1
|
Deyette B, Lubin DJ, Cheriyan AM, Sheen A, Sadow PM, Gill AJ, Viswanathan K. The Potential Utility of RAS Q61R Immunohistochemistry as a Screening Tool in Pre-operative Fine Needle Aspirates of Medullary Thyroid Carcinoma. Endocr Pathol 2024; 35:385-396. [PMID: 39630334 DOI: 10.1007/s12022-024-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/21/2024]
Abstract
Medullary thyroid carcinoma (MTC) can either be sporadic, often via mutually exclusive RET or RAS alterations, or inherited via a RET germline alteration. Germline testing is recommended for all patients diagnosed with MTC. RAS p.Q61R immunohistochemistry (RASQ61R-IHC) can identify a subset of RAS-mutated MTCs on resections, but whether this could be applied pre-operatively to cytology specimens remains unclear. Herein, we assessed RASQ61R-IHC in a tri-institutional cohort of cytologic and histologic MTC specimens with available molecular and germline data. Thirty-four fine needle aspirates with cell blocks were identified between three institutions from 2009 to 2024 with corresponding histology. Tumor sequencing and germline data were recorded, if available. RASQ61R-IHC was scored on staining intensity with documentation of membranous accentuation. Sensitivity, specificity, positive predictive (PPV), and negative predictive values (NPV) were calculated. Of the MTCs, 29% were germline-mutated, and 71% were sporadic. Among all sporadic MTCs (n = 22), 41% were RET-altered, 27% were RAS-altered, and 31.8% did not have available data. With any RASQ61R-IHC staining considered positive, sensitivity, specificity, PPV, and NPV for detecting RAS p.Q61R-mutated MTCs were 100%, 72.7%, 45.4%, and 100%, respectively. Requiring a stain score of > 1 and/or membranous accentuation for a true positive changed sensitivity, specificity, PPV, and NPV to 100%, 100%, 100%, and 100%, respectively. RASQ61R-IHC membranous staining was 100% predictive of RET-negative germline testing. RASQ61R-IHC, when requiring a score > 1 and/or membranous stain accentuation for true positive, had high sensitivity and specificity for RAS p.Q61R mutation in cytologic and surgical MTC specimens. Moreover, RASQ61R-IHC is a rapid and inexpensive modality that could potentially tailor which MTC patients undergo germline testing.
Collapse
Affiliation(s)
- Brea Deyette
- Department of Pathology and Laboratory Medicine, Emory University Hospital Midtown, 550 Peachtree St NE, Suite 1323, Davis-Fisher Building, Atlanta, GA, 30309, USA
| | - Daniel J Lubin
- Department of Pathology and Laboratory Medicine, Emory University Hospital Midtown, 550 Peachtree St NE, Suite 1323, Davis-Fisher Building, Atlanta, GA, 30309, USA
- Winship Cancer Center, Decatur, GA, USA
| | - Aswathy M Cheriyan
- Department of Pathology and Laboratory Medicine, Emory University Hospital Midtown, 550 Peachtree St NE, Suite 1323, Davis-Fisher Building, Atlanta, GA, 30309, USA
| | - Amy Sheen
- University of Sydney, Camperdown, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter M Sadow
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anthony J Gill
- University of Sydney, Camperdown, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Kartik Viswanathan
- Department of Pathology and Laboratory Medicine, Emory University Hospital Midtown, 550 Peachtree St NE, Suite 1323, Davis-Fisher Building, Atlanta, GA, 30309, USA.
- Winship Cancer Center, Decatur, GA, USA.
| |
Collapse
|
2
|
Wijewardene A, Bastard K, Wang B, Gild M, Luxford C, Gill A, Robinson B, Bullock M, Clifton-Bligh R. A Case Report of Poor Response to Selpercatinib in the Presence of a 632_633 RET Deletion. Thyroid 2023; 33:119-125. [PMID: 36416226 DOI: 10.1089/thy.2021.0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Genomic deletions in medullary thyroid cancer (MTC) are rare. Selpercatinib is a highly selective RET inhibitor for treatment of metastatic RET-altered MTC. We report a 35-year-old male with an aggressive metastatic MTC harboring p.632_633del RET that was poorly responsive to RET kinase inhibitor selpercatinib. Objective: Our objective was to understand the clinical phenotype of p.632_633del RET in MTC in the context of novel RET kinase inhibitor treatment. Methods: Wild-type and p.632_633del RET sequences were modeled using a lighter version of the AlphaFold2 (AF2) software. Functional studies were performed on transfected HEK 293 cells (pCMV6-Entry, pCMV6-RET, or pCMV6-RET(p.632_633del) treated with inhibitors for 24 hours and analyzed on luciferase assays. Results: Structural modeling revealed a paucity of disulfide bridge between Cys630-Cys634 in p.632_633del RET sequences, apparent in wild-type, while forming an intermolecular disulfide bridge between two Cys656. Proximity of juxtamembrane segments of each dimer may impede Tyr687 phosphorylation and stable conformation of intracellular RET that hosts selpercatinib. In vitro experiments confirmed a reduction in efficacy of selpercatinib upon p.632_633del RET compared with wild-type RET control. Conclusion: Clinical presentation together with structural modeling and functional studies suggests that p.632_633del RET results in poor response to selpercatinib.
