:117-138. [PMID: 28299655 DOI: 10.1007/978-981-10-3233-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.
Collapse
|
30
|
Abstract
Runx2 is the most upstream transcription factor essential for osteoblast differentiation. It regulates the expression of Sp7, the protein of which is a crucial transcription factor for osteoblast differentiation, as well as that of bone matrix genes including Spp1, Ibsp, and Bglap2. Runx2 is also required for chondrocyte maturation, and Runx3 has a redundant function with Runx2 in chondrocyte maturation. Runx2 regulates the expression of Col10a1, Spp1, Ibsp, and Mmp13 in chondrocytes. It also inhibits chondrocytes from acquiring the phenotypes of permanent cartilage chondrocytes. It regulates chondrocyte proliferation through the regulation of Ihh expression. Runx2 enhances osteoclastogenesis by regulating Rankl. Cbfb, which is a co-transcription factor for Runx family proteins, plays an important role in skeletal development by stabilizing Runx family proteins. In Cbfb isoforms, Cbfb1 is more potent than Cbfb2 in Runx2-dependent transcriptional regulation; however, the expression level of Cbfb2 is three-fold higher than that of Cbfb1, demonstrating the requirement of Cbfb2 in skeletal development. The expression of Runx2 in osteoblasts is regulated by a 343-bp enhancer located upstream of the P1 promoter. This enhancer is activated by an enhanceosome composed of Dlx5/6, Mef2, Tcf7, Ctnnb1, Sox5/6, Smad1, and Sp7. Thus, Runx2 is a multifunctional transcription factor that is essential for skeletal development, and Cbfb regulates skeletal development by modulating the stability and transcriptional activity of Runx family proteins.
Collapse
|
31
|
Bardsley K, Kwarciak A, Freeman C, Brook I, Hatton P, Crawford A. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials 2016; 112:313-323. [PMID: 27770634 DOI: 10.1016/j.biomaterials.2016.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The regeneration of large bone defects remains clinically challenging. The aim of our study was to use a rat model to use nasal chondrocytes to engineer a hypertrophic cartilage tissue which could be remodelled into bone in vivo by endochondral ossification. Primary adult rat nasal chondrocytes were isolated from the nasal septum, the cell numbers expanded in monolayer culture and the cells cultured in vitro on polyglycolic acid scaffolds in chondrogenic medium for culture periods of 5-10 weeks. Hypertrophic differentiation was assessed by determining the temporal expression of key marker genes and proteins involved in hypertrophic cartilage formation. The temporal changes in the genes measured reflected the temporal changes observed in the growth plate. Collagen II gene expression increased 6 fold by day 7 and was then significantly downregulated from day 14 onwards. Conversely, collagen X gene expression was detectable by day 14 and increased 100-fold by day 35. The temporal increase in collagen X expression was mirrored by increases in alkaline phosphatase gene expression which also was detectable by day 14 with a 30-fold increase in gene expression by day 35. Histological and immunohistochemical analysis of the engineered constructs showed increased chondrocyte cell volume (31-45 μm), deposition of collagen X in the extracellular matrix and expression of alkaline phosphatase activity. However, no cartilage mineralisation was observed in in vitro culture of up to 10 weeks. On subcutaneous implantation of the hypertrophic engineered constructs, the grafts became vascularised, cartilage mineralisation occurred and loss of the proteoglycan in the matrix was observed. Implantation of the hypertrophic engineered constructs into a rat cranial defect resulted in angiogenesis, mineralisation and remodelling of the cartilage tissue into bone. Micro-CT analysis indicated that defects which received the engineered hypertrophic constructs showed 38.48% in bone volume compared to 7.01% in the control defects. Development of tissue engineered hypertrophic cartilage to use as a bone graft substitute is an exciting development in regenerative medicine. This is a proof of principal study demonstrating the potential of nasal chondrocytes to engineer hypertrophic cartilage which will remodel into bone on in vivo transplantation. This approach to making engineered hypertrophic cartilage grafts could form the basis of a new potential future clinical treatment for maxillofacial reconstruction.
