1
|
Kocanova S, Raynal F, Goiffon I, Oksuz BA, Baú D, Kamgoué A, Cantaloube S, Zhan Y, Lajoie B, Marti-Renom MA, Dekker J, Bystricky K. Enhancer-driven 3D chromatin domain folding modulates transcription in human mammary tumor cells. Life Sci Alliance 2024; 7:e202302154. [PMID: 37989525 PMCID: PMC10663337 DOI: 10.26508/lsa.202302154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
The genome is organized in functional compartments and structural domains at the sub-megabase scale. How within these domains interactions between numerous cis-acting enhancers and promoters regulate transcription remains an open question. Here, we determined chromatin folding and composition over several hundred kb around estrogen-responsive genes in human breast cancer cell lines after hormone stimulation. Modeling of 5C data at 1.8 kb resolution was combined with quantitative 3D analysis of multicolor FISH measurements at 100 nm resolution and integrated with ChIP-seq data on transcription factor binding and histone modifications. We found that rapid estradiol induction of the progesterone gene expression occurs in the context of preexisting, cell type-specific chromosomal architectures encompassing the 90 kb progesterone gene coding region and an enhancer-spiked 5' 300 kb upstream genomic region. In response to estradiol, interactions between estrogen receptor α (ERα) bound regulatory elements are reinforced. Whereas initial enhancer-gene contacts coincide with RNA Pol 2 binding and transcription initiation, sustained hormone stimulation promotes ERα accumulation creating a regulatory hub stimulating transcript synthesis. In addition to implications for estrogen receptor signaling, we uncover that preestablished chromatin architectures efficiently regulate gene expression upon stimulation without the need for de novo extensive rewiring of long-range chromatin interactions.
Collapse
Affiliation(s)
- Silvia Kocanova
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Flavien Raynal
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Isabelle Goiffon
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Betul Akgol Oksuz
- https://ror.org/0464eyp60 Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Davide Baú
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Alain Kamgoué
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Ye Zhan
- https://ror.org/0464eyp60 Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bryan Lajoie
- https://ror.org/0464eyp60 Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
- Genome Biology Program, Centre de Regulació Genòmica (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Job Dekker
- https://ror.org/0464eyp60 Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kerstin Bystricky
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
He S, Li L, Lv LY, Cai WJ, Dou YQ, Li J, Tang SL, Chen X, Zhang Z, Xu J, Zhang YP, Yin Z, Wuertz S, Tao YX, Kuhl H, Liang XF. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding. Commun Biol 2020; 3:361. [PMID: 32647268 PMCID: PMC7347838 DOI: 10.1038/s42003-020-1094-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/12/2020] [Indexed: 01/04/2023] Open
Abstract
Mandarin fishes (Sinipercidae) are piscivores that feed solely on live fry. Unlike higher vertebrates, teleosts exhibit feeding behavior driven mainly by genetic responses, with no modification by learning from parents. Mandarin fishes could serve as excellent model organisms for studying feeding behavior. We report a long-read, chromosomal-scale genome assembly for Siniperca chuatsi and genome assemblies for Siniperca kneri, Siniperca scherzeri and Coreoperca whiteheadi. Positive selection analysis revealed rapid adaptive evolution of genes related to predatory feeding/aggression, growth, pyloric caeca and euryhalinity. Very few gill rakers are observed in mandarin fishes; analogously, we found that zebrafish deficient in edar had a gill raker loss phenotype and a more predatory habit, with reduced intake of zooplankton but increased intake of prey fish. Higher expression of bmp4, which could inhibit edar expression and gill raker development through binding of a Xvent-1 site upstream of edar, may cause predatory feeding in Siniperca.
Collapse
Affiliation(s)
- Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Li-Yuan Lv
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Wen-Jing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Ya-Qi Dou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Shu-Lin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Xu Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Zhen Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Jing Xu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Yan-Peng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Sven Wuertz
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China.
- Innovation Base for Chinese Perch Breeding, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China.
| |
Collapse
|
3
|
Hybrid 2D/3D-quantitative structure-activity relationship and modeling studies perspectives of pepstatin A analogs as cathepsin D inhibitors. Future Med Chem 2017; 10:5-26. [PMID: 29235371 DOI: 10.4155/fmc-2017-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM Cathepsin D, one of the attractive targets in the treatment of breast cancer, has been implicated in HIV neuropathogenesis with potential proteolytic effects on chemokines. Methodology/result: Diverse modeling tools were used to reveal the key structural features affecting the inhibitory activities of 78 pepstatin A analogs. Analyses were performed to investigate the stability, rationality and fluctuation of the analogs. Results showed a clear correlation between the experimental and predicted activities of the analogs as well as the variation in their activities relative to structural modifications. CONCLUSION The insight gained from this study offers theoretical references for understanding the mechanism of action of cathepsin D and will aid in the design of more potent and clinically-relevant drugs. Graphical abstract [Formula: see text].
Collapse
|
4
|
Guertin MJ, Zhang X, Anguish L, Kim S, Varticovski L, Lis JT, Hager GL, Coonrod SA. Targeted H3R26 deimination specifically facilitates estrogen receptor binding by modifying nucleosome structure. PLoS Genet 2014; 10:e1004613. [PMID: 25211228 PMCID: PMC4161307 DOI: 10.1371/journal.pgen.1004613] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/18/2014] [Indexed: 12/17/2022] Open
Abstract
Transcription factor binding to DNA in vivo causes the recruitment of chromatin modifiers that can cause changes in chromatin structure, including the modification of histone tails. We previously showed that estrogen receptor (ER) target gene activation is facilitated by peptidylarginine deiminase 2 (PAD2)-catalyzed histone H3R26 deimination (H3R26Cit). Here we report that the genomic distributions of ER and H3R26Cit in breast cancer cells are strikingly coincident, linearly correlated, and observed as early as 2 minutes following estradiol treatment. The H3R26Cit profile is unlike that of previously described histone modifications and is characterized by sharp, narrow peaks. Paired-end MNase ChIP-seq indicates that the charge-neutral H3R26Cit modification facilitates ER binding to DNA by altering the fine structure of the nucleosome. Clinically, we find that PAD2 and H3R26Cit levels correlate with ER expression in breast tumors and that high PAD2 expression is associated with increased survival in ER+ breast cancer patients. These findings provide insight into how transcription factors gain access to nucleosomal DNA and implicate PAD2 as a novel therapeutic target for ER+ breast cancer. Transcription factors bind to DNA to activate and repress gene transcription. Many transcription factors, particularly nuclear receptors, associate with their cognate DNA element in a highly dynamic manner in vivo. Highly acetylated histone tails and DNase sensitive chromatin are amenable to the initial binding of transcription factors. Upon binding to DNA, transcription factor binding recruits remodelers and coactivators that can cause a concomitant increase in accessibility and acetylation. Herein, we show that estrogen receptor recruitment of a histone deiminase causes the positively charged H3R26 residue to be neutralized. This modification changes the fine structure of the nucleosome particle and facilitates estrogen receptor binding. Lastly, we find that high deiminase expression is associated with increased survival in estrogen receptor-positive breast cancer patients.
