1
|
Bánová Vulić R, Zdurienčíková M, Tyčiaková S, Benada O, Dubrovčáková M, Lakota J, Škultéty Ľ. Silencing of carbonic anhydrase I enhances the malignant potential of exosomes secreted by prostatic tumour cells. J Cell Mol Med 2019; 23:3641-3655. [PMID: 30916466 PMCID: PMC6484292 DOI: 10.1111/jcmm.14265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
We report results showing that the silencing of carbonic anhydrase I (siCA1) in prostatic (PC3) tumour cells has a significant impact on exosome formation. An increased diameter, concentration and diversity of the produced exosomes were noticed as a consequence of this knock‐down. The protein composition of the exosomes' cargo was also altered. Liquid chromatography and mass spectrometry analyses identified 42 proteins significantly altered in PC3 siCA1 exosomes compared with controls. The affected proteins are mainly involved in metabolic processes, biogenesis, cell component organization and defense/immunity. Interestingly, almost all of them have been described as ‘enhancers' of tumour development through the promotion of cell proliferation, migration and invasion. Thus, our results indicate that the reduced expression of the CA1 protein enhances the malignant potential of PC3 cells.
Collapse
Affiliation(s)
| | | | | | - Oldřich Benada
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | - Ján Lakota
- Biomedical Research Center SAS, Bratislava, Slovak Republic.,St. Elizabeth Cancer Institute, Bratislava, Slovak Republic.,Center of Experimental Medicine SAS, Bratislava, Slovak Republic
| | - Ľudovít Škultéty
- Biomedical Research Center SAS, Bratislava, Slovak Republic.,Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| |
Collapse
|
2
|
Chen Y, Zhang Y, Guo X. Proteasome dysregulation in human cancer: implications for clinical therapies. Cancer Metastasis Rev 2018; 36:703-716. [PMID: 29039081 DOI: 10.1007/s10555-017-9704-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells show heightened dependency on the proteasome for their survival, growth, and spread. Proteasome dysregulation is therefore commonly selected in favor of the development of many types of cancer. The vast abnormalities in a cancer cell, on top of the complexity of the proteasome itself, have enabled a plethora of mechanisms gearing the proteasome to the oncogenic process. Here, we use selected examples to highlight some general mechanisms underlying proteasome dysregulation in cancer, including copy number variations, transcriptional control, epigenetic regulation, and post-translational modifications. Research in this field has greatly advanced our understanding of proteasome regulation and will shed new light on proteasome-based combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Yulin Chen
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yanan Zhang
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Xing Guo
- Life Sciences Institute of Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Sklirou A, Papanagnou ED, Fokialakis N, Trougakos IP. Cancer chemoprevention via activation of proteostatic modules. Cancer Lett 2018; 413:110-121. [DOI: 10.1016/j.canlet.2017.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
4
|
Colonic Lamina Propria Inflammatory Cells from Patients with IBD Induce the Nuclear Factor-E2 Related Factor-2 Thereby Leading to Greater Proteasome Activity and Apoptosis Protection in Human Colonocytes. Inflamm Bowel Dis 2016; 22:2593-2606. [PMID: 27661668 DOI: 10.1097/mib.0000000000000925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The antioxidant transcription factor Nrf2 confers broad cytoprotection and has a dual role in tumorigenesis. Enhancing proteasome activity is one mechanism by which Nrf2 can promote cancer development, e.g., colorectal cancer. This study investigated whether this potential oncogenic effect of Nrf2 emerges already from the epithelial adaptation to persistent oxidative stress during inflammatory bowel disease (IBD). METHODS Reactive oxygen species (ROS)-producing inflammatory myeloid cells (IMCs) from colon tissue of patients with IBD were cocultured with human NCM460 colonocytes. ARE-luciferase-, c-H2DCF-DA-assays, Western blotting, and quantitative polymerase chain reaction were performed for assessing Nrf2-activity, intracellular ROS-level, and Nrf2-target gene expression. Proteasome activity was quantified by Suc-LLVY-amido-4-methylcumarin-assay, and apoptosis by caspase-3/-7 assay and PARP1-Western blots. Nrf2, proteasome proteins, and IMCs were analyzed in IBD-tissues by immunohistochemistry. RESULTS IMC-coculture caused a temporary increase of ROS in NCM460, followed by Nrf2 activation and elevated expression of ROS-protecting enzymes (NQO1, GCLC). This was accompanied by Nrf2-dependent expression of proteasome proteins (PSMD4, PSMA5) and an enhanced proteasome activity in IMC-cocultured NCM460. Nrf2-siRNA or the ROS-scavenger Tiron blocked these alterations. Depending on Nrf2-induced proteasome activity, IMC-cocultured NCM460 or Colo320 cancer cells were less sensitive to apoptosis (TRAIL-/etoposide induced). Immunostaining of IBD-tissues confirmed Nrf2 activation in the colonic epithelium within inflamed areas, along with greater proteasome protein expression. CONCLUSIONS IMC/NCM460-coculture experiments and immunohistochemistry of colonic tissues from patients with IBD reveal a Nrf2-dependent adaptation of colon epithelial cells to oxidative stress caused by inflammatory cells. This involves increased proteasome activity and apoptosis resistance that protect from tissue damage due to colitis on one hand, but on the other hand, may favor carcinogenesis.