Collapse
Affiliation(s)
- Katie Bardsley
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK; Guy Hilton Research Centre, University of Keele, Staffordshire, ST4 7QB, UK
| | - Agnieska Kwarciak
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Aviation House, 125 Kingsway, London, WC2B 6NH, UK
| | - Christine Freeman
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Ian Brook
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Paul Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Aileen Crawford
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK.
| |
Collapse
|
32
|
Zinc-modified titanium surface enhances osteoblast differentiation of dental pulp stem cells in vitro. Sci Rep 2016; 6:29462. [PMID: 27387130 PMCID: PMC4937451 DOI: 10.1038/srep29462] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
Zinc is an essential trace element that plays an important role in differentiation of osteoblasts and bone modeling. This in vitro study aimed to evaluate the osteoblast differentiation of human dental pulp stem cells (DPSCs) on zinc-modified titanium (Zn-Ti) that releases zinc ions from its surface. Based on real-time PCR, alkaline phosphatase (ALP) activity and Western blot analysis data, we investigated osteoblast differentiation of DPSCs cultured on Zn-Ti and controls. DPSCs cultured on Zn-Ti exhibited significantly up-regulated gene expression levels of osteoblast-related genes of type I collagen (Col I), bone morphogenetic protein 2 (BMP2), ALP, runt-related transcription factor 2 (Runx2), osteopontin (OPN), and vascular endothelial growth factor A (VEGF A), as compared with controls. We also investigated extracellular matrix (ECM) mineralization by Alizarin Red S (ARS) staining and found that Zn-Ti significantly promoted ECM mineralization when compared with controls. These findings suggest that the combination of Zn-Ti and DPSCs provides a novel approach for bone regeneration therapy.
Collapse
|
33
|
Haxaire C, Haÿ E, Geoffroy V. Runx2 Controls Bone Resorption through the Down-Regulation of the Wnt Pathway in Osteoblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1598-609. [DOI: 10.1016/j.ajpath.2016.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
|
34
|
Meng F, Xu L, Huang S, Liu Y, Hou Y, Wang K, Jiang X, Li G. Small nuclear ribonucleoprotein polypeptide N (Sm51) promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating Runx2. Cell Tissue Res 2016; 366:155-62. [DOI: 10.1007/s00441-016-2411-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
|
35
|
Thacker G, Kumar Y, Khan MP, Shukla N, Kapoor I, Kanaujiya JK, Lochab S, Ahmed S, Sanyal S, Chattopadhyay N, Trivedi AK. Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:510-9. [PMID: 26778333 DOI: 10.1016/j.bbamcr.2016.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/13/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Osteogenic transcription factor Runx2 is essential for osteoblast differentiation. The activity of Runx2 is tightly regulated at transcriptional as well as post-translational level. However, regulation of Runx2 stability by ubiquitin mediated proteasomal degradation by E3 ubiquitin ligases is little-known. Here, for the first time we demonstrate that Skp2, an SCF family E3 ubiquitin ligase negatively targets Runx2 by promoting its polyubiquitination and proteasome dependent degradation. Co-immunoprecipitation studies revealed that Skp2 physically interacts with Runx2 both in a heterologous as well as physiologically relevant system. Functional consequences of Runx2-Skp2 physical interaction were then assessed by promoter reporter assay. We show that Skp2-mediated downregulation of Runx2 led to reduced Runx2 transactivation and osteoblast differentiation. On the contrary, inhibition of Skp2 restored Runx2 levels and promoted osteoblast differentiation. We further show that Skp2 and Runx2 proteins are co-expressed and show inverse relation in vivo such as in lactating, ovariectomized and estrogen-treated ovariectomized animals. Together, these data demonstrate that Skp2 targets Runx2 for ubiquitin mediated degradation and hence negatively regulate osteogenesis. Therefore, the present study provides a plausible therapeutic target for osteoporosis or cleidocranial dysplasia caused by the heterozygous mutation of Runx2 gene.