Collapse
Affiliation(s)
- Michael J. Guertin
- Lab of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XZ); (SAC)
| | - Lynne Anguish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sohyoung Kim
- Lab of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Lyuba Varticovski
- Lab of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland, United States of America
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Gordon L. Hager
- Lab of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Scott A. Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XZ); (SAC)
| |
Collapse
|
5
|
Chu HW, Cheng CW, Chou WC, Hu LY, Wang HW, Hsiung CN, Hsu HM, Wu PE, Hou MF, Shen CY, Yu JC. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis. Hum Mol Genet 2013; 23:355-67. [DOI: 10.1093/hmg/ddt426] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Khan P, Drobic B, Pérez-Cadahía B, Healy S, He S, Davie JR. Mitogen- and stress-activated protein kinases 1 and 2 are required for maximal trefoil factor 1 induction. PLoS One 2013; 8:e63189. [PMID: 23675462 PMCID: PMC3652853 DOI: 10.1371/journal.pone.0063189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2), activated downstream of the ERK- and p38-mitogen-activated protein kinase pathways are involved in cell survival, proliferation and differentiation. Following mitogenic or stress stimuli, they mediate the nucleosomal response, which includes phosphorylation of histone H3 at serine 10 (H3S10ph) coupled with transcriptional activation of immediate-early genes. While MSK1 and MSK2 are closely related, their relative roles may vary with cellular context and/or stimuli. However, our knowledge of MSK2 recruitment to immediate-early genes is limited, as research has primarily focused on MSK1. Here, we demonstrate that both MSK1 and MSK2, regulate the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced expression of the breast cancer marker gene, trefoil factor 1 (TFF1), by phosphorylating H3S10 at its 5′ regulatory regions. The MSK-mediated phosphorylation of H3S10 promotes the recruitment of 14-3-3 isoforms and BRG1, the ATPase subunit of the BAF/PBAF remodeling complex, to the enhancer and upstream promoter elements of TFF1. The recruited chromatin remodeling activity leads to the RNA polymerase II carboxy-terminal domain phosphorylation at the TFF1 promoter, initiating TFF1 expression in MCF-7 breast cancer cells. Moreover, we show that MSK1 or MSK2 is recruited to TFF1 regulatory regions, but as components of different multiprotein complexes.
Collapse
Affiliation(s)
- Protiti Khan
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bojan Drobic
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beatriz Pérez-Cadahía
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shannon Healy
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shihua He
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R. Davie
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
7
|
Bellucci L, Dalvai M, Kocanova S, Moutahir F, Bystricky K. Activation of p21 by HDAC inhibitors requires acetylation of H2A.Z. PLoS One 2013; 8:e54102. [PMID: 23349794 PMCID: PMC3548890 DOI: 10.1371/journal.pone.0054102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/06/2012] [Indexed: 12/31/2022] Open
Abstract
Differential positioning of the histone variant H2A.Z in a p53 dependent manner was shown to regulate p21 transcription. Whether H2A.Z is involved in p21 activity in the absence of p53 is not known. The p21 gene is repressed in estrogen receptor (ER) negative cell lines that are p53−/− and hormone independent for their growth. Here we demonstrate that class I and II pan Histone deacetylase inhibitors (HDACi) induce p21 transcription and reduce cell proliferation of MDA-MB231, an ERα-negative mammary tumor cell line, in a H2A.Z dependent manner. H2A.Z is associated with the transcription start site (TSS) of the repressed p21 gene. Depleting H2A.Z did not lead to transcription of p21 but annihilated the stimulating effect of HDACi on this gene. Acetylation of H2A.Z but not of H3K9 at the p21 promoter correlated with p21 activation. We further show that HDACi treatment reduced the presence of the p400 chromatin remodeler at the p21 TSS. We propose a model in which association of p400 negatively affects p21 transcription by interfering with acetylation of H2A.Z.
Collapse
Affiliation(s)
- Luca Bellucci
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
8
|
Dalvai M, Bellucci L, Fleury L, Lavigne AC, Moutahir F, Bystricky K. H2A.Z-dependent crosstalk between enhancer and promoter regulates cyclin D1 expression. Oncogene 2012; 32:4243-51. [PMID: 23108396 DOI: 10.1038/onc.2012.442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 02/08/2023]
Abstract
H2A.Z association with specific genomic loci is thought to contribute to a chromatin structure that promotes transcription activation. Acetylation of H2A.Z at promoters of oncogenes has been linked to tumorigenesis. The mechanism is unknown. Here, we show that in triple negative breast cancer cells, H2A.Z bound to the promoter of the constitutively, weakly expressed cyclin D1 oncogene (CCND1), a key regulator of cellular proliferation. Depleting the pool of H2A.Z stimulated transcription of CCND1 in the absence of its cognate transcription factor, the estrogen receptor (ER). During activation of CCND1, H2A.Z was released from the transcription start site (TSS) and downstream enhancer (enh2) sequences. Concurrently, acetylation of H2A.Z, H3 and H4 at the TSS was increased but only H2A.Z was acetylated at enh2. Acetylation of H2A.Z required the Tip60 acetyltransferase to be associated with the activated CCND1 on both TSS and enh2 sites. Depletion of Tip60 prevented CCND1 activation. Chromosome conformation capture experiments (3C) revealed specific contacts between the TSS and enh2 chromatin regions. These results suggest that release of a histone H2A.Z-mediated repression loop activates CCND1 for transcription. Our findings open new avenues for controlling and understanding aberrant gene expression associated with tumorigenesis.
Collapse
Affiliation(s)
- M Dalvai
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), University of Toulouse, Toulouse, France
| | | | | | | | | | | |
Collapse
|
9
|
Association of double-positive FOXA1 and FOXP1 immunoreactivities with favorable prognosis of tamoxifen-treated breast cancer patients. Discov Oncol 2012; 3:147-59. [PMID: 22476979 DOI: 10.1007/s12672-012-0111-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/16/2012] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is primarily a hormone-dependent tumor that can be regulated by the status of the steroid hormones estrogen and progesterone. Forkhead box A1 (FOXA1) is a member of the forkhead box transcription factor family and functions as a pioneer factor of the estrogen receptor (ER) in breast cancer. In the present study, we demonstrate that FOXA1 mRNA was upregulated by estrogen and that estrogen receptor-α (ERα) recruitment to ER-binding sites in the vicinity of the FOXA1 gene was increased by estrogen in ERα-positive MCF-7 breast cancer cells. The estrogen-induced FOXA1 upregulation was repressed by 4-hydroxytamoxifen treatment. We also demonstrated that the proliferation and the migration of MCF-7 cells were decreased by FOXA1-specific small interfering RNA (siRNA; siFOXA1). Furthermore, siFOXA1 decreased the estrogen response element-driven transcription and the estrogen-dependent upregulation of ERα target genes in MCF-7 cells. Next, the immunohistochemical analyses of FOXA1 were performed using two groups of breast cancer specimens. The nuclear immunoreactivity of FOXA1 was detected in 80 (74%) of 108 human invasive breast cancers and was negatively correlated with tumor grade and positively correlated with hormone receptor status, including ERα and progesterone receptor, pathological tumor size, and immunoreactivity of FOXP1, another FOX family transcription factor. FOXA1 immunoreactivity was significantly elevated in the relapse-free breast cancer patients treated with tamoxifen. Notably, the double-positive immunoreactivities of FOXA1 and FOXP1 were significantly associated with a favorable prognosis for the relapse-free and overall survival of patients with tamoxifen-treated breast cancer, with lower P values compared with FOXA1 or FOXP1 immunoreactivity alone. These results suggest that FOXA1 plays an important role in the proliferation and migration of breast cancer cells by modulating estrogen signaling and that the double-positive immunoreactivities of FOXA1 and FOXP1 are associated with a favorable prognosis of tamoxifen-treated breast cancer.
