1
|
Ahsan NA, Sampey GC, Lepene B, Akpamagbo Y, Barclay RA, Iordanskiy S, Hakami RM, Kashanchi F. Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection. Front Microbiol 2016; 7:139. [PMID: 26904012 PMCID: PMC4749701 DOI: 10.3389/fmicb.2016.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022] Open
Abstract
Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent human immunodeficiency virus-1 (HIV-1) and human T-cell lymphotropic virus-1 (HTLV-1) infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-κB pathway, leading to cell proliferation, and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV). These clones contained normal markers (i.e., CD63) for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome). The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of recipient cells (T-cells and monocytic cells) showed drastic rate of apoptosis through PARP cleavage and caspase 3 activation from some but not all exosome enriched preparations. Collectively, these data suggest that exosomes from RVFV infected cells alter the dynamics of the immune cells and may contribute to pathology of the viral infection.
Collapse
Affiliation(s)
- Noor A. Ahsan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Gavin C. Sampey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Ben Lepene
- Ceres Nanosciences, Inc., ManassasVA, USA
| | - Yao Akpamagbo
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Robert A. Barclay
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Sergey Iordanskiy
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Ramin M. Hakami
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, ManassasVA, USA
- Laboratory of Molecular Virology, George Mason University, ManassasVA, USA
| |
Collapse
|
2
|
Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 2012; 120:3986-96. [PMID: 22955915 DOI: 10.1182/blood-2012-05-433334] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
TP53 mutation is an independent marker of poor prognosis in patients with diffuse large B-cell lymphoma (DLBCL) treated with cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (CHOP) therapy. However, its prognostic value in the rituximab immunochemotherapy era remains undefined. In the present study of a large cohort of DLBCL patients treated with rituximab plus CHOP (R-CHOP), we show that those with TP53 mutations had worse overall and progression-free survival compared with those without. Unlike earlier studies of patients treated with CHOP, TP53 mutation has predictive value for R-CHOP-treated patients with either the germinal center B-cell or activated B-cell DLBCL subtypes. Furthermore, we identified the loop-sheet-helix and L3 motifs in the DNA-binding domain to be the most critical structures for maintaining p53 function. In contrast, TP53 deletion and loss of heterozygosity did not confer worse survival. If gene mutation data are not available, immunohistochemical analysis showing > 50% cells expressing p53 protein is a useful surrogate and was able to stratify patients with significantly different prognoses. We conclude that assessment of TP53 mutation status is important for stratifying R-CHOP-treated patients into distinct prognostic subsets and has significant value in the design of future therapeutic strategies.
Collapse
|
3
|
Spaniol K, Boos J, Lanvers-Kaminsky C. An in-vitro evaluation of the polo-like kinase inhibitor GW843682X against paediatric malignancies. Anticancer Drugs 2011; 22:531-42. [PMID: 21637161 DOI: 10.1097/cad.0b013e3283454526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polo-like kinase 1 (PLK1) is a regulator of mitosis and its upregulation in tumours is often associated with poor prognosis. Although PLK1 inhibitors have already entered phase 1 clinical trials, little is known about their impact on the treatment of paediatric malignancies. Thus, we evaluated the concept of PKL1 inhibition by testing the effects of the PLK1 inhibitor GW843682X alone and in combination with the topoisomerase 1 inhibitor, camptothecin, against a panel of 18 paediatric tumour cell lines. Cytotoxicity was evaluated by MTT test and by caspase 3/7 activation. Expression of target was confirmed by western blot analysis. Expression of ATP binding cassette transporters was analysed by quantitative real-time reverse transcription PCR. GW843682X significantly inhibited cell growth in all 18 cell lines. Concentrations, which inhibited cell growth by 50% compared with untreated controls after 72 h, ranged from 0.02 to 11.7 μmol/l. Apart from the N-Myc-amplified neuroblastoma cell lines, the osteosarcoma cell lines MNNG-HOS and OST, which are highly resistant to standard anticancer drugs, were sensitive to GW843682X. The toxicity of GW843682X was dependent neither on the ATP binding cassette drug transporter expression nor on the p53 mutation status. Neither synergistic nor antagonistic effects were observed for the combination of GW843682X and camptothecin in 14 cell lines. GW843682X showed considerable toxicity against a panel of paediatric tumour cell lines suggesting that PLK1 inhibitors under clinical development should be evaluated against paediatric malignancies too.