Collapse
Affiliation(s)
- Gatha Thacker
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Mohd Parvez Khan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Nidhi Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Jitendra Kumar Kanaujiya
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Savita Lochab
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Shakil Ahmed
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India.
| |
Collapse
|
36
|
Park SJ, Leesungbok R, Ahn SJ, Im BJ, Lee DY, Jee YJ, Yoon JH, Cui T, Lee SC, Lee SW. Effect of microgrooves and fibronectin conjugation on the osteoblast marker gene expression and differentiation. J Adv Prosthodont 2015; 7:496-505. [PMID: 26816580 PMCID: PMC4722154 DOI: 10.4047/jap.2015.7.6.496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the effect of fibronectin (FN)-conjugated, microgrooved titanium (Ti) on osteoblast differentiation and gene expression in human bone marrow-derived mesenchymal stem cells (MSCs). MATERIALS AND METHODS Photolithography was used to fabricate the microgrooved Ti, and amine functionalization (silanization) was used to immobilize fibronectin on the titanium surfaces. Osteoblast differentiation and osteoblast marker gene expression were analyzed by means of alkaline phosphatase activity assay, extracellular calcium deposition assay, and quantitative real-time PCR. RESULTS The conjugation of fibronectin on Ti significantly increased osteoblast differentiation in MSCs compared with non-conjugated Ti substrates. On the extracellular calcium deposition assays of MSCs at 21 days, an approximately two-fold increase in calcium concentration was observed on the etched 60-µm-wide/10-µm-deep microgrooved surface with fibronectin (E60/10FN) compared with the same surface without fibronectin (E60/10), and a more than four-fold increase in calcium concentration was observed on E60/10FN compared with the non-etched control (NE0) and etched control (E0) surfaces. Through a series of analyses to determine the expression of osteoblast marker genes, a significant increase in all the marker genes except type I collagen α1 mRNA was seen with E60/10FN more than with any of the other groups, as compared with NE0. CONCLUSION The FN-conjugated, microgrooved Ti substrate can provide an effective surface to promote osteoblast differentiation and osteoblast marker gene expression in MSCs.
Collapse
Affiliation(s)
- Su-Jung Park
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Richard Leesungbok
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Byung-Jin Im
- Department of Dentistry, Graduate School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Do Yun Lee
- ED Dental Clinic, Seoul, Republic of Korea
| | - Yu-Jin Jee
- Department of Oral and Maxillofacial Surgery, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Joon-Ho Yoon
- Department of Prosthodontics, National Health Insurance Medical Center Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Taixing Cui
- Department of Dentistry, Graduate School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Suk Won Lee
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Meckbach C, Tacke R, Hua X, Waack S, Wingender E, Gültas M. PC-TraFF: identification of potentially collaborating transcription factors using pointwise mutual information. BMC Bioinformatics 2015; 16:400. [PMID: 26627005 PMCID: PMC4667426 DOI: 10.1186/s12859-015-0827-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023] Open
Abstract
Background Transcription factors (TFs) are important regulatory proteins that govern transcriptional regulation. Today, it is known that in higher organisms different TFs have to cooperate rather than acting individually in order to control complex genetic programs. The identification of these interactions is an important challenge for understanding the molecular mechanisms of regulating biological processes. In this study, we present a new method based on pointwise mutual information, PC-TraFF, which considers the genome as a document, the sequences as sentences, and TF binding sites (TFBSs) as words to identify interacting TFs in a set of sequences. Results To demonstrate the effectiveness of PC-TraFF, we performed a genome-wide analysis and a breast cancer-associated sequence set analysis for protein coding and miRNA genes. Our results show that in any of these sequence sets, PC-TraFF is able to identify important interacting TF pairs, for most of which we found support by previously published experimental results. Further, we made a pairwise comparison between PC-TraFF and three conventional methods. The outcome of this comparison study strongly suggests that all these methods focus on different important aspects of interaction between TFs and thus the pairwise overlap between any of them is only marginal. Conclusions In this study, adopting the idea from the field of linguistics in the field of bioinformatics, we develop a new information theoretic method, PC-TraFF, for the identification of potentially collaborating transcription factors based on the idiosyncrasy of their binding site distributions on the genome. The results of our study show that PC-TraFF can succesfully identify known interacting TF pairs and thus its currently biologically uncorfirmed predictions could provide new hypotheses for further experimental validation. Additionally, the comparison of the results of PC-TraFF with the results of previous methods demonstrates that different methods with their specific scopes can perfectly supplement each other. Overall, our analyses indicate that PC-TraFF is a time-efficient method where its algorithm has a tractable computational time and memory consumption. The PC-TraFF server is freely accessible at http://pctraff.bioinf.med.uni-goettingen.de/ Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0827-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cornelia Meckbach
- Institute of Bioinformatics, University of Göttingen, Goldschmidtstr. 1, Göttingen, 37077, Germany.
