1
|
Mfuh AM, Boerth JA, Bommakanti G, Chan C, Chinn AJ, Code E, Fricke PJ, Giblin KA, Gohlke A, Hansel C, Hariparsad N, Hughes SJ, Jin M, Kantae V, Kavanagh SL, Lamb ML, Lane J, Moore R, Puri T, Quinn TR, Reddy I, Robb GR, Robbins KJ, Gancedo Rodrigo M, Schimpl M, Singh B, Singh M, Tang H, Thomson C, Walsh JJ, Ware J, Watson IDG, Ye MW, Wrigley GL, Zhang AX, Zhang Y, Grimster NP. Discovery, Optimization, and Biological Evaluation of Arylpyridones as Cbl-b Inhibitors. J Med Chem 2024; 67:1500-1512. [PMID: 38227216 DOI: 10.1021/acs.jmedchem.3c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.
Collapse
Affiliation(s)
- Adelphe M Mfuh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Gayathri Bommakanti
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Alex J Chinn
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Erin Code
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Patrick J Fricke
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Andrea Gohlke
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Niresh Hariparsad
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Meizhong Jin
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Vasudev Kantae
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Michelle L Lamb
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jordan Lane
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Rachel Moore
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Taranee Puri
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Taylor R Quinn
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Iswarya Reddy
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Kevin J Robbins
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Miguel Gancedo Rodrigo
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Isomorphic Laboratories, 280 Bishopsgate, London EC2M 4RB, U.K
| | | | - Baljinder Singh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Meha Singh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Haoran Tang
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Jarrod J Walsh
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Jamie Ware
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Iain D G Watson
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Min-Wei Ye
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Andrew X Zhang
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Yun Zhang
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Neil P Grimster
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
2
|
Zhou L, Yang J, Zhang K, Wang T, Jiang S, Zhang X. Rising Star in Immunotherapy: Development and Therapeutic Potential of Small-Molecule Inhibitors Targeting Casitas B Cell Lymphoma-b (Cbl-b). J Med Chem 2024; 67:816-837. [PMID: 38181380 DOI: 10.1021/acs.jmedchem.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Casitas B cell lymphoma-b (Cbl-b) is a vital negative regulator of TCR and BCR signaling pathways, playing a significant role in setting an appropriate threshold for the activation of T cells and controlling the tolerance of peripheral T cells via a variety of mechanisms. Overexpression of Cbl-b leads to immune hyporesponsiveness of T cells. Conversely, the deficiency of Cbl-b in T cells results in markedly increased production of IL-2, even in the lack of CD28 costimulation in vitro. And Cbl-b-/- mice spontaneously reject multifarious cancers. Therefore, Cbl-b may be associated with immune-mediated diseases, and blocking Cbl-b could be considered as a new antitumor immunotherapy strategy. In this review, the possible regulatory mechanisms and biological potential of Cbl-b for antitumor immunotherapy are summarized. Besides, the potential roles of Cbl-b in immune-mediated diseases are comprehensively discussed, with emphasis on Cbl-b immune-oncology agents in the preclinical stage and clinical trials.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Tsai YL, Arias-Badia M, Kadlecek TA, Lwin YM, Srinath A, Shah NH, Wang ZE, Barber D, Kuriyan J, Fong L, Weiss A. TCR signaling promotes formation of an STS1-Cbl-b complex with pH-sensitive phosphatase activity that suppresses T cell function in acidic environments. Immunity 2023; 56:2682-2698.e9. [PMID: 38091950 PMCID: PMC10785950 DOI: 10.1016/j.immuni.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
T cell responses are inhibited by acidic environments. T cell receptor (TCR)-induced protein phosphorylation is negatively regulated by dephosphorylation and/or ubiquitination, but the mechanisms underlying sensitivity to acidic environments are not fully understood. Here, we found that TCR stimulation induced a molecular complex of Cbl-b, an E3-ubiquitin ligase, with STS1, a pH-sensitive unconventional phosphatase. The induced interaction depended upon a proline motif in Cbl-b interacting with the STS1 SH3 domain. STS1 dephosphorylated Cbl-b interacting phosphoproteins. The deficiency of STS1 or Cbl-b diminished the sensitivity of T cell responses to the inhibitory effects of acid in an autocrine or paracrine manner in vitro or in vivo. Moreover, the deficiency of STS1 or Cbl-b promoted T cell proliferative and differentiation activities in vivo and inhibited tumor growth, prolonged survival, and improved T cell fitness in tumor models. Thus, a TCR-induced STS1-Cbl-b complex senses intra- or extra-cellular acidity and regulates T cell responses, presenting a potential therapeutic target for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Yuan-Li Tsai
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marcel Arias-Badia
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yee May Lwin
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aahir Srinath
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Zhi-En Wang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diane Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Cuadrado M, Robles-Valero J. VAV Proteins as Double Agents in Cancer: Oncogenes with Tumor Suppressor Roles. BIOLOGY 2021; 10:biology10090888. [PMID: 34571765 PMCID: PMC8466051 DOI: 10.3390/biology10090888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary The role of the VAV family (comprised of VAV1, VAV2, and VAV3) in proactive pathways involved in cell transformation has been historically assumed. Indeed, the discovery of potential gain-of-function VAV1 mutations in specific tumor subtypes reinforced this functional archetype. Contrary to this paradigm, we demonstrated that VAV1 could unexpectedly act as a tumor suppressor in some in vivo contexts. In this review, we discuss recent findings in the field, where the emerging landscape is one in which GTPases and their regulators, such as VAV proteins, can exhibit tumor suppressor functions. Abstract Guanosine nucleotide exchange factors (GEFs) are responsible for catalyzing the transition of small GTPases from the inactive (GDP-bound) to the active (GTP-bound) states. RHO GEFs, including VAV proteins, play essential signaling roles in a wide variety of fundamental cellular processes and in human diseases. Although the most widespread archetype in the field is that RHO GEFs exert proactive functions in cancer, recent studies in mice and humans are providing new insights into the in vivo function of these proteins in cancer. These results suggest a more complex scenario where the role of GEFs is not so clearly defined. For example, VAV1 can unexpectedly play non-catalytic tumor suppressor functions in T-cell acute lymphoblastic leukemia (T-ALL) by controlling the levels of the active form of NOTCH1 (ICN1). This review focuses on emerging work unveiling tumor suppressor roles for these proteins that should prompt a reevaluation of the role of VAV GEF family in tumor biology.
Collapse
Affiliation(s)
- Myriam Cuadrado
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Javier Robles-Valero
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
5
|
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol 2021; 4:696. [PMID: 34103645 PMCID: PMC8187363 DOI: 10.1038/s42003-021-02149-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.
Collapse
Affiliation(s)
- Silke Pudewell
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Neda S. Kazemein Jasemi
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats. Stem Cell Res Ther 2021; 12:117. [PMID: 33579361 PMCID: PMC7879635 DOI: 10.1186/s13287-021-02148-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although exosomes, as byproducts of human umbilical cord mesenchymal stem cells (hUC-MSCs), have been demonstrated to be an effective therapy for traumatic spinal cord injury (SCI), their mechanism of action remains unclear. Methods We designed and performed this study to determine whether exosomes attenuate the lesion size of SCI by ameliorating neuronal injury induced by a secondary inflammatory storm and promoting neurite outgrowth. We determined the absolute levels of all exosomal miRNAs and investigated the potential mechanisms of action of miR-199a-3p/145-5p in inducing neurite outgrowth in vivo and in vitro. Results miR-199a-3p/145-5p, which are relatively highly expressed miRNAs in exosomes, promoted PC12 cell differentiation suppressed by lipopolysaccharide (LPS) in vitro through modulation of the NGF/TrkA pathway. We also demonstrated that Cblb was a direct target of miR-199a-3p and that Cbl was a direct target of miR-145-5p. Cblb and Cbl gene knockdown resulted in significantly decreased TrkA ubiquitination levels, subsequently activating the NGF/TrkA downstream pathways Akt and Erk. Conversely, overexpression of Cblb and Cbl was associated with significantly increased TrkA ubiquitination level, subsequently inactivating the NGF/TrkA downstream pathways Akt and Erk. Western blot and coimmunoprecipitation assays confirmed the direct interaction between TrkA and Cblb and TrkA and Cbl. In an in vivo experiment, exosomal miR-199a-3p/145-5p was found to upregulate TrkA expression at the lesion site and also promote locomotor function in SCI rats. Conclusions In summary, our study showed that exosomes transferring miR-199a-3p/145-5p into neurons in SCI rats affected TrkA ubiquitination and promoted the NGF/TrkA signaling pathway, indicating that hUC-MSC-derived exosomes may be a promising treatment strategy for SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02148-5.