Collapse
Affiliation(s)
- Ayanthi Wijewardene
- Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Karine Bastard
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, Australia
- University of Sydney School of Pharmacy, Sydney, Australia
| | - Bin Wang
- Precision Medicine, Syd Path, St. Vincent's Hospital, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Matti Gild
- Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Catherine Luxford
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, Australia
| | - Anthony Gill
- Faculty of Medicine, University of Sydney, Sydney, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Bruce Robinson
- Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Verrienti A, Grani G, Sponziello M, Pecce V, Damante G, Durante C, Russo D, Filetti S. Precision oncology for RET-related tumors. Front Oncol 2022; 12:992636. [PMID: 36091144 PMCID: PMC9449844 DOI: 10.3389/fonc.2022.992636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Aberrant activation of the RET proto-oncogene is implicated in a plethora of cancers. RET gain-of-function point mutations are driver events in multiple endocrine neoplasia 2 (MEN2) syndrome and in sporadic medullary thyroid cancer, while RET rearrangements are driver events in several non-medullary thyroid cancers. Drugs able to inhibit RET have been used to treat RET-mutated cancers. Multikinase inhibitors were initially used, though they showed modest efficacy and significant toxicity. However, new RET selective inhibitors, such as selpercatinib and pralsetinib, have recently been tested and have shown good efficacy and tolerability, even if no direct comparison is yet available between multikinase and selective inhibitors. The advent of high-throughput technology has identified cancers with rare RET alterations beyond point mutations and fusions, including RET deletions, raising questions about whether these alterations have a functional effect and can be targeted by RET inhibitors. In this mini review, we focus on tumors with RET deletions, including deletions/insertions (indels), and their response to RET inhibitors.
Collapse
Affiliation(s)
- Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Giorgio Grani,
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego Russo
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
4
|
Elisei R, Ciampi R, Matrone A, Prete A, Gambale C, Ramone T, Simeakis G, Materazzi G, Torregrossa L, Ugolini C, Romei C. Somatic RET Indels in Sporadic Medullary Thyroid Cancer: Prevalence and Response to Selpercatinib. J Clin Endocrinol Metab 2022; 107:2195-2202. [PMID: 35616103 DOI: 10.1210/clinem/dgac325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Although the majority of RET alterations are single nucleotide variants (SNV), small deletions and/or insertions have been reported at variable prevalence. No information about the efficacy of RET-specific inhibitors in patients harboring RET indels has been provided. OBJECTIVE We present an update on the prevalence of RET indels in medullary thyroid cancer (MTC) and describe the efficacy of selpercatinib in patients with advanced MTC with RET indels. METHODS The MTC tissues of 287 patients were analyzed using an Ion S5 targeted sequencing. The functional role of the reported indels have been evaluated by MutationTaster. Clinical and pathological data of MTC patients harboring a RET indel were collected and analyzed. Two patients with a RET indel were treated with selpercatinib. RESULTS Among 178 RET-positive cases, 147 (82.6%) harbored a SNV and 31 (17.4%) a RET in-frame indel. Nine indels were not previously reported and were found to be disease causing by MutationTaster. Patients harboring an indel were found to have an aggressive disease and 2 of them were treated with selpercatinib, experiencing a good response to the treatment. CONCLUSION These data show that RET indels are not infrequent and correlate with an aggressive disease. Two RET indel-positive patients showed a partial response to the treatment with a highly selective RET inhibitor; thus, these RET indels can be considered actionable mutations. In order to not miss these alterations, the analysis of the full gene is recommended.
Collapse
Affiliation(s)
- Rossella Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Raffaele Ciampi
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Antonio Matrone
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Alessandro Prete
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Carla Gambale
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Teresa Ramone
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| | - George Simeakis
- Endocrine Dept., 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Gabriele Materazzi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Surgery Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Pathology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Pathology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Cristina Romei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Bhoj VG, Li L, Parvathaneni K, Zhang Z, Kacir S, Arhontoulis D, Zhou K, McGettigan-Croce B, Nunez-Cruz S, Gulendran G, Boesteanu AC, Johnson L, Feldman MD, Radaelli E, Mansfield K, Nasrallah M, Goydel RS, Peng H, Rader C, Milone MC, Siegel DL. Adoptive T cell immunotherapy for medullary thyroid carcinoma targeting GDNF family receptor alpha 4. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:387-398. [PMID: 33614919 PMCID: PMC7879023 DOI: 10.1016/j.omto.2021.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
Metastatic medullary thyroid cancer (MTC) is a rare but often aggressive thyroid malignancy with a 5-year survival rate of less than 40% and few effective therapeutic options. Adoptive T cell immunotherapy using chimeric antigen receptor (CAR)-modified T cells (CAR Ts) is showing encouraging results in the treatment of cancer, but development is challenged by the availability of suitable target antigens. We identified glial-derived neurotrophic factor (GDNF) family receptor alpha 4 (GFRα4) as a putative antigen target for CAR-based therapy of MTC. We show that GFRα4 is highly expressed in MTC, in parafollicular cells within the thyroid from which MTC originates, and in normal thymus. We isolated two single-chain variable fragments (scFvs) targeting GFRα4 isoforms a and b by antibody phage display. CARs bearing the CD3ζ and the CD137 costimulatory domains were constructed using these GFRα4-specific scFvs. GFRα4-specific CAR Ts trigger antigen-dependent cytotoxicity and cytokine production in vitro, and they are able to eliminate tumors derived from the MTC TT cell line in an immunodeficient mouse xenograft model of MTC. These data demonstrate the feasibility of targeting GFRα4 by CAR T and support this antigen as a promising target for adoptive T cell immunotherapy and other antibody-based therapies for MTC.