Collapse
|
5
|
Admoni-Elisha L, Nakdimon I, Shteinfer A, Prezma T, Arif T, Arbel N, Melkov A, Zelichov O, Levi I, Shoshan-Barmatz V. Novel Biomarker Proteins in Chronic Lymphocytic Leukemia: Impact on Diagnosis, Prognosis and Treatment. PLoS One 2016; 11:e0148500. [PMID: 27078856 PMCID: PMC4831809 DOI: 10.1371/journal.pone.0148500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL) that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS) analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1), regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in CLL patients, as revealed from LC-HR-MS/MS, we could distinguish between patients in a stable disease state and those who would be later transferred to anti-cancer treatments. The over-expressed proteins can thus serve as potential biomarkers for early diagnosis, prognosis, new targets for CLL therapy, and treatment guidance of CLL, forming the basis for personalized therapy.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Chromatography, Liquid
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukocytes, Mononuclear/metabolism
- Male
- Prognosis
- Proteome/analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tandem Mass Spectrometry/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee Admoni-Elisha
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itay Nakdimon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Prezma
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Melkov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ori Zelichov
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itai Levi
- Department of Hematology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
6
|
Pacheco MTF, Berra CM, Morais KLP, Sciani JM, Branco VG, Bosch RV, Chudzinski-Tavassi AM. Dynein function and protein clearance changes in tumor cells induced by a Kunitz-type molecule, Amblyomin-X. PLoS One 2014; 9:e111907. [PMID: 25479096 PMCID: PMC4257547 DOI: 10.1371/journal.pone.0111907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023] Open
Abstract
Amblyomin-X is a Kunitz-type recombinant protein identified from the transcriptome of the salivary glands of the tick Amblyomma cajennense and has anti-coagulant and antitumoral activity. The supposed primary target of this molecule is the proteasome system. Herein, we elucidated intracellular events that are triggered by Amblyomin-X treatment in an attempt to provide new insight into how this serine protease inhibitor, acting on the proteasome, could be comparable with known proteasome inhibitors. The collective results showed aggresome formation after proteasome inhibition that appeared to occur via the non-exclusive ubiquitin pathway. Additionally, Amblyomin-X increased the expression of various chains of the molecular motor dynein in tumor cells, modulated specific ubiquitin linkage signaling and inhibited autophagy activation by modulating mTOR, LC3 and AMBRA1 with probable dynein involvement. Interestingly, one possible role for dynein in the mechanism of action of Amblyomin-X was in the apoptotic response and its crosstalk with autophagy, which involved the factor Bim; however, we observed no changes in the apoptotic response related to dynein in the experiments performed. The characteristics shared among Amblyomin-X and known proteasome inhibitors included NF-κB blockage and nascent polypeptide-dependent aggresome formation. Therefore, our study describes a Kunitz-type protein that acts on the proteasome to trigger distinct intracellular events compared to classic known proteasome inhibitors that are small-cell-permeable molecules. In investigating the experiments and literature on Amblyomin-X and the known proteasome inhibitors, we also found differences in the structures of the molecules, intracellular events, dynein involvement and tumor cell type effects. These findings also reveal a possible new target for Amblyomin-X, i.e., dynein, and may serve as a tool for investigating tumor cell death associated with proteasome inhibition.