Collapse
|
7
|
Freund-Brown J, Chirino L, Kambayashi T. Strategies to enhance NK cell function for the treatment of tumors and infections. Crit Rev Immunol 2019; 38:105-130. [PMID: 29953390 DOI: 10.1615/critrevimmunol.2018025248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells are innate immune cells equipped with the ability to rapidly kill stressed cells that are neoplastic or virally infected. These cells are especially important in settings where these stressed cells downregulate MHC class I molecules and evade recognition by cytotoxic T cells. However, the activity of NK cells alone is often suboptimal to fully control tumor growth or to clear viral infections. Thus, the enhancement of NK cell function is necessary to fully harness their antitumor or antiviral potential. In this review, we discuss how NK cell function can be augmented by the modulation of signal transduction pathways, by the manipulation of inhibitory/activating receptors on NK cells, and by cytokine-induced activation. We also discuss how some of these strategies are currently impacting NK cells in the treatment of cancer and infections.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leilani Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
Rodríguez-Jorge O, Kempis-Calanis LA, Abou-Jaoudé W, Gutiérrez-Reyna DY, Hernandez C, Ramirez-Pliego O, Thomas-Chollier M, Spicuglia S, Santana MA, Thieffry D. Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4 + T cell activation. Sci Signal 2019; 12:12/577/eaar3641. [PMID: 30992399 DOI: 10.1126/scisignal.aar3641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4+ T cells recognize antigens through their T cell receptors (TCRs); however, additional signals involving costimulatory receptors, for example, CD28, are required for proper T cell activation. Alternative costimulatory receptors have been proposed, including members of the Toll-like receptor (TLR) family, such as TLR5 and TLR2. To understand the molecular mechanism underlying a potential costimulatory role for TLR5, we generated detailed molecular maps and logical models for the TCR and TLR5 signaling pathways and a merged model for cross-interactions between the two pathways. Furthermore, we validated the resulting model by analyzing how T cells responded to the activation of these pathways alone or in combination, in terms of the activation of the transcriptional regulators CREB, AP-1 (c-Jun), and NF-κB (p65). Our merged model accurately predicted the experimental results, showing that the activation of TLR5 can play a similar role to that of CD28 activation with respect to AP-1, CREB, and NF-κB activation, thereby providing insights regarding the cross-regulation of these pathways in CD4+ T cells.
Collapse
Affiliation(s)
- Otoniel Rodríguez-Jorge
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.,Escuela de Estudios Superiores de Axochiapan, Universidad Autónoma del Estado de Morelos, 62951 Axochiapan, México
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Wassim Abou-Jaoudé
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Céline Hernandez
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Oscar Ramirez-Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Morgane Thomas-Chollier
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | | | - Maria A Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.
| | - Denis Thieffry
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France.
| |
Collapse
|
9
|
Tang R, Langdon WY, Zhang J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol 2018; 340:103878. [PMID: 30442330 DOI: 10.1016/j.cellimm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Casitas B lymphoma-b (Cbl-b), a RING finger E3 ubiquitin ligase, has been identified as a critical regulator of adaptive immune responses. Cbl-b is essential for establishing the threshold for T cell activation and regulating peripheral T cell tolerance through various mechanisms. Intriguingly, recent studies indicate that Cbl-b also modulates innate immune responses, and plays a key role in host defense to pathogens and anti-tumor immunity. These studies suggest that targeting Cbl-b may represent a potential therapeutic strategy for the management of human immune-related disorders such as autoimmune diseases, infections, tumors, and allergic airway inflammation. In this review, we summarize the latest developments regarding the roles of Cbl-b in innate and adaptive immunity, and immune-mediated diseases.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wallace Y Langdon
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Sanchez-Quiles V, Akimov V, Osinalde N, Francavilla C, Puglia M, Barrio-Hernandez I, Kratchmarova I, Olsen JV, Blagoev B. Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor. Mol Cell Proteomics 2017; 16:1433-1446. [PMID: 28572092 DOI: 10.1074/mcp.m116.066423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Cylindromatosis tumor suppressor protein (CYLD) is a deubiquitinase, best known as an essential negative regulator of the NFkB pathway. Previous studies have suggested an involvement of CYLD in epidermal growth factor (EGF)-dependent signal transduction as well, as it was found enriched within the tyrosine-phosphorylated complexes in cells stimulated with the growth factor. EGF receptor (EGFR) signaling participates in central cellular processes and its tight regulation, partly through ubiquitination cascades, is decisive for a balanced cellular homeostasis. Here, using a combination of mass spectrometry-based quantitative proteomic approaches with biochemical and immunofluorescence strategies, we demonstrate the involvement of CYLD in the regulation of the ubiquitination events triggered by EGF. Our data show that CYLD regulates the magnitude of ubiquitination of several major effectors of the EGFR pathway by assisting the recruitment of the ubiquitin ligase Cbl-b to the activated EGFR complex. Notably, CYLD facilitates the interaction of EGFR with Cbl-b through its Tyr15 phosphorylation in response to EGF, which leads to fine-tuning of the receptor's ubiquitination and subsequent degradation. This represents a previously uncharacterized strategy exerted by this deubiquitinase and tumors suppressor for the negative regulation of a tumorigenic signaling pathway.
Collapse
Affiliation(s)
- Virginia Sanchez-Quiles
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Vyacheslav Akimov
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nerea Osinalde
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Chiara Francavilla
- §Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michele Puglia
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Inigo Barrio-Hernandez
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Irina Kratchmarova
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper V Olsen
- §Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark;
| |
Collapse
|
11
|
Abe T, Hirasaka K, Nikawa T. Involvement of Cbl-b-mediated macrophage inactivation in insulin resistance. World J Diabetes 2017; 8:97-103. [PMID: 28344752 PMCID: PMC5348625 DOI: 10.4239/wjd.v8.i3.97] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/31/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Aging and overnutrition cause obesity in rodents and humans. It is well-known that obesity causes various diseases by producing insulin resistance (IR). Macrophages infiltrate the adipose tissue (AT) of obese individuals and cause chronic low-level inflammation associated with IR. Macrophage infiltration is regulated by the chemokines that are released from hypertrophied adipocytes and the immune cells in AT. Saturated fatty acids are recognized by toll-like receptor 4 (TLR4) and induce inflammatory responses in AT macrophages (ATMs). The inflammatory cytokines that are released from activated ATMs promote IR in peripheral organs, such as the liver, skeletal muscle and AT. Therefore, ATM activation is a therapeutic target for IR in obesity. The ubiquitin ligase Casitas b-lineage lymphoma-b (Cbl-b) appears to potently suppress macrophage migration and activation. Cbl-b is highly expressed in leukocytes and negatively regulates signals associated with migration and activation. Cbl-b deficiency enhances ATM accumulation and IR in aging- and diet-induced obese mice. Cbl-b inhibits migration-related signals and SFA-induced TLR4 signaling in ATMs. Thus, targeting Cbl-b may be a potential therapeutic strategy to reduce the IR induced by ATM activation. In this review, we summarize the regulatory functions of Cbl-b in ATMs.