| | - Rebecca Tacke
- Institute of Bioinformatics, University of Göttingen, Goldschmidtstr. 1, Göttingen, 37077, Germany.
| | - Xu Hua
- Institute of Bioinformatics, University of Göttingen, Goldschmidtstr. 1, Göttingen, 37077, Germany.
| | - Stephan Waack
- Institute of Computer Science, University of Göttingen, Goldschmidtstr. 7, Göttingen, 37077, Germany.
| | - Edgar Wingender
- Institute of Bioinformatics, University of Göttingen, Goldschmidtstr. 1, Göttingen, 37077, Germany.
| | - Mehmet Gültas
- Institute of Bioinformatics, University of Göttingen, Goldschmidtstr. 1, Göttingen, 37077, Germany.
| |
Collapse
|
38
|
Kumar Y, Kapoor I, Khan K, Thacker G, Khan MP, Shukla N, Kanaujiya JK, Sanyal S, Chattopadhyay N, Trivedi AK. E3 Ubiquitin Ligase Fbw7 Negatively Regulates Osteoblast Differentiation by Targeting Runx2 for Degradation. J Biol Chem 2015; 290:30975-87. [PMID: 26542806 DOI: 10.1074/jbc.m115.669531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Runx2, a master regulator of osteoblast differentiation, is tightly regulated at both transcriptional and post-translational levels. Post-translational modifications such as phosphorylation and ubiquitination have differential effects on Runx2 functions. Here, we show that the reduced expression and functions of Runx2 upon its phosphorylation by GSK3β are mediated by its ubiquitin-mediated degradation through E3 ubiquitin ligase Fbw7α. Fbw7α through its WD domain interacts with Runx2 both in a heterologous (HEK293T cells) system as well as in osteoblasts. GSK3β was also present in the same complex as determined by co-immunoprecipitation. Furthermore, overexpression of either Fbw7α or GSK3β was sufficient to down-regulate endogenous Runx2 expression and function; however, both failed to inhibit endogenous Runx2 when either of them was depleted in osteoblasts. Fbw7α-mediated inhibition of Runx2 expression also led to reduced Runx2 transactivation and osteoblast differentiation. In contrast, inhibition of Fbw7α restored Runx2 levels and promoted osteoblast differentiation. We also observed reciprocal expression levels of Runx2 and Fbw7α in models of bone loss such as lactating (physiological bone loss condition) and ovariectomized (induction of surgical menopause) animals that show reduced Runx2 and enhanced Fbw7α, whereas this was reversed in the estrogen-treated ovariectomized animals. In addition, methylprednisolone (a synthetic glucocorticoid) treatment to neonatal rats showed a temporal decrease in Runx2 with a reciprocal increase in Fbw7 in their calvarium. Taken together, these data demonstrate that Fbw7α negatively regulates osteogenesis by targeting Runx2 for ubiquitin-mediated degradation in a GSK3β-dependent manner and thus provides a plausible explanation for GSK3β-mediated bone loss as described before.