Collapse
Affiliation(s)
- Mario T. F. Pacheco
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Carolina M. Berra
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Kátia L. P. Morais
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana M. Sciani
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Vania G. Branco
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Rosemary V. Bosch
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
7
|
Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection "gone astray": Nrf2 and its role in cancer. Onco Targets Ther 2014; 7:1497-518. [PMID: 25210464 PMCID: PMC4155833 DOI: 10.2147/ott.s36624] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nrf2 has gained great attention with respect to its pivotal role in cell and tissue protection. Primarily defending cells against metabolic, xenobiotic and oxidative stress, Nrf2 is essential for maintaining tissue integrity. Owing to these functions, Nrf2 is regarded as a promising drug target in the chemoprevention of diseases, including cancer. However, much evidence has accumulated that the beneficial role of Nrf2 in cancer prevention essentially depends on the tight control of its activity. In fact, the deregulation of Nrf2 is a critical determinant in oncogenesis and found in many types of cancer. Therefore, amplified Nrf2 activity has profound effects on the phenotype of tumor cells, including radio/chemoresistance, apoptosis protection, invasiveness, antisenescence, autophagy deficiency, and angiogenicity. The deregulation of Nrf2 can result from various epigenetic and genetic alterations directly affecting Nrf2 control or from the complex interplay of Nrf2 with numerous oncogenic signaling pathways. Additionally, alterations of the cellular environment, eg, during inflammation, contribute to Nrf2 deregulation and its persistent activation. Therefore, the status of Nrf2 as anti- or protumorigenic is defined by many different modalities. A better understanding of these modalities is essential for the safe use of Nrf2 as an activation target for chemoprevention on the one hand and as an inhibition target in cancer therapy on the other. The present review mainly addresses the conditions that promote the oncogenic function of Nrf2 and the resulting consequences providing the rationale for using Nrf2 as a target structure in cancer therapy.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Inflammatory Carcinogenesis Research Group, Institute of Experimental Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
8
|
Vangala JR, Dudem S, Jain N, Kalivendi SV. Regulation of PSMB5 protein and β subunits of mammalian proteasome by constitutively activated signal transducer and activator of transcription 3 (STAT3): potential role in bortezomib-mediated anticancer therapy. J Biol Chem 2014; 289:12612-22. [PMID: 24627483 DOI: 10.1074/jbc.m113.542829] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ubiquitin-proteasome system facilitates the degradation of ubiquitin-tagged proteins and performs a regulatory role in cells. Elevated proteasome activity and subunit expression are found in several cancers. However, the inherent molecular mechanisms responsible for increased proteasome function in cancers remain unclear despite the well investigated and defined role of the mammalian proteasome. This study was initiated to elucidate the mechanisms involved in the regulation of β subunits of the mammalian proteasome. Suppression of STAT3 tyrosine phosphorylation coordinately decreased the mRNA and protein levels of the β subunits of the 20 S core complex in DU145 cells. Notably, PSMB5, a molecular target of bortezomib, was shown to be a target of STAT3. Knockdown of STAT3 decreased PSMB5 protein. Inhibition of phospho-STAT3 substantially reduced PSMB5 protein levels in cells expressing constitutively active-STAT3. Accumulation of activated STAT3 resulted in the induction of PSMB5 promoter and protein levels. In addition, a direct correlation was observed between the endogenous levels of PSMB5 and constitutively active STAT3. PSMB5 and STAT3 protein levels remained unaltered following the inhibition of proteasome activity. The EGF-induced concerted increase of β subunits was blocked by inhibition of the EGF receptor or STAT3 but not by the PI3K/AKT or MEK/ERK pathways. Decreased proteasome activities were due to reduced protein levels of catalytic subunits of the proteasome in STAT3-inhibited cells. Combined treatments with bortezomib and inhibitor of STAT3 abrogated proteasome activity and enhanced cellular apoptosis. Overall, we demonstrate that aberrant activation of STAT3 regulates the expression of β subunits, in particular PSMB5, and the catalytic activity of the proteasome.