Collapse
|
12
|
Zhu LL, Luo TM, Xu X, Guo YH, Zhao XQ, Wang TT, Tang B, Jiang YY, Xu JF, Lin X, Jia XM. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity. J Exp Med 2016; 213:1555-70. [PMID: 27432944 PMCID: PMC4986534 DOI: 10.1084/jem.20151932] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/15/2016] [Indexed: 12/19/2022] Open
Abstract
Innate immune responses mediated by C-type lectin receptors Dectin-2 and Dectin-3 against fungal infections are negatively regulated by Cbl-b ubiquitination. Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B–lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b–deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents.
Collapse
Affiliation(s)
- Le-Le Zhu
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Tian-Ming Luo
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China
| | - Xia Xu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ya-Hui Guo
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China
| | - Xue-Qiang Zhao
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China
| | - Ting-Ting Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bing Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Ying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jin-Fu Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Lin
- Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xin-Ming Jia
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
13
|
Identification of Gene Mutations and Fusion Genes in Patients with Sézary Syndrome. J Invest Dermatol 2016; 136:1490-1499. [DOI: 10.1016/j.jid.2016.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
|
14
|
Xiao Y, Qiao G, Tang J, Tang R, Guo H, Warwar S, Langdon WY, Tao L, Zhang J. Protein Tyrosine Phosphatase SHP-1 Modulates T Cell Responses by Controlling Cbl-b Degradation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4218-27. [PMID: 26416283 DOI: 10.4049/jimmunol.1501200] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/31/2015] [Indexed: 01/27/2023]
Abstract
Previously, we demonstrated that CD28 and CTLA-4 signaling control Casitas-B-lineage lymphoma (Cbl)-b protein expression, which is critical for T cell activation and tolerance induction. However, the molecular mechanism(s) of this regulation remains to be elucidated. In this study, we found that Cbl-b fails to undergo tyrosine phosphorylation upon CD3 stimulation because SHP-1 is recruited to and dephosphorylates Cbl-b, whereas CD28 costimulation abrogates this interaction. In support of this finding, T cells lacking SHP-1 display heightened tyrosine phosphorylation and ubiquitination of Cbl-b upon TCR stimulation, which correlates with decreased levels of Cbl-b protein. The aberrant Th2 phenotype observed in T cell-specific Shp1(-/-) mice is reminiscent of heightened Th2 response in Cblb(-/-) mice. Indeed, overexpressing Cbl-b in T cell-specific Shp1(-/-) T cells not only inhibits heightened Th2 differentiation in vitro, but also Th2 responses and allergic airway inflammation in vivo. Therefore, SHP-1 regulates Cbl-b-mediated T cell responses by controlling its tyrosine phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Yun Xiao
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China; Department of Nephrology, The First Affiliated Hospital, Guangzhou Medical University, 510120 Guangzhou, People's Republic of China
| | - Guilin Qiao
- Section of Nephrology, Department of Medicine, The University of Chicago, Chicago, IL 60637; and
| | - Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Rong Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Samantha Warwar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China;
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; Section of Nephrology, Department of Medicine, The University of Chicago, Chicago, IL 60637; and
| |
Collapse
|
15
|
Emdal KB, Pedersen AK, Bekker-Jensen DB, Tsafou KP, Horn H, Lindner S, Schulte JH, Eggert A, Jensen LJ, Francavilla C, Olsen JV. Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation. Sci Signal 2015; 8:ra40. [PMID: 25921289 DOI: 10.1126/scisignal.2005769] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SH-SY5Y neuroblastoma cells respond to nerve growth factor (NGF)-mediated activation of the tropomyosin-related kinase A (TrkA) with neurite outgrowth, thereby providing a model to study neuronal differentiation. We performed a time-resolved analysis of NGF-TrkA signaling in neuroblastoma cells using mass spectrometry-based quantitative proteomics. The combination of interactome, phosphoproteome, and proteome data provided temporal insights into the molecular events downstream of NGF binding to TrkA. We showed that upon NGF stimulation, TrkA recruits the E3 ubiquitin ligase Cbl-b, which then becomes phosphorylated and ubiquitylated and decreases in abundance. We also found that recruitment of Cbl-b promotes TrkA ubiquitylation and degradation. Furthermore, the amount of phosphorylation of the kinase ERK and neurite outgrowth increased upon Cbl-b depletion in several neuroblastoma cell lines. Our findings suggest that Cbl-b limits NGF-TrkA signaling to control the length of neurites.
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Kalliopi P Tsafou
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Heiko Horn
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany. Department of Pediatric Oncology and Hematology, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany. German Cancer Consortium (DKTK), 13353 Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany. Department of Pediatric Oncology and Hematology, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany. German Cancer Consortium (DKTK), 13353 Berlin, Germany
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Liu Q, Zhou H, Langdon WY, Zhang J. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle 2014; 13:1875-84. [PMID: 24875217 DOI: 10.4161/cc.29213] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases.
Collapse
Affiliation(s)
- Qingjun Liu
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China; Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| | - Hong Zhou
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine; University of Western Australia; Crawley, Western Australia, Australia
| | - Jian Zhang
- Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| |
Collapse
|
17
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
18
|
T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. J Allergy Clin Immunol 2013; 132:648-655.e1. [PMID: 23684068 DOI: 10.1016/j.jaci.2013.03.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome protein (WASP) links T-cell receptor (TCR) signaling to the actin cytoskeleton. WASP is normally protected from degradation by the Ca(++)-dependent protease calpain and by the proteasome because of its interaction with the WASP-interacting protein. OBJECTIVE We investigated whether WASP is degraded after TCR ligation and whether its degradation downregulates F-actin assembly caused by TCR ligation. METHODS Primary T cells, Jurkat T cells, and transfected 293T cells were used in immunoprecipitation experiments. Intracellular F-actin content was measured in splenic T cells from wild-type, WASP-deficient, and c-Casitas B-lineage lymphoma (Cbl)-b-deficient mice by using flow cytometry. Calpeptin and MG-132 were used to inhibit calpain and the proteasome, respectively. RESULTS A fraction of WASP in T cells was degraded by calpain and by the ubiquitin-proteasome pathway after TCR ligation. The Cbl-b and c-Cbl E3 ubiquitin ligases associated with WASP after TCR signaling and caused its ubiquitination. Inhibition of calpain and lack of Cbl-b resulted in a significantly more sustained increase in F-actin content after TCR ligation in wild-type T cells but not in WASP-deficient T cells. CONCLUSION TCR ligation causes WASP to be degraded by calpain and to be ubiquitinated by Cbl family E3 ligases, which targets it for destruction by the proteasome. WASP degradation might provide a mechanism for regulating WASP-dependent TCR-driven assembly of F-actin.
Collapse
|
19
|
Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling. Blood 2011; 118:5631-40. [PMID: 21967979 DOI: 10.1182/blood-2011-01-328807] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
c-Cbl protein functions as an E3 ligase and scaffolding protein, where 3 residues, Y700, Y731, and Y774, upon phosphorylation, have been shown to initiate several signaling cascades. In this study, we investigated the role of these phospho-tyrosine residues in the platelet functional responses after integrin engagement. We observed that c-Cbl Y700, Y731 and Y774 undergo phosphorylation upon platelet adhesion to immobilized fibrinogen, which was inhibited in the presence of PP2, a pan-src family kinase (SFK) inhibitor, suggesting that c-Cbl is phosphorylated downstream of SFKs. However, OXSI-2, a Syk inhibitor, significantly reduced c-Cbl phosphorylation at residues Y774 and Y700, without affecting Y731 phosphorylation. Interestingly, PP2 inhibited both platelet-spreading on fibrinogen as well as clot retraction, whereas OXSI-2 blocked only platelet-spreading, suggesting a differential role of these tyrosine residues. The physiologic role of c-Cbl and Y731 was studied using platelets from c-Cbl KO and c-Cbl(YF/YF) knock-in mice. c-Cbl KO and c-Cbl(YF/YF) platelets had a significantly reduced spreading over immobilized fibrinogen. Furthermore, clot retraction with c-Cbl KO and c-Cbl(YF/YF) platelets was drastically delayed. These results indicate that c-Cbl and particularly its phosphorylated residue Y731 plays an important role in platelet outside-in signaling contributing to platelet-spreading and clot retraction.