Collapse
Affiliation(s)
- Kristina Spaniol
- Department of Paediatric Haematology and Oncology, University Children's Hospital, Muenster, Germany
| | | | | |
Collapse
|
4
|
Yao R, Natsume Y, Saiki Y, Shioya H, Takeuchi K, Yamori T, Toki H, Aoki I, Saga T, Noda T. Disruption of Tacc3 function leads to in vivo tumor regression. Oncogene 2011; 31:135-48. [PMID: 21685933 DOI: 10.1038/onc.2011.235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of the bipolar spindle is responsible for accurate chromosomal segregation during mitosis. The dynamic instability of microtubules has an important role in this process, and has been shown to be an effective target for cancer chemotherapy. Several agents that target non-microtubule mitotic proteins, including the motor protein Eg5, Aurora kinases and Polo-like kinases, are currently being developed as chemotherapeutic drugs. However, because the efficacies of these drugs remain elusive, new molecular targets that have essential roles in tumor cells are desired. Here, we provide in vivo evidence that transforming acidic coiled-coil-3 (Tacc3) is a potential target for cancer chemotherapy. Using MRI, we showed that Tacc3 loss led to the regression of mouse thymic lymphoma in vivo, which was accompanied by massive apoptosis. By contrast, normal tissues, including the thymus, showed no overt abnormalities, despite high Tacc3 expression. in vitro analysis indicated that Tacc3 depletion induced multi-polar spindle formation, which led to mitotic arrest, followed by apoptosis. Similar responses have been observed in Burkitt's lymphoma and T-ALL. These results show that Tacc3 is a vulnerable component of the spindle assembly in lymphoma cells and is a promising cancer chemotherapy target.
Collapse
Affiliation(s)
- R Yao
- Department of Cell Biology, Cancer Institute, The Japanese Foundation for Cancer Research, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang X, Huang H, Xu Z, Zhan R. 2-Methoxyestradiol blocks cell-cycle progression at the G2/M phase and induces apoptosis in human acute T lymphoblastic leukemia CEM cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:615-22. [PMID: 20732853 DOI: 10.1093/abbs/gmq065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
2-Methoxyestradiol (2-ME2) is an endogenous metabolite of 17beta-estradiol (E2) with estrogen receptor-independent anti-cancer activity. The current study sought to determine the mechanism of anti-cancer activity of 2-ME2 in human acute T lymphoblastic leukemia CEM cells. Results showed that 2-ME2 markedly suppressed proliferation of CEM cells in a time- and dose-dependent manner. 2-ME2-treated CEM cells underwent typical apoptotic changes. Exposure to 2-ME2 led to G(2)/M phase cell-cycle arrest, which preceded apoptosis characterized by the appearance of a sub-G(1) cell population. In addition, cytosolic cytochrome c release, increased procaspase-9 and -3 expressions, poly(ADP-ribose) polymerase (PARP) cleavage, and induced expression of caspase-8 were detected, suggesting that both the intrinsic apoptotic pathway and extrinsic apoptotic pathway were involved in 2-ME2-induced apoptosis. Moreover, the expression level of p21 protein was upregulated, whereas Bcl-2 and dysfunctional p53 protein were downregulated, which also contributed to 2-ME2-induced apoptosis. Our findings revealed that 2-ME2 might be a potent natural candidate for chemotherapeutic treatment of human acute T lymphoblastic leukemia when the precise effects of 2-ME2 were investigated further in other T leukemia cell lines and in primary T-cell leukemias.