Collapse
Affiliation(s)
- Janakiram Reddy Vangala
- From the Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500-607, Andhra Pradesh, India
| | | | | | | |
Collapse
|
9
|
Trougakos IP, Sesti F, Tsakiri E, Gorgoulis VG. Non-enzymatic post-translational protein modifications and proteostasis network deregulation in carcinogenesis. J Proteomics 2013; 92:274-98. [PMID: 23500136 DOI: 10.1016/j.jprot.2013.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 12/25/2022]
Abstract
Organisms are constantly challenged by stressors and thus the maintenance of biomolecules functionality is essential for the assurance of cellular homeostasis. Proteins carry out the vast majority of cellular functions by mostly participating in multimeric protein assemblies that operate as protein machines. Cells have evolved a complex proteome quality control network for the rescue, when possible, or the degradation of damaged polypeptides. Nevertheless, despite these proteostasis ensuring mechanisms, new protein synthesis, and the replication-mediated dilution of proteome damage in mitotic cells, the gradual accumulation of stressors during aging (or due to lifestyle) results in increasingly damaged proteome. Non-enzymatic post-translational protein modifications mostly arise by unbalanced redox homeostasis and/or high glucose levels and may cause disruption of proteostasis as they can alter protein function. This outcome may then increase genomic instability due to reduced fidelity in processes like DNA replication or repair. Herein, we present a synopsis of the major non-enzymatic post-translation protein modifications and of the proteostasis network deregulation in carcinogenesis. We propose that activation of the proteostasis ensuring mechanisms in premalignant cells has tumor-preventive effects, whereas considering that over-activation of these mechanisms represents a hallmark of advanced tumors, their inhibition provides a strategy for the development of anti-tumor therapies. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| | | | | | | |
Collapse
|
10
|
Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2012; 32:4825-35. [PMID: 23108405 DOI: 10.1038/onc.2012.493] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 08/30/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
Evidence accumulates that the transcription factor nuclear factor E2-related factor 2 (Nrf2) has an essential role in cancer development and chemoresistance, thus pointing to its potential as an anticancer target and undermining its suitability in chemoprevention. Through the induction of cytoprotective and proteasomal genes, Nrf2 confers apoptosis protection in tumor cells, and inhibiting Nrf2 would therefore be an efficient strategy in anticancer therapy. In the present study, pancreatic carcinoma cell lines (Panc1, Colo357 and MiaPaca2) and H6c7 pancreatic duct cells were analyzed for the Nrf2-inhibitory effect of the coffee alkaloid trigonelline (trig), as well as for its impact on Nrf2-dependent proteasome activity and resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and anticancer drug-induced apoptosis. Chemoresistant Panc1 and Colo357 cells exhibit high constitutive Nrf2 activity, whereas chemosensitive MiaPaca2 and H6c7 cells display little basal but strong tert-butylhydroquinone (tBHQ)-inducible Nrf2 activity and drug resistance. Trig efficiently decreased basal and tBHQ-induced Nrf2 activity in all cell lines, an effect relying on a reduced nuclear accumulation of the Nrf2 protein. Along with Nrf2 inhibition, trig blocked the Nrf2-dependent expression of proteasomal genes (for example, s5a/psmd4 and α5/psma5) and reduced proteasome activity in all cell lines tested. These blocking effects were absent after treatment with Nrf2 siRNA, a condition in which proteasomal gene expression and proteasome activity were already decreased, whereas siRNA against the related transcription factor Nrf1 did not affect proteasome activity and the inhibitory effect of trig. Depending on both Nrf2 and proteasomal gene expression, the sensitivity of all cell lines to anticancer drugs and TRAIL-induced apoptosis was enhanced by trig. Moreover, greater antitumor responses toward anticancer drug treatment were observed in tumor-bearing mice when receiving trig. In conclusion, representing an efficient Nrf2 inhibitor capable of blocking Nrf2-dependent proteasome activity and thereby apoptosis protection in pancreatic cancer cells, trig might be beneficial in improving anticancer therapy.