Collapse
Affiliation(s)
- Yogesh Kumar
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Isha Kapoor
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Kainat Khan
- the Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh, India
| | - Gatha Thacker
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Mohd Parvez Khan
- the Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh, India
| | - Nidhi Shukla
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Jitendra Kumar Kanaujiya
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Sabyasachi Sanyal
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Naibedya Chattopadhyay
- the Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh, India
| | - Arun Kumar Trivedi
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| |
Collapse
|
39
|
Marques CL, Cancela ML, Laizé V. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors. Gene 2015; 576:229-36. [PMID: 26456102 DOI: 10.1016/j.gene.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/04/2015] [Accepted: 10/04/2015] [Indexed: 01/30/2023]
Abstract
Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
40
|
Global increase in O-linked N-acetylglucosamine modification promotes osteoblast differentiation. Exp Cell Res 2015; 338:194-202. [PMID: 26302267 DOI: 10.1016/j.yexcr.2015.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 01/04/2023]
Abstract
The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts, and an imbalance in this bone metabolism leads to osteoporosis. Here, we found that osteoblast differentiation in MC3T3-E1 cells is promoted by the inactivation of O-linked β-N-acetylglucosaminidase (O-GlcNAcase) and suppressed by the inactivation of O-GlcNAc transferase, as indicated by extracellular matrix calcification. The expression of osteogenic genes such as alp, ocn, and bsp during osteoblast differentiation was positively regulated in a O-GlcNAc glycosylation-dependent manner. Because it was confirmed that Ets1 and Runx2 are the two key transcription factors responsible for the expression of these osteogenic genes, their transcriptional activity might therefore be regulated by O-GlcNAc glycosylation. However, osteoclast differentiation of RAW264 cells, as indicated by the expression and activity of tartrate-resistant acid phosphatase, was unaffected by the inactivation of either O-GlcNAcase or O-GlcNAc transferase. Our findings suggest that an approach to manipulate O-GlcNAc glycosylation could be useful for developing the therapeutics for osteoporosis.
Collapse
|
41
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
42
|
Chen Z, Yue SX, Zhou G, Greenfield EM, Murakami S. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation. J Bone Miner Res 2015; 30:765-74. [PMID: 25401279 PMCID: PMC4487783 DOI: 10.1002/jbmr.2409] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/29/2022]
Abstract
Chondrocytes in the epiphyseal cartilage undergo terminal differentiation prior to their removal through apoptosis. To examine the role of ERK1 and ERK2 in chondrocyte terminal differentiation, we generated Osterix (Osx)-Cre; ERK1(-/-) ; ERK2(flox/flox) mice (conditional knockout Osx [cKOosx]), in which ERK1 and ERK2 were deleted in hypertrophic chondrocytes. These cKOosx mice were grossly normal in size at birth, but by 3 weeks of age exhibited shorter long bones. Histological analysis in these mice revealed that the zone of hypertrophic chondrocytes in the growth plate was markedly expanded. In situ hybridization and quantitative real-time PCR analyses demonstrated that Matrix metalloproteinase-13 (Mmp13) and Osteopontin expression was significantly decreased, indicating impaired chondrocyte terminal differentiation. Moreover, Egr1 and Egr2, transcription factors whose expression is restricted to the last layers of hypertrophic chondrocytes in wild-type mice, were also strongly downregulated in these cKOosx mice. In transient transfection experiments in the RCS rat chondrosarcoma cell line, the expression of Egr1, Egr2, or a constitutively active mutant of MEK1 increased the activity of an Osteopontin promoter, whereas the MEK1-induced activation of the Osteopontin promoter was inhibited by the coexpression of Nab2, an Egr1 and Egr2 co-repressor. These results suggest that MEK1-ERK signaling activates the Osteopontin promoter in part through Egr1 and Egr2. Finally, our histological analysis of cKOosx mice demonstrated enchondroma-like lesions in the bone marrow that are reminiscent of human metachondromatosis, a skeletal disorder caused by mutations in PTPN11. Our observations suggest that the development of enchondromas in metachondromatosis may be caused by reduced extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK MAPK) signaling.
