1
|
Gupta T, Chahota R. Unique ankyrin repeat proteins in the genome of poxviruses-Boon or Wane, a critical review. Gene 2024; 927:148759. [PMID: 38992761 DOI: 10.1016/j.gene.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ankyrin repeat is a 33-amino acid motif commonly observed in eukaryotes and, to a lesser extent, in prokaryotes and archaea and rarely in viruses. This motif plays a crucial role in regulating various cellular processes like the cell cycle, transcription, cell signaling, and inflammatory responses through interactions between proteins. Poxviruses exhibit a distinctive feature of containing multiple ankyrin repeat proteins within their genomes. All the genera of poxviruses possess these proteins except molluscipox virus, crocodylidpox virus, and red squirrel poxvirus. An intriguing characteristic has generated notable interest in studying the functions of these proteins within poxvirus biology. Within poxviruses, ankyrin repeat proteins exhibit a distinct configuration, featuring ankyrin repeats in the N-terminal region and a cellular F-box homolog in the C-terminal region, which enables interactions with the cellular Skp, Cullin, F-box containing ubiquitin ligase complex. Through the examination of experimental evidences and discussions from current literature, this review elucidates the organization and role of ankyrin repeat proteins in poxviruses. Various research studies have highlighted the significant importance of these proteins in poxviral pathogenesis and, acting as factors that enhance virulence. Consequently, they represent viable targets for developing genetically altered viruses with decreased virulence, thus displaying potential as candidates for vaccines and antiviral therapeutic development contributing to safer and more effective strategies against poxviral infections.
Collapse
Affiliation(s)
- Tania Gupta
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, 141012 India; Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India.
| |
Collapse
|
2
|
Smirnov A, Magri A, Lotz R, Han X, Yin C, Harris M, Osterburg C, Dötsch V, McKeating JA, Lu X. ASPP2 binds to hepatitis C virus NS5A protein via an SH3 domain/PxxP motif-mediated interaction and potentiates infection. J Gen Virol 2023; 104:10.1099/jgv.0.001895. [PMID: 37750869 PMCID: PMC7615710 DOI: 10.1099/jgv.0.001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.
Collapse
Affiliation(s)
- Artem Smirnov
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Rome 00133, Italy
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xiaoyue Han
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Chunhong Yin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
3
|
Huo Y, Cao K, Kou B, Chai M, Dou S, Chen D, Shi Y, Liu X. TP53BP2: Roles in suppressing tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492707 PMCID: PMC10363587 DOI: 10.1016/j.gendis.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Malignant tumor is still a major problem worldwide. During tumorigenesis or tumor development, tumor suppressor p53-binding protein 2 (TP53BP2), also known as apoptosis stimulating protein 2 of p53 (ASPP2), plays a critical role in p53 dependent and independent manner. Expression of TP53BP2 is highly correlated with the prognosis and survival rate of malignant tumor patients. TP53BP2 can interact with p53, NF-κB p65, Bcl-2, HCV core protein, PP1, YAP, CagA, RAS, PAR3, and other proteins to regulate cell function. Moreover, TP53BP2 can also regulate the proliferation, apoptosis, autophagy, migration, EMT and drug resistance of tumor cells through downstream signaling pathways, such as NF-κB, RAS/MAPK, mevalonate, TGF-β1, PI3K/AKT, aPKC-ι/GLI1 and autophagy pathways. As a potential therapeutic target, TP53BP2 has been attracted more attention. We review the role of TP53BP2 in tumorigenesis or tumor development and the signal pathway involved in TP53BP2, which may provide more deep insight and strategies for tumor treatment.
Collapse
|
4
|
Aoyama BB, Zanetti GG, Dias EV, Athié MCP, Lopes-Cendes I, Schwambach Vieira A. Transcriptomic analysis of dorsal and ventral subiculum after induction of acute seizures by electric stimulation of the perforant pathway in rats. Hippocampus 2022; 32:436-448. [PMID: 35343006 DOI: 10.1002/hipo.23417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
Preconditioning is a mechanism in which injuries induced by non-lethal hypoxia or seizures trigger cellular resistance to subsequent events. Norwood et al., in a 2010 study, showed that an 8-h-long period of electrical stimulation of the perforant pathway in rats is required for the induction of hippocampal sclerosis. However, in order to avoid generalized seizures, status epilepticus (SE), and death, a state of resistance to seizures must be induced in the hippocampus by a preconditioning paradigm consisting of two daily 30-min stimulation periods. Due to the importance of the subiculum in the hippocampal formation, this study aims to investigate differential gene expression patterns in the dorsal and ventral subiculum using RNA-sequencing, after induction of a preconditioning protocol by electrical stimulation of the perforant pathway. The dorsal (dSub) and ventral (vSub) subiculum regions were collected by laser-microdissection 24 h after preconditioning protocol induction in rats. RNA sequencing was performed in a Hiseq 4000 platform, reads were aligned using the STAR and DESEq2 statistics package was used to estimate gene expression. We identified 1176 differentially expressed genes comparing control to preconditioned subiculum regions, 204 genes were differentially expressed in dSub and 972 in vSub. The gene ontology enrichment analysis showed that the most significant common enrichment pathway considering up-regulated genes in dSub and vSub was steroid metabolism. In contrast, the most significant enrichment pathway considering down-regulated genes in vSub was axon guidance. Our results indicate that preconditioning induces changes in the expression of genes related to synaptic reorganization, increased cholesterol metabolism, and astrogliosis in both dSub and vSub. Both regions also presented a decrease in the expression of genes related to glutamatergic transmission and an increase in expression of genes related to complement system activation and GABAergic transmission. The down-regulation of proapoptotic and axon guidance genes in the ventral subiculum suggests that preconditioning may induce a neuroprotective environment in this region.
Collapse
Affiliation(s)
- Beatriz B Aoyama
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Gabriel G Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Elayne V Dias
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Maria C P Athié
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep 2021; 34:108787. [PMID: 33657365 DOI: 10.1016/j.celrep.2021.108787] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma, with poor prognosis exhibited by most patients, and a median survival time of less than 2 years. We assemble a cohort of 87 GBM patients whose survival ranges from less than 3 months and up to 10 years and perform both high-resolution mass spectrometry proteomics and RNA sequencing (RNA-seq). Integrative analysis of protein expression, RNA expression, and patient clinical information enables us to identify specific immune, metabolic, and developmental processes associated with survival as well as determine whether they are shared between expression layers or are layer specific. Our analyses reveal a stronger association between proteomic profiles and survival and identify unique protein-based classification, distinct from the established RNA-based classification. By integrating published single-cell RNA-seq data, we find a connection between subpopulations of GBM tumors and survival. Overall, our findings establish proteomic heterogeneity in GBM as a gateway to understanding poor survival.
Collapse
|
6
|
Meignié A, Combredet C, Santolini M, Kovács IA, Douché T, Gianetto QG, Eun H, Matondo M, Jacob Y, Grailhe R, Tangy F, Komarova AV. Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65-iASPP Protein Complex. Mol Cell Proteomics 2021; 20:100049. [PMID: 33515806 PMCID: PMC7950213 DOI: 10.1016/j.mcpro.2021.100049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65–iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication. Measles virus controls immune response and cell death pathways to achieve replication. Host proteins interaction network with measles virulence factor C protein. Cellular p65–iASPP complex is targeted by measles virus C protein.
Collapse
Affiliation(s)
- Alice Meignié
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Marc Santolini
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France; Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - István A Kovács
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Thibaut Douché
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France; Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR 3756, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mariette Matondo
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Yves Jacob
- Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
7
|
iASPP-Mediated ROS Inhibition Drives 5-Fu Resistance Dependent on Nrf2 Antioxidative Signaling Pathway in Gastric Adenocarcinoma. Dig Dis Sci 2020; 65:2873-2883. [PMID: 31938994 DOI: 10.1007/s10620-019-06022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
Abstract
AIMS Inhibitor for the apoptosis-stimulating protein of p53 (iASPP) has been reported to be correlated with 5-fluorouracil (5-Fu) resistance in renal cell carcinoma. Here, we uncover mechanisms of iASPP-Nrf2-ROS regulation of 5-Fu resistance which are important for the development of alternative treatment strategies for gastric adenocarcinoma treatment. METHODS We analyzed iASPP and Nrf2 through TCGA RNA-seq data, UALCAN analysis, and cBioPortal datasets. Intracellular ROS generation was determined by 2',7'-dichloro-fluorescin diacetate staining. Transwell was used to evaluate the invasion. The expression of iASPP, Nrf2, HO-1, and GSTP1 was tested using western blot. RESULTS We found that iASPP KD led to an apparent 5-Fu-induced ROS accumulation in MGC803 and SCG790 cells. Accompanied by iASPP KD, Nrf2 was markedly decreased. iASPP-induced ROS inhibition relies on Nrf2, and due to both knocked down iASPP and Nrf2, the level of ROS did not show an obvious difference with Nrf2 KD solely. Similarly, iASPP KD failed to enhance the Nrf2 KD-mediated ROS accumulation after 5-Fu treatment, suggesting that iASPP-induced antioxidative effects related to 5-Fu resistance are partially dependent on Nrf2. Also, the combination of iASPP KD and Nrf2 KD did not show any synergistic effect on apoptosis after 5-Fu treatment in MGC803 and SCG790 cells. Further studies revealed that iASPP KD or Nrf2 KD could decrease the expression of HO-1 and GSTP1. CONCLUSIONS Our data highlight that iASPP plays a crucial role in the inhibition of 5-Fu-induced apoptosis resistance by removing ROS accumulation in gastric adenocarcinoma, and that the removal of ROS induced by iASPP is Nrf2 signaling dependent.