Collapse
|
20
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed and evolutionary conserved adapter protein possessing a plethora of described interaction partners for the regulation of signal transduction. In B lymphocytes, the Grb2-mediated scaffolding function controls the assembly and subcellular targeting of activating as well as inhibitory signalosomes in response to ligation of the antigen receptor. Also, integration of simultaneous signals from B-cell coreceptors that amplify or attenuate antigen receptor signal output relies on Grb2. Hence, Grb2 is an essential signal integrator. The key question remains, however, of how pathway specificity can be maintained during signal homeostasis critically required for the balance between immune cell activation and tolerance induction. Here, we summarize the molecular network of Grb2 in B cells and introduce a proteomic approach to elucidate the interactome of Grb2 in vivo.
Collapse
Affiliation(s)
- Konstantin Neumann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
Daniel JL, Dangelmaier CA, Mada S, Buitrago L, Jin J, Langdon WY, Tsygankov AY, Kunapuli SP, Sanjay A. Cbl-b is a novel physiologic regulator of glycoprotein VI-dependent platelet activation. J Biol Chem 2010; 285:17282-91. [PMID: 20400514 DOI: 10.1074/jbc.m109.080200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cgamma2 (PLCgamma2) and Bruton's tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b(-/-)) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca(2+) mobilization. A parallel inhibition is found for activation of PLCgamma2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCgamma2. When Cbl-b(-/-) mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.
Collapse
Affiliation(s)
- James L Daniel
- Department of Anatomy, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
c-Cbl acts as a mediator of Src-induced activation of the PI3K-Akt signal transduction pathway during TRAIL treatment. Cell Signal 2010; 22:377-85. [PMID: 19861161 DOI: 10.1016/j.cellsig.2009.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/08/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
We have previously observed that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces acquired TRAIL resistance by increasing Akt phosphorylation and Bcl-xL expression. In this study, we report that Src, c-Cbl, and PI3K are involved in the phosphorylation of Akt during TRAIL treatment. Data from immunoprecipitation and immunoblotting assay reveal that Src interacts with c-Cbl and PI3K. Data from immune complex kinase assay demonstrate that Src can directly phosphorylate c-Cbl and PI3K p85 subunit protein. Data from gene knockdown experiments with an RNA interference (RNAi) technique show that c-Cbl is involved in the interaction between Src and PI3K p85 during TRAIL treatment, playing an important role in TRAIL-induced Akt phosphorylation. Taken together, c-Cbl may act as a mediator to regulate the Src-PI3K-Akt signal transduction pathway during TRAIL treatment.
Collapse
|
23
|
Doherty M, Osborne DG, Browning DL, Parker DC, Wetzel SA. Anergic CD4+ T cells form mature immunological synapses with enhanced accumulation of c-Cbl and Cbl-b. THE JOURNAL OF IMMUNOLOGY 2010; 184:3598-608. [PMID: 20207996 DOI: 10.4049/jimmunol.0902285] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cell recognition of MHC:peptide complexes in the context of a costimulatory signal results in the large-scale redistribution of molecules at the T cell-APC interface to form the immunological synapse. The immunological synapse is the location of sustained TCR signaling and delivery of a subset of effector functions. T cells activated in the absence of costimulation are rendered anergic and are hyporesponsive when presented with Ag in the presence of optimal costimulation. Several previous studies have looked at aspects of immunological synapses formed by anergic T cells, but it remains unclear whether there are differences in the formation or composition of anergic immunological synapses. In this study, we energized primary murine CD4(+) T cells by incubation of costimulation-deficient, transfected fibroblast APCs. Using a combination of TCR, MHC:peptide, and ICAM-1 staining, we found that anergic T cells make mature immunological synapses with characteristic central and peripheral supramolecular activation cluster domains that were indistinguishable from control synapses. There were small increases in total phosphotyrosine at the anergic synapse along with significant decreases in phosphorylated ERK 1/2 accumulation. Most striking, there was specific accumulation of c-Cbl and Cbl-b to the anergic synapses. Cbl-b, previously shown to be essential in anergy induction, was found in both the central and the peripheral supramolecular activation clusters of the anergic synapse. This Cbl-b (and c-Cbl) accumulation at the anergic synapse may play an important role in anergy maintenance, induction, or both.
Collapse
Affiliation(s)
- Melissa Doherty
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | | | | |
Collapse
|
24
|
Paolino M, Penninger JM. Cbl-b in T-cell activation. Semin Immunopathol 2010; 32:137-48. [PMID: 20458601 DOI: 10.1007/s00281-010-0197-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/29/2009] [Indexed: 01/07/2023]
Abstract
Peripheral activation of antigen-specific T cells is stringently controlled to prevent immune responses against self-antigens. Only after a T cell is presented with two signals, an antigen and a co-stimulatory signal, can they be fully activated. In case antigen presentation occurs without co-stimulation, T-cell receptor (TCR) signaling pathways are regulated to prevent T-cell activation and induce T-cell tolerance. Thus, for a productive T-cell response to occur, co-stimulatory receptors need to serve the dual role of amplifying the TCR signaling while concomitantly releasing T cells from suppression. Biochemical and genetic studies during the last 10 years have documented the critical role of the E3 ubiquitin-ligase Cbl-b in this fundamental two-signal modulation of T-cell responses. In this review, we will discuss our current understanding on how Cbl-b controls T-cell activation and tolerance, its in vivo implications, as well as mechanisms for tuning T-cell-mediated immune responses by this essential E3 ligase.
Collapse
Affiliation(s)
- Magdalena Paolino
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030, Vienna, Austria.