Collapse
Affiliation(s)
- Xueya Zhang
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | | | | | | |
Collapse
|
6
|
Sun L, Zhang G, Li Z, Song T, Huang C, Si L. In GFP with high risk HPV-18E6 fusion protein expressed 293T and MCF-7 cells, the endogenous wild-type p53 could be transiently phosphorylated at multiple sites. J Exp Clin Cancer Res 2008; 27:35. [PMID: 18778462 PMCID: PMC2546361 DOI: 10.1186/1756-9966-27-35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/08/2008] [Indexed: 11/13/2022] Open
Abstract
Background Infected cells recognize viral replication as a DNA damage stress and elicit the host surveillance mechanism to anti-virus infection. Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. They could manipulate p53 function through phosphorylation modification for their own purpose. But there is rarely research about p53 phosphorylation status in the context of HPV-E6. Therefore, we investigated whether p53 could be phosphorylated by HPV-E6. Methods We used a mammalian green fluorescence protein (GFP) expression system to express HPV-18E6 with GFP fusion proteins (GFP-18E6) in wild-type (wt) p53 cell lines, such as 293T and MCF-7 cells to trace the traffic and subcellular location of E6 protein. By immunofluorescence technique and immunoblotting, we determined the positive phosphorylated sites of p53 and observed the distribution of phosphorylated p53 in the context of GFP-18E6. Results GFP-18E6 was predominantly located in nuclei of wt p53 cell lines, and it could induce transient phosphorylation of p53 at multiple sites, such as Ser15, Ser20, and Ser392. All the three sites of phosphorylated p53s were localized in nuclei together with GFP-18E6. Conclusion In GFP with high risk HPV-18E6 fusion protein expressed 293T and MCF-7 cells, the endogenous wt p53 could be transiently phosphorylated at multiple sites.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, School of Medicine, Xi an Jiaotong University, Xi an, PR China.
| | | | | | | | | | | |
Collapse
|
7
|
Xia G, Schneider-Stock R, Diestel A, Habold C, Krueger S, Roessner A, Naumann M, Lendeckel U. Helicobacter pylori regulates p21(WAF1) by histone H4 acetylation. Biochem Biophys Res Commun 2008; 369:526-31. [PMID: 18302936 DOI: 10.1016/j.bbrc.2008.02.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 01/20/2023]
Abstract
Helicobacter pylori are bacteria that colonize the stomach persistently, which confers risk of serious diseases, including peptic ulceration and gastric neoplasia. Aberrant expression of cell cycle control proteins has been demonstrated in H. pylori infected gastric epithelial cells, suggesting that perturbation of the cell cycle plays a role in the pathogenesis of various H. pylori associated diseases. In this study, we investigate the modulation of the cell cycle control protein p21(WAF1) by H. pylori in the gastric carcinoma cell line NCI-N87 and in primary gastric cells derived from healthy tissue. We observed an up-regulation of p21(WAF1) in both NCI-N87 and primary cells. Chromatin immunoprecipitation analysis revealed that the increased expression of p21(WAF1) induced by H. pylori is associated with the release of HDAC-1 from the p21(WAF1) promoter and hyper-acetylation of histone H4. The elucidation of the epigenetic regulation of p21(WAF1) by H. pylori may help to dissect the pathogenetic mechanisms underlying the development and progression of H. pylori associated diseases.
Collapse
Affiliation(s)
- Guoqing Xia
- Institute of Experimental Internal Medicine, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Leipziger Street 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Villiard É, Brinkmann H, Moiseeva O, Mallette FA, Ferbeyre G, Roy S. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. BMC Evol Biol 2007; 7:180. [PMID: 17903248 PMCID: PMC2072957 DOI: 10.1186/1471-2148-7-180] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Background Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. Results Blocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan) and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts), which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2) or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45. Conclusion Urodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However, other significant changes in the axolotl proteins may play more subtle roles on p53 functions, including DNA binding and promoter specificity and could represent useful adaptations to ensure p53 activity and tumor suppression in animals able to regenerate or subject to large variations in oxygen levels or temperature.
Collapse
Affiliation(s)
- Éric Villiard
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Henner Brinkmann
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Olga Moiseeva
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Stéphane Roy
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
9
|
Massumi M, Ziaee AA, Sarbolouki MN. Apoptosis Induction in Human Lymphoma and Leukemia Cell Lines by Transfection via Dendrosomes Carrying Wild-Type p53 cDNA. Biotechnol Lett 2006; 28:61-6. [PMID: 16369877 DOI: 10.1007/s10529-005-4689-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 08/23/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The efficiency of dendrosomes (novel dendritic spheroidal nanoparticle gene porters) were assessed in transferring wild-type p53 cDNA into two human acute lymphoblastic leukemia cell lines (MOLT-4 and CCRF-CEM) derived from T cells and erythroleukemic cell line K562. Flow cytometric studies showed a 65% and 45% enhancement in apoptosis and necrosis of K562 and CCRF-CEM cells transfected with complex of dendrosomes and wild-type p53 cDNA in comparison to controls. The cytotoxicity studies on T lymphoma cells revealed that dendrosomes have a low cytotoxicity in comparison to lipofectin.