Collapse
Affiliation(s)
- Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucy Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kalpana Parvathaneni
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kacir
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dimitrios Arhontoulis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bevin McGettigan-Croce
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gayathri Gulendran
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alina C Boesteanu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Mansfield
- Discovery and Investigative Pathology, Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - MacLean Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca S Goydel
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Don L Siegel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Liu Y, Ribeiro ODC, Robinson J, Goldman A. Expression and purification of the extracellular domain of wild-type humanRET and the dimeric oncogenic mutant C634R. Int J Biol Macromol 2020; 164:1621-1630. [PMID: 32777409 DOI: 10.1016/j.ijbiomac.2020.07.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/01/2022]
Abstract
The receptor tyrosine kinase RET is essential in a variety of cellular processes. RET gain-of-function is strongly associated with several cancers, notably multiple endocrine neoplasia type 2A (MEN 2A), while RET loss-of-function causes Hirschsprung's disease and Parkinson's disease. To investigate the activation mechanism of RET as well as to enable drug development, over-expressed recombinant protein is needed for in vitro functional and structural studies. By comparing insect and mammalian cells expression of the RET extracellular domain (RETECD), we showed that the expression yields of RETECD using both systems were comparable, but mammalian cells produced monomeric functional RETECD, whereas RETECD expressed in insect cells was non-functional and multimeric. This was most likely due to incorrect disulfide formation. By fusing an Fc tag to the C-terminus of RETECD, we were able to produce, in HEK293T cells, dimeric oncogenic RETECD (C634R) for the first time. The protein remained dimeric even after cleavage of the tag via the cysteine disulfide, as in full-length RET in the context of MEN 2A and related pathologies. Our work thus provides valuable tools for functional and structural studies of the RET signaling system and its oncogenic activation mechanisms.
Collapse
Affiliation(s)
- Yixin Liu
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Orquidea De Castro Ribeiro
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - James Robinson
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Goldman
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland; Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Innella G, Rossi C, Romagnoli M, Repaci A, Bianchi D, Cantarini ME, Martorana D, Godino L, Pession A, Percesepe A, Pagotto U, Turchetti D. Results and Clinical Interpretation of Germline RET Analysis in a Series of Patients with Medullary Thyroid Carcinoma: The Challenge of the Variants of Uncertain Significance. Cancers (Basel) 2020; 12:cancers12113268. [PMID: 33167350 PMCID: PMC7694403 DOI: 10.3390/cancers12113268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Germline RET variants are responsible for approximately 25% of medullary thyroid carcinoma (MTC) cases. Identification of RET variant carriers allows for the adoption of preventative measures which are dependent on the risk associated with the specific alteration. From 2002 to 2020, at our cancer genetics clinic, RET genetic testing was performed in 163 subjects (102 complete gene analyses and 61 targeted analyses), 72 of whom presented with MTC. A germline RET variant was identified in 31.9% of patients affected by MTC (93.8% of those having positive family history and 14.3% of clinically sporadic cases). Subsequent target testing in relatives allowed us to identify 22 asymptomatic carriers, who could undertake appropriate screening. Overall, patients with germline RET variants differed significantly from those who tested negative by family history (p < 0.001) and mean age at MTC diagnosis (44.45 vs. 56.42 years; p = 0.010), but the difference was not significant when only carriers of moderate risk variants were considered (51.78 vs. 56.42 years; p = 0.281). Out of 12 different variants detected in 49 patients, five (41.7%) were of uncertain significance (VUS). For two of these, p.Ser904Phe and p.Asp631_Leu633delinsGlu, co-segregation and genotype/phenotype analysis, matched with data from the literature, provided evidence supporting their classification in the moderate and the highest/high risk class (with a MEN2B phenotype), respectively.
Collapse
Affiliation(s)
- Giovanni Innella
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
| | - Cesare Rossi
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
| | - Maria Romagnoli
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
| | - Andrea Repaci
- Endocrinology and Diabetes Prevention and Care Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Davide Bianchi
- Division of Endocrinology, Ospedale di Bentivoglio, 40010 Bentivoglio (BO), Italy;
| | - Maria Elena Cantarini
- Division of Pediatric Oncology, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Davide Martorana
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (D.M.); (A.P.)
| | - Lea Godino
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
| | - Andrea Pession
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
- Division of Pediatric Oncology, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Antonio Percesepe
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (D.M.); (A.P.)