| | | |
Collapse
|
25
|
Abstract
Recent studies have demonstrated that a number of E3 ubiquitin ligases, including Cbl, Smurf1, Smurf2, HDM2, BCA2, SCF(beta-TRCP) and XRNF185, play important roles in cell adhesion and migration. Cbl negatively regulates cell adhesion via alpha integrin and Rap1 and inhibits actin polymerization by ubiquitinating mDab1 and WAVE2. Smurf1 regulates cell migration through ubiquitination of RhoA, talin head domain and hPEM2, while Smurf2 ubiquitinates Smurf1, TGFbeta type I receptor and RaplB to modulate cell migration and adhesion. HDM2 negatively regulates cell migration by targeting NFAT (a transcription factor) for ubiquitination and degradation, while SCF(beta-TRCP) ubiquitinates Snail (a transcriptional repressor of E-cadherin) to inhibit cell migration. TRIM32 promotes cell migration through ubiquitination of Abl interactor 2 (Abi2), a tumor suppressor. RNF5 and XRNF185 modulate cell migration by ubiquitinating paxillin. Thus, these E3 ubiquitin ligases regulate cell adhesion and (or) migration through ubiquitination of their specific substrates.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Kim JH, Kim K, Jin HM, Song I, Youn BU, Lee SH, Choi Y, Kim N. Negative feedback control of osteoclast formation through ubiquitin-mediated down-regulation of NFATc1. J Biol Chem 2009; 285:5224-31. [PMID: 20037154 DOI: 10.1074/jbc.m109.042812] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of NFATc1 expression is important for osteoclast differentiation and function. Herein, we demonstrate that macrophage-colony-stimulating factor induces NFATc1 degradation via Cbl proteins in a Src kinase-dependent manner. NFATc1 proteins are ubiquitinated and rapidly degraded during late stage osteoclastogenesis, and this degradation is mediated by Cbl-b and c-Cbl ubiquitin ligases in a Src-dependent manner. In addition, NFATc1 interacts endogenously with c-Src, c-Cbl, and Cbl-b in osteoclasts. Overexpression of c-Src induces down-regulation of NFATc1, and depletion of Cbl proteins blocks NFATc1 degradation during late stage osteoclastogenesis. Taken together, our data provide a negative regulatory mechanism by which macrophage-colony-stimulating factor activates Src family kinases and Cbl proteins, and subsequently, induces NFATc1 degradation during osteoclast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- National Research Laboratory for Regulation of Bone Metabolism and Disease, Medical Research Center for Gene Regulation, Research Institute of Medical Sciences, Brain Korea 21, Chonnam National University Medical School, Gwangju 501-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
MacGlashan DW, Ishmael S, MacDonald SM, Langdon JM, Arm JP, Sloane DE. Induced loss of Syk in human basophils by non-IgE-dependent stimuli. THE JOURNAL OF IMMUNOLOGY 2008; 180:4208-17. [PMID: 18322233 DOI: 10.4049/jimmunol.180.6.4208] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the general population, Syk expression in human basophils is highly variable and correlates well with the IgE-mediated responsiveness of these cells. Previous studies established that IgE-mediated stimulation results in loss of Syk expression. The current studies investigated whether stimulation through other receptors results in loss of Syk. Two classes of stimulation were examined, those that operate through the kinase Syk and those that operate through a GTP-binding protein. These studies demonstrated that aggregation of leukocyte Ig-like receptor LILRA-2 resulted in phosphorylation of Syk and c-Cbl, was inhibited by a third generation Syk inhibitor with an expected IC(50), and induced histamine release in strict proportion to release induced by anti-IgE Ab. Stimulation of LILRA-2 for 18 h resulted in modest loss of Syk that correlated with the more profound loss of Syk induced by anti-IgE Ab. Human recombinant histamine-releasing factor has also recently been shown to induce Syk phosphorylation and in the current studies has also been shown to induce loss of Syk in 18-h cultures. fMLP stimulation for 18 h was also found to induce modest loss of Syk. fMLP induced phosphorylation of c-Cbl that was sustained for at least 45 min. Phosphorylation of c-Cbl was inhibited by a Syk kinase inhibitor but with an IC(50) that was not consistent with Syk activity, suggesting another kinase was responsible for Cbl phosphorylation following fMLP. These studies demonstrate that it is possible to induce the loss of Syk expression in human basophils by a non-IgE-dependent mechanism and even by a mechanism that does directly involve Syk in the reaction complex.
Collapse
Affiliation(s)
- Donald W MacGlashan
- Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Cronin SJF, Penninger JM. From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 2008; 220:151-68. [PMID: 17979845 DOI: 10.1111/j.1600-065x.2007.00570.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The activation of resting T cells is crucial to most immune processes. Recognition of foreign antigen by T-cell receptors has to be correctly translated into signal transduction events necessary for the induction of an effective immune response. In this review, we discuss the essential signals, molecules, and processes necessary to achieve full T-cell activation. In addition to describing these key biological events, we also discuss how T-cell receptor signaling may be harnessed to yield new therapeutic targets for a next generation of anti-cancer drugs.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
29
|
Abstract
Directing both innate and adaptive immune responses against foreign pathogens with correct timing, location and specificity is a fundamental objective for the immune system. Full activation of CD4+ T cells requires the binding of peptide-MHC complexes coupled with accessory signals provided by the antigen-presenting cell. However, aberrant activation of the T-cell receptor alone in mature T cells can produce a long-lived state of functional unresponsiveness, known as anergy. Recent studies probing both immune signalling pathways and the ubiquitin-proteasome system have helped to refine and elaborate current models for the molecular mechanisms underlying T-cell anergy. Controlling anergy induction and maintenance will be a key component in the future to mitigate unwanted T-cell activation that leads to autoimmune disease.
Collapse
Affiliation(s)
- C Garrison Fathman
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, CCSR Building, 269 Campus Drive, Room 2225, Stanford, California 94305-5166, USA.
| | | |
Collapse
|
30
|
Loeser S, Penninger JM. Regulation of peripheral T cell tolerance by the E3 ubiquitin ligase Cbl-b. Semin Immunol 2007; 19:206-14. [PMID: 17391982 DOI: 10.1016/j.smim.2007.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 02/07/2023]
Abstract
The family of the Casitas B-lineage Lymphoma (Cbl) proteins, c-Cbl, Cbl-b, and Cbl-3, function as E3 ubiquitin ligases and molecular adaptors. In particular, Cbl-b acts as a gatekeeper in T cell activation that controls activation thresholds and the requirement for co-stimulation. Loss of Cbl-b expression renders animals susceptible to antigen-triggered autoimmunity suggesting that Cbl-b is a key autoimmunity gene. In addition, Cbl-b plays a critical role in T cell anergy and escape from regulatory T cells (Treg) suppression. Modulation of Cbl-b might provide us with a unique opportunity for future immune treatment of human disorders such as autoimmunity, immunodeficiency, or cancer.
Collapse
Affiliation(s)
- Stefanie Loeser
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria.
| | | |
Collapse
|
31
|
Thien C, Langdon W. c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 2006; 391:153-66. [PMID: 16212556 PMCID: PMC1276912 DOI: 10.1042/bj20050892] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activation of signalling pathways by ligand engagement with transmembrane receptors is responsible for determining many aspects of cellular function and fate. While these outcomes are initially determined by the nature of the ligand and its receptor, it is also essential that intracellular enzymes, adaptor proteins and transcription factors are correctly assembled to convey the intended response. In recent years, it has become evident that proteins that regulate the amplitude and duration of these signalling responses are also critical in determining the function and fate of cells. Of these, the Cbl family of E3 ubiquitin ligases and adaptor proteins has emerged as key negative regulators of signals from many types of cell-surface receptors. The array of receptors and downstream signalling proteins that are regulated by Cbl proteins is diverse; however, in most cases, the receptors have a common link in that they either possess a tyrosine kinase domain or they form associations with cytoplasmic PTKs (protein tyrosine kinases). Thus Cbl proteins become involved in signalling responses at a time when PTKs are first activated and therefore provide an initial line of defence to ensure that signalling responses proceed at the desired intensity and duration.