Collapse
Affiliation(s)
- Mohammad Massumi
- Institute of Biochemistry and Biophysics, Tehran University, P.O. Box 13145-1384, Tehran, Iran.
| | | | | |
Collapse
|
10
|
Marinelli F, La Sala D, Cicciotti G, Cattini L, Trimarchi C, Putti S, Zamparelli A, Giuliani L, Tomassetti G, Cinti C. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J Cell Physiol 2004; 198:324-32. [PMID: 14603534 DOI: 10.1002/jcp.10425] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been recently established that low-frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high-frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low- and high-frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high-frequency EMFs could affect in vitro cell survival, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high-frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro-apoptotic and pro-survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2-12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53-dependent and -independent apoptotic pathways while longer continuous exposure (24-48 h) determined silencing of pro-apoptotic signals and activation of genes involved in both intracellular (Bcl-2) and extracellular (Ras and Akt1) pro-survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self-defense response triggered by DNA damage, could confer to the survivor CCRF-CEM cells a further advantage to survive and proliferate.
Collapse
Affiliation(s)
- F Marinelli
- Institute for Organ Transplantation and Immunocytology, ITOI-CNR, Bologna unit, c/o IOR, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
La Sala D, Macaluso M, Trimarchi C, Giordano A, Cinti C. Triggering of p73-dependent apoptosis in osteosarcoma is under the control of E2Fs-pRb2/p130 complexes. Oncogene 2003; 22:3518-29. [PMID: 12789260 DOI: 10.1038/sj.onc.1206487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanisms underlying multidrug resistance (MDR), one of the major causes of cancer treatment failure, are still poorly understood. We selected the osteosarcoma MDR HosDXR150 cell line by culturing Hos cells in the presence of increasing doxorubicin doses and showed that it is crossresistant to vinblastine. Similarly to the Hos parental cell line, HosDXR150 cells present mutated p53, functionally inactivated pRb/p105 and wild-type pRb2/p130. Owing to p53 mutation, MDR-1 gene, codifying for P-glycoprotein, is upregulated. Evasion of apoptosis in HosDXR150 cells is only partially explained by drug extrusion because of P-glycoprotein overexpression. Analysis of gene expression level profiles showed that parental cell line undergoes apoptosis through an E2F1/p73-dependent pathway while its resistant variant evades it. This result can be explained by the presence of distinct E2Fs-pRb2/p130 complexes on the p73 promoter. Namely, in Hos p73 transcription is activated by E2F1-Rb2/p130-p300 complexes, while in HosDXR150 it is kept repressed by E2F4-Rb2/p130-HDAC1 complexes.
Collapse
Affiliation(s)
- Dario La Sala
- ITOI-CNR, Unit of Bologna, c/o IOR, 40136 Bologna, Italy
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cigarette smoking as an addictive habit has accompanied human beings for more than 4 centuries. It is also one of the most potent and prevalent environmental health risks human beings are exposed to, and it is responsible for more than 1000 deaths each day in the United States. With recent research progress, it becomes clear that cigarette smoking can cause almost all major diseases prevalent today, such as cancer or heart disease. These detrimental effects are not only present in active smokers who choose the risk, but also to innocent bystanders, as passive smokers, who are exposed to cigarettes not-by-choice. While the cigarette-induced harm to human health is indiscriminate and severe, the degree of damage also varies from individual to individual. This intersubject variability in cigarette-induced pathologies is partly mediated by genetic variants of genes that may participate in detoxification process, eg, cytochrome P450 (CYP), cellular susceptibility to toxins, such as p53, or disease development. Through population studies, we have learned that certain CYP1A1 variants, such as Mspl polymorphism, may render the carriers more susceptible to cigarette-induced lung cancer or severe coronary atherosclerosis. The endothelial nitric oxide synthase intron 4 rare allele homozygotes are more likely to have myocardial infarction if they also smoke. In vitro experimental approach has further demonstrated that cigarettes may specifically regulate these genes in genotype-dependent fashion. While we still know little about genetic basis and molecular pathways for cigarette-induced pathological changes, understanding these mechanisms will be of great value in designing strategies to further reduce smoking in targeted populations, and to implement more effective measures in prevention and treatment of cigarette-induced diseases.
Collapse
Affiliation(s)
- Xing Li Wang
- Vascular Genetics Laboratory, Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | |
Collapse
|