Collapse
|
8
|
Wang Y, Wang JN, Chen XZ, Hu QX, Liu QQ, Wu G. Heat stress-induced expression of Px-pdrg and Px-aspp2 in insecticide-resistant and -susceptible Plutella xylostella. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:177-184. [PMID: 31559929 DOI: 10.1017/s0007485319000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
p53, DNA damage regulated gene (PDRG) and apoptosis-stimulating p53 protein 2 (ASPP2) are p53-related genes which can promote apoptosis. The full-length cDNA sequence of the Px-pdrg and Px-aspp2 genes were characterized and their mRNA expression dynamics under heat stress were studied in diamondback moth (DBM) Plutella xylostella collected from Fuzhou, China. The full-length cDNA of Px-pdrg and Px-aspp2 spans 721 and 4201 bp, containing 395 and 3216 bp of the open reading frame, which encode a putative protein comprising 130 and 1072 amino acids with a calculated molecular weight of 14.58 and 118.91 kDa, respectively. As compared to 25°C, both Px-pdrg and Px-aspp2 were upregulated in chlorpyrifos-resistant (Rc) and -susceptible (Sm) strains of DBM adults and pupae under heat stress. In addition, Rc DBM showed a significantly higher expression level of Px-pdrg and Px-aspp2 in contrast to Sm DBM. The results indicate that high temperature can significantly promote apoptosis process, especially in Rc-DBM. Significant fitness cost in Rc-DBM might be associated with drastically higher transcript abundance of Px-pdrg and Px-aspp2 under the heat stress.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Nan Wang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xue Zhun Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Xing Hu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Qing Liu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Zhou Y, Millott R, Kim HJ, Peng S, Edwards RA, Skene-Arnold T, Hammel M, Lees-Miller SP, Tainer JA, Holmes CFB, Glover JNM. Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis. Structure 2019; 27:1485-1496.e4. [PMID: 31402222 DOI: 10.1016/j.str.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.
Collapse
Affiliation(s)
- Yeyun Zhou
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robyn Millott
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shiyun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tamara Skene-Arnold
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles F B Holmes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
10
|
Abstract
We evaluated the effect of in vitro digested milk on mature adipocytes 3T3-L1, paying particular attention to its fatty acid composition, and comparing human (HM), donkey (DM), bovine (BM), ovine (OM), caprine (CM) and formula (FM) milk. Cellular viability, apoptosis, oxidative response and gene expression levels of NF-κB p65, HMGB1, SREBP-1c and FAS were evaluated. Digested milk treatments significantly reduced 3T3-L1 mature adipocytes viability and caspase activity compared with control group, but no significant differences were observed among different sources of digested milk. In all digested milk samples, ROS level was higher than the control, however, the digested human and formula milk showed lower levels of ROS than DM, BM, OM and CM samples. Lower capacity of HM and FM to induce oxidative stress in mature adipocytes was ascribed to the peculiar free fatty acids profile of digested milk samples. All milk treatments elicited a significant over-expression of NF-κB p65 in 3T3-L1 adipocytes compared to the control; the lowest gene expression was found in HM, BM, OM and CM, the highest in FM and an intermediate behavior was shown in DM. All digested milk treatments influenced the gene expression of SRBP-1c with FM and HM showing the highest levels. For FAS expression, BM showed the highest level, OM and CM intermediate and FM, HM and DM the lowest levels, however HM and DM had comparable levels to the control.
Collapse
|
11
|
Nguyen PT, Nguyen D, Chea C, Miyauchi M, Fujii M, Takata T. Interaction between N-cadherin and decoy receptor-2 regulates apoptosis in head and neck cancer. Oncotarget 2018; 9:31516-31530. [PMID: 30140387 PMCID: PMC6101147 DOI: 10.18632/oncotarget.25846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/15/2018] [Indexed: 11/25/2022] Open
Abstract
N-cadherin is a neural cell adhesion molecule that aberrantly occurs in head and neck cancers to promote cancer cell growth. However, the underlying mechanisms remain unclear. Here we report that N-cadherin increases cancer cell growth by inhibiting apoptosis. Apoptosis eliminates old, unnecessary, and unhealthy cells. However, tumor cells have the ability of avoiding apoptosis that increases cancer cell growth. Recent studies have found that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells by reacting with four distinct cell surface receptors: TRAIL-R1 (DR-4), TRAIL-R2 (DR-5), TRAIL-R3 (DcR-1), and TRAIL-R4 (DcR-2). Among these TRAIL receptors, the death receptors DR-4 and DR-5 transmit apoptotic signals owing to the death domain in the intracellular portion. Conversely, the decoy receptors DcR-1 and DcR-2 lack a complete intracellular portion, so neither can transmit apoptotic signals. DcR-1 or DcR-2 overexpression suppresses TRAIL-induced apoptosis. In this study, N-cadherin overexpression increased DcR-2 expression and decreased DR-5 expression. In contrast, knockdown of N-cadherin expression upregulated DR-5 expression and downregulated DcR-2 expression. A significantly positive relationship between N-cadherin and DcR-2 expression was also found in HNSCC specimens. Those specimens with a lower apoptotic index showed a higher expression of N-cadherin and/or DcR-2. In addition, we demonstrated that N-cadherin interacts directly with DcR-2. Notably, DcR-2 induces cancer cell survival through the cleavage of caspases and PARP by activating MAPK/ERK pathway and suppressing NF-kB/ p65 phosphorylation, which has a very important role in resistance to chemotherapy.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan.,Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dung Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chanbora Chea
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makiko Fujii
- Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Snezhkina AV, Lukyanova EN, Kalinin DV, Pokrovsky AV, Dmitriev AA, Koroban NV, Pudova EA, Fedorova MS, Volchenko NN, Stepanov OA, Zhevelyuk EA, Kharitonov SL, Lipatova AV, Abramov IS, Golovyuk AV, Yegorov YE, Vishnyakova KS, Moskalev AA, Krasnov GS, Melnikova NV, Shcherbo DS, Kiseleva MV, Kaprin AD, Alekseev BY, Zaretsky AR, Kudryavtseva AV. Exome analysis of carotid body tumor. BMC Med Genomics 2018; 11:17. [PMID: 29504908 PMCID: PMC5836820 DOI: 10.1186/s12920-018-0327-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Carotid body tumor (CBT) is a form of head and neck paragangliomas (HNPGLs) arising at the bifurcation of carotid arteries. Paragangliomas are commonly associated with germline and somatic mutations involving at least one of more than thirty causative genes. However, the specific functionality of a number of these genes involved in the formation of paragangliomas has not yet been fully investigated. Methods Exome library preparation was carried out using Nextera® Rapid Capture Exome Kit (Illumina, USA). Sequencing was performed on NextSeq 500 System (Illumina). Results Exome analysis of 52 CBTs revealed potential driver mutations (PDMs) in 21 genes: ARNT, BAP1, BRAF, BRCA1, BRCA2, CDKN2A, CSDE1, FGFR3, IDH1, KIF1B, KMT2D, MEN1, RET, SDHA, SDHB, SDHC, SDHD, SETD2, TP53BP1, TP53BP2, and TP53I13. In many samples, more than one PDM was identified. There are also 41% of samples in which we did not identify any PDM; in these cases, the formation of CBT was probably caused by the cumulative effect of several not highly pathogenic mutations. Estimation of average mutation load demonstrated 6–8 mutations per megabase (Mb). Genes with the highest mutation rate were identified. Conclusions Exome analysis of 52 CBTs for the first time revealed the average mutation load for these tumors and also identified potential driver mutations as well as their frequencies and co-occurrence with the other PDMs. Electronic supplementary material The online version of this article (10.1186/s12920-018-0327-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Elena N Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anatoly V Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda V Koroban
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda N Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Oleg A Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ekaterina A Zhevelyuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Khava S Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Shcherbo
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marina V Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
13
|
Qiu S, Liu S, Yu T, Yu J, Wang M, Rao Q, Xing H, Tang K, Mi Y, Wang J. Sertad1 antagonizes iASPP function by hindering its entrance into nuclei to interact with P53 in leukemic cells. BMC Cancer 2017; 17:795. [PMID: 29179704 PMCID: PMC5704379 DOI: 10.1186/s12885-017-3787-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/15/2017] [Indexed: 12/03/2022] Open
Abstract