Collapse
|
10
|
Shigekawa T, Ijichi N, Ikeda K, Horie-Inoue K, Shimizu C, Saji S, Aogi K, Tsuda H, Osaki A, Saeki T, Inoue S. FOXP1, an Estrogen-Inducible Transcription Factor, Modulates Cell Proliferation in Breast Cancer Cells and 5-Year Recurrence-Free Survival of Patients with Tamoxifen-Treated Breast Cancer. Discov Oncol 2011. [DOI: 10.1007/s12672-011-0082-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Peng KW, Chang M, Wang YT, Wang Z, Qin Z, Bolton JL, Thatcher GRJ. Unexpected hormonal activity of a catechol equine estrogen metabolite reveals reversible glutathione conjugation. Chem Res Toxicol 2011; 23:1374-83. [PMID: 20540524 DOI: 10.1021/tx100129h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells. Recruitment by 4-OHEN of ER to estrogen responsive elements (ERE) of DNA in MCF-7 cells was also studied and observed. 4-OHEN was a potent estrogen, with additional weak activity associated with binding to the arylhydrocarbon receptor (AhR). The potency of 4-OHEN toward classical ERalpha mediated activity was unexpected given the reported rapid autoxidation and trapping of the resultant quinone by GSH. Addition of thiols to cell cultures did not attenuate the estrogenic activity of 4-OHEN, and preformed thiol conjugates added to cell incubations only marginally reduced ERE-luciferase induction. On reaction of the 4OHEN-GSH conjugate with NADPH, 4-OHEN was observed to be regenerated at a rate dependent upon NADPH concentration, indicating that intracellular nonenzymatic and enzymatic regeneration of 4-OHEN accounts for the observed estrogenic activity of 4-OHEN. 4-OHEN is therefore capable of inducing chemical and hormonal pathways that may contribute to estrogen-dependent carcinogenesis, and trapping by cellular thiols does not provide a mechanism of termination of these pathways.
Collapse
Affiliation(s)
- Kuan-Wei Peng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kocanova S, Mazaheri M, Caze-Subra S, Bystricky K. Ligands specify estrogen receptor alpha nuclear localization and degradation. BMC Cell Biol 2010; 11:98. [PMID: 21143970 PMCID: PMC3009626 DOI: 10.1186/1471-2121-11-98] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 12/10/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The estrogen receptor alpha (ERα) is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. RESULTS A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line) was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα.Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2), and pure antagonists (selective estrogen regulator disruptor; SERD), ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM), 4-hydroxytamoxifen (OHT) or RU39,411, diffuse nuclear staining persisted.Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. CONCLUSIONS Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on transcription. These findings provide a molecular basis for the selection of antiestrogen compounds issue from pharmacological studies aimed at improving treatment of breast cancer.
Collapse
Affiliation(s)
- Silvia Kocanova
- Université de Toulouse; UPS; Laboratoire de Biologie Moléculaire Eucaryote; F-31062 Toulouse, France
| | | | | | | |
Collapse
|
13
|
Masson O, Bach AS, Derocq D, Prébois C, Laurent-Matha V, Pattingre S, Liaudet-Coopman E. Pathophysiological functions of cathepsin D: Targeting its catalytic activity versus its protein binding activity? Biochimie 2010; 92:1635-43. [DOI: 10.1016/j.biochi.2010.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/14/2010] [Indexed: 11/27/2022]
|
14
|
Zhang Y, Liang J, Li Y, Xuan C, Wang F, Wang D, Shi L, Zhang D, Shang Y. CCCTC-binding factor acts upstream of FOXA1 and demarcates the genomic response to estrogen. J Biol Chem 2010; 285:28604-13. [PMID: 20610384 DOI: 10.1074/jbc.m110.149658] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription activation by estrogen receptor (ER) is rapid and dynamic. How the prompt and precise ER response is established and maintained is still not fully understood. Here, we report that two boundary elements surrounding the well defined ERalpha target TFF1 locus are occupied by the CCCTC-binding factor (CTCF). These elements are separated by 40 kb but cluster in the nuclear space depending on CTCF but independent of estrogen and transcription. In contrast, in estrogen non-responsive breast cancer cells, the spatial proximity of these two elements is lost and the entire locus instead displays a polycomb repressive complex 2-controlled heterochromatin characteristic. We showed that CTCF acts upstream of the "pioneer" factor FOXA1 in determining the genomic response to estrogen. We propose that the CTCF-bound boundary elements demarcate active versus inactive regions, building a framework of adjacent chromosome territory that predisposes ERalpha-regulated transcription.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chatagnon A, Ballestar E, Esteller M, Dante R. A role for methyl-CpG binding domain protein 2 in the modulation of the estrogen response of pS2/TFF1 gene. PLoS One 2010; 5:e9665. [PMID: 20300195 PMCID: PMC2837351 DOI: 10.1371/journal.pone.0009665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/18/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In human Estrogen Receptor alpha (ERalpha)-positive breast cancers, 5' end dense methylation of the estrogen-regulated pS2/TFF1 gene correlates with its transcriptional inhibition. However, in some ERalpha-rich biopsies, pS2 expression is observed despite the methylation of its TATA-box region. Herein, we investigated the methylation-dependent mechanism of pS2 regulation. METHODOLOGY/PRINCIPAL FINDINGS We observed interplay between Methyl-CpG Binding Domain protein 2 (MBD2) transcriptional repressor and ERalpha transactivator: (i) the pS2 gene is poised for transcription upon demethylation limited to the enhancer region containing the estrogen responsive element (ERE); (ii) MBD2-binding sites overlapped with the methylation status of the pS2 5' end; (iii) MBD2 depletion elevated pS2 expression and ectopic expression of ERalpha partially overcame the inhibitory effect of MBD2 when the ERE is unmethylated. Furthermore, serial chromatin immunoprecipitation assays indicated that MBD2 and ERalpha could simultaneously occupy the same pS2 DNA molecule; (iv) concomitant ectopic ERalpha expression and MBD2 depletion resulted in synergistic transcriptional stimulation, while the pS2 promoter remains methylated. CONCLUSIONS/SIGNIFICANCE MBD2 and ERalpha drive opposite effects on pS2 expression, which are associated with specific steady state levels of histone H3 acetylation and methylation marks. Thus, epigenetic silencing of pS2 could be dependent on balance of the relative intracellular concentrations of ERalpha and MBD2.
Collapse
Affiliation(s)
| | - Esteban Ballestar
- Cancer Epigenetics and Biology Programme (PEBC), Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Programme (PEBC), Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
16
|
Medunjanin S, Weinert S, Schmeisser A, Mayer D, Braun-Dullaeus RC. Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-alpha. Mol Biol Cell 2010; 21:1620-8. [PMID: 20219974 PMCID: PMC2861619 DOI: 10.1091/mbc.e09-08-0724] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here we show that, upon estrogen stimulation, DNA-dependent protein kinase (DNA-PK) forms a complex with estrogen receptor-α in a breast cancer cell line (MELN). Inhibition of DNA-PK by siRNA technology demonstrated that estrogen-induced ERα activation and cell cycle progression is, at least, partially dependent on DNA-PK. Estrogens are suggested to play a role in the development and progression of proliferative diseases such as breast cancer. Like other steroid hormone receptors, the estrogen receptor-α (ERα) is a substrate of protein kinases, and phosphorylation has profound effects on its function and activity. Given the importance of DNA-dependent protein kinase (DNA-PK) for DNA repair, cell cycle progression, and survival, we hypothesized that it modulates ERα signaling. Here we show that, upon estrogen stimulation, DNA-PK forms a complex with ERα in a breast cancer cell line (MELN). DNA-PK phosphorylates ERα at Ser-118. Phosphorylation resulted in stabilization of ERα protein as inhibition of DNA-PK resulted in its proteasomal degradation. Activation of DNA-PK by double-strand breaks or its inhibition by siRNA technology demonstrated that estrogen-induced ERα activation and cell cycle progression is, at least, partially dependent on DNA-PK.