Collapse
Affiliation(s)
- Christine B. F. Thien
- School of Surgery and Pathology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Correspondence may be addressed to either author (email or )
| | - Wallace Y. Langdon
- School of Surgery and Pathology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Correspondence may be addressed to either author (email or )
| |
Collapse
|
32
|
Qu X, Miah SMS, Hatani T, Okazaki M, Hori-Tamura N, Yamamura H, Hotta H, Sada K. Selective Inhibition of FcεRI-Mediated Mast Cell Activation by a Truncated Variant of Cbl-b Related to the Rat Model of Type 1 Diabetes Mellitus. ACTA ACUST UNITED AC 2005; 137:711-20. [PMID: 16002993 DOI: 10.1093/jb/mvi088] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Ubiquitin-protein ligase Cbl-b negatively regulates high affinity IgE receptor (FcepsilonRI)-mediated degranulation and cytokine gene transcription in mast cells. In this study, we have examined the role of a truncated variant of Cbl-b related to the rat model of type 1 diabetes mellitus using the mast cell signaling model. Overexpression of the truncated Cbl-b that lacks the C-terminal region did not suppress the activation of proximal and distal signaling molecules leading to degranulation. FcepsilonRI-mediated tyrosine phosphorylation of Syk, Gab2, and phospholipase C-gamma1, and activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAP kinase), and inhibitor of nuclear factor kappaB kinase (IKK), and generation of Rac1 are unaffected in cells overexpressing the truncated Cbl-b in the lipid raft. On the other hand, FcepsilonRI-mediated transcriptional activation of nuclear factor of activated T cells (NFAT), and transcription of interleukin-3 (IL-3) and IL-4 mRNA are inhibited by overexpression of the truncated variant of Cbl-b. This suppression parallels the re-compartmentalization of specific effector molecules in the lipid raft. These structural and functional analyses reveal the mechanism underlying the selective inhibition of cellular signaling by the truncated variant of Cbl-b related to insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Xiujuan Qu
- Division of Proteomics and Division of Microbiology, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Blankenhorn EP, Rodemich L, Martin-Fernandez C, Leif J, Greiner DL, Mordes JP. The rat diabetes susceptibility locus Iddm4 and at least one additional gene are required for autoimmune diabetes induced by viral infection. Diabetes 2005; 54:1233-7. [PMID: 15793267 PMCID: PMC2518668 DOI: 10.2337/diabetes.54.4.1233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BBDR rats develop autoimmune diabetes only after challenge with environmental perturbants. These perturbants include polyinosinic:polycytidylic acid (poly I:C, a ligand of toll-like receptor 3), agents that deplete regulatory T-cell (Treg) populations, and a non-beta-cell cytopathic parvovirus (Kilham rat virus [KRV]). The dominant diabetes susceptibility locus Iddm4 is required for diabetes induced by treatment with poly I:C plus Treg depletion. Iddm4 is penetrant in congenic heterozygous rats on the resistant WF background and is 79% sensitive and 80% specific as a predictor of induced diabetes. Surprisingly, an analysis of 190 (BBDR x WF)F2 rats treated with KRV after brief exposure to poly I:C revealed that the BBDR-origin allele of Iddm4 is necessary but not entirely sufficient for diabetes expression. A genome scan identified a locus on chromosome 17, designated Iddm20, that is also required for susceptibility to diabetes after exposure to KRV and poly I:C (logarithm of odds score 3.7). These data suggest that the expression of autoimmune diabetes is a complex process that requires both major histocompatibility complex genes that confer susceptibility and additional genes such as Iddm4 and Iddm20 that operate only in the context of specific environmental perturbants, amplifying the immune response and the rate of disease progression.
Collapse
Affiliation(s)
- Elizabeth P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lévy F, Muehlethaler K, Salvi S, Peitrequin AL, Lindholm CK, Cerottini JC, Rimoldi D. Ubiquitylation of a melanosomal protein by HECT-E3 ligases serves as sorting signal for lysosomal degradation. Mol Biol Cell 2005; 16:1777-87. [PMID: 15703212 PMCID: PMC1073660 DOI: 10.1091/mbc.e04-09-0803] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The production of pigment by melanocytic cells of the skin involves a series of enzymatic reactions that take place in specialized organelles called melanosomes. Melan-A/MART-1 is a melanocytic transmembrane protein with no enzymatic activity that accumulates in vesicles at the trans side of the Golgi and in melanosomes. We show here that, in melanoma cells, Melan-A associates with two homologous to E6-AP C-terminus (HECT)-E3 ubiquitin ligases, NEDD4 and Itch, and is ubiquitylated. Both NEDD4 and Itch participate in the degradation of Melan-A. A mutant Melan-A lacking ubiquitin-acceptor residues displays increased half-life and, in pigmented cells, accumulates in melanosomes. These results suggest that ubiquitylation regulates the lysosomal sorting and degradation of Melan-A/MART-1 from melanosomes in melanocytic cells.
Collapse
Affiliation(s)
- Frédéric Lévy
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhang J, Chiang YJ, Hodes RJ, Siraganian RP. Inactivation of c-Cbl or Cbl-b differentially affects signaling from the high affinity IgE receptor. THE JOURNAL OF IMMUNOLOGY 2004; 173:1811-8. [PMID: 15265912 DOI: 10.4049/jimmunol.173.3.1811] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Cbl family of proteins negatively regulate signaling from tyrosine kinase-coupled receptors. Among the three members of this family, only c-Cbl and Cbl-b are expressed in hemopoietic cells. To examine the role of c-Cbl and Cbl-b in Fc epsilon RI signaling, mast cell cultures from wild-type, c-Cbl(-/-), and Cbl-b(-/-) mice were generated. Cell growth rates and cell surface expression of Fc epsilon RI were similar in the different cell populations. Compared with control cells, Cbl-b inactivation resulted in increases in Fc epsilon RI-induced Ca(2+) response and histamine release. Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins, Syk, and phospholipase C-gamma was also enhanced by Cbl-b deficiency, whereas receptor-initiated phosphorylation of Vav, JNK, and p38 kinases was not changed in these cells. In contrast to Cbl-b, c-Cbl deficiency had no detectable effect on Fc epsilon RI-induced histamine release or on the phosphorylation of total cellular proteins or Syk. The absence of c-Cbl increased the phosphorylation of ERK after receptor stimulation, but resulted in slightly reduced p38 phosphorylation and Ca(2+) response. These results suggest that Cbl-b and c-Cbl have divergent effects on Fc epsilon RI signal transduction and that Cbl-b, but not c-Cbl, functions as a negative regulator of Fc epsilon RI-induced degranulation.
Collapse
Affiliation(s)
- Juan Zhang
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Gelkop S, Babichev Y, Kalifa R, Tamir A, Isakov N. Involvement of crk adapter proteins in regulation of lymphoid cell functions. Immunol Res 2004; 28:79-91. [PMID: 14610286 DOI: 10.1385/ir:28:2:79] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Crk adapter proteins consist of Src homology 2 (SH2) SH2 and SH3 domains, which bind tyrosine-phosphorylated peptides and polyproline-rich motives, respectively. They are linked to multiple signaling pathways in different cell types, including lymphocytes, and because of their lack of catalytic activity, many studies on Crk were aimed at the identification of their binding partners and determination of the physiologic meaning of these interactions. Crk proteins were found to be involved in the early steps of lymphocyte activation through their SH2-mediated transient interaction with signal-transducing molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, Crk proteins are constitutively associated with effector molecules that mediate cell adhesion and thereby regulate lymphocyte extravasation and recruitment to sites of inflammation. This article describes selected studies of Crk, performed predominantly in lymphocytes, and discusses their potential relevance to the role of Crk in the regulation of lymphocyte functions.
Collapse
Affiliation(s)
- Sigal Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
37
|
Abstract
Ubiquitin (Ub)-protein conjugation represents a novel means of posttranscriptional modification in a proteolysis-dependent or -independent manner. E3 Ub ligases play a key role in governing the cascade of Ub transfer reactions by recognizing and catalyzing Ub conjugation to specific protein substrates. The E3s, which can be generally classified into HECT-type and RING-type families, are involved in the regulation of many aspects of the immune system, including the development, activation, and differentiation of lymphocytes, T cell-tolerance induction, antigen presentation, immune evasion, and virus budding. E3-promoted ubiquitination affects a wide array of biological processes, such as receptor downmodulation, signal transduction, protein processing or translocation, protein-protein interaction, and gene transcription, in addition to proteasome-mediated degradation. Deficiency or mutation of some of the E3s like Cbl, Cbl-b, or Itch, causes abnormal immune responses such as autoimmunity, malignancy, and inflammation. This review discusses our current understanding of E3 Ub ligases in both innate and adaptive immunity. Such knowledge may facilitate the development of novel therapeutic approaches for immunological diseases.