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
- Endocrinology and Diabetes Prevention and Care Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Daniela Turchetti
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
- Correspondence: ; Tel.: +39-051-208-0904
| |
Collapse
|
8
|
Khatami F, Tavangar SM. Genetic and Epigenetic of Medullary Thyroid Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:142-50. [PMID: 29126344 PMCID: PMC5889499 DOI: 10.22034/ibj.22.3.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Medullary thyroid carcinoma (MTC) is an infrequent, calcitonin producing neuroendocrine tumor and initiates from the parafollicular C cells of the thyroid gland. Several genetic and epigenetic alterations are collaterally responsible for medullary thyroid carcinogenesis. In this review article, we shed light on all the genetic and epigenetic hallmarks of MTC. From the genetic perspective, RET, HRAS, and KRAS are the most important genes that are characterized in MTC. From the epigenetic perspective, Ras-association domain family member 1A, telomerase reverse transcriptase promoter methylations, overexpression of histone methyltransferases, EZH2 and SMYD3, and wide ranging increase and decrease in non-coding RNAs can be responsible for medullary thyroid carcinogenesis.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Vanden Borre P, Schrock AB, Anderson PM, Morris JC, Heilmann AM, Holmes O, Wang K, Johnson A, Waguespack SG, Ou SHI, Khan S, Fung KM, Stephens PJ, Erlich RL, Miller VA, Ross JS, Ali SM. Pediatric, Adolescent, and Young Adult Thyroid Carcinoma Harbors Frequent and Diverse Targetable Genomic Alterations, Including Kinase Fusions. Oncologist 2017; 22:255-263. [PMID: 28209747 DOI: 10.1634/theoncologist.2016-0279] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Thyroid carcinoma, which is rare in pediatric patients (age 0-18 years) but more common in adolescent and young adult (AYA) patients (age 15-39 years), carries the potential for morbidity and mortality. METHODS Hybrid-capture-based comprehensive genomic profiling (CGP) was performed prospectively on 512 consecutively submitted thyroid carcinomas, including 58 from pediatric and AYA (PAYA) patients, to identify genomic alterations (GAs), including base substitutions, insertions/deletions, copy number alterations, and rearrangements. This PAYA data series includes 41 patients with papillary thyroid carcinoma (PTC), 3 with anaplastic thyroid carcinoma (ATC), and 14 with medullary thyroid carcinoma (MTC). RESULTS GAs were detected in 93% (54/58) of PAYA cases, with a mean of 1.4 GAs per case. In addition to BRAF V600E mutations, detected in 46% (19/41) of PAYA PTC cases and in 1 of 3 AYA ATC cases, oncogenic fusions involving RET, NTRK1, NTRK3, and ALK were detected in 37% (15/41) of PAYA PTC and 33% (1/3) of AYA ATC cases. Ninety-three percent (13/14) of MTC patients harbored RET alterations, including 3 novel insertions/deletions in exons 6 and 11. Two of these MTC patients with novel alterations in RET experienced clinical benefit from vandetanib treatment. CONCLUSION CGP identified diverse clinically relevant GAs in PAYA patients with thyroid carcinoma, including 83% (34/41) of PTC cases harboring activating kinase mutations or activating kinase rearrangements. These genomic observations and index cases exhibiting clinical benefit from targeted therapy suggest that young patients with advanced thyroid carcinoma can benefit from CGP and rationally matched targeted therapy. The Oncologist 2017;22:255-263 IMPLICATIONS FOR PRACTICE: The detection of diverse clinically relevant genomic alterations in the majority of pediatric, adolescent, and young adult patients with thyroid carcinoma in this study suggests that comprehensive genomic profiling may be beneficial for young patients with papillary, anaplastic, or medullary thyroid carcinoma, particularly for advanced or refractory cases for which clinical trials involving molecularly targeted therapies may be appropriate.
Collapse
MESH Headings
- Adolescent
- Adult
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/pathology
- DNA Copy Number Variations/genetics
- Female
- Gene Rearrangement/genetics
- Genome, Human/genetics
- Genomics
- Humans
- INDEL Mutation/genetics
- Male
- Molecular Targeted Therapy
- Mutation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/isolation & purification
- Proto-Oncogene Proteins B-raf/genetics
- Thyroid Cancer, Papillary
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Young Adult
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Wang
- Foundation Medicine, Cambridge, Massachusetts, USA
| | | | | | | | - Saad Khan
- University of Texas Southwestern, Dallas, Texas, USA
| | - Kar-Ming Fung
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | | | | | | | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts, USA
- Albany Medical Center, Albany, New York, USA
| | - Siraj M Ali
- Foundation Medicine, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Romei C, Casella F, Tacito A, Bottici V, Valerio L, Viola D, Cappagli V, Matrone A, Ciampi R, Piaggi P, Ugolini C, Torregrossa L, Basolo F, Materazzi G, Vitti P, Elisei R. New insights in the molecular signature of advanced medullary thyroid cancer: evidence of a bad outcome of cases with doubleRETmutations. J Med Genet 2016; 53:729-734. [DOI: 10.1136/jmedgenet-2016-103833] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 11/03/2022]
|
11
|
Heilmann AM, Subbiah V, Wang K, Sun JX, Elvin JA, Chmielecki J, Sherman SI, Murthy R, Busaidy NL, Subbiah I, Yelensky R, Nangia C, Vergilio JA, Khan SA, Erlich RL, Lipson D, Ross JS, Miller VA, Shah MH, Ali SM, Stephens PJ. Comprehensive Genomic Profiling of Clinically Advanced Medullary Thyroid Carcinoma. Oncology 2016; 90:339-46. [PMID: 27207748 DOI: 10.1159/000445978] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The aim of this study was to determine the genomic alterations of cancer-related genes in advanced medullary thyroid carcinoma during the course of clinical care. METHODS Hybrid-capture-based comprehensive genomic profiling was performed on 34 consecutive medullary thyroid carcinoma cases to identify all four classes of genomic alterations, and outcome for an index patient was collected. RESULTS RET was mutated in 88% (30/34) of cases, with RET M918T being responsible for 70% (21/30) of the RET alterations. The other RET alterations were RET E632_L633del, C634R, C620R, C618G/R/S, V804M, and RET amplification. Two of the four RET wild-type patients harbored mutations in KRAS or HRAS (1/34 each). The next most frequent genomic alterations were amplifications of CCND1, FGF3, and FGF19 and alterations in CDKN2A (3/34 each). One case with a RET M918T mutation developed acquired resistance to progressively dose-escalated vandetanib. When the mTOR inhibitor everolimus was added to continued vandetanib treatment, the patient achieved a second 25% reduction of tumor volume (RECIST 1.1) for 8 months. CONCLUSIONS Comprehensive genomic profiling identified the full breadth of RET alterations in metastatic medullary thyroid carcinoma and possible cooperating oncogenic driver alterations. This approach may refine the use of targeted therapy for these patients.