Collapse
Affiliation(s)
- Senad Medunjanin
- Internal Medicine, Department of Cardiology, Angiology, and Pneumology, Magdeburg University, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Dalvai M, Bystricky K. The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:19-33. [PMID: 20131086 DOI: 10.1007/s10911-010-9167-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/08/2010] [Indexed: 02/03/2023] Open
Abstract
The role of epigenetic phenomena in cancer biology is increasingly being recognized. Here we focus on the mechanisms and enzymes involved in regulating histone methylation and acetylation, and the modulation of histone variant expression and deposition. Implications of these epigenetic marks for tumor development, progression and invasiveness are discussed with a particular emphasis on breast cancer progression.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Université de Toulouse, LBME, 118 route de Narbonne, 31062, Toulouse, France.
| | | |
Collapse
|
18
|
Markićević M, Petrović A, Kanjer K, Nesković-Konstantinović Z, Nikolić-Vukosavujević D. Estrogen-regulated cut-off values of pS2 and cathepsin D expression in breast carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:341-8. [PMID: 18497057 DOI: 10.1007/978-0-387-69080-3_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The purpose of the study was to asses the expression of estrogen-induced pS2 and cathepsin D (CD) that might facilitate biological subgrouping of patients with breast carcinomas (BC) and its potential applicability in clinical oncology. The study included 226 patients with histologically verified BC. Clinico-pathological findings were classified according to age, menopausal status, tumor size, histologic grade, and regional lymph node status. Estrogen and progesterone receptors (ER and PR), as well as CD and pS2 protein concentrations were assayed on the same cytosolic extract in accordance with the recommendation of EORTC. Statistically significant direct correlations were observed between CD expression and axillary node status and between pS2 expression and histologic grade, while the expression of both proteins was related to both ER and PR status. Baseline levels of CD expression were found in patients with SR-negative status and node-negative or tumors less than 2cm. Unfavorable carcinoma subgroups, in relation to pS2 expression, were defined as pre- and postmenopausal carcinomas with histologic grade III. The highest CD level observed in SR-negative unfavorable subgroups (38.7 pmol/mg) and the highest pS2 level observed in ER(-) unfavorable subgroups (14.7 ng/mg) were considered as the cut-off values. These values defined estrogen-regulated expression of CD and pS2 protein that might enable the identification of patients at high risk of disease progression, for whom more aggressive adjuvant approach would be warranted, as well as the identification of patients whose prognosis is so good that adjuvant therapy would not be cost-beneficial.
Collapse
Affiliation(s)
- Milan Markićević
- Laboratory for Receptors, Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Serbia, Yugoslavia
| | | | | | | | | |
Collapse
|
19
|
Fleury L, Gerus M, Lavigne AC, Richard-Foy H, Bystricky K. Eliminating epigenetic barriers induces transient hormone-regulated gene expression in estrogen receptor negative breast cancer cells. Oncogene 2008; 27:4075-85. [PMID: 18317449 DOI: 10.1038/onc.2008.41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In breast cancer, approximately one-third of tumors express neither the estrogen receptor (ERalpha) nor estrogen-regulated genes such as the progesterone receptor gene (PR). Our study provides new insights into the mechanism allowing hormone-activated expression of ERalpha target genes silenced in ERalpha-negative mammary tumor cells. In cell lines derived from ERalpha-negative MDA-MB231 cells, stable expression of different levels of ERalpha from a transgene did not result in transcription of PR. A quantitative comparative analysis demonstrates that inhibiting DNA methyltransferases using 5-aza-2'-deoxycytidine or specific disruption of DNMT1 by small interfering RNAs and treatment with the histone-deacetylase inhibitor trichostatin A enabled ERalpha-mediated hormone-dependent expression of endogenous PR. We show that demethylation of a CpG island located in the first exon of PR was a prerequisite for ERalpha binding to these regulatory sequences. Although not a general requirement, DNA demethylation is also necessary for derepression of a subset of ERalpha target genes involved in tumorigenesis. PR transcription did not subsist 4 days after removal of the DNA methyltransferase blocking agents, suggesting that hormone-induced expression of ERalpha target genes in ERalpha-negative tumor cells is transient. Our observations support a model where an epigenetic mark confers stable silencing by precluding ERalpha access to promoters.
Collapse
Affiliation(s)
- L Fleury
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
20
|
Le Dily F, Métivier R, Guéguen MM, Le Péron C, Flouriot G, Tas P, Pakdel F. COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer cells. Breast Cancer Res Treat 2007; 110:69-83. [PMID: 17674191 DOI: 10.1007/s10549-007-9693-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
We previously showed that COUP-TFI interacts with the Estrogen Receptor alpha (ER alpha) to recruit Extracellular signal Regulated Kinases (ERKs) in an Estradiol (E2)-independent manner, resulting in an enhancement of ER alpha transcriptional activity. However, the involvement of COUP-TFI in physiologically relevant functions of ER alpha, such as the mitogenic activity that E2 has on breast cancer cells, remains poorly understood. Here, we first showed that the amounts of COUP-TFI protein are higher in dedifferentiated mammary cell lines (MDA-MB-231) and tumor breast cells as compared to the differentiated MCF-7 cell line and normal breast cells. To evaluate the functional relevance of the COUP-TFI/ER alpha interplay in mammary cells, we generated MCF-7 cells that stably over-express COUP-TFI. We found that the over-expression of COUP-TFI enhances motility and invasiveness of MCF-7 cells. COUP-TFI also promotes the proliferation of MCF-7 cells through ER alpha-dependent mechanisms that target cell cycle progression and cell survival. To further investigate the mechanisms underlying these effects of COUP-TFI, we evaluated the expression of known E2-target genes in breast cancer, and found that COUP-TFI differentially regulated genes involved in cell proliferation, apoptosis, and migration/invasion. Notably, Cathepsin D (CTSD) transcript and protein levels were significantly higher in presence and absence of E2 in MCF-7 over-expressing COUP-TFI. Chromatin Immunoprecipitation assays showed that ER alpha, phospho-RNA Polymerase II, as well as p68 RNA Helicase, a phospho-Serine 118 dependent co-activator of ER alpha, were preferentially recruited onto the CTSD gene proximal promoter in COUP-TFI over-expressing cells. These results suggest that COUP-TFI selectively regulates the expression of endogenous E2-target genes and consequently modifies ER alpha positive mammary cells response to E2.