Collapse
Affiliation(s)
- Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
38
|
Liu J, DeYoung SM, Hwang JB, O'Leary EE, Saltiel AR. The roles of Cbl-b and c-Cbl in insulin-stimulated glucose transport. J Biol Chem 2003; 278:36754-62. [PMID: 12842890 DOI: 10.1074/jbc.m300664200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies suggest that the stimulation of glucose transport by insulin involves the tyrosine phosphorylation of c-Cbl and the translocation of the c-Cbl/CAP complex to lipid raft subdomains of the plasma membrane. We now demonstrate that Cbl-b also undergoes tyrosine phosphorylation and membrane translocation in response to insulin in 3T3-L1 adipocytes. Ectopic expression of APS facilitated insulin-stimulated phosphorylation of tyrosines 665 and 709 in Cbl-b. The phosphorylation of APS produced by insulin drove the translocation of both c-Cbl and Cbl-b to the plasma membrane. Like c-Cbl, Cbl-b associates constitutively with CAP and interacts with Crk upon insulin stimulation. Cbl proteins formed homo- and heterodimers in vivo, which required the participation of a conserved leucine zipper domain. A Cbl mutant incapable of dimerization failed to interact with APS and to undergo tyrosine phosphorylation in response to insulin, indicating an essential role of Cbl dimerization in these processes. Thus, both c-Cbl and Cbl-b can initiate a phosphatidylinositol 3-kinase/protein kinase B-independent signaling pathway critical to insulin-stimulated GLUT4 translocation.
Collapse
Affiliation(s)
- Jun Liu
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
39
|
Zhang W, Shao Y, Fang D, Huang J, Jeon MS, Liu YC. Negative regulation of T cell antigen receptor-mediated Crk-L-C3G signaling and cell adhesion by Cbl-b. J Biol Chem 2003; 278:23978-83. [PMID: 12697763 DOI: 10.1074/jbc.m212671200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was previously reported that Cbl-b associates with Crk-L in Jurkat T cells. However, the physiological significance of such association remains unclear. Here we examined a regulatory role of Cbl-b in Crk-L-C3G signaling pathway. We found that Cbl-b associates with, and induces, ubiquitin conjugation to Crk-L, which requires a functional RING finger. Cbl-b deficiency does not affect Crk-L stability, but its association with C3G. In Cbl-b-/- T cells, the interaction between Crk-L and C3G, and the activity of the small GTPase Rap1, are increased. Cbl-b-/- T cells also display increased adhesion and cell surface binding to ICAM-1, a finding that is supported by the enhanced clustering of LFA-1 in Cbl-b-/- T cells in response to TCR stimulation. Thus, Cbl-b plays a negative role in Crk-L-C3G-mediated Rap1 and LFA-1 activation in T cells.
Collapse
Affiliation(s)
- Wenying Zhang
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
40
|
Shao Y, Elly C, Liu YC. Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase. EMBO Rep 2003; 4:425-31. [PMID: 12671687 PMCID: PMC1319168 DOI: 10.1038/sj.embor.embor813] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 02/24/2003] [Accepted: 02/28/2003] [Indexed: 11/08/2022] Open
Abstract
Cbl functions as an adaptor protein by interacting with other signalling molecules to form multimolecular complexes. Previous studies have proposed that Cbl is also a positive regulator of CrkL-C3G signalling, which leads to Rap1 activation. However, there is a lack of genetic evidence for a physiological function of Cbl in regulating this pathway. Here, we show that Cbl deficiency results in enhanced activation of Rap1. Cbl was shown to promote the ubiquitylation of CrkL without any apparent effect on its stability. Remarkably, the membrane translocation of C3G, its association with CrkL, and the guanine-nucleotide exchange activity of C3G were all increased in Cbl(-/-) thymocytes. Consistent with a function of Rap1 in integrin activation, enhanced integrin-mediated cell adhesion was also seen in Cbl(-/-) thymocytes. Thus, Cbl negatively regulates Rap1 activation, probably through a proteolysis-independent E3-ubiquitin-ligase activity of Cbl that modulates protein-protein interactions.
Collapse
Affiliation(s)
- Yuan Shao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
- Tel: +1 858 678 4604; Fax: +1 858 558 3525;
| |
Collapse
|
41
|
Wang L, Rudert WA, Loutaev I, Roginskaya V, Corey SJ. Repression of c-Cbl leads to enhanced G-CSF Jak-STAT signaling without increased cell proliferation. Oncogene 2002; 21:5346-55. [PMID: 12149655 DOI: 10.1038/sj.onc.1205670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2001] [Revised: 05/09/2002] [Accepted: 05/14/2002] [Indexed: 11/09/2022]
Abstract
Engagement of the Granulocyte-Colony-Stimulating Factor (G-CSF) receptor activates non-receptor protein tyrosine kinases Lyn and Jak2. We found that Lyn-deficient DT40 cells that express the G-CSF receptor (DT40GR) do not demonstrate G-CSF-induced mitogenic signaling. Lyn associates with and phosphorylates a small set of molecules, including c-Cbl. c-Cbl is an adaptor involved in cell growth and cytoskeletal reorganization, predominantly in hematopoietic cells. Using yeast two-hybrid analysis, we found that c-Cbl directly couples Lyn to PI 3-kinase. We also found that expression of the c-CblY731F mutant, which uncouples PI 3-kinase, resulted in the inhibition of G-CSF-induced proliferative signaling in DT40GR cells. As a complementary strategy, we sought to analyse the effects of c-Cbl deficiency in DT40GR cells. We isolated, cloned and sequenced the full-length cDNA for chicken c-Cbl and constructed antisense vectors. Antisense inhibition of c-Cbl expression in DT40GR cells led to enhanced Jak-STAT activation following G-CSF stimulation. Yet, this enhancement of Jak-STAT activation was associated with decreased G-CSF-induced PI 3-kinase activity and DNA synthesis. PI 3-kinase activity correlated with DNA synthesis and physiological levels of c-Cbl. Together, these data suggest that physiologic level of c-Cbl provides a growth stimulatory pathway for G-CSF and that enhanced Jak-STAT activation is not sufficient for G-CSF-induced growth.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
42
|
Yasuda T, Tezuka T, Maeda A, Inazu T, Yamanashi Y, Gu H, Kurosaki T, Yamamoto T. Cbl-b positively regulates Btk-mediated activation of phospholipase C-gamma2 in B cells. J Exp Med 2002; 196:51-63. [PMID: 12093870 PMCID: PMC2194016 DOI: 10.1084/jem.20020068] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2002] [Revised: 04/29/2002] [Accepted: 05/14/2002] [Indexed: 01/10/2023] Open
Abstract
Genetic studies have revealed that Cbl-b plays a negative role in the antigen receptor-mediated proliferation of lymphocytes. However, we show that Cbl-b-deficient DT40 B cells display reduced phospholipase C (PLC)-gamma2 activation and Ca2+ mobilization upon B cell receptor (BCR) stimulation. In addition, the overexpression of Cbl-b in WEHI-231 mouse B cells resulted in the augmentation of BCR-induced Ca2+ mobilization. Cbl-b interacted with PLC-gamma2 and helped the association of PLC-gamma2 with Bruton's tyrosine kinase (Btk), as well as B cell linker protein (BLNK). Cbl-b was indispensable for Btk-dependent sustained increase in intracellular Ca2+. Both NH(2)-terminal tyrosine kinase-binding domain and COOH-terminal half region of Cbl-b were essential for its association with PLC-gamma2 and the regulation of Ca2+ mobilization. These results demonstrate that Cbl-b positively regulates BCR-mediated Ca2+ signaling, most likely by influencing the Btk/BLNK/PLC-gamma2 complex formation.