Collapse
|
11
|
Sebens S, Bauer I, Geismann C, Grage-Griebenow E, Ehlers S, Kruse ML, Arlt A, Schäfer H. Inflammatory macrophages induce Nrf2 transcription factor-dependent proteasome activity in colonic NCM460 cells and thereby confer anti-apoptotic protection. J Biol Chem 2011; 286:40911-21. [PMID: 21990354 PMCID: PMC3220482 DOI: 10.1074/jbc.m111.274902] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/07/2011] [Indexed: 12/11/2022] Open
Abstract
Adaptation of epithelial cells to persistent oxidative stress plays an important role in inflammation-associated carcinogenesis. This adaptation process involves activation of Nrf2 (nuclear factor-E2-related factor-2), which has been recently shown to contribute to carcinogenesis through the induction of proteasomal gene expression and proteasome activity. To verify this possible link between inflammation, oxidative stress, and Nrf2-dependent proteasome activation, we explored the impact of inflammatory (M1) macrophages on the human colon epithelial cell line NCM460. Transwell cocultures with macrophages differentiated from granulocyte monocyte-colony-stimulating factor-treated monocytes led to an increased activity of Nrf2 in NCM460 cells along with an elevated proteasome activity. This higher proteasome activity resulted from Nrf2-dependent induction of proteasomal gene expression, as shown for the 19 and 20 S subunit proteins S5a and α5, respectively. These effects of macrophage coculture were preceded by an increase of reactive oxygen species in cocultured NCM460 cells and could be blocked by catalase or by the reactive oxygen species scavenger Tiron, whereas transient treatment of NCM460 cells with H(2)O(2) similarly led to Nrf2-dependent proteasome activation. Through the Nrf2-dependent increase of proteasomal gene expression and proteasome activity, the sensitivity of NCM460 cells to tumor necrosis factor-related apoptosis-inducing ligand- or irinotecan-induced apoptosis declined. These findings indicate that inflammatory conditions such as the presence of M1 macrophages and the resulting oxidative stress are involved in the Nrf2-dependent gain of proteasome activity in epithelial cells, e.g. colonocytes, giving rise of greater resistance to apoptosis. This mechanism might contribute to inflammation-associated carcinogenesis, e.g. of the colon.
Collapse
Affiliation(s)
- Susanne Sebens
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
- Institute for Experimental Medicine, Universitätsklinikum Schleswig Holstein-Campus Kiel, Kiel, Germany and
| | - Iris Bauer
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Claudia Geismann
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Evelin Grage-Griebenow
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
- Institute for Experimental Medicine, Universitätsklinikum Schleswig Holstein-Campus Kiel, Kiel, Germany and
| | - Stefan Ehlers
- the Division of Molecular Inflammation Medicine, Research Center Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany
| | - Marie-Luise Kruse
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Alexander Arlt
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Heiner Schäfer
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| |
Collapse
|
12
|
Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 2009; 28:3983-96. [DOI: 10.1038/onc.2009.264] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Nagashima T, Suzuki T, Kondo S, Kuroki Y, Takahashi K, Ide K, Yumoto N, Hasegawa A, Toyoda T, Kojima T, Konagaya A, Suzuki H, Hayashizaki Y, Sakaki Y, Hatakeyama M. Integrative genome-wide expression analysis bears evidence of estrogen receptor-independent transcription in heregulin-stimulated MCF-7 cells. PLoS One 2008; 3:e1803. [PMID: 18350142 PMCID: PMC2266794 DOI: 10.1371/journal.pone.0001803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 02/13/2008] [Indexed: 11/19/2022] Open
Abstract
Heregulin ß-1 (HRG) is an extracellular ligand that activates mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt signaling pathways through ErbB receptors. MAPK and Akt have been shown to phosphorylate the estrogen receptor (ER) at Ser-118 and Ser-167, respectively, thereby mimicking the effects of estrogenic activity such as estrogen responsive element (ERE)-dependent transcription. In the current study, integrative analysis was performed using two tiling array platforms, comprising histone H3 lysine 9 (H3K9) acetylation and RNA mapping, together with array comparative genomic hybridization (CGH) analysis in an effort to identify HRG-regulated genes in ER-positive MCF-7 breast cancer cells. Through application of various threshold settings, 333 (326 up-regulated and 7 down-regulated) HRG-regulated genes were detected. Prediction of upstream transcription factors (TFs) and pathway analysis indicated that 21% of HRG-induced gene regulation may be controlled by the MAPK cascade, while only 0.6% of the gene expression is controlled by ERE. A comparison with previously reported estrogen (E2)-regulated gene expression data revealed that only 12 common genes were identified between the 333 HRG-regulated (3.6%) and 239 E2-regulated (5.0%) gene groups. However, with respect to enriched upstream TFs, 4 common TFs were identified in the 14 HRG-regulated (28.6%) and 13 E2-regulated (30.8%) gene groups. These results indicated that while E2 and HRG may induce common TFs, the regulatory mechanisms that govern HRG- and E2-induced gene expression differ.