Background As the important suppressor of P53, iASPP is found to be overexpressed in leukemia, and functions as oncogene that inhibited apoptosis of leukemia cells. Sertad1 is identified as one of the proteins that can bind with iASPP in our previous study by two-hybrid screen. Methods Co-immunoprecipitation and immunofluorescence were perfomed to identified the interaction between iASPP and Sertad1 protein. Westernblot and Real-time quantitative PCR were used to determine the expression and activation of proteins. Cell proliferation assays, cell cycle and cell apoptosis were examined by flow cytometric analysis. Results iASPP combined with Sertad1 in leukemic cell lines and the interaction occurred in the cytoplasm near nuclear membrane. iASPP could interact with Sertad1 through its Cyclin-A, PHD-bromo, C terminal domain, except for S domain. Overexpression of iASPP in leukemic cells resulted in the increased cell proliferation and resistance to apoptosis induced by chemotherapy drugs. While overexpression of iASPP and Sertad1 at the same time could slow down the cell proliferation, lead the cells more vulnerable to the chemotherapy drugs, the resistance to chemotherapeutic drug in iASPPhi leukemic cells was accompanied by Puma protein expression. Excess Sertad1 protein could tether iASPP protein in the cytoplasm, further reduced the binding between iASPP and P53 in the nucleus. Conclusions Sertad1 could antagonize iASPP function by hindering its entrance into nuclei to interact with P53 in leukemic cells when iASPP was in the stage of overproduction. Electronic supplementary material The online version of this article (10.1186/s12885-017-3787-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaowei Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Shuang Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jing Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Yinchang Mi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| |
Collapse
|
14
|
Downregulation of ASPP2 improves hepatocellular carcinoma cells survival via promoting BECN1-dependent autophagy initiation. Cell Death Dis 2016; 7:e2512. [PMID: 27929538 PMCID: PMC5260975 DOI: 10.1038/cddis.2016.407] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/01/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023]
Abstract
Autophagy is an important catabolic process, which sustains intracellular homeostasis and lengthens cell survival under stress. Here we identify the ankyrin-repeat-containing, SH3-domain-containing, and proline-rich region-containing protein 2 (ASPP2), a haploinsufficient tumor suppressor, as a molecular regulator of starvation-induced autophagy in hepatocellular carcinoma (HCC). ASPP2 expression is associated with an autophagic response upon nutrient deprivation and downregulation of ASPP2 facilitates autophagic flux, whereas overexpression of ASPP2 blocks this starvation-induced autophagy in HCC cells. Mechanistically, ASPP2 inhibits autophagy through regulating BECN1 transcription and formation of phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) complex. Firstly, ASPP2 inhibits p65/RelA-induced transcription of BECN1, directly by an ASPP2-p65/RelA-IκBα complex which inhibits phosphorylation of IκBα and the translocation of p65/RelA into the nucleus. Secondly, ASPP2 binds to BECN1, leading to decreased binding of PIK3C3 and UV radiation resistance-associated gene (UVRAG), and increased binding of Rubicon in PIK3C3 complex. Downregulation of ASPP2 enhances the pro-survival and chemoresistant property via autophagy in HCC cells in vitro and in vivo. Decreased ASPP2 expression was associated with increased BECN1 and poor survival in HCC patients. Therefore, ASPP2 is a key regulator of BECN1-dependent autophagy, and decreased ASPP2 may contribute to tumor progression and chemoresistance via promoting autophagy.
Collapse
|
15
|
Hu Y, Ge W, Wang X, Sutendra G, Zhao K, Dedeić Z, Slee EA, Baer C, Lu X. Caspase cleavage of iASPP potentiates its ability to inhibit p53 and NF-κB. Oncotarget 2015; 6:42478-90. [PMID: 26646590 PMCID: PMC4767446 DOI: 10.18632/oncotarget.6478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/25/2015] [Indexed: 12/14/2022] Open
Abstract
An intriguing biological question relating to cell signaling is how the inflammatory mediator NF-kB and the tumour suppressor protein p53 can be induced by similar triggers, like DNA damage or infection, yet have seemingly opposing or sometimes cooperative biological functions. For example, the NF-κB subunit RelA/p65 has been shown to inhibit apoptosis, whereas p53 induces apoptosis. One potential explanation may be their co-regulation by common cellular factors: inhibitor of Apoptosis Stimulating p53 Protein (iASPP) is one such common regulator of both RelA/p65 and p53. Here we show that iASPP is a novel substrate of caspases in response to apoptotic stimuli. Caspase cleaves the N-terminal region of iASPP at SSLD294 resulting in a prominent 80kDa fragment of iASPP. This caspase cleavage site is conserved in various species from zebrafish to Homo sapiens. The 80kDa fragment of iASPP translocates from the cytoplasm to the nucleus via the RaDAR nuclear import pathway, independent of p53. The 80kDa iASPP fragment can bind and inhibit p53 or RelA/p65 more efficiently than full-length iASPP. Overall, these data reveal a potential novel regulation of p53 and RelA/p65 activities in response to apoptotic stimuli.
Collapse
Affiliation(s)
- Ying Hu
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Wenjie Ge
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xingwen Wang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kunming Zhao
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zinaida Dedeić
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Elizabeth A. Slee
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Caroline Baer
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Highly homologous proteins exert opposite biological activities by using different interaction interfaces. Sci Rep 2015; 5:11629. [PMID: 26130271 PMCID: PMC4486954 DOI: 10.1038/srep11629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/02/2015] [Indexed: 11/08/2022] Open
Abstract
We present a possible molecular basis for the opposite activity of two homologues proteins that bind similar ligands and show that this is achieved by fine-tuning of the interaction interface. The highly homologous ASPP proteins have opposite roles in regulating apoptosis: ASPP2 induces apoptosis while iASPP inhibits it. The ASPP proteins are regulated by an autoinhibitory interaction between their Ank-SH3 and Pro domains. We performed a detailed biophysical and molecular study of the Pro - Ank-SH3 interaction in iASPP and compared it to the interaction in ASPP2. We found that iASPP Pro is disordered and that the interaction sites are entirely different: iASPP Ank-SH3 binds iASPP Pro via its fourth Ank repeat and RT loop while ASPP2 Ank-SH3 binds ASPP2 Pro via its first Ank repeat and the n-src loop. It is possible that by using different moieties in the same interface, the proteins can have distinct and specific interactions resulting in differential regulation and ultimately different biological activities.
Collapse
|
17
|
Reingewertz TH, Iosub-Amir A, Bonsor DA, Mayer G, Amartely H, Friedler A, Sundberg EJ. An Intrinsically Disordered Region in the Proapoptotic ASPP2 Protein Binds to the Helicobacter pylori Oncoprotein CagA. Biochemistry 2015; 54:3337-47. [PMID: 25963096 DOI: 10.1021/acs.biochem.5b00084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leading risk factor for gastric cancer in humans is infection by Helicobacter pylori strains that express and translocate the oncoprotein CagA into host epithelial cells. Once inside host cells, CagA interacts with ASPP2, which specifically stimulates p53-mediated apoptosis and reverses its pro-apoptotic function to promote ASPP2-dependent degradation of p53. The X-ray crystal structure of a complex between the N-terminal domain of CagA and a 56-residue fragment of ASPP2, of which 22 residues were resolved, was recently described. Here, we present biochemical and biophysical analyses of the interaction between the additional regions of CagA and ASPP2 potentially involved in this interaction. Using size exclusion chromatography-multiangle laser light scattering, circular dichroism, and nuclear magnetic resonance analyses, we observed that the ASPP2 region spanning residues 331-692, which was not part of the ASPP2 fragment used for crystallization, is intrinsically disordered in its unbound state. By surface plasmon resonance analysis and isothermal titration calorimetry, we found that a portion of this disordered region in ASPP2, residues 448-692, binds to the N-terminal domain of CagA. We also measured the affinity of the complex between the ASPP2 fragment composed of residues 693-918 and inclusive of the fragment used for crystallization and CagA. Additionally, we mapped the binding regions between ASPP2 and CagA using peptide arrays, demonstrating interactions between CagA and numerous peptides distributed throughout the ASPP2 protein sequence. Our results identify previously uncharacterized regions distributed throughout the protein sequence of ASPP2 as determinants of CagA binding, providing mechanistic insight into apoptosis reprogramming by CagA and potential new drug targets for H. pylori-mediated gastric cancer.