Collapse
Affiliation(s)
- Zhijun Chen
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Susan X. Yue
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Edward M. Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
- Division of General Medical Sciences, National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shunichi Murakami
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, Ohio 44106
- Division of General Medical Sciences, National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Murakami Geka Iin, Kawasaki, 210-0834 Japan
- Corresponding author: Shunichi Murakami, 11100 Euclid Avenue, Hanna House 6th floor, Cleveland, Ohio 44106, phone: 216-368-3965, fax: 216-368-1332,
| |
Collapse
|
43
|
Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene 2015; 35:366-76. [PMID: 25867060 PMCID: PMC4603996 DOI: 10.1038/onc.2015.91] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 01/23/2023]
Abstract
The osteogenic transcription factor, Runx2, is abnormally expressed in prostate cancer (PCa) and associated with metastatic disease. During bone development, Runx2 is activated by signals known to be hyperactive in PCa including the RAS/MAP kinase pathway, which phosphorylates Runx2 on multiple serine residues including S301 and S319 (equivalent to S294 and S312 in human Runx2). This study examines the role of these phosphorylation sites in PCa. Runx2 was preferentially expressed in more invasive prostate cancer cell lines (PC3 > C4-2B > LNCaP). Furthermore, analysis using a P-S319-Runx2-specific antibody revealed that the ratio of P-S319-Runx2/total Runx2 as well as P-ERK/total ERK was highest in PC3 followed by C4-2B and LNCaP cells. These results were confirmed by immunofluorescence confocal microscopy, which showed a higher percentage of PC3 cells staining positive for P-S319-Runx2 relative to C4-2B and LNCaP cells. Phosphorylated Runx2 had an exclusively nuclear localization. When expressed in prostate cell lines, wild type Runx2 increased metastasis-associated gene expression, in vitro migratory and invasive activity as well as in vivo growth of tumor cell xenografts. In contrast, S301A/S319A phosphorylation site mutations greatly attenuated these Runx2 responses. Analysis of tissue microarrays from 129 patients revealed strong nuclear staining with the P-S319-Runx2 antibody in primary prostate cancers and metastases. P-S319-Runx2 staining was positively correlated with Gleason score and occurrence of lymph node metastases while little or no Runx2 phosphorylation was seen in normal prostate, benign prostate hyperplasia or prostatitis indicating that Runx2 S319 phosphorylation is closely associated with prostate cancer induction and progression towards an aggressive phenotype. These studies establish the importance of Runx2 phosphorylation in prostate tumor growth and highlight its value as a potential diagnostic marker and therapeutic target.
Collapse
|
44
|
Qin X, Jiang Q, Matsuo Y, Kawane T, Komori H, Moriishi T, Taniuchi I, Ito K, Kawai Y, Rokutanda S, Izumi S, Komori T. Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res 2015; 30:706-14. [PMID: 25262822 DOI: 10.1002/jbmr.2379] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 01/13/2023]
Abstract
Runx family proteins, Runx1, Runx2, and Runx3, play important roles in skeletal development. Runx2 is required for osteoblast differentiation and chondrocyte maturation, and haplodeficiency of RUNX2 causes cleidocranial dysplasia, which is characterized by open fontanelles and sutures and hypoplastic clavicles. Cbfb forms a heterodimer with Runx family proteins and enhances their DNA-binding capacity. Cbfb-deficient (Cbfb(-/-) ) mice die at midgestation because of the lack of fetal liver hematopoiesis. We previously reported that the partial rescue of hematopoiesis in Cbfb(-/-) mice revealed the requirement of Cbfb in skeletal development. However, the precise functions of Cbfb in skeletal development still remain to be clarified. We deleted Cbfb in mesenchymal cells giving rise to both chondrocyte and osteoblast lineages by mating Cbfb(fl/fl) mice with Dermo1 Cre knock-in mice. Cbfb(fl/fl/Cre) mice showed dwarfism, both intramembranous and endochondral ossifications were retarded, and chondrocyte maturation and proliferation and osteoblast differentiation were inhibited. The differentiation of chondrocytes and osteoblasts were severely inhibited in vitro, and the reporter activities of Ihh, Col10a1, and Bglap2 promoter constructs were reduced in Cbfb(fl/fl/Cre) chondrocytes or osteoblasts. The proteins of Runx1, Runx2, and Runx3 were reduced in the cartilaginous limb skeletons and calvariae of Cbfb(fl/fl/Cre) embryos compared with the respective protein in the respective tissue of Cbfb(fl/fl) embryos at E15.5, although the reduction of Runx2 protein in calvariae was much milder than that in cartilaginous limb skeletons. All of the Runx family proteins were severely reduced in Cbfb(fl/fl/Cre) primary osteoblasts, and Runx2 protein was less stable in Cbfb(fl/fl/Cre) osteoblasts than Cbfb(fl/fl) osteoblasts. These findings indicate that Cbfb is required for skeletal development by regulating chondrocyte differentiation and proliferation and osteoblast differentiation; that Cbfb plays an important role in the stabilization of Runx family proteins; and that Runx2 protein stability is less dependent on Cbfb in calvariae than in cartilaginous limb skeletons.