Collapse
Affiliation(s)
- Tomoharu Yasuda
- Department of Oncology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Verdier F, Valovka T, Zhyvoloup A, Drobot LB, Buchman V, Waterfield M, Gout I. Ruk is ubiquitinated but not degraded by the proteasome. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3402-8. [PMID: 12135478 DOI: 10.1046/j.1432-1033.2002.03031.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The regulator of ubiquitous kinase (Ruk) protein, also known as CIN85 or SETA, is an adaptor-type protein belonging to the CD2AP/CMS family. It was found in complexes with many signaling proteins, including phosphoinositol (PtdIns) 3-kinase (EC 2.7.1.137), Cbl, GRB2, p130Cas and Crk. Functional analysis of these interactions, implicated Ruk in the regulation of apoptosis, receptor endocytosis and cytoskeletal rearrangements. We have recently demonstrated that overexpression of Ruk induces apoptotic death in neurons, which could be reversed by activated forms of PtdIns 3-kinase and PKB/Akt. Furthermore, Ruk was shown to be a negative regulator of PtdIns 3-kinase activity through binding to its P85 regulatory subunit [Gout, I., Middleton, G., Adu, J., Ninkina, N. N., Drobot, L. B., Filonenko, V., Matsuka, G., Davies, A.M., Waterfield, M. & Buchman, V. L. (2000) Embo J.19, 4015-4025]. Here, we report for the first time, that all three isoforms of Ruk (L, M and S) are ubiquitinated. Specific interaction between the E3 ubiquitin ligase Cbl and all three Ruk isoforms was demonstrated by coexpression studies in Hek293 cells. The interaction of Ruk M and S isoforms with Cbl was found to be mediated via heterodimerization with Ruk L. The use of proteosomal and lysosomal inhibitors clearly indicated that ubiquitination of Ruk L does not lead to its degradation. Based on this study, we propose a possible mechanism for the regulation of Ruk function by ubiquitination.
Collapse
Affiliation(s)
- Frédérique Verdier
- Ludwig Institute for Cancer Research, University College of London Medical School, London, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Crk family adaptors are widely expressed and mediate the timely formation of signal transduction protein complexes upon a variety of extracellular stimuli, including various growth and differentiation factors. Selective formation of multi-protein complexes by the Crk and Crk-like (CRKL) proteins depends on specific motifs recognized by their SH2 and SH3 domains. In the case of the first SH3 domains [SH3(1)] a P-x-x-P-x-K motif is crucial for highly selective binding, while the SH2 domains prefer motifs which conform to the consensus pY-x-x-P. Crk family proteins are involved in the relocalization and activation of several different effector proteins which include guanine nucleotide releasing proteins like C3G, protein kinases of the Abl- and GCK-families and small GTPases like Rap1 and Rac. Crk-type proteins have been found not only in vertebrates but also in flies and nematodes. Major insight into the function of Crk within organisms came from the genetic model organism C. elegans, where the Crk-homologue CED-2 regulates cell engulfment and phagocytosis. Other biological outcomes of the Crk-activated signal transduction cascades include the modulation of cell adhesion, cell migration and immune cell responses. Crk family adaptors also appear to play a role in mediating the action of human oncogenes like the leukaemia-inducing Bcr-Abl protein. This review summarizes some key findings and highlights recent insights and open questions.
Collapse
Affiliation(s)
- S M Feller
- Cell Signalling Laboratory, Imperial Cancer Research Fund, University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
45
|
Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene 2001; 20:6382-402. [PMID: 11607840 DOI: 10.1038/sj.onc.1204781] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following discovery of c-Cbl, a cellular form of the transforming retroviral protein v-Cbl, multiple Cbl-related proteins have been identified in vertebrate and invertebrate organisms. c-Cbl and its homologues are capable of interacting with numerous proteins involved in cell signaling, including various molecular adapters and protein tyrosine kinases. It appears that Cbl proteins play several functional roles, acting both as multivalent adapters and inhibitors of various protein tyrosine kinases. The latter function is linked, to a substantial extent, to the E3 ubiquitin-ligase activity of Cbl proteins. Experimental evidence for these functions, interrelations between them, and their biological significance are addressed in this review, with the main accent placed on the adapter functions of Cbl proteins.
Collapse
Affiliation(s)
- A Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
The immune receptors of lymphocytes are able to sense the nature of bound ligands. Through coupled signaling pathways the generated signals are appropriately delivered to the intracellular machinery, allowing specific functional responses. A central issue in contemporary immunology is how the fate of B lymphocytes is determined at the successive developmental stages and how the B cell receptor distinguishes between signals that induce immune response or tolerance. Experiments with mice expressing transgenes or lacking signal transduction molecules that lead to abnormal lymphocyte development and/or response are providing important clues to the mechanisms that regulate signaling thresholds at different developmental stages. The studies are also revealing novel potential mechanisms of induction of autoimmunity, which may have a bearing on the understanding of human diseases.
Collapse
Affiliation(s)
- P Hasler
- Rheumatologische Universitätsklinik Basel, Felix Platter-Spital, CH-4055 Basel, Switzerland
| | | |
Collapse
|
47
|
Fang D, Liu YC. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2001; 2:870-5. [PMID: 11526404 DOI: 10.1038/ni0901-870] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cbl-b, a ring-type E3 ubiquitin protein ligase, is implicated in setting the threshold of T lymphocyte activation. The p85 regulatory subunit of phosphatidylinositol 3 kinase (PI3K) was identified as a substrate for Cbl-b. We have shown that Cbl-b negatively regulated p85 in a proteolysis-independent manner. Cbl-b is involved in the recruitment of p85 to CD28 and T cell antigen receptor zeta through its E3 ubiquitin ligase activity. The enhanced activation of Cbl-b(-/-) T cells was suppressed by the inhibition of PI3K. The results suggest a proteolysis-independent function for Cbl-b in the modification of protein recruitment.
Collapse
Affiliation(s)
- D Fang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
48
|
Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 2001; 276:30011-7. [PMID: 11406619 DOI: 10.1074/jbc.m100414200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) is a TNF family member essential for osteoclast differentiation, and it induces the activation and survival of osteoclasts and mature dendritic cells. We recently demonstrated that TRANCE activates Akt via a mechanism involving TRANCE receptor (TRANCE-R)/RANK, TRAF6, and c-Src. Here, we show that TRANCE-R and CD40 recruit TRAF6, Cbl family-scaffolding proteins, and the phospholipid kinase phosphatidylinositol 3-kinase in a ligand-dependent manner. The recruitment of Cbl-b and c-Cbl to TRANCE-R is dependent upon the activity of Src-family kinases. TRANCE and CD40L-mediated Akt activation is defective in Cbl-b -/- dendritic cells, and CD40L-mediated Akt activation is defective in c-Cbl -/- B cells. These findings implicate Cbl family proteins as not only negative regulators of signaling but as positive modulators of TNF receptor superfamily signaling as well.
Collapse
Affiliation(s)
- J R Arron
- Laboratory of Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Responses to extracellular stimuli are often transduced from cell-surface receptors to protein tyrosine kinases which, when activated, initiate the formation of protein complexes that transmit signals throughout the cell. A prominent component of these complexes is the product of the proto-oncogene c-Cbl, which specifically targets activated protein tyrosine kinases and regulates their signalling. How, then, does this multidomain protein shape the responses generated by these signalling complexes?
Collapse
Affiliation(s)
- C B Thien
- Department of Pathology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
50
|
Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 2001; 276:4872-8. [PMID: 11087752 DOI: 10.1074/jbc.m008901200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cbl-b is implicated in setting the threshold of T lymphocyte activation. In Cbl-b-deficient T cells, the activation of Vav, a guanine nucleotide exchange factor, is significantly enhanced. The molecular mechanism underlying Cbl-b-regulated Vav activation was unclear. Here it is shown that Cbl-b interacts with and induces ubiquitin conjugation to the p85 regulatory subunit of phosphatidylinositol 3-kinase, an upstream regulator of Vav. A functional RING finger of Cbl-b was essential for p85 ubiquitination. However, a loss of function mutation at the well-conserved amino-terminal variant src homology (SH) 2 domain of Cbl-b did not affect its ligase activity. A distal carboxyl-terminal proline-rich region in Cbl-b was mapped to contain the primary binding sequences for the SH3 domain of p85. Deletion of either the distal proline-rich region in Cbl-b or the SH3 domain of p85 severely reduced ubiquitin conjugation to p85. The data suggest a molecular link for Cbl-b-mediated negative regulation of Vav, with phosphatidylinositol 3-kinase as a direct target for Cbl-b E3 ubiquitin ligase.
Collapse
Affiliation(s)
- D Fang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|