Collapse
Affiliation(s)
- François Le Dily
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026-Interactions Cellulaires et Moléculaires, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Lin Z, Reierstad S, Huang CC, Bulun SE. Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Res 2007; 67:5017-24. [PMID: 17510434 DOI: 10.1158/0008-5472.can-06-3696] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-alpha (ERalpha) and its ligand estradiol play critical roles in breast cancer growth and are important therapeutic targets for this disease. Using chromatin immunoprecipitation (ChIP)-on-chip, ligand-bound ERalpha was recently found to function as a master transcriptional regulator via binding to many cis-acting sites genome-wide. Here, we used an alternative technology (ChIP cloning) and identified 94 ERalpha target loci in breast cancer cells. The ERalpha-binding sites contained both classic estrogen response elements and nonclassic binding sequences, showed specific transcriptional activity in reporter gene assay, and interacted with the key transcriptional regulators, including RNA polymerase II and nuclear receptor coactivator-3. The great majority of the binding sites were located in either introns or far distant to coding regions of genes. Forty-three percent of the genes that lie within 50 kb to an ERalpha-binding site were regulated by estradiol. Most of these genes are novel estradiol targets encoding receptors, signaling messengers, and ion binders/transporters. mRNA profiling in estradiol-treated breast cancer cell lines and tissues revealed that these genes are highly ERalpha responsive both in vitro and in vivo. Among estradiol-induced genes, Wnt11 was found to increase cell survival by significantly reducing apoptosis in breast cancer cells. Taken together, we showed novel genomic binding sites of ERalpha that regulate a novel set of genes in response to estradiol in breast cancer. Our findings suggest that at least a subset of these genes, including Wnt11, may play important in vivo and in vitro biological roles in breast cancer.
Collapse
Affiliation(s)
- Zhihong Lin
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
22
|
Baron S, Escande A, Albérola G, Bystricky K, Balaguer P, Richard-Foy H. Estrogen Receptor α and the Activating Protein-1 Complex Cooperate during Insulin-like Growth Factor-I-induced Transcriptional Activation of the pS2/TFF1 Gene. J Biol Chem 2007; 282:11732-41. [PMID: 17317669 DOI: 10.1074/jbc.m610079200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Insulin like growth factor I (IGF-I) displays estrogenic activity in breast cancer cells. This activity is strictly dependent on the presence of estrogen receptor alpha (ERalpha). However the precise molecular mechanisms involved in this process are still unclear. IGF-I treatment induces phosphorylation of the AF1 domain of ERalpha and activation of estrogen regulated genes. These genes are characterized by important differences in promoter architecture and response element composition. We show that promoter structure is crucial for IGF-I-induced transcription activation. We demonstrate that on a complex promoter such as the pS2/TFF1 promoter, which contains binding sites for ERalpha and for the activating protein-1 (AP1) complex, transcriptional activation by IGF-I requires both ERalpha and the AP1 complex. IGF-I is unable to stimulate transcription of an estrogen-regulated gene under the control of a minimal promoter containing only a binding site for ERalpha. We propose a molecular mechanism with stepwise assembly of the AP1 complex and ERalpha during transcription activation of pS2/TFF1 by IGF-I. IGF-I stimulation induces rapid phosphorylation and an increase in protein levels of the AP1 complex. Binding of the phosphorylated AP1 complex to the pS2/TFF1 promoter allows recruitment of the chromatin remodeling factor Brg1 followed by binding of ERalpha via its interaction with c-Jun.
Collapse
Affiliation(s)
- Sylvain Baron
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS/Université Paul Sabatier, IFR109, 118 route de Narbonne, 31062 Toulouse, France and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | | | |
Collapse
|
23
|
Wei X, Xu H, Kufe D. MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 2006; 21:295-305. [PMID: 16427018 DOI: 10.1016/j.molcel.2005.11.030] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 10/20/2005] [Accepted: 11/23/2005] [Indexed: 02/07/2023]
Abstract
The MUC1 protein is aberrantly overexpressed by most human breast carcinomas. We report that the MUC1 C-terminal subunit associates with estrogen receptor alpha (ERalpha) and that this interaction is stimulated by 17beta-estradiol (E2). MUC1 binds directly to the ERalpha DNA binding domain and stabilizes ERalpha by blocking its ubiquitination and degradation. Chromatin immunoprecipitation assays further demonstrate that MUC1 (1) associates with ERalpha complexes on estrogen-responsive promoters, (2) enhances ERalpha promoter occupancy, and (3) increases recruitment of the p160 coactivators SRC-1 and GRIP1. In concert with these results, we show that MUC1 stimulates ERalpha-mediated transcription and contributes to E2-mediated growth and survival of breast cancer cells. These findings provide evidence that MUC1 stabilizes ERalpha and that this oncoprotein is of importance to the activation of ERalpha function.
Collapse
Affiliation(s)
- Xiaolong Wei
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 2005; 122:33-43. [PMID: 16009131 DOI: 10.1016/j.cell.2005.05.008] [Citation(s) in RCA: 1047] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/06/2005] [Accepted: 05/06/2005] [Indexed: 12/18/2022]
Abstract
Estrogen plays an essential physiologic role in reproduction and a pathologic one in breast cancer. The completion of the human genome has allowed the identification of the expressed regions of protein-coding genes; however, little is known concerning the organization of their cis-regulatory elements. We have mapped the association of the estrogen receptor (ER) with the complete nonrepetitive sequence of human chromosomes 21 and 22 by combining chromatin immunoprecipitation (ChIP) with tiled microarrays. ER binds selectively to a limited number of sites, the majority of which are distant from the transcription start sites of regulated genes. The unbiased sequence interrogation of the genuine chromatin binding sites suggests that direct ER binding requires the presence of Forkhead factor binding in close proximity. Furthermore, knockdown of FoxA1 expression blocks the association of ER with chromatin and estrogen-induced gene expression demonstrating the necessity of FoxA1 in mediating an estrogen response in breast cancer cells.
Collapse
Affiliation(s)
- Jason S Carroll
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen J, Kinyamu HK, Archer TK. Changes in attitude, changes in latitude: nuclear receptors remodeling chromatin to regulate transcription. Mol Endocrinol 2005; 20:1-13. [PMID: 16002433 DOI: 10.1210/me.2005-0192] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptors (NRs) are a large family of ligand-dependent transcription factors that regulate important physiological processes. To activate or repress genes assembled naturally as chromatin, NRs recruit two distinct enzymatic activities, namely histone-modifying enzymes and ATP-dependent chromatin remodeling complexes, to alter local chromatin structure at target gene promoters. In this review, we examine the functional relationship between ATP-dependent chromatin remodeling complexes and NRs in the context of transcriptional regulation. Using the steroid-responsive mouse mammary tumor virus promoter as a model system, we discuss in detail the molecular mechanisms underlying the recruitment of these complexes and subsequent chromatin structure changes catalyzed by this group of enzymes. In addition, we extend the discussion to other NR-regulated promoters including the pS2 promoter. Finally, we summarize specific principles governing this critical relationship, identify unanswered questions and discuss the potential application of these principles in rational drug design.
Collapse
Affiliation(s)
- Jianguang Chen
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
26
|
Sun JM, Spencer VA, Li L, Yu Chen H, Yu J, Davie JR. Estrogen regulation of trefoil factor 1 expression by estrogen receptor alpha and Sp proteins. Exp Cell Res 2005; 302:96-107. [PMID: 15541729 DOI: 10.1016/j.yexcr.2004.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/13/2004] [Indexed: 10/26/2022]
Abstract
Estrogen-responsive genes in human breast cancer cells often have an estrogen response element (ERE) positioned next to an Sp1 binding site. In chromatin immunoprecipitation (ChIP) assays, we investigated the binding of estrogen receptor alpha (ER), Sp1, and Sp3 to the episomal and native estrogen-responsive trefoil factor 1 (TFF1; formerly pS2) promoter in MCF-7 breast cancer cells. Mutation of the Sp site upstream of the ERE reduced estrogen responsiveness and prevented binding of Sp1 and Sp3, but not ER to the episomal promoter. In the absence of estradiol (E2), Sp1, Sp3, histone deacetylase 1 (HDAC), and HDAC2, and low levels of acetylated H3 and H4 are associated with the native promoter, with the histones being engaged in dynamic reversible acetylation. Following E2 addition, levels of ER and acetylated H3 and H4 bound to the native promoter increases. There is clearance of Sp1, but not of Sp3, from the promoter while HDAC1 and HDAC2 remain bound. These data are consistent with a model in which Sp1 or Sp3 aid in recruitment of HDACs and histone acetyltransferases (HATs) to mediate dynamic acetylation of histones associated with the TFF1 promoter, which is in a state of readiness to respond to events occurring following the addition of estrogen.