Collapse
Affiliation(s)
- Xin Qin
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tsang KY, Chan D, Cheah KSE. Fate of growth plate hypertrophic chondrocytes: death or lineage extension? Dev Growth Differ 2015; 57:179-92. [PMID: 25714187 DOI: 10.1111/dgd.12203] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
The vertebrate growth plate is an essential tissue that mediates and controls bone growth. It forms through a multistep differentiation process in which chondrocytes differentiate, proliferate, stop dividing and undergo hypertrophy, which entails a 20-fold increase in size. Hypertrophic chondrocytes are specialized cells considered to be the end state of the chondrocyte differentiation pathway, and are essential for bone growth. They are characterized by expression of type X collagen encoded by the Col10a1 gene, and synthesis of a calcified cartilage matrix. Whether hypertrophy marks a transition preceding osteogenesis, or it is the terminal differentiation stage of chondrocytes with cell death as the ultimate fate has been the subject of debate for over a century. In this review, we revisit this debate in the light of new findings arising from genetic-mediated lineage tracing studies showing that hypertrophic chondrocytes can survive at the chondro-osseous junction and further make the transition to become osteoblasts and osteocytes. The contribution of chondrocytes to the osteoblast lineage has important implications in bone development, disease and repair.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
46
|
Babayeva ND, Wilder PJ, Shiina M, Mino K, Desler M, Ogata K, Rizzino A, Tahirov TH. Structural basis of Ets1 cooperative binding to palindromic sequences on stromelysin-1 promoter DNA. Cell Cycle 2014. [DOI: 10.4161/cc.9.14.12257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
47
|
Takarada T. Analysis of the signaling cascade of transcription factors in joint tissue with the aim of drug discovery. Nihon Yakurigaku Zasshi 2014; 144:178-84. [PMID: 25312287 DOI: 10.1254/fpj.144.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Meyer MB, Benkusky NA, Pike JW. The RUNX2 cistrome in osteoblasts: characterization, down-regulation following differentiation, and relationship to gene expression. J Biol Chem 2014; 289:16016-31. [PMID: 24764292 PMCID: PMC4047377 DOI: 10.1074/jbc.m114.552216] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Indexed: 01/09/2023] Open
Abstract
RUNX2 is a transcription factor that is first expressed in early osteoblast-lineage cells and represents a primary determinant of osteoblastogenesis. While numerous target genes are regulated by RUNX2, little is known of sites on the genome occupied by RUNX2 or of the gene networks that are controlled by these sites. To explore this, we conducted a genome-wide analysis of the RUNX2 cistrome in both pre-osteoblastic MC3T3-E1 cells (POB) and their mature osteoblast progeny (OB), characterized the two cistromes and assessed their relationship to changes in gene expression. We found that although RUNX2 was widely bound to the genome in POB cells, this binding profile was reduced upon differentiation to OBs. Numerous sites were lost upon differentiation, new sites were also gained; many sites remained common to both cell states. Additional features were identified as well including location relative to potential target genes, abundance with respect to single genes, the frequent presence of a consensus TGTGGT RUNX2 binding motif, co-occupancy by C/EBPβ and the presence of a typical epigenetic histone enhancer signature. This signature was changed quantitatively following differentiation. While RUNX2 binding sites were associated extensively with adjacent genes, the distal nature of the majority of these sites prevented assessment of whether they represented direct targets of RUNX2 action. Changes in gene expression, however, revealed an abundance of genes that contained RUNX2 binding sites and were regulated in concert. These studies establish a basis for further analysis of the role of RUNX2 activity and its function during osteoblast lineage maturation.