Collapse
Affiliation(s)
| | - Anat Iosub-Amir
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Guy Mayer
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Amartely
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Assaf Friedler
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
18
|
Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2. Proc Natl Acad Sci U S A 2014; 111:1562-7. [PMID: 24474782 DOI: 10.1073/pnas.1320631111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Cytotoxin associated gene A (CagA) protein of Helicobacter pylori is associated with increased virulence and risk of cancer. Recent proteomic studies have demonstrated an association of CagA with the human tumor suppressor Apoptosis-stimulating Protein of p53-2 (ASPP2). We present here a genetic, biochemical, and structural analysis of CagA with ASPP2. Domain delineation of the 120-kDa CagA protein revealed a stable N-terminal subdomain that was used in a yeast two-hybrid screen that identified the proline-rich domain of ASPP2 as a host cellular target. Biochemical experiments confirm this interaction. The cocrystal structure to 2.0-Å resolution of this N-terminal subdomain of CagA with a 7-kDa proline-rich sequence of ASPP2 reveals that this domain of CagA forms a highly specialized three-helix bundle, with large insertions in the loops connecting the helices. These insertions come together to form a deep binding cleft for a highly conserved 20-aa peptide of ASPP2. ASPP2 forms an extended helix in this groove of CagA, burying more than 1,000 Å(2) of surface area. This interaction is disrupted in vitro and in vivo by structure-based, loss-of-contact point mutations of key residues in either CagA or ASPP2. Disruption of CagA and ASPP2 binding alters the function of ASPP2 and leads to the decreased survival of H. pylori-infected cells.
Collapse
|
19
|
Iosub-Amir A, Friedler A. Protein–protein interactions of ASPP2: an emerging therapeutic target. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00147h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ASPP2 induces apoptosis and is downregulated in many types of cancer, making it a promising target for anti-cancer drugs.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| |
Collapse
|
20
|
Pacchiani N, Censini S, Buti L, Covacci A. Echoes of a distant past: The cag pathogenicity island of Helicobacter pylori. Cold Spring Harb Perspect Med 2013; 3:cshperspect.a010355. [PMID: 24097901 DOI: 10.1101/cshperspect.a010355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review discusses the multiple roles of the CagA protein encoded by the cag pathogenicity island of Helicobacter pylori and highlights the CagA degradation activities on p53. By subverting the p53 tumor suppressor pathway CagA induces a strong antiapoptotic effect. Helicobacter pylori infection has been always associated with an increased risk of gastric cancer. The pro-oncogenic functions of CagA also target the tumor suppressor ASPP2. In the absence of tumor suppressor genes, cells survive and proliferate at times and in places where their survival and proliferation are inappropriate.
Collapse
Affiliation(s)
- Nicola Pacchiani
- Systems Biology Unit, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | | | | |
Collapse
|
21
|
ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63. Proc Natl Acad Sci U S A 2013; 110:17969-74. [PMID: 24127607 DOI: 10.1073/pnas.1309362110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Squamous cell carcinoma (SCC) is highly malignant and refractory to therapy. The majority of existing mouse SCC models involve multiple gene mutations. Very few mouse models of spontaneous SCC have been generated by a single gene deletion. Here we report a haploinsufficient SCC mouse model in which exon 3 of the Tp53BP2 gene (a p53 binding protein) was deleted in one allele in a BALB/c genetic background. Tp53BP2 encodes ASPP2 (ankyrin repeats, SH3 domain and protein rich region containing protein 2). Keratinocyte differentiation induces ASPP2 and its expression is inversely correlated with p63 protein in vitro and in vivo. Up-regulation of p63 expression is required for ASPP2(Δexon3/+) BALB/c mice to develop SCC, as heterozygosity of p63 but not p53 prevents them from developing it. Mechanistically, ASPP2 inhibits ΔNp63 expression through its ability to bind IκB and enhance nuclear Rel/A p65, a component of the NF-κB transcription complex, which mediates the repression of p63. Reduced ASPP2 expression associates with tumor metastasis and increased p63 expression in human head and neck SCCs. This study identifies ASPP2 as a tumor suppressor that suppresses SCC via inflammatory signaling through NF-κB-mediated repression of p63.
Collapse
|
22
|
Molecular mechanisms underlying the interaction of protein phosphatase-1c with ASPP proteins. Biochem J 2013; 449:649-59. [PMID: 23088536 DOI: 10.1042/bj20120506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, β and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.
Collapse
|
23
|
Rotem-Bamberger S, Katz C, Friedler A. Regulation of ASPP2 interaction with p53 core domain by an intramolecular autoinhibitory mechanism. PLoS One 2013; 8:e58470. [PMID: 23472201 PMCID: PMC3589414 DOI: 10.1371/journal.pone.0058470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/06/2013] [Indexed: 11/30/2022] Open
Abstract
ASPP2 is a key protein in regulating apoptosis both in p53-dependent and-independent pathways. The C-terminal part of ASPP2 contains four ankyrin repeats and an SH3 domain (Ank-SH3) that mediate the interactions of ASPP2 with apoptosis related proteins such as p53, Bcl-2 and the p65 subunit of NFκB. p53 core domain (p53CD) binds the n-src loop and the RT loop of ASPP2 SH3. ASPP2 contains a disordered proline rich domain (ASPP2 Pro) that forms an intramolecular autoinhibitory interaction with the Ank-SH3 domains. Here we show how this intramolecular interaction affects the intermolecular interactions of ASPP2 with p53, Bcl-2 and NFkB. We used biophysical methods to obtain better understanding of the relationship between ASPP2 and its partners for getting a comprehensive view on ASPP2 pathways. Fluorescence anisotropy competition experiments revealed that both ASPP2 Pro and p53CD competed for binding the n-src loop of the ASPP2 SH3, indicating regulation of p53CD binding to this loop by ASPP2 Pro. Peptides derived from the ASPP2-binding interface of Bcl-2 did not compete with p53CD or NFkB peptides for binding the ASPP2 n-src loop. However, p53CD displaced the NFκB peptide (residues 303–332) from its complex with ASPP2 Ank-SH3, indicating that NFκB 303–332 and p53CD bind a partly overlapping site in ASPP2 SH3, mostly in the RT loop. These results are in agreement with previous docking studies, which showed that ASPP2 Ank-SH3 binds Bcl-2 and NFκB mostly via distinct sites from p53. However they show some overlap between the binding sites of p53CD and NFkB in ASPP2 Ank-SH3. Our results provide experimental evidence that the intramolecular interaction in ASPP2 regulates its binding to p53CD and that ASPP2 Ank-SH3 binds Bcl-2 and NFκB via distinct sites.
Collapse
Affiliation(s)
- Shahar Rotem-Bamberger
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Chen Katz
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
24
|
MicroRNA-124 regulates the proliferation of colorectal cancer cells by targeting iASPP. BIOMED RESEARCH INTERNATIONAL 2013; 2013:867537. [PMID: 23691514 PMCID: PMC3652105 DOI: 10.1155/2013/867537] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/24/2013] [Accepted: 02/27/2013] [Indexed: 01/17/2023]
Abstract
MicroRNAs are a class of small, noncoding RNAs that function as critical regulators of gene expression by targeting mRNAs for translational repression or degradation. In this study, we demonstrate that expression of microRNA-124 (miR-124) is significantly downregulated in colorectal cancer tissues and cell lines, compared to the matched adjacent tissues. We identified and confirmed inhibitor of apoptosis-stimulating protein of p53 (iASPP) as a novel, direct target of miR-124 using target prediction algorithms and luciferase reporter gene assays. Overexpression of miR-124 suppressed iASPP protein expression, upregulated expression of the downstream signaling molecule nuclear factor-kappa B (NF- κ B), and attenuated cell viability, proliferation, and colony formation in SW480 and HT-29 colorectal cancer cells in vitro. Forced overexpression of iASPP partly rescued the inhibitory effect of miR-124 on SW480 and HT29 cell proliferation. Taken together, these findings shed light on the role and mechanism of action of miR-124, indicate that the miR-124/iASPP axis can regulate the proliferation of colorectal cancer cells, and suggest that miR-124 may serve as a potential therapeutic target for colorectal cancer.
Collapse
|
25
|
Taaffe JE, Bosinger SE, Del Prete GQ, Else JG, Ratcliffe S, Ward CD, Migone T, Paiardini M, Silvestri G. CCR5 blockade is well tolerated and induces changes in the tissue distribution of CCR5+ and CD25+ T cells in healthy, SIV-uninfected rhesus macaques. J Med Primatol 2011; 41:24-42. [PMID: 22077380 DOI: 10.1111/j.1600-0684.2011.00521.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND CCR5 is a main co-receptor for HIV, but also homes lymphocytes to sites of inflammation. We hypothesized that inhibition of CCR5 signaling would reduce HIV-associated chronic immune activation. METHODS To test this hypothesis, we administered an antagonistic anti-CCR5 monoclonal antibody (HGS101) to five uninfected rhesus macaques (RMs) and monitored lymphocyte dynamics in blood and tissue. RESULTS CCR5 blockade resulted in decreased levels of CCR5+ T cells in blood and, at later timepoints, in lymph nodes. Additionally, the levels of CD25+ T cells increased in lymph nodes, but decreased in blood, bone marrow, and rectal mucosa. Finally, a profile of gene expression from HGS101-treated RMs revealed a subtle, but consistent, in vivo signature of CCR5 blockade that suggests a mild immune-modulatory effect. CONCLUSIONS Treatment with anti-CCR5 antibody induces changes in the tissue distribution of CCR5+ and CD25+ T cells that may impact on the overall levels of immune activation during HIV and SIV infection.