Collapse
Affiliation(s)
- Jian-Min Sun
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Scholtens D, Miron A, M. Merchant F, Miller A, L. Miron P, Dirk Iglehart J, Gentleman R. Analyzing factorial designed microarray experiments. J MULTIVARIATE ANAL 2004. [DOI: 10.1016/j.jmva.2004.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription. ACTA ACUST UNITED AC 2004; 1677:30-45. [PMID: 15020043 DOI: 10.1016/j.bbaexp.2003.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 02/07/2023]
Abstract
Lipophilic hormones, including steroids, exert their physiological effects through binding to high-affinity superfamily of steroid hormone receptor (SR) proteins that function as ligand-dependent DNA binding transcription factors. To date, SR proteins are among a few transcription factors shown to directly interact with higher order chromatin structures to regulate gene expression. To perturb chromatin, SRs employ enzymatic multicomplexes that can either remodel or modify chromatin. Here we examine the current state of knowledge concerning multicomplex chromatin remodeling/modification machines and SR-dependent transcription. We will focus on the role of these protein-protein and chromatin-protein interactions in vivo with the MMTV promoter as a primary model. In addition, we discuss emerging evidence implicating chaperone proteins and proteasome degradation machinery in SR-mediated gene regulation within chromatin.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, PO Box 12233 (MD E4-06), Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
29
|
Shao D, Berrodin TJ, Manas E, Hauze D, Powers R, Bapat A, Gonder D, Winneker RC, Frail DE. Identification of novel estrogen receptor alpha antagonists. J Steroid Biochem Mol Biol 2004; 88:351-60. [PMID: 15145444 DOI: 10.1016/j.jsbmb.2004.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 01/16/2004] [Indexed: 11/26/2022]
Abstract
We have identified novel estrogen receptor alpha (ERalpha) antagonists using both cell-based and computer-based virtual screening strategies. A mammalian two-hybrid screen was used to select compounds that disrupt the interaction between the ERalpha ligand binding domain (LBD) and the coactivator SRC-3. A virtual screen was designed to select compounds that fit onto the LxxLL peptide-binding surface of the receptor, based on the X-ray crystal structure of the ERalpha LBD complexed with a LxxLL peptide. All selected compounds effectively inhibited 17-beta-estradiol induced coactivator recruitment with potency ranging from nano-molar to micromolar. However, in contrast to classical ER antagonists, these novel inhibitors poorly displace estradiol in the ER-ligand competition assay. Nuclear magnetic resonance (NMR) suggested direct binding of these compounds to the receptors pre-complexed with estradiol and further demonstrated that no estradiol displacement occurred. Partial proteolytic enzyme digestion revealed that, when compared with 17-beta-estradiol- and 4 hydroxy-tamoxifen (4-OHT) bound receptors, at least one of these compounds might induce a unique receptor conformation. These small molecules may represent new classes of ER antagonists, and may have the potential to provide an alternative for the current anti-estrogen therapy.
Collapse
Affiliation(s)
- Dalei Shao
- Women's Health and Bone, Wyeth Research, 500 Arcola Road, RN2294, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Millot B, Montoliu L, Fontaine ML, Mata T, Devinoy E. Hormone-induced modifications of the chromatin structure surrounding upstream regulatory regions conserved between the mouse and rabbit whey acidic protein genes. Biochem J 2003; 372:41-52. [PMID: 12580766 PMCID: PMC1223369 DOI: 10.1042/bj20021894] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Revised: 01/09/2003] [Accepted: 02/11/2003] [Indexed: 02/04/2023]
Abstract
The upstream regulatory regions of the mouse and rabbit whey acidic protein (WAP) genes have been used extensively to target the efficient expression of foreign genes into the mammary gland of transgenic animals. Therefore both regions have been studied to elucidate fully the mechanisms controlling WAP gene expression. Three DNase I-hypersensitive sites (HSS0, HSS1 and HSS2) have been described upstream of the rabbit WAP gene in the lactating mammary gland and correspond to important regulatory regions. These sites are surrounded by variable chromatin structures during mammary-gland development. In the present study, we describe the upstream sequence of the mouse WAP gene. Analysis of genomic sequences shows that the mouse WAP gene is situated between two widely expressed genes (Cpr2 and Ramp3). We show that the hypersensitive sites found upstream of the rabbit WAP gene are also detected in the mouse WAP gene. Further, they encompass functional signal transducer and activator of transcription 5-binding sites, as has been observed in the rabbit. A new hypersensitive site (HSS3), not specific to the mammary gland, was mapped 8 kb upstream of the rabbit WAP gene. Unlike the three HSSs described above, HSS3 is also detected in the liver, but similar to HSS1, it does not depend on lactogenic hormone treatments during cell culture. The region surrounding HSS3 encompasses a potential matrix attachment region, which is also conserved upstream of the mouse WAP gene and contains a functional transcription factor Ets-1 (E26 transformation-specific-1)-binding site. Finally, we demonstrate for the first time that variations in the chromatin structure are dependent on prolactin alone.
Collapse
Affiliation(s)
- Benjamin Millot
- Unité de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique, 78 352 Jouy en josas Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Laganière J, Deblois G, Giguère V. Nuclear receptor target gene discovery using high-throughput chromatin immunoprecipitation. Methods Enzymol 2003; 364:339-50. [PMID: 14631854 DOI: 10.1016/s0076-6879(03)64019-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Josée Laganière
- Molecular Oncology Group, McGill University Health Centre, Department of Biochemistry, McGill University, Montréal, Québec, Canada H3A 1A1
| | | | | |
Collapse
|
32
|
Giamarchi C, Chailleux C, Calligé M, Rochaix P, Trouche D, Richard-Foy H. Two antiestrogens affect differently chromatin remodeling of trefoil factor 1 (pS2) gene and the fate of estrogen receptor in MCF7 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:12-20. [PMID: 12393183 DOI: 10.1016/s0167-4781(02)00480-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show here that the two antagonists ICI 182 780, a pure estrogen antagonist, and 4-hydroxy-tamoxifen, a selective estrogen receptor modulator (SERM) have distinct effects on TFF1 (formerly pS2) gene chromatin structure and transcription. Indeed, ICI 182 780 decreased both the intensity of the hormone-dependent DNase I hypersensitive site pS2 HS-1 and transcription of the pS2 gene whereas 4-hydroxy-tamoxifen (OH-Tam) increased the intensity of pS2-HS1 and had no effect on pS2 gene transcription. Interestingly, these differential effects are associated with different fates of ERalpha following the two treatments: The ERalpha-OH-Tam complex was retained in the nucleus more efficiently than the ERalpha-estradiol complex. In contrast, ICI 182 780 provoked a rapid relocation of ERalpha complex to an insoluble nuclear fraction, followed by its degradation. Taken together, these data suggest that regulating the amount of ERalpha in the nucleus is a major way of action of estrogen antagonists with respect to chromatin remodeling and transcriptional control.
