1
|
Prime SS, Davies M, Pring M, Paterson IC. The Role of TGF-β in Epithelial Malignancy and its Relevance to the Pathogenesis of Oral Cancer (Part II). ACTA ACUST UNITED AC 2016; 15:337-47. [PMID: 15574678 DOI: 10.1177/154411130401500603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of transforming growth factor-β (TGF-β) in epithelial malignancy is complex, but it is becoming clear that, in the early stages of carcinogenesis, the protein acts as a potent tumor suppressor, while later, TGF-β can function to advance tumor progression. We review the evidence to show that the pro-oncogenic functions of TGF-β are associated with (1) a partial loss of response to the ligand, (2) defects of components of the TGF-β signal transduction pathway, (3) over-expression and/or activation of the latent complex, (4) epithelial-mesenchymal transition, and (5) recruitment of signaling pathways which act in concert with TGF-β to facilitate the metastatic phenotype. These changes are viewed in the context of what is known about the pathogenesis of oral cancer and whether this knowledge can be translated into the development of new therapeutic modalities.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | | | | | | |
Collapse
|
2
|
Hong S, Lee HJ, Kim SJ, Hahm KB. Connection between inflammation and carcinogenesis in gastrointestinal tract: Focus on TGF-β signaling. World J Gastroenterol 2010; 16:2080-93. [PMID: 20440848 PMCID: PMC2864833 DOI: 10.3748/wjg.v16.i17.2080] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a primary defense process against various extracellular stimuli, such as viruses, pathogens, foods, and environmental pollutants. When cells respond to stimuli for short periods of time, it results in acute or physiological inflammation. However, if the stimulation is sustained for longer time or a pathological state occurs, it is known as chronic or pathological inflammation. Several studies have shown that tumorigenesis in the gastrointestinal (GI) tract is closely associated with chronic inflammation, for which abnormal cellular alterations that accompany chronic inflammation such as oxidative stresses, gene mutations, epigenetic changes, and inflammatory cytokines, are shared with carcinogenic processes, which forms a critical cross-link between chronic inflammation and carcinogenesis. Transforming growth factor (TGF)-β is a multi-potent cytokine that plays an important role in regulation of cell growth, apoptosis and differentiation. Most importantly, TGF-β is a strong anti-inflammatory cytokine that regulates the development of effector cells. TGF-β has a suppressive effect on carcinogenesis under normal conditions by inhibiting abnormal cell growth, but on the other hand, many GI cancers originate from uncontrolled cell growth and differentiation by genetic loss of TGF-β signaling molecules or perturbation of TGF-β adaptors. Once a tumor has developed, TGF-β exerts a promoting effect on the tumor itself and stromal cells to enhance cell growth, alter the responsiveness of tumor cells to stimulate invasion and metastasis, and inhibited immune surveillance. Therefore, novel development of therapeutic agents to inhibit TGF-β-induced progression of tumor and to retain its growth inhibitory activities, in addition to anti-inflammatory actions, could be useful in oncology. In this review, we discuss the role of TGF-β in inflammation and carcinogenesis of the GI tract related to abnormal TGF-β signaling.
Collapse
|
3
|
Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochim Biophys Acta Rev Cancer 2008; 1786:87-104. [PMID: 18692117 DOI: 10.1016/j.bbcan.2008.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 03/27/2008] [Accepted: 07/10/2008] [Indexed: 12/18/2022]
Abstract
It is well recognized that the majority of cancer related deaths is caused by metastatic diseases. Therefore, there is an urgent need for the development of therapeutic intervention specifically targeted to the metastatic process. In the last decade, significant progress has been made in this research field, and many new concepts have emerged that shed light on the molecular mechanism of metastasis cascade which is often portrayed as a succession of six distinct steps; localized invasion, intravasation, translocation, extravasation, micrometastasis and colonization. Successful metastasis is