Collapse
|
12
|
A T, F S, G P, M B. Genetic alterations in medullary thyroid cancer: diagnostic and prognostic markers. Curr Genomics 2011; 12:618-25. [PMID: 22654561 PMCID: PMC3271314 DOI: 10.2174/138920211798120835] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/09/2011] [Accepted: 09/16/2011] [Indexed: 02/06/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare calcitonin producing neuroendocrine tumour that originates from the parafollicular C-cells of the thyroid gland. The RET proto-oncogene encodes the RET receptor tyrosine kinase, with consequently essential roles in cell survival, differentiation and proliferation. Somatic or germline mutations of the RET gene play an important role in this neoplasm in development of sporadic and familial forms, respectively. Genetic diagnosis has an important role in differentiating sporadic from familiar MTC. Furthermore, depending on the location of the mutation, patients can be classified into risk classes. Therefore, genetic screening of the RET gene plays a critical role not only in diagnosis but also in assessing the prognosis and course of MTC.
Collapse
Affiliation(s)
- Taccaliti A
- Division of Endocrinology, University Polytechnic of Marche, Ancona, Italy
| | | | | | | |
Collapse
|
13
|
Gallel P, Pallares J, Dolcet X, Llobet D, Eritja N, Santacana M, Yeramian A, Palomar-Asenjo V, Lagarda H, Mauricio D, Encinas M, Matias-Guiu X. Nuclear factor-kappaB activation is associated with somatic and germ line RET mutations in medullary thyroid carcinoma. Hum Pathol 2008; 39:994-1001. [PMID: 18508109 DOI: 10.1016/j.humpath.2007.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 09/25/2007] [Accepted: 11/02/2007] [Indexed: 01/01/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors regulates a wide variety of cellular processes including cell growth, differentiation, and apoptosis. NF-kappaB has been shown to be activated through several signaling pathways that involve growth factor receptors. The aim of the study was to assess the immunohistochemical expression of members of the NF-kappaB family and the putative targets of NF-kappaB in a series of medullary thyroid carcinomas (MTCs), in correlation with RET mutational status. A tissue microarray was constructed from paraffin-embedded blocks of 48 MTCs (13 familial, 35 sporadic) previously evaluated for germ line and somatic RET mutations. Immunohistochemical evaluation included members of the NF-kappaB (p50, p65, p52, c-Rel, RelB) family, as well as putative targets of NF-kappaB such as Flip, Bcl-xL, and cyclin D1. Nuclear immunostaining for members of NF-kappaB was frequent in MTCs (p50, 19%; p65, 68%; p52, 86.6%; c-Rel, 75%; RelB, 36%). MTCs with germ line or somatic RET mutations (29 cases) showed NF-kappaB nuclear translocation (particularly of p65, P = .035) more frequently than MTCs without RET mutations (19 cases). Immunostaining for putative targets of NF-kappaB showed a significant statistical association between p65 and Bcl-xL (P = .024). In addition, Bcl-xL expression was statistically higher in the tumors with exon 16 RET mutation in comparison with those with exon 10 and 11 RET mutations or wild-type RET (P = .002). Moreover, the significance of RETsignaling in NF-kappaB activation was evaluated in the RET-mutated TT cell line. TT cells were infected with lentiviruses carrying short hairpin RNA to knock down RET expression, and NF-kappaB activity was assessed by luciferase reporter assays. Silencing of RET in the TT cell line produced a significant decrease in NF-kappaB activation and reduction in ERK1/2. The results suggest that the NF-kappaB is frequently activated in MTCs. The results also support the hypothesis that RET activation by somatic or germ line mutations may be responsible for NF-kappaB activation in MTCs.
Collapse
Affiliation(s)
- Pilar Gallel
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, Institut de Recerca Biomedica de Lleida, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dvorakova S, Vaclavikova E, Sykorova V, Vcelak J, Novak Z, Duskova J, Ryska A, Laco J, Cap J, Kodetova D, Kodet R, Krskova L, Vlcek P, Astl J, Vesely D, Bendlova B. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol Cell Endocrinol 2008; 284:21-7. [PMID: 18282654 DOI: 10.1016/j.mce.2007.12.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/19/2007] [Accepted: 12/22/2007] [Indexed: 12/19/2022]
Abstract
The frequency and prognostic relevance of RET proto-oncogene somatic mutations in sporadic medullary thyroid carcinoma (MTC) remain controversial. In order to study somatic mutations in the RET proto-oncogene in sporadic MTCs found in the Czech population and to correlate these mutations with clinical and pathological characteristics, we investigated 48 truly sporadic MTCs by sequencing classical risk exons 10, 11, 13, 14, 15 and 16. From the 48 tumors studied, 23 (48%) had somatic mutation in the RET proto-oncogene in exons 10, 11, 15 or 16. The classical somatic mutation Met918Thr in exon 16 was only found in 13 tumors (27%). In five cases, multiple somatic mutations and deletions were detected. A statistically significant correlation between the presence of somatic mutation with more advanced pathological TNM stages was observed. Other clinical and pathological characteristics did not show any statistical significant association with the presence or absence of somatic mutation.