Collapse
Affiliation(s)
- Takeshi Nagashima
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Takahiro Suzuki
- Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Division of Genomic Information Resources, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | - Shinji Kondo
- Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yoko Kuroki
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Kaoru Takahashi
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Kaori Ide
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Noriko Yumoto
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Aki Hasegawa
- Advanced Genome Information Technology Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Tetsuro Toyoda
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Toshio Kojima
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Akihiko Konagaya
- Advanced Genome Information Technology Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Harukazu Suzuki
- Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yoshihide Hayashizaki
- Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Division of Genomic Information Resources, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Japan
- Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, Saitama, Japan
- Functional RNA Research Program, RIKEN Frontier Research System, Saitama, Japan
| | - Yoshiyuki Sakaki
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Mariko Hatakeyama
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- * E-mail:
| |
Collapse
|
14
|
Mandal S, Davie JR. An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells. BMC Cancer 2007; 7:181. [PMID: 17883861 PMCID: PMC2148057 DOI: 10.1186/1471-2407-7-181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 09/20/2007] [Indexed: 01/05/2023] Open
Abstract
Background The sex hormone estrogen (E2) is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+)ve breast cancer cells during E2 deprivation. Methods Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+)ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO), enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status. Results In all GO terms, biological process (BP), molecular function (MF), and cellular component (CC), MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1) and glucose metabolism (MCF-7). A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis) and expression (ribosome) in both cells, there was an overall similarity of ZR75-1 with ER(-)ve cell lines and ER(+)ve/ER(-)ve breast tumors. Conclusion This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A) in representative ER(+)ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+)ve breast tumors.
Collapse
Affiliation(s)
- Soma Mandal
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg Manitoba, R3E 0V9, Canada
| | - James R Davie
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg Manitoba, R3E 0V9, Canada
| |
Collapse
|
15
|
Abstract
The ubiquitin-proteasome pathway (UPP) is the major eukaryotic mechanism for regulated intracellular proteolysis. Targeting this pathway with proteasome inhibitors has been validated as a rational strategy against hematologic malignancies, but for most solid tumor populations, including breast cancer, such agents have not shown encouraging activity. However, there is an increasing body of evidence showing that UPP dysregulation plays an important role in mammary tumorigenesis. Moreover, modulation of ubiquitin-proteasome function is emerging as a rational strategy to enhance chemosensitivity and overcome chemoresistance. Taken together, these facts suggest that we are only beginning to appreciate the relevance of this pathway for the current and future therapy of patients with breast cancer. This review provides an overview of the biology of the UPP, its role in the malignant process, the current state of knowledge regarding clinical heat shock protein and proteasome inhibition, and some likely future directions that may enhance our ability to exploit this pathway therapeutically.
Collapse
Affiliation(s)
- E Claire Dees
- Department of Medicine, Division of Hematology/Oncology & Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
16
|
Codony-Servat J, Tapia MA, Bosch M, Oliva C, Domingo-Domenech J, Mellado B, Rolfe M, Ross JS, Gascon P, Rovira A, Albanell J. Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther 2006; 5:665-75. [PMID: 16546981 DOI: 10.1158/1535-7163.mct-05-0147] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cellular and molecular effects of the proteasome inhibitor bortezomib on breast cancer cells are as yet poorly characterized. Here, in a panel of six breast cancer cell lines, bortezomib reduced viability in a concentration-dependent, time-dependent, and cell line-dependent manner. Proteasome activity was relatively high in two of the three more resistant cell lines. No relationship was observed between bortezomib effects on cell viability and expression/phosphorylation of HER-2, epidermal growth factor receptor (EGFR), AKT, or extracellular signal-regulated kinase 1/2 (ERK1/2). Molecular effects of bortezomib were further studied in SK-BR-3 and BT-474 cells because they share expression of EGFR and overexpression of HER-2 while, in contrast, SK-BR-3 cells were 200-fold more sensitive to this agent. Proteasome activity was inhibited to a similar extent in the two cell lines, and known proteasome substrates accumulated similarly. In SK-BR-3 cells, a marked inhibition of EGFR, HER-2, and AKT phosphorylation was observed at a clinically relevant concentration of bortezomib. In contrast, phosphorylation of Raf/mitogen-activated protein kinase kinase 1/2 (MEK 1/2)/ERK1/2 increased by bortezomib. In BT-474 cells, the effects were much less pronounced. Treatment of SK-BR-3 cells with bortezomib combined with pharmacologic inhibitors of EGFR, phosphatidylinositol 3'-kinase, or MEK resulted in modest or no enhancement of the effects on cell viability. Collectively, these results show that bortezomib has differential cellular and molecular effects in human breast cancer cells. The bortezomib-observed effects on signaling transduction molecules might be relevant to help to design mechanistic-based combination treatments.