Collapse
Affiliation(s)
- Jessica E Taaffe
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Benyamini H, Friedler A. The ASPP interaction network: electrostatic differentiation between pro- and anti-apoptotic proteins. J Mol Recognit 2011; 24:266-74. [PMID: 20623514 DOI: 10.1002/jmr.1048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ASPP proteins are apoptosis regulators: ASPP1 and ASPP2 promote, while iASPP inhibits, apoptosis. The mechanism by which these different outcomes are achieved is still unknown. The C-terminal ankyrin repeats and SH3 domain (ANK-SH3) mediate the interactions of the ASPP proteins with major apoptosis regulators such as p53, Bcl-2, and NFκB. The structure of the complex between ASPP2(ANK-SH3) and the core domain of p53 (p53CD) was previously determined. We have recently characterized the individual interactions of ASPP2(ANK-SH3) with Bcl-2 and NFκB, as well as a regulatory intramolecular interaction with the proline rich domain of ASPP2. Here we compared the ASPP interactions at two levels: ASPP2(ANK-SH3) with different proteins, and different ASPP family members with each protein partner. We found that the binding sites of ASPP2 to p53CD, Bcl-2, and NFκB are different, yet lie on the same face of ASPP2(ANK-SH3) . The intramolecular binding site to the proline rich domain overlaps the three intermolecular binding sites. To reveal the basis of functional diversity in the ASPP family, we compared their protein-binding domains. A subset of surface-exposed residues differentiates ASPP1 and ASPP2 from iASPP: ASPP1/2 are more negatively charged in specific residues that contact positively charged residues of p53CD, Bcl-2, and NFκB. We also found a gain of positive charge at the non-protein binding face of ASPP1/2, suggesting a role in electrostatic direction towards the negatively charged protein binding face. The electrostatic differences in binding interfaces between the ASPP proteins may be one of the causes for their different function.
Collapse
Affiliation(s)
- Hadar Benyamini
- The Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | |
Collapse
|
27
|
Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci U S A 2011; 108:9238-43. [PMID: 21562218 DOI: 10.1073/pnas.1106200108] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type I strains of Helicobacter pylori (Hp) possess a pathogenicity island, cag, that encodes the effector protein cytotoxin-associated gene A (CagA) and a type four secretion system. After translocation into the host cell, CagA affects cell shape, increases cell motility, abrogates junctional activity, and promotes an epithelial to mesenchymal transition-like phenotype. Transgenic expression of CagA enhances gastrointestinal and intestinal carcinomas as well as myeloid and B-cell lymphomas in mice, but the mechanism of the induced cancer formation is not fully understood. Here, we show that CagA subverts the tumor suppressor function of apoptosis-stimulating protein of p53 (ASPP2). Delivery of CagA inside the host results in its association with ASPP2. After this interaction, ASPP2 recruits its natural target p53 and inhibits its apoptotic function. CagA leads to enhanced degradation of p53 and thereby, down-regulates its activity in an ASPP2-dependent manner. Finally, Hp-infected cells treated with the p53-activating drug Doxorubicin are more resistant to apoptosis than uninfected cells, an effect that requires ASPP2. The interaction between CagA and ASPP2 and the consequent degradation of p53 are examples of a bacterial protein that subverts the p53 tumor suppressor pathway in a manner similar to DNA tumor viruses. This finding may contribute to the understanding of the increased risk of gastric cancer in patients infected with Hp CagA+ strains.
Collapse
|
28
|
Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Appl Microbiol Biotechnol 2011; 89:1917-28. [PMID: 21286710 DOI: 10.1007/s00253-011-3106-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/30/2010] [Accepted: 01/06/2011] [Indexed: 12/11/2022]
Abstract
In order to understand the intracellular responses in recombinant CHO (rCHO) cells producing antibody in serum-free medium (SFM) supplemented with optimized hydrolysates mixtures, yielding the highest specific growth rate (μ, SFM#S1) or the highest specific antibody productivity (q(Ab,) SFM#S2), differentially expressed proteins in rCHO cells are measured by two-dimensional gel electrophoresis combined with nano-LC-ESI-Q-TOF tandem MS. The comparative proteomic analysis with basal SFM without hydrolysates revealed that the addition of hydrolysate mixtures significantly altered the profiles of CHO proteome. In SFM#S1, the expression of metabolism-related proteins, cytoskeleton-associated proteins, and proliferation-related proteins was up-regulated. On the other hand, the expression of anti-proliferative proteins and pro-apoptotic protein was down-regulated. In SFM#S2, the expression of various chaperone proteins and proliferation-linked proteins was altered. 2D-Western blot analysis of differentially expressed proteins confirmed the proteomic results. Taken together, identification of differentially expressed proteins in CHO cells by a proteomic approach can provide insights into understanding the effect of hydrolysates on intracellular events and clues to find candidate genes for cell engineering to maximize the protein production in rCHO cells.
Collapse
|
29
|
RNA interference-mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells. Mol Cell Biochem 2010; 350:193-200. [PMID: 21184255 DOI: 10.1007/s11010-010-0698-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
Abstract
iASPP is an evolutionally conserved inhibitory member of the ASPP (apoptosis-stimulating protein of p53) protein family. Overexpression of iASPP was observed in several types of human tumors, however, its role in tumorigenesis has not been fully clarified. To investigate the role of iASPP in human glioblastoma multiforme (GMB) progression, the authors employed lentivirus-mediated shRNA to silence endogenous iASPP expression and elucidated iASPP function by analysis of viability, colony formation, DNA synthesis, and cell cycle in p53-mutant glioblastoma cell line U251. iASPP was significantly and sustainably knocked down by iASPP-specific shRNA in U251 cells. Stable down-regulation of iASPP expression-induced cell proliferation inhibition and G0/G1 cell cycle arrest by down-regulation of cyclin D1 and up-regulation of p21(Waf1/Cip1). Thus, the findings not only provide a molecular basis for the role of iASPP in cell cycle progression of glioblastoma cells but also suggest a novel therapeutic target for the treatment of GBM.
Collapse
|
30
|
Wang XD, Lapi E, Sullivan A, Ratnayaka I, Goldin R, Hay R, Lu X. SUMO-modified nuclear cyclin D1 bypasses Ras-induced senescence. Cell Death Differ 2010; 18:304-14. [PMID: 20798689 DOI: 10.1038/cdd.2010.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oncogene-induced senescence represents a key tumor suppressive mechanism. Here, we show that Ras oncogene-induced senescence can be mediated by the recently identified haploinsufficient tumor suppressor apoptosis-stimulating protein of p53 (ASPP) 2 through a novel and p53/p19(Arf)/p21(waf1/cip1)-independent pathway. ASPP2 suppresses Ras-induced small ubiquitin-like modifier (SUMO)-modified nuclear cyclin D1 and inhibits retinoblastoma protein (Rb) phosphorylation. The lysine residue, K33, of cyclin D1 is a key site for this newly identified regulation. In agreement with the fact that its nuclear localization is required for its oncogenic activity, we show that nuclear cyclin D1 is far more potent than wild-type (WT) cyclin D1 in bypassing Ras-induced senescence. Thus, this study identifies SUMO modification as a positive regulator of nuclear cyclin D1, and reveals a new way by which cell cycle entry and senescence are regulated.
Collapse
Affiliation(s)
- X D Wang
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Lu C, Xiao C, Chen G, Jiang M, Zha Q, Yan X, Kong W, Lu A. Cold and heat pattern of rheumatoid arthritis in traditional Chinese medicine: distinct molecular signatures indentified by microarray expression profiles in CD4-positive T cell. Rheumatol Int 2010; 32:61-8. [PMID: 20658292 PMCID: PMC3253282 DOI: 10.1007/s00296-010-1546-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/11/2010] [Indexed: 01/08/2023]
Abstract
The research is aimed to explore the distinct molecular signatures in discriminating the rheumatoid arthritis patients with traditional Chinese medicine (TCM) cold pattern and heat pattern. Twenty patients with typical TCM cold pattern and heat pattern were included. Microarray technology was used to reveal gene expression profiles in CD4+ T cells. The signal intensity of each expressed gene was globally normalized using the R statistics program. The ratio of cold pattern to heat pattern in patients with RA at more or less than 1:2 was taken as the differential gene expression criteria. Protein-protein interaction information for these genes from databases was searched, and the highly connected regions were detected by IPCA algorithm. The significant pathways were extracted from these subnetworks by Biological Network Gene Ontology tool. Twenty-nine genes differentially regulated between cold pattern and heat pattern were found. Among them, 7 genes were expressed significantly more in cold pattern. Biological network of protein-protein interaction information for these significant genes were searched and four highly connected regions were detected by IPCA algorithm to infer significant complexes or pathways in the biological network. Particularly, the cold pattern was related to Toll-like receptor signaling pathway. The following related pathways in heat pattern were included: Calcium signaling pathway; cell adhesion molecules; PPAR signaling pathway; fatty acid metabolism. These results suggest that better knowledge of the main biological processes involved at a given pattern in TCM might help to choose the most appropriate treatment.