Collapse
Affiliation(s)
- S Dvorakova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gujral TS, Singh VK, Jia Z, Mulligan LM. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res 2006; 66:10741-9. [PMID: 17108110 DOI: 10.1158/0008-5472.can-06-3329] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple endocrine neoplasia 2B (MEN 2B) is an inherited syndrome of early onset endocrine tumors and developmental anomalies. The disease is caused primarily by a methionine to threonine substitution of residue 918 in the kinase domain of the RET receptor (2B-RET); however, the molecular mechanisms that lead to the disease phenotype are unclear. In this study, we show that the M918T mutation causes a 10-fold increase in ATP binding affinity and leads to a more stable receptor-ATP complex, relative to the wild-type receptor. Further, the M918T mutation alters local protein conformation, correlating with a partial loss of RET kinase autoinhibition. Finally, we show that 2B-RET can dimerize and become autophosphorylated in the absence of ligand stimulation. Our data suggest that multiple distinct but complementary molecular mechanisms underlie the MEN 2B phenotype and provide potential targets for effective therapeutics for this disease.
Collapse
Affiliation(s)
- Taranjit S Gujral
- Departments of Pathology and Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Cranston A, Carniti C, Martin S, Mondellini P, Hooks Y, Leyland J, Hodgson S, Clarke S, Pierotti M, Ponder BAJ, Bongarzone I. A Novel Activating Mutation in the RET Tyrosine Kinase Domain Mediates Neoplastic Transformation. Mol Endocrinol 2006; 20:1633-43. [PMID: 16469774 DOI: 10.1210/me.2004-0447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractWe report the finding of a novel missense mutation at codon 833 in the tyrosine kinase of the RET proto-oncogene in a patient with a carcinoma of the thyroid. In vitro experiments demonstrate that the R833C mutation induces transformed foci only when present in the long 3′ splice isoform and, in keeping with a model in which the receptor has to dimerize to be completely activated, glial cell line-derived neurotrophic factor stimulation leads the RETR833C receptor to a higher level of activation. Tyrosine kinase assays show that the RETR833C long isoform has weak intrinsic kinase activity and phosphorylation of an exogenous substrate is not elevated even in the presence of glial cell line-derived neurotrophic factor. Furthermore, the R833C mutation is capable of sustaining the transformed phenotype in vivo but does not confer upon the transformed cells the ability to degrade the basement membrane in a manner analogous to metastasis. Our functional characterization of the R833C substitution suggests that, like the V804M and S891A mutations, this tyrosine kinase mutation confers a weak activating potential upon RET. This is the first report demonstrating that the introduction of an intracellular cysteine can activate RET. However, this does not occur via dimerization in a manner analogous to the extracellular cysteine mutants.
Collapse
Affiliation(s)
- Aaron Cranston
- Cambridge Institute for Medical Research, Cancer Research UK Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Correll PH, Paulson RF, Wei X. Molecular regulation of receptor tyrosine kinases in hematopoietic malignancies. Gene 2006; 374:26-38. [PMID: 16524673 DOI: 10.1016/j.gene.2006.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/02/2006] [Accepted: 01/08/2006] [Indexed: 10/24/2022]
Abstract
Dysregulation of receptor tyrosine kinase (RTK) activity has been implicated in the progression of a variety of human leukemias. Most notably, mutations and chromosomal translocations affecting regulation of tyrosine kinase activity in the Kit receptor, the Flt3 receptor, and the PDGFbeta/FGF1 receptors have been demonstrated in mast cell leukemia, acute myeloid leukemia (AML), and chronic myelogenous leukemias (CML), respectively. In addition, critical but non-overlapping roles for the Ron and Kit receptor tyrosine kinases in the progression of animal models of erythroleukemia have been demonstrated [Persons, D., Paulson, R., Loyd, M., Herley, M., Bodner, S., Bernstein, A., Correll, P. and Ney, P., 1999. Fv2 encodes a truncated form of the Stk receptor tyrosine kinase. Nat. Gen. 23, 159-165.; Subramanian, A., Teal, H.E., Correll, P.H. and Paulson, R.F., 2005. Resistance to friend virus-induced erythroleukemia in W/Wv mice is caused by a spleen-specific defect which results in a severe reduction in target cells and a lack of Sf-Stk expression. J. Virol. 79 (23), 14586-14594.]. The various classes of RTKs implicated in the progression of leukemia have been recently reviewed [Reilly, J., 2003. Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev. 17 (4), 241-248.]. Here, we will discuss the mechanism by which alterations in these receptors result in transformation of hematopoietic cells, in the context of what is known about the molecular regulation of RTK activity, with a focus on our recent studies of the Ron receptor tyrosine kinase.
Collapse
Affiliation(s)
- Pamela H Correll
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802-3500, United States.
| | | | | |
Collapse
|
18
|
Winnemoeller D, Wellbrock C, Schartl M. Activating mutations in the extracellular domain of the melanoma inducing receptor Xmrk are tumorigenicin vivo. Int J Cancer 2005; 117:723-9. [PMID: 15957173 DOI: 10.1002/ijc.21232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mutated versions or overexpression of receptor tyrosine kinases such as the epidermal growth factor receptor are found frequently in various cancers. In Xiphophorus the formation of hereditary melanoma is caused by the overexpression of the Xmrk oncogene locus. Xmrk is a mutationally altered version of the epidermal growth factor receptor. Two amino acid changes in the extracellular domain of the receptor were shown in vitro to be responsible for a constitutive, ligand-independent activity of Xmrk. To analyze whether these two mutations are indeed responsible for the in vivo oncogenic activity of the receptor, both were independently introduced into the wild-type, non-oncogenic Xiphophorus EGF-receptor and tested in Medaka embryos for their tumorigenic capacity. Both mutations were sufficient to induce tumors after short latency periods and at a comparable frequency as the native Xmrk oncogene. The G359R mutation led to a significantly higher tumor rate than the C578S mutation. Our study shows that subtle point mutations of the EGF-receptor can lead to a highly tumorigenic oncoprotein.