Collapse
Affiliation(s)
- Jordi Codony-Servat
- Laboratory of Experimental Oncology, Medical Oncology Department, Institut d'Investigacions Biomediques August Pi i Sunyer, Hospital Clinic i Provincial de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Arbiser JL, Li XC, Hossain CF, Nagle DG, Smith DM, Miller P, Govindarajan B, DiCarlo J, Landis-Piwowar KR, Dou QP. Naturally Occurring Proteasome Inhibitors from Mate Tea (Ilex paraguayensis) Serve as Models for Topical Proteasome Inhibitors. J Invest Dermatol 2005; 125:207-12. [PMID: 16098028 DOI: 10.1111/j.0022-202x.2005.23809.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteasome inhibitors have emerged as a clinically important therapy for neoplastic disease, with velcade, an organoboron compound used extensively in multiple myeloma. Recently, (-)-epigallocatechin gallate has been found to be a potent inhibitor of the proteasomal chymotrypsin-like activity. Other compounds that inhibit angiogenesis and are active as chemopreventive agents, such as curcumin, also inhibit proteasome activity. We have screened natural product extracts using ras-transformed endothelial cells (SVR cells) as a bioassay, and found that extracts of mate tea (Ilex paraguayensis) inhibit the growth of these endothelial cells. The extract was fractionated and found to have novel cinnamate esters that inhibit proteasome activity. Based upon the structures of the compounds isolated from mate tea, we examined synthetic analogs of these compounds for proteasome activity. Cinnamic acid amides had no inhibitory activity against proteasomes, whereas cinnamate esters displayed the activity. Based upon these findings, preclinical and clinical trials of topical cinnamate esters as proteasome inhibitors are warranted for psoriasis and other inflammatory disorders.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stoebner PE, Lavabre-Bertrand T, Henry L, Guiraud I, Carillo S, Dandurand M, Joujoux JM, Bureau JP, Meunier L. High plasma proteasome levels are detected in patients with metastatic malignant melanoma. Br J Dermatol 2005; 152:948-53. [PMID: 15888151 DOI: 10.1111/j.1365-2133.2005.06487.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Proteasomes, nonlysosomal proteolytic structures, are implicated in cell growth and differentiation. An abnormal expression has been described in haematopoietic malignancies and in some solid tumours. OBJECTIVES To study the plasma proteasome levels in patients with malignant melanoma (MM) using an enzyme-linked immunosorbent assay (ELISA) technique, and to compare them with the values obtained in a normal population and in patients with severe psoriasis or chronic idiopathic urticaria (CIU). METHODS Plasma proteasome level was measured using a sandwich ELISA test in normal donors (n = 14), and in patients with stage I/II (n = 13), stage III (n = 6) and stage IV (n = 10) MM, severe psoriasis (n = 13) and CIU (n = 6). Tissue proteasome expression was also detected by immunohistology using a monoclonal antibody in paraffin-embedded samples of normal tissue, psoriasis skin and MM. RESULTS In normal donors, mean +/- SEM plasma proteasome concentration was 2138 +/- 221 ng mL(-1). Patients with stages III and IV MM exhibited a significantly higher value (3373 +/- 470 ng mL(-1) and 8931 +/- 1232 ng mL(-1), respectively). Values in patients with stage I/II MM and CIU were not significantly different from those in normal volunteers. Patients with severe psoriasis also exhibited increased values (3398 +/- 374 ng mL(-1)) but to a lesser extent than in patients with stage IV MM. There was a significant correlation of proteasome levels with serum lactate dehydrogenase in the MM group. Tissue expression as demonstrated by immunohistochemistry paralleled these findings. The strongest expression was seen on MM slides and to a lesser extent in psoriasis samples, the weakest expression being observed in normal skin. CONCLUSIONS Proteasomes are strongly expressed in cutaneous MM; high levels of circulating proteasomes are detected in patients with metastatic MM with a high melanoma burden, and at a lesser extent in psoriatic patients, which suggests proteasomes represent a marker more of nonspecific inflammation than of early cancer.