Collapse
Affiliation(s)
- Claire Giamarchi
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 route de Narbonne, F-31062 Toulouse cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Hoffmann W, Jagla W. Cell type specific expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:147-81. [PMID: 11837892 DOI: 10.1016/s0074-7696(02)13014-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The "TFF domain" is an ancient cysteine-rich shuffled module forming the basic unit for the family of secretory TFF peptides (formerly P-domain peptides and trefoil factors). It is also an integral component of mosaic proteins associated with mucous surfaces. Three mammalian TFF peptides are known (i.e., TFF1-TFF3); however, in Xenopus laevis the pattern is more complex (xP1, xP4.1, xP4.2, and xP2). TFF peptides are typical secretory products of a variety of mucin-producing epithelial cells (e.g., the conjunctiva, the salivary glands, the gastrointestinal tract, the respiratory tract, and the uterus). Each TFF peptide shows an unique expression pattern and different mucin-producing cells are characterized by their specific TFF peptide/secretory mucin combinations. TFF peptides have a pivotal role in maintaining the surface integrity of mucous epithelia in vivo. They are typical constituents of mucus gels, they modulate rapid mucosal repair ("restitution") by their motogenic and their cell scattering activity, they have antiapoptotic effects, and they probably modulate inflammatory processes. Pathological expression of TFF peptides occurs as a result of chronic inflammatory diseases or certain tumors. TFF peptides are also found in the central nervous system, at least in mammals. In particular, TFF3 is synthesized from oxytocinergic neurons of the hypothalamus and is released from the posterior pituitary into the bloodstream.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institut für Molekularbiologie und Medizinische Chemie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | |
Collapse
|
34
|
Rochefort H, Rouayrenc J, Roger P. Cathepsin D in Breast Cancer—20 Years Later. Breast Cancer 2002. [DOI: 10.1201/b14039-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
|
36
|
Inoue A, Hayashi SI, Aoyagi K, Nishigaki M, Sasaki H, Kiyama R. A reporter gene assay for evaluation of tissue-specific responses to estrogens based on the differential use of promoters A to F of the human estrogen receptor alpha gene. J Pharmacol Toxicol Methods 2002; 47:129-35. [PMID: 12628303 DOI: 10.1016/s1056-8719(02)00221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Reporter gene assays are useful means for monitoring cellular responses. We report here a reporter gene assay for evaluating and monitoring estrogen activities by estrogen-like compounds and xenoestrogens, which is based on the promoters from the human estrogen receptor alpha (ERalpha) gene. METHODS The reporter gene constructs contained a proximal promoter region (containing promoters A and B: ProAB) or either of promoters C to F (ProC, ProD, ProE, and ProF) or fused minor promoters (ProCDEF). These constructs were first used to evaluate promoter activity in cell lines derived from breast (MCF-7 and T-47D cells), ovary (SK-OV-3 cells), endometrium (Ishikawa cells), and stomach (MKN-28 cells). RESULTS Besides very high levels of activity by ProAB in all of the cell lines tested, moderate levels were detected for ProD in the breast and endometrium cell lines and for ProF in the ovary and endometrium cell lines. A moderate level of activity by ProE was detected only in the stomach cells. Differences in estrogen-like activity between ProAB and ProD were observed for tamoxifen and bisphenol A (BPA) in MCF-7 cells. DISCUSSION The assay proposed here might provide expression profiles of cancer cells of various origins for evaluating the estrogen responsiveness and for identifying tissue- or cancer cell-specific transcription factors.
Collapse
Affiliation(s)
- Akio Inoue
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Morales V, Giamarchi C, Chailleux C, Moro F, Marsaud V, Le Ricousse S, Richard-Foy H. Chromatin structure and dynamics: functional implications. Biochimie 2001; 83:1029-39. [PMID: 11879731 DOI: 10.1016/s0300-9084(01)01347-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In eucaryotes, DNA packaging into nucleosomes and its organization in a chromatin fiber generate constraints for all processes involving DNA, such as DNA-replication, -repair, -recombination, and -transcription. Transient changes in chromatin structure allow overcoming these constraints with different requirements in regions where processes described above are initiated. Mechanisms involved in chromatin dynamics are complex. Multiprotein complexes which can contain histone-acetyltransferase, -deacetylase, -methyltransferase or -kinase activities are targeted by regulatory factors to precise regions of the genome. These enzymes have been shown to modify histone-tails within specific nucleosomes. Post-translational modifications of histone-tails constitute a code that is thought to contribute to the nucleosome or to the chromatin fiber remodeling, either directly, or through the recruitment of other proteins. Other multiprotein complexes, such as ATP-dependent remodeling complexes, play an essential role in chromatin fiber dynamics allowing nucleosome sliding and redistribution on the DNA. We will focus here on the chromatin structure and its consequences for DNA damaging, replication, repair, and transcription and we will discuss the mechanisms of chromatin remodeling.
Collapse
Affiliation(s)
- V Morales
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, CNRS, 118, route de Narbonne, 31062 Toulouse cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Giamarchi C, Chailleux C, Richard-Foy H. Chromatin remodeling in hormone-dependent and -independent breast cancer cell lines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 480:155-61. [PMID: 10959422 DOI: 10.1007/0-306-46832-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Chromatin restricts the accessibility of DNA to regulatory factors; its remodelling over the regulatory regions contributes to the control of gene expression. An increasing number of evidence links defects in chromatin remodelling machinery and cancer. Our aim is to elucidate the role of chromatin structure in the control of the expression of hormone-induced genes in breast cell lines oestrogen-dependent or -independent for growth. Mammary tumour growth is controlled by steroid hormones via their nuclear receptor and by growth factors via tyrosine kinase receptors. 50% of these tumours elude to hormonal control. This limits the anti-oestrogen therapy. As a model, we have analysed in several cell lines the chromatin organisation of the regulatory regions of two genes, pS2 that is associated with a good prognostic, and cathepsin D (catD) that is a bad prognostic marker. The expression of the two genes is oestrogen-regulated in oestrogen-dependent cell line MCF7. In contrast in the hormone-independent cell line MDA MB 231, pS2 is not expressed and catD is constitutively expressed. Within the regulatory regions of pS2 gene, we have localised two regions that undergo a hormone-dependent change in chromatin structure in MCF7 cells but not in MDA MB 231 and that can be correlated with gene expression. In contrast catD regulatory regions did not display hormone-dependent changes in chromatin structure, suggesting that hormone regulation takes place within regions with a constitutively open chromatin structure.
Collapse
Affiliation(s)
- C Giamarchi
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, Toulouse, France
| | | | | |
Collapse
|
39
|
Looi LM, Azura WW, Cheah PL, Ng MH. PS2 Expression in infiltrating ductal carcinoma of the breast correlates with oestrogen receptor positivity but not with histological grade and lymph node status. Pathology 2001. [DOI: 10.1080/00313020126321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103:843-52. [PMID: 11136970 DOI: 10.1016/s0092-8674(00)00188-4] [Citation(s) in RCA: 1316] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Many cofactors bind the hormone-activated estrogen receptor (ER), yet the specific regulators of endogenous ER-mediated gene transcription are unknown. Using chromatin immunoprecipitation (ChIP), we find that ER and a number of coactivators rapidly associate with estrogen responsive promoters following estrogen treatment in a cyclic fashion that is not predicted by current models of hormone activation. Cycles of ER complex assembly are followed by transcription. In contrast, the anti-estrogen tamoxifen (TAM) recruits corepressors but not coactivators. Using a genetic approach, we show that recruitment of the p160 class of coactivators is sufficient for gene activation and for the growth stimulatory actions of estrogen in breast cancer supporting a model in which ER cofactors play unique roles in estrogen signaling.