Collapse
Affiliation(s)
- Dirk Winnemoeller
- Department of Physiological Chemistry I, University of Wuerzburg, Germany
| | | | | |
Collapse
|
19
|
Meierjohann S, Schartl M, Volff JN. Genetic, biochemical and evolutionary facets of Xmrk-induced melanoma formation in the fish Xiphophorus. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:281-9. [PMID: 15533786 DOI: 10.1016/j.cca.2004.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 05/26/2004] [Accepted: 06/16/2004] [Indexed: 12/11/2022]
Abstract
Certain interspecific hybrids of the fish Xiphophorus spontaneously develop melanoma induced by the derepression of the Xmrk oncogene. Xmrk is a recent duplicate of an orthologue of the mammalian epidermal growth factor receptor gene Egfr. In addition to a specific overexpression in melanoma, amino-acid substitutions in the extracellular domain leading to ligand-independent dimerisation and constitutive autophosphorylation are responsible for the tumorigenic potential of Xmrk. The Xmrk receptor induces several signal transduction pathways mediating cell proliferation and resistance to apoptosis and initiating dedifferentiation. Moreover, Xmrk upregulates the expression of the secreted protein osteopontin, inducing an autocrine loop possibly allowing invasion and survival in the dermis as a first step in malignancy. Hence, Xmrk is able to induce pathways essential for a transformed phenotype. Some of these events are equivalent to those found downstream of the mammalian Egfr, but others have clearly evolved differently or are specific for pigment cells. Xmrk is potentially hazardous, nonessential and located in a very unstable genomic region. Nevertheless, Xmrk has been maintained under purifying selection in divergent Xiphophorus species. Hence, Xmrk has probably a beneficial function under certain conditions. The analysis of this function is a major challenge for future research in the Xiphophorus model.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Physiologische Chemie I, Biozentrum, University of Würzburg, am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
20
|
Wellbrock C, Gómez A, Schartl M. Melanoma development and pigment cell transformation in xiphophorus. Microsc Res Tech 2002; 58:456-63. [PMID: 12242702 DOI: 10.1002/jemt.10163] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As early as 1927, it was recognised that hybridisation of platyfish (Xiphophorus maculatus) and swordtails (Xiphophorus helleri) results in offspring that develop tumours according to Mendelian laws. Most obviously, the primary event, namely the cell lineage-specific overexpression of a structurally altered receptor tyrosine kinase, finds its parallel in many tumours of birds and mammals. Once expressed at high levels, this receptor, the Xiphophorus melanoma inducing receptor kinase Xmrk, shows constitutive activation. By using different pathways, Xmrk induces both proliferative as well as anti-apoptotic signalling in pigment cells finally leading to cell transformation, tumour induction, and progression. Analyses of the different signalling cascades induced by the Xmrk-receptor led to the identification of the src-kinase Fyn, the MAP kinases ERK1 and ERK2, the "Signal Transducer and Activator of Transcription" STAT5, and the PI3-kinase as its major downstream substrates. This review describes some of the genetic findings, as well as the results from the recent molecular analyses of the factors involved in the initiation and manifestation of pigment cell transformation and melanoma development in Xiphophorus.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Physiologische Chemie I, Biozentrum der Universität Würzburg, Germany.
| | | | | |
Collapse
|
21
|
Roqué M, Pusiol E, Perinetti H, Godoy CP, Mayorga LS. A PCR-mutagenesis strategy for rapid detection of mutations in codon 634 of the ret proto-oncogene related to MEN 2A. BMC MEDICAL GENETICS 2002; 3:4. [PMID: 12033991 PMCID: PMC115869 DOI: 10.1186/1471-2350-3-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Accepted: 05/21/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Multiple endocrine neoplasias type 2A (MEN 2A) is a dominantly inherited cancer syndrome. Missence mutations in the codon encoding cysteine 634 of the ret proto-oncogene have been found in 85% of the MEN 2A families. The main tumour type always present in MEN 2A is medullar thyroid carcinoma (MTC). Only 25% of all MTC are hereditary, and generally they are identified by a careful family history. However, some familial MTCs are not easily detected by this means and underdiagnosis of MEN 2A is suspected. METHODS DNA samples from MEN 2A patients were amplified by PCR. The products were incubated with the restriction enzyme Bst ApI or Bgl I. The samples were loaded in non-denaturing 10% Polyacrilamyde Gel and run at 120 volts for 40 min. The gels were stained with 10 microg/ml ethidium bromide, and the bands were visualized under a UV lamp. RESULTS We developed a PCR-mutagenic method to check the integrity of the three bases of the cysteine 634 codon. CONCLUSION The method can be used to detect inherited mutations in MTC patients without a clear family history. The method is relatively simple to use as a routine test in these patients to decrease the underdiagnosis of MEN 2A. In addition, the assay can be used to screen affected families with any mutation in cysteine 634.
Collapse
Affiliation(s)
- María Roqué
- Laboratorio de Biología Celular y Molecular, IHEM (UNCuyo-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Eduardo Pusiol
- Laboratorio de Biología Celular y Molecular, IHEM (UNCuyo-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Héctor Perinetti
- Instituto de Patología de la Tiroides, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Clara Pott Godoy
- Laboratorio de Biología Celular y Molecular, IHEM (UNCuyo-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis S Mayorga
- Laboratorio de Biología Celular y Molecular, IHEM (UNCuyo-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
22
|
Abstract
This review centers on important recent advances in the understanding of the role of glial fibrillary acidic protein in Alexander disease and of proteolipid protein in hypomyelinating disorders such as Pelizaeus-Merzbacher and spastic paraplegia. We also describe seven novel leukodystrophies. These include childhood ataxia with central nervous system hypomyelination, a relatively common leukodystrophy syndrome with linkage to chromosome 3 in some patients, and megalencephalic leukoencephalopathy with subcortical cysts whose gene has recently been cloned. These, along with five other disorders, including leukodystrophy with polyol metabolism abnormality, demonstrate that an increasing number of protein and metabolic abnormalities can cause primary myelin disorders.