Collapse
Affiliation(s)
- Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Dongzhimen, Beijing 100700, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Benyamini H, Leonov H, Rotem S, Katz C, Arkin IT, Friedler A. A model for the interaction between NF-kappa-B and ASPP2 suggests an I-kappa-B-like binding mechanism. Proteins 2010; 77:602-11. [PMID: 19507243 DOI: 10.1002/prot.22473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We used computational methods to study the interaction between two key proteins in apoptosis regulation: the transcription factor NF-kappa-B (NFkappaB) and the proapoptotic protein ASPP2. The C-terminus of ASPP2 contains ankyrin repeats and SH3 domains (ASPP2(ANK-SH3)) that mediate interactions with numerous apoptosis-related proteins, including the p65 subunit of NFkappaB (NFkappaB(p65)). Using peptide-based methods, we have recently identified the interaction sites between NFkappaB(p65) and ASPP2(ANK-SH3) (Rotem et al., J Biol Chem 283, 18990-18999). Here we conducted a computational study of protein docking and molecular dynamics to obtain a structural model of the complex between the full length proteins and propose a mechanism for the interaction. We found that ASPP2(ANK-SH3) binds two sites in NFkappaB(p65), at residues 236-253 and 293-313 that contain the nuclear localization signal (NLS). These sites also mediate the binding of NFkappaB to its natural inhibitor IkappaB, which also contains ankyrin repeats. Alignment of the ankyrin repeats of ASPP2(ANK-SH3) and IkappaB revealed that both proteins share highly similar interfaces at their binding sites to NFkappaB. Protein docking of ASPP2(ANK-SH3) and NFkappaB(p65), as well as molecular dynamics simulations of the proteins, provided structural models of the complex that are energetically similar to the NFkappaB-IkappaB determined structure. Our results show that ASPP2(ANK-SH3) binds NFkappaB(p65) in a similar manner to its natural inhibitor IkappaB, suggesting a possible novel role for ASPP2 as an NFkappaB inhibitor.
Collapse
Affiliation(s)
- Hadar Benyamini
- The Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Zhao J, Wu G, Bu F, Lu B, Liang A, Cao L, Tong X, Lu X, Wu M, Guo Y. Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology 2010; 51:142-53. [PMID: 20034025 DOI: 10.1002/hep.23247] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED The ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region-containing protein (ASPP) family of proteins regulates apoptosis through interaction with p53 and its family members. This study evaluated the epigenetic regulation of ASPP1 and ASPP2 in hepatitis B virus (HBV)-positive hepatocellular carcinoma (HCC) and explores the effects of down-regulation of ASPP1 and ASPP2 on the development of HCC. HCC cell lines and tissues from HCC patients were used to examine the expression and methylation of ASPP1 and ASPP2. The expression of ASPP1 and ASPP2 was diminished in HCC cells by epigenetic silence owing to hypermethylation of ASPP1 and ASPP2 promoters. Analyses of 51 paired HCC and surrounding nontumor tissues revealed that methylation of ASPP1 and ASPP2 was associated with the decreased expression of ASPP1 and ASPP2 in tumor tissues and the early development of HCC. Moreover, ASPP2 became methylated upon HBV x protein (HBx) expression. The suppressive effects on tumor growth by ASPP1 and ASPP2 were examined with RNA interference-mediated gene silence. Down-regulation of ASPP1 and ASPP2 promoted the growth of HCC cells in soft agar and in nude mice and decreased the sensitivity of HCC cells to apoptotic stimuli. CONCLUSION ASPP1 and ASPP2 genes are frequently down-regulated by DNA methylation in HBV-positive HCC, which may play important roles in the development of HCC. These findings provide new insight into the molecular mechanisms leading to hepatocarcinogenesis and may have potent therapeutic applications.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute & Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rath PC, Mukhopadhyay T. p53 Gene Expression and 2-Methoxyestradiol Treatment Differentially Induce Nuclear Factor Kappa B Activation in Human Lung Cancer Cells with Different p53 Phenotypes. DNA Cell Biol 2009; 28:615-23. [DOI: 10.1089/dna.2008.0839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pramod C. Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
35
|
Guo Z, Wang J, Yang J, Wu NH, Zhang Y, Shen YF. An inhibitory role of p53 via NF-κB element on the cyclin D1 gene under heat shock. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:758-62. [DOI: 10.1016/j.bbagrm.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 12/28/2022]
|
36
|
Gillotin S. iASPP, A potential drug target in cancer therapy. Leuk Res 2009; 33:1175-7. [DOI: 10.1016/j.leukres.2009.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 04/26/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
37
|
Uhlmann-Schiffler H, Kiermayer S, Stahl H. The DEAD box protein Ddx42p modulates the function of ASPP2, a stimulator of apoptosis. Oncogene 2009; 28:2065-73. [PMID: 19377511 DOI: 10.1038/onc.2009.75] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ddx42p is a recently characterized mammalian DEAD box protein with unknown cellular function. We found that in human cells Ddx42p physically interacts with ASPP2, a major apoptosis inducer known to enhance p53 transactivation of proapoptotic genes. The proteins interact via a domain within the carboxy-terminal part of Ddx42p and a mid-amino-terminal sequence as well as the ankyrin-SH3 region of ASPP2. Overexpression of Ddx42p interferes with apoptosis induction by ASPP2, whereas Ddx42p knockdown reduces the survival rate of cultured human cells. In addition, ASPP2 is found in cytoplasm and nucleus at low Ddx42p level, and predominantly in cytoplasm at high concentration of Ddx42p, respectively. Our results show that Ddx42p is capable of modulating ASPP2 function.
Collapse
Affiliation(s)
- H Uhlmann-Schiffler
- Department of Medical Biochemistry and Molecular Biology, The Saarland University, Homburg, Germany.
| | | | | |
Collapse
|
38
|
Apoptosis-stimulating protein of p53 (ASPP2) heterozygous mice are tumor-prone and have attenuated cellular damage-response thresholds. Proc Natl Acad Sci U S A 2009; 106:4390-5. [PMID: 19251665 DOI: 10.1073/pnas.0809080106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The expression of ASPP2 (53BP2L), a proapoptotic member of a family of p53-binding proteins, is frequently suppressed in many human cancers. Accumulating evidence suggests that ASPP2 inhibits tumor growth; however, the mechanisms by which ASPP2 suppresses tumor formation remain to be clarified. To study this, we targeted the ASPP2 allele in a mouse by replacing exons 10-17 with a neoR gene. ASPP2(-/-) mice were not viable because of an early embryonic lethal event. Although ASPP2(+/-) mice appeared developmentally normal, they displayed an increased incidence of a variety of spontaneous tumors as they aged. Moreover, gamma-irradiated 6-week-old ASPP2(+/-) mice developed an increased incidence of high-grade T cell lymphomas of thymic origin compared with ASPP2(+/+) mice. Primary thymocytes derived from ASPP2(+/-) mice exhibited an attenuated apoptotic response to gamma-irradiation compared with ASPP2(+/+) thymocytes. Additionally, ASPP2(+/-) primary mouse embryonic fibroblasts demonstrated a defective G(0)/G(1) cell cycle checkpoint after gamma-irradiation. Our results demonstrate that ASPP2 is a haploinsufficient tumor suppressor and, importantly, open new avenues for investigation into the mechanisms by which disruption of ASPP2 pathways could play a role in tumorigenesis and response to therapy.
Collapse
|
39
|
Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 2009; 6:5. [PMID: 19146679 PMCID: PMC2637825 DOI: 10.1186/1742-4690-6-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Infection with HIV-1 has been shown to alter expression of a large array of host cell genes. However, previous studies aimed at investigating the putative HIV-1-induced modulation of host gene expression have been mostly performed in established human cell lines. To better approximate natural conditions, we monitored gene expression changes in a cell population highly enriched in human primary CD4+ T lymphocytes exposed to HIV-1 using commercial oligonucleotide microarrays from Affymetrix. Results We report here that HIV-1 influences expression of genes related to many important biological processes such as DNA repair, cellular cycle, RNA metabolism and apoptosis. Notably, expression of the p53 tumor suppressor and genes involved in p53 homeostasis such as GADD34 were up-regulated by HIV-1 at the mRNA level. This observation is distinct from the previously reported p53 phosphorylation and stabilization at the protein level, which precedes HIV-1-induced apoptosis. We present evidence that the HIV-1-mediated increase in p53 gene expression is associated with virus-mediated induction of type-I interferon (i.e. IFN-α and IFN-β). Conclusion These observations have important implications for our understanding of HIV-1 pathogenesis, particularly in respect to the virus-induced depletion of CD4+ T cells.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada.
| | | | | |
Collapse
|
40
|
p53 target DDA3 binds ASPP2 and inhibits its stimulation on p53-mediated BAX activation. Biochem Biophys Res Commun 2008; 376:395-8. [PMID: 18793611 DOI: 10.1016/j.bbrc.2008.08.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 11/23/2022]
Abstract
The p53 tumor suppressor functions in maintaining the integrity of the genome. We have previously reported that DDA3 is an oncoprotein transcriptionally regulated by p53. To explore mechanisms underlying DDA3 action, we searched for its interacting proteins by yeast two-hybrid screening, and identified ASPP2, a p53 binding protein, as its binding partner. The DDA3/ASPP2 binding was confirmed in vitro by GST pull-down and in vivo by immunofluorescence assay, which indicated colocalization of DDA3 and ASPP2. Interacting domain of DDA3 was mapped to amino acids 118-241, whereas both the N- and C-terminal regions of ASPP2 were capable of binding to DDA3. DDA3 dose-dependently inhibited ASPP2 in stimulating the p53-mediated BAX promoter activation without interfering the binding of ASPP2 to p53. Together these results identify ASPP2 as a bona fide DDA3 interacting protein, and suggest that the ASPP2/DDA3 interaction may inhibit ASPP2 in stimulating the apoptotic signaling of p53.
Collapse
|
41
|
Rotem S, Katz C, Benyamini H, Lebendiker M, Veprintsev D, Rüdiger S, Danieli T, Friedler A. The structure and interactions of the proline-rich domain of ASPP2. J Biol Chem 2008; 283:18990-9. [PMID: 18448430 DOI: 10.1074/jbc.m708717200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ASPP2 is a pro-apoptotic protein that stimulates the p53-mediated apoptotic response. The C terminus of ASPP2 contains ankyrin (Ank) repeats and a SH3 domain, which mediate its interactions with numerous partner proteins such as p53, NFkappaB, and Bcl-2. It also contains a proline-rich domain (ASPP2 Pro), whose structure and function are unclear. Here we used biophysical and biochemical methods to study the structure and the interactions of ASPP2 Pro, to gain insight into its biological role. We show, using biophysical and computational methods, that the ASPP2 Pro domain is natively unfolded. We found that the ASPP2 Pro domain interacts with the ASPP2 Ank-SH3 domains, and mapped the interaction sites in both domains. Using a combination of peptide array screening, biophysical and biochemical techniques, we found that ASPP2 Ank-SH3, but not ASPP2 Pro, mediates interactions of ASPP2 with peptides derived from its partner proteins. ASPP2 Pro-Ank-SH3 bound a peptide derived from its partner protein NFkappaB weaker than ASPP2 Ank-SH3 bound this peptide. This suggested that the presence of the proline-rich domain inhibited the interactions mediated by the Ank-SH3 domains. Furthermore, a peptide from ASPP2 Pro competed with a peptide derived from NFkappaB on binding to ASPP2 Ank-SH3. Based on our results, we propose a model in which the interaction between the ASPP2 domains regulates the intermolecular interactions of ASPP2 with its partner proteins.
Collapse
Affiliation(s)
- Shahar Rotem
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tomoda K, Takahashi N, Hibi Y, Asamitsu K, Ishida H, Kondo T, Fujii Y, Okamoto T. Molecular docking analysis of the protein-protein interaction between RelA-associated inhibitor and tumor suppressor protein p53 and its inhibitory effect on p53 action. Cancer Sci 2008; 99:615-22. [PMID: 18201273 PMCID: PMC11158167 DOI: 10.1111/j.1349-7006.2007.00723.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 11/17/2007] [Accepted: 11/27/2007] [Indexed: 11/28/2022] Open
Abstract
RelA-associated inhibitor (RAI) was initially identified as a protein that interacts with the p65 subunit (RelA) of nuclear factor-kappaB. It was recently found to interact with the p53 tumor suppressor protein. RAI is a structural homolog of the p53-binding protein 2 and I kappaB family proteins, and is known to inhibit the DNA-binding activities of p65 and p53. In the present study, we have attempted to predict the 3-dimensional structure of RAI in complex with p53 using computational chemistry. In order to evaluate the predicted structure model, we created a series of RAI mutants in which the amino acid residues involved in the interaction with p53 were mutated, and examined their activities in blocking p53-mediated bax gene expression. Our observations support the validity of the predicted 3-dimensional model of the p53-RAI protein complex. Based on the p53-RAI complex model, we have demonstrated the biological importance of the R248 and R273 residues of p53, and the D775 and E795 residues of RAI, in the protein-protein interaction between p53 and RAI and the biological actions of these proteins. These findings will further clarify the biological actions of RAI in carcinogenesis and can be used for the development of a novel strategy in blocking the actions of RAI. The possible biological implications of RAI are also discussed.
Collapse
Affiliation(s)
- Keisuke Tomoda
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Insights into the structure and protein-protein interactions of the pro-apoptotic protein ASPP2. Biochem Soc Trans 2008; 35:966-9. [PMID: 17956256 DOI: 10.1042/bst0350966] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ASPP (apoptosis-stimulating protein of p53) 2 is a pro-apoptotic protein that stimulates the p53-mediated apoptotic response. Here, we provide an overview of the structure and protein-protein interactions of ASPP2. The C-terminus of ASPP2 contains Ank (ankyrin) repeats and an SH3 domain (Src homology 3 domain). The Ank-SH3 domains mediate interactions between ASPP2 and numerous proteins involved in apoptosis such as p53 and Bcl-2. The proline-rich domain of ASPP2 is unfolded in its native state, but was not shown to mediate intermolecular interactions. Instead, it makes an intramolecular domain-domain interaction with the Ank-SH3 C-terminal domains of ASPP2. This intramolecular interaction between the unstructured proline-rich domain and the structured Ank-SH3 domains in ASPP2, which is possible due to the unfolded nature of the proline-rich domain, is proposed to have an important role in regulating the intermolecular interactions of ASPP2 with its partner proteins.
Collapse
|
44
|
Ahmed KM, Li JJ. ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr Cancer Drug Targets 2008; 7:335-42. [PMID: 17979628 DOI: 10.2174/156800907780809769] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ionizing radiation (IR) plays a key role in both areas of carcinogenesis and anticancer radiotherapy. The ATM (ataxia-telangiectasia mutated) protein, a sensor to IR and other DNA-damaging agents, activates a wide variety of effectors involved in multiple signaling pathways, cell cycle checkpoints, DNA repair and apoptosis. Accumulated evidence also indicates that the transcription factor NF-kappaB (nuclear factor-kappaB) plays a critical role in cellular protection against a variety of genotoxic agents including IR, and inhibition of NF-kappaB leads to radiosensitization in radioresistant cancer cells. NF-kappaB was found to be defective in cells from patients with A-T (ataxia-telangiectasia) who are highly sensitive to DNA damage induced by IR and UV lights. Cells derived from A-T individuals are hypersensitive to killing by IR. Both ATM and NF-kappaB deficiencies result in increased sensitivity to DNA double strand breaks. Therefore, identification of the molecular linkage between the kinase ATM and NF-kappaB signaling in tumor response to therapeutic IR will lead to a better understanding of cellular response to IR, and will promise novel molecular targets for therapy-associated tumor resistance. This review article focuses on recent findings related to the relationship between ATM and NF-kappaB in response to IR. Also, the association of ATM with the NF-kappaB subunit p65 in adaptive radiation response, recently observed in our lab, is also discussed.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Division of Molecular Radiobiology, Purdue University School of Health Sciences, Purdue Cancer Center, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
45
|
Gao N, Asamitsu K, Hibi Y, Ueno T, Okamoto T. AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J Biol Chem 2008; 283:7834-43. [PMID: 18178962 DOI: 10.1074/jbc.m710285200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we have identified protein kinase A-interacting protein 1 (AKIP1) as a binding partner of NF-kappaB p65 subunit, and AKIP1 enhances the NF-kappaB-mediated gene expression. AKIP1 is a nuclear protein and known to interact with the catalytic subunit of PKA (PKAc). We identified AKIP1 by a yeast two-hybrid screen using the N terminus region of p65 as bait. The interaction between AKIP1 and p65 was confirmed by glutathione S-transferase pull-down assay in vitro and immunoprecipitation-Western blotting assay in vivo. We found that the PKAc was present in the AKIP1.p65 complex and enhanced the transcriptional activity of NF-kappaB by phosphorylating p65. In a transient luciferase assay, AKIP1 cotransfection efficiently increased the transcriptional activity of NF-kappaB induced by phorbol 12-myristate 13-acetate (PMA). When AKIP1 was knocked down by RNA interference, the PMA-mediated NF-kappaB-dependent gene expression was abolished, indicating a physiological role of AKIP1. We found that PKAc, which is maintained in an inactive form by binding to IkappaBalpha and NF-kappaB in resting cells, was activated by PMA-induced signaling and could phosphorylate p65. Overexpression of AKIP1 increased the PKAc binding to p65 and enhanced the PKAc-mediated phosphorylation of p65 at Ser-276. Interestingly, this p65 phosphorylation promoted nuclear translocation of p65 and enhanced NF-kappaB transcription. In fact, we observed that AKIP1 colocalized with p65 within the cells and appeared to retain p65 in nucleus. These findings indicate a positive role of AKIP1 in NF-kappaB signaling and suggest a novel mechanism by which AKIP1 augments the transcriptional competence of NF-kappaB.
Collapse
Affiliation(s)
- Nan Gao
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
46
|
Hakuno F, Kurihara S, Watson RT, Pessin JE, Takahashi SI. 53BP2S, interacting with insulin receptor substrates, modulates insulin signaling. J Biol Chem 2007; 282:37747-58. [PMID: 17965023 DOI: 10.1074/jbc.m702472200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It is well known that insulin receptor substrates (IRS) act as a mediator for signal transduction of insulin, insulin-like growth factors, and several cytokines. To identify proteins that interact with IRS and modulate IRS-mediated signals, we performed yeast two-hybrid screening with IRS-1 as bait. Out of 109 cDNA-positive clones identified from a human placental cDNA library, two clones encoded 53BP2, p53-binding protein 2 (53BP2S), a short form splicing variant of the apoptosis-stimulating protein of p53 that possesses Src homology region 3 domain, and ankyrin repeats domain, and had been reported to interact with p53, Bcl-2, and NF-kappaB. Interaction of 53BP2S with IRS-1 was confirmed by glutathione S-transferase pull-down and co-immunoprecipitation assays in COS-7 cells and 3T3-L1 adipocytes. The Src homology region 3 domain and ankyrin repeats domain of 53BP2S were responsible for its interaction with IRS-1, whereas the phosphotyrosine binding domain and a central domain (amino acid residues 750-861) of IRS-1 were required for its interaction with 53BP2S. In CHO-C400 cells, expression of 53BP2S reduced insulin-stimulated IRS-1 tyrosine phosphorylation with a concomitant enhancement of IRS-2 tyrosine phosphorylation. In addition, the amount of the phosphatidylinositol 3-kinase regulatory p85 subunit associated with tyrosine-phosphorylated proteins, and activation of Akt was enhanced by 53BP2S expression. Although 53BP2S also enhanced Akt activation in 3T3-L1 adipocytes, insulin-induced glucose transporter 4 translocation was markedly inhibited in accordance with reduction of insulin-induced AS160 phosphorylation. Together these data demonstrate that 53BP2S interacts and modulates the insulin signals mediated by IRSs.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Tidow H, Andreeva A, Rutherford TJ, Fersht AR. Solution structure of ASPP2 N-terminal domain (N-ASPP2) reveals a ubiquitin-like fold. J Mol Biol 2007; 371:948-58. [PMID: 17594908 DOI: 10.1016/j.jmb.2007.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 11/30/2022]
Abstract
Proteins of the ASPP family bind to p53 and regulate p53-mediated apoptosis. Two family members, ASPP1 and ASPP2, have pro-apoptotic functions while iASPP shows anti-apoptotic responses. However, both the mechanism of enhancement/repression of apoptosis and the molecular basis for their different responses remain unknown. To address the role of the N-termini of pro-apoptotic ASPP proteins, we solved the solution structure of N-ASPP2 (1-83) by NMR spectroscopy. The structure of this domain reveals a beta-Grasp ubiquitin-like fold. Our findings suggest a possible role for the N-termini of ASPP proteins in binding to other proteins in the apoptotic response network and thus mediating their selective pro-apoptotic function.
Collapse
Affiliation(s)
- Henning Tidow
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
48
|
Ahmed KM, Dong S, Fan M, Li JJ. Nuclear factor-kappaB p65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells. Mol Cancer Res 2007; 4:945-55. [PMID: 17189385 DOI: 10.1158/1541-7786.mcr-06-0291] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular mechanism by which tumor cells increase their resistance to therapeutic radiation remains to be elucidated. We have previously reported that activation of nuclear factor-kappaB (NF-kappaB) is causally associated with the enhanced cell survival of MCF+FIR cells derived from breast cancer MCF-7 cells after chronic exposure to fractionated ionizing radiation. The aim of the present study was to reveal the context of NF-kappaB pathways in the adaptive radioresistance. Using cell lines isolated from MCF+FIR populations, we found that the elevated NF-kappaB activity was correlated with enhanced clonogenic survival, and increased NF-kappaB subunit p65 levels were associated with a decrease in phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK in all radioresistant MCF+FIR cell lines. Further irradiation with 30 fractions of radiation also inhibited MEK/ERK phosphorylation in paired cell lines of MCF+FIR and parental MCF-7 cells. Activation of ataxia-telangiectasia mutated (ATM) protein, a sensor to radiation-induced DNA damage, was elevated with increased interaction with NF-kappaB subunits p65 and p50. The interaction between p65 and MEK was also enhanced in the presence of activated ATM. In contrast, both interaction and nuclear translocation of p65/ERK were reduced. Inhibition of NF-kappaB by overexpression of mutant IkappaB increased ERK phosphorylation. In addition, MEK/ERK inhibitor (PD98059) reduced the interaction between p65 and ERK. Taken together, these results suggest that NF-kappaB inhibits ERK activation to enhance cell survival during the development of tumor adaptive radioresistance.
Collapse
Affiliation(s)
- Kazi M Ahmed
- Division of Molecular Radiobiology, Purdue University School of Health Sciences, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The apoptosis stimulating proteins of p53 (ASPP) family consists of three members, ASPP1, ASPP2 and iASPP. They bind to proteins that are key players in controlling apoptosis (p53, Bcl-2 and RelA/p65) and cell growth (APCL, PP1). So far, the best-known function of the ASPP family members is their ability to regulate the apoptotic function of p53 and its family members, p63 and p73. Biochemical and genetic evidence has shown that ASPP1 and ASPP2 activate, whereas iASPP inhibits, the apoptotic but not the cell-cycle arrest function of p53. The p53 tumour suppressor gene, one of the most frequently mutated genes in human cancer, is capable of suppressing tumour growth through its ability to induce apoptosis or cell-cycle arrest. Thus, the ASPP family of proteins helps to determine how cells choose to die and may therefore be a novel target for cancer therapy.
Collapse
Affiliation(s)
- A Sullivan
- Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS, UK
| | - X Lu
- Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS, UK
- E-mail:
| |
Collapse
|
50
|
Yamashiro K, Myokai F, Hiratsuka K, Yamamoto T, Senoo K, Arai H, Nishimura F, Abiko Y, Takashiba S. Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. Int J Biochem Cell Biol 2007; 39:910-21. [PMID: 17409011 DOI: 10.1016/j.biocel.2007.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/07/2006] [Accepted: 01/02/2007] [Indexed: 11/16/2022]
Abstract
Mechanical stress results in differential gene expression that is critical to convert the stimulus into biochemical signals. Under physiological stress such as occlusal force, human periodontal ligament fibroblasts (HPLF) are associated with homeostasis of periodontal tissues however the changes in response to mechanotransduction remain uncharacterized. We hypothesized that cyclic tension-responsive (CT) genes may be used to identify a set of fundamental pathways of mechanotransduction. Our goal was to catalogue CT genes in cultured HPLF. HPLF were subjected to cyclic tension up to 16h, and total RNA was isolated from both tension-loaded and static HPLF. The oligonucleotide arrays analysis revealed significant changes of mRNA accumulation for 122 CT genes, and their kinetics were assigned by the K-means clustering methods. Ingenuity Pathway Analysis was completed for HPLF mechanotransduction using 50 CT genes. This analysis revealed that cyclic tension immediately down-regulated all nuclear transcription factors except v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) reacting as an early responsive gene. In turn, transcription factors such as tumor protein p53 binding protein 2 (TP53BP2), and extra-nuclear molecules such as adrenergic receptor beta2 (ADRB2) were up-regulated after 1-2h, which may result in fundamental HPLF functions to adapt to cyclic tension. Subsequent inhibition assays using Y27632, a pharmacologic inhibitor of Rho-associated kinase (ROCK), suggested that HPLF has both ROCK-dependent and ROCK-independent CT genes. Mechanical stress was found to effect the expression of numerous genes, in particular, expression of an early responsive gene; FOS initiates alteration of HPLF behaviors to control homeostasis of the periodontal ligament.
Collapse
Affiliation(s)
- Keisuke Yamashiro
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|