Collapse
Affiliation(s)
- Y Shang
- Department of Adult Oncology Dana-Farber Cancer Institute and Harvard Medical School 02115, Boston, MA, USA
| | | | | | | | | |
Collapse
|
41
|
Ruibal A, Arias J, del Río MC, San Román JM, Lapeña G, Pardo C, Tejerina A. [Clinico-biological impact of pS2 positivity in estrogen receptor negative-infiltrating ductal carcinomas of the breast]. REVISTA ESPANOLA DE MEDICINA NUCLEAR 2000; 19:428-33. [PMID: 11060273 DOI: 10.1016/s0212-6982(00)71905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
UNLABELLED The pS2 protein is regulated by estrogens, but it can also be expressed in hormone independent breast carcincomas. We have carried out the present study in order to analyze the clinical-biological impact of pS2 positivity (>2 ng/mg prt.) in negative estrogen receptors (< 10 fmol/mg prt.) infiltrating ductal breast carcinomas (IDC). MATERIAL AND METHODS 97 negative ER-IDC have been included in our study. We established the doses of the cytosol levels of pS2, progesterone receptors (PR), cathepsin D, tissue -type plasminogen activator (t-PA) and hyaluronic acid (HA), as well as the levels of HA, epidermal growth factor receptor (EGFR), CD44v5 and CD44v6 in cell surface membranes. We also considered the menopausal status, histological grade, ploidy, cellular synthesis phase, tumor size, axillary lymph node involvement and the existence of distant metastasis. The same results were obtained when the progesterone receptor status was also considered. RESULTS ER-/pS2+ IDC presented higher (p <0,05) PR, t-PA and HA cytosol level, as well as lower EGFR concentrations, S-phase > 7% and S-phase >14% and lower N+>10 percentages and aneuploidy. They were also more frequently CD44v6+. The same results were observed when the positivity of the progesterone receptors was considered. CONCLUSIONS The above results lead us to consider that the positivity for pS2 in ER- IDC is associated with hormone-dependent parameters, good differentiation and lower cellular proliferation, which can explain a better clinical outcome.
Collapse
Affiliation(s)
- A Ruibal
- Servicios de Medicina Nuclear. Fundación Jiménez Díaz. Madrid. Fundación Tejerina. Madrid
| | | | | | | | | | | | | |
Collapse
|
42
|
DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol 2000; 20:7541-9. [PMID: 11003650 PMCID: PMC86306 DOI: 10.1128/mcb.20.20.7541-7549.2000] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Accepted: 07/21/2000] [Indexed: 11/20/2022] Open
Abstract
Several factors that mediate activation by nuclear receptors also modify the chemical and structural composition of chromatin. Prominent in this diverse group is the steroid receptor coactivator 1 (SRC-1) family, which interact with agonist-bound nuclear receptors, thereby coupling them to multifunctional transcriptional coregulators such as CREB-binding protein (CBP), p300, and PCAF, all of which have potent histone acetyltransferase activity. Additionally factors including the Brahma-related gene 1 (BRG-1) that are involved in the structural remodeling of chromatin also mediate hormone-dependent transcriptional activation by nuclear receptors. Here, we provide evidence that these two distinct mechanisms of coactivation may operate in a collaborative manner. We demonstrate that transcriptional activation by the estrogen receptor (ER) requires functional BRG-1 and that the coactivation of estrogen signaling by either SRC-1 or CBP is BRG-1 dependent. We find that in response to estrogen, ER recruits BRG-1, thereby targeting BRG-1 to the promoters of estrogen-responsive genes in a manner that occurs simultaneous to histone acetylation. Finally, we demonstrate that BRG-1-mediated coactivation of ER signaling is regulated by the state of histone acetylation within a cell. Inhibition of histone deacetylation by trichostatin A dramatically increases BRG-1-mediated coactivation of ER signaling, and this increase is reversed by overexpression of histone deacetylase 1. These studies support a critical role for BRG-1 in ER action in which estrogen stimulates an ER-BRG-1 association coupling BRG-1 to regions of chromatin at the sites of estrogen-responsive promoters and promotes the activity of other recruited factors that alter the acetylation state of chromatin.
Collapse
Affiliation(s)
- J DiRenzo
- Department of Adult Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kinyamu HK, Fryer CJ, Horwitz KB, Archer TK. The mouse mammary tumor virus promoter adopts distinct chromatin structures in human breast cancer cells with and without glucocorticoid receptor. J Biol Chem 2000; 275:20061-8. [PMID: 10751396 DOI: 10.1074/jbc.m001142200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptors represent a class of transcription regulators that act in part by overcoming the often repressive nature of chromatin to modulate gene activity. The mouse mammary tumor virus (MMTV) promoter is a useful model for studying transcriptional regulation by steroid hormone receptors in the context of chromatin. The chromatin architecture of the promoter prevents the assembly of basal transcription machinery and binding of ubiquitous transcription factors. However, in human breast carcinoma T47D cells lacking the glucocorticoid receptor (GR), but expressing the progesterone receptor (PR), nucleosome B (nuc B) assumes a constitutively hypersensitive chromatin structure. This correlation led us to test the hypothesis that the chromatin structure of nuc B was dependent on GR expression in T47D cells. To examine this possibility, we stably co-transfected the MMTV promoter and the GR into T47D cells that lacked both the GR and the PR. We found that in T47D cells that lack both the GR and the PR or express only the GR, nuc B assumes a constitutively "open" chromatin structure, which allows hormone independent access by restriction endonucleases and transcription factors. These results suggest that in GR(+)/pr(-) T47D cells, the MMTV chromatin structure permits GR transcriptional activation, independent of chromatin remodeling.
Collapse
Affiliation(s)
- H K Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
44
|
Tai H, Kubota N, Kato S. Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem Biophys Res Commun 2000; 267:311-6. [PMID: 10623616 DOI: 10.1006/bbrc.1999.1954] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Steroid hormones regulate cell growth and function through the transcriptional control of target genes by their cognate nuclear receptors. These receptors bind to ligands and associate with transcriptional cofactors to stimulate transcription. SRC-1, one of the nuclear receptor coactivators, is known to interact with nuclear receptors and enhance transactivation function in a ligand-dependent manner. In this study, to assess the function of SRC-1 in cell growth regulated by nuclear receptor ligands, we established a stable transformant cell line overexpressing human SRC-1 and studied the action of 17beta-estradiol (E(2)) on cell growth as well as the expression of E(2)-responsive genes in MCF-7 cells. We found that SRC-1 overexpression potentiates cell growth stimulated by E(2) in accordance with enhancement of transcriptional activation of exogenous and endogenous E(2)-responsive genes. These findings clearly indicate the importance of nuclear receptor coactivators for the activities of steroid/lipophilic vitamins in cell growth and gene expression.
Collapse
Affiliation(s)
- H Tai
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., Shizuoka, 412-8513, Japan
| | | | | |
Collapse
|