Collapse
Affiliation(s)
- R Schiffmann
- National Institutes of Health, Building 10, Room 3D03, 9000 Rockville Pike, Bethesda, MD 20892-1260, USA.
| | | |
Collapse
|
23
|
Mograbi B, Bocciardi R, Bourget I, Juhel T, Farahi-Far D, Romeo G, Ceccherini I, Rossi B. The sensitivity of activated Cys Ret mutants to glial cell line-derived neurotrophic factor is mandatory to rescue neuroectodermic cells from apoptosis. Mol Cell Biol 2001; 21:6719-30. [PMID: 11564857 PMCID: PMC99850 DOI: 10.1128/mcb.21.20.6719-6730.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hirschsprung's disease (HSCR), a frequent developmental defect of the enteric nervous system is due to loss-of-function mutations of RET, a receptor tyrosine kinase essential for the mediation of glial cell-derived neurotrophic factor (GDNF)-induced cell survival. Instead, gain-of-function Cys mutations (e.g., Cys(609), Cys(620), and Cys(634)) of the same gene are responsible for thyroid carcinoma (MEN2A/familial medullary thyroid carcinoma) by causing a covalent Ret dimerization, leading to ligand-independent activation of its tyrosine kinase. In this context, the association of Cys(609)- or Cys(620)-activating mutations with HSCR is still an unresolved paradox. To address this issue, we have compared these two mutants with the Cys(634) Ret variant, which has never been associated with HSCR, for their ability to rescue neuroectodermic cells (SK-N-MC cells) from apoptosis. We show here that despite their constitutively activated kinase, the mere expression of these three mutants does not allow cell rescue. Instead, we demonstrate that like the wild-type Ret, the Cys(634) Ret variant can trigger antiapoptotic pathways only in response to GDNF. In contrast, Cys(609) or Cys(620) mutations, which impair the terminal Ret glycosylation required for its insertion at the plasma membrane, abrogate GDNF-induced cell rescue. Taken together, these data support the idea that sensitivity to GDNF is the mandatory condition, even for constitutively activated Ret mutants, to rescue neuroectodermic cells from apoptosis. These findings may help clarify how a gain-of-function mutation can be associated with a developmental defect.
Collapse
Affiliation(s)
- B Mograbi
- INSERM U 364, IFR50, Faculté de Médecine Pasteur, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gómez A, Wellbrock C, Gutbrod H, Dimitrijevic N, Schartl M. Ligand-independent dimerization and activation of the oncogenic Xmrk receptor by two mutations in the extracellular domain. J Biol Chem 2001; 276:3333-40. [PMID: 11038352 DOI: 10.1074/jbc.m006574200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the oncogenic receptor tyrosine kinase ONC-Xmrk is the first step in the development of hereditary malignant melanoma in the fish Xiphophorus. However, overexpression of its proto-oncogene counterpart (INV-Xmrk) is not sufficient for the oncogenic function of the receptor. Compared with INV-Xmrk, the ONC-Xmrk receptor displays 14 amino acid changes, suggesting the presence of activating mutations. To identify such activating mutations, a series of chimeric and mutant receptors were studied. None of the mutations present in the intracellular domain was found to be involved in receptor activation. In the extracellular domain, we found two mutations responsible for activation of the receptor. One is the substitution of a conserved cysteine (C578S) involved in intramolecular disulfide bonding. The other is a glycine to arginine exchange (G359R) in subdomain III. Either mutation leads to constitutive dimer formation and thereby to activation of the ONC-Xmrk receptor. Besides, the presence of these mutations slows down the processing of the Xmrk receptor in the endoplasmic reticulum, which is apparent as an incomplete glycosylation.
Collapse
Affiliation(s)
- A Gómez
- Physiological Chemistry I, Biocenter (Theodor Boveri Institute), University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Arlt DH, Baur B, Wagner B, Höppner W. A novel type of mutation in the cysteine rich domain of the RET receptor causes ligand independent activation. Oncogene 2000; 19:3445-8. [PMID: 10918602 DOI: 10.1038/sj.onc.1203688] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple endocrine neoplasia type 2A (MEN 2A) is a dominantly inherited cancer syndrome, which involves the triad of MTC, pheochromocytoma, and hyperparathyroidism. Missense mutations in one of six cysteine codons in the extracellular cysteine-rich domain of the RET proto-oncogene predispose to this disease. These mutations cause ligand-independent constitutive activation of the tyrosine kinase receptor by the formation of disulfide-bonded homodimers. We examined a different type of mutation, which results in an additional cysteine in the cysteine rich domain. A duplication of 9 bp in the first case resulted in an insertion of three amino acids between codon 633 and 634. In the second case a 12 bp duplication in exon 11 results in four additional amino acids between codon 634 and 635. Here we demonstrate that an additional cysteine causes a ligand independent dimerization of the RET receptor in transfected NIH3T3 cells, which results in an activation of the intracellular tyrosine kinase.
Collapse
Affiliation(s)
- D H Arlt
- Institute for Hormone and Fertility Research, University of Hamburg, Germany
| | | | | | | |
Collapse
|