Collapse
Affiliation(s)
- Mark B Meyer
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nancy A Benkusky
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - J Wesley Pike
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
49
|
Zirngibl RA, Chan JSM, Aubin JE. Divergent regulation of the Osteopontin promoter by the estrogen receptor-related receptors is isoform- and cell context dependent. J Cell Biochem 2014; 114:2356-62. [PMID: 23633411 DOI: 10.1002/jcb.24583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 11/08/2022]
Abstract
We sought to determine whether the estrogen receptor-related receptor gamma (mEsrrg) regulated the Osteopontin (Opn) promoter through the same AP1/CAAT box element that we have previously described for mEsrra. In HeLa cells mEsrrg used an additional site present in the 5'UTR, while in ROS17/2.8 cells the AP1/CAAT site was not used, but a completely novel site surrounding the transcription start site was used. We also find that in ROS17/2.8 cells mEsrra repressed, while mEsrrg activated the Opn promoter. None of the sites identified conform to established Esrr response elements (ERREs). Additionally, the two reported mEsrrg protein isoforms showed differences in their activation potential. Mutations in the activation function 2 (AF2) of mEsrra, predicted to abolish activation, surprisingly turned mEsrra into a better activator. In contrast, similar AF2 mutations in Esrrg2 abolished its ability to activate the Opn promoter. Mutation of the DNA binding domain of mEsrra/g2 abolished transcriptional activity in HeLa and ROS17/2.8 cells. Our data indicate, first, that the two Esrr isoforms regulate Opn in a cell context-dependent manner. Second, they suggest that although the DNA binding domains of mEsrra and mEsrrg are 93% identical and required for regulation, the receptors bind to distinct Opn promoter elements, suggesting that the two isoforms may co-regulate Opn, and perhaps other genes, without competing for the same site in the promoter. Finally, the results suggest that each isoform interacts differently with co-activators and co-repressors, as highlighted by the AF2 mutation that turns mEsrra into a better activator but abolishes activity of Esrrg2.
Collapse
Affiliation(s)
- R A Zirngibl
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
50
|
Raeth S, Sacchetti B, Siegel G, Mau-Holzmann UA, Hansmann J, Vacun G, Hauk TG, Pfizenmaier K, Hausser A. A mouse bone marrow stromal cell line with skeletal stem cell characteristics to study osteogenesis in vitro and in vivo. Stem Cells Dev 2014; 23:1097-108. [PMID: 24405418 DOI: 10.1089/scd.2013.0367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are composed of progenitor and multipotent skeletal stem cells, which are able to differentiate in vitro into osteocytes, adipocytes, and chondrocytes. Mouse BMSCs (mBMSCs) are a versatile model system to investigate factors involved in BMSC differentiation in vitro and in vivo as a variety of transgenic mouse models are available. In this study, mBMSCs were isolated and osteogenic differentiation was investigated in tissue culture and in vivo. Three out of seven independent cell isolates showed the ability to differentiate into osteocytes, adipocytes, and chondrocytes in vitro. In vitro multipotency of an established mBMSC line was maintained over 45 passages. The osteogenic differentiation of this cell line was confirmed by quantitative polymerase chain reaction (qPCR) analysis of specific markers such as osteocalcin and shown to be Runx2 dependent. Notably, the cell line, when transplanted subcutaneously into mice, possesses full skeletal stem cell characteristics in vivo in early and late passages, evident from bone tissue formation, induction of vascularization, and hematopoiesis. This cell line provides, thus, a versatile tool to unravel the molecular mechanisms governing osteogenesis in vivo thereby aiding to improve current strategies in bone regenerative therapy.
Collapse
Affiliation(s)
- Sebastian Raeth
- 1 Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|