Collapse
Affiliation(s)
- P-E Stoebner
- Service de Dermatologie, Groupe Hospitalier Universitaire Carémeau, BP 26, 30029 Nîmes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Risso A, Tell G, Vascotto C, Costessi A, Arena S, Scaloni A, Cosulich ME. Activation of human T lymphocytes under conditions similar to those that occur during exposure to microgravity: A proteomics study. Proteomics 2005; 5:1827-37. [PMID: 15825147 DOI: 10.1002/pmic.200401082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of experiments, conducted under microgravity conditions, i.e. in space shuttle biolaboratories or in ground based systems simulating the conditions occurring in microgravity, show that in hypogravity, in vitro human lymphocyte activation is severely impaired. However, very early stimulation steps of T lymphocytes are not compromised, since CD69 receptor, the earliest membrane activation marker, is expressed by T cells at a level comparable to that observed on 1 g activated lymphocytes. Since CD69 engagement, together with submitogenic doses of phorbol esters, transduces an activation signal to T lymphocytes, we undertook a comparative study on the stimulation mediated through this receptor on human CD3+ cells cultured under conditions similar to those which occur during exposure to microgravity, i.e. in clinorotation, or at 1 g. During the early hours of activation, increased levels of intracellular calcium and increased mitochondrial membrane potential were detectable in clinorotating as well as in 1 g cells. However, after 48 hours clinorotation, interleukin 2 production by T lymphocytes was significantly reduced and cell proliferation was greatly decreased. By means of a differential proteomics approach on T cells activated in clinorotation or at 1 g for 48 hours, we were able to detect statistically significant quantitative protein alterations. Seven proteins with modified expression values were identified; they are involved in nucleic acids processing, proteasome regulation and cytoskeleton structure.
Collapse
Affiliation(s)
- Angela Risso
- Centro d'Eccellenza MATI (Microgravity, Ageing, Training, Immobility), Udine, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Felts KA, Chen K, Zaharee K, Sundar L, Limjoco J, Miller A, Vaillancourt P. Functional cloning using pFB retroviral cDNA expression libraries. Mol Biotechnol 2002; 22:25-32. [PMID: 12353912 DOI: 10.1385/mb:22:1:025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retroviral cDNA expression libraries allow the efficient introduction of complex cDNA libraries into virtually any mitotic cell type for screening based on gene function. The cDNA copy number per cell can be easily controlled by adjusting the multiplicity of infection, thus cell populations may be generated in which >90% of infected cells contain one to three cDNAs. We describe the isolation of two known oncogenes and one cell-surface receptor from a human Burkitt's lymphoma (Daudi) cDNA library inserted into the high-titer retroviral vector pFB.
Collapse
|
21
|
Le Poole IC, Riker AI, Quevedo ME, Stennett LS, Wang E, Marincola FM, Kast WM, Robinson JK, Nickoloff BJ. Interferon-gamma reduces melanosomal antigen expression and recognition of melanoma cells by cytotoxic T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:521-8. [PMID: 11839572 PMCID: PMC1850638 DOI: 10.1016/s0002-9440(10)64871-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In malignant melanoma, tumor-infiltrating lymphocytes are frequently reactive with melanosomal antigens. Achieving complete remissions by peptide therapy is frequently hampered by metastases evading immune recognition. The tumor microenvironment seems to favor reduced expression of target antigens by melanoma cells. Among candidate factors, interferon-gamma (IFN-gamma) (10(2) to 10(3) U/ml) suppressed expression of antigens MART-1, TRP-1, and gp100 by M14 melanoma cells as shown by immunohistology and fluorescence-activated cell sorting analysis, reducing MART-1 expression by >65%. Northern blot analysis revealed that reduced expression was regulated at the transcriptional level, demonstrating a 79% reduction in MART-1 transcript abundance after 32 hours of IFN-gamma treatment. To evaluate consequences of IFN-gamma exposure for immune recognition, MART-1-responsive T cells were reacted with pretreated HLA-matched melanoma cells. Cytotoxicity was reduced up to 78% by IFN-gamma pretreatment, and was restored by addition of MART-1 peptide AAGIGILTV for 2 hours. Examination of melanoma lesions by quantitative reverse transcriptase-polymerase chain reaction revealed up to 188-fold more abundant IFN-gamma transcripts when compared to control skin. Laser capture microdissection and immunohistology localized most IFN-gamma-producing T cells to the tumor stroma. Reduced MART-1 expression was frequently observed in adjacent tumor cells. Consequently, IFN-gamma may enhance inflammatory responses yet hamper effective recognition of melanoma cells.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Pathology, Skin Oncology Research Program, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Bldg. 112, Rm. 303, 2160 S. 1st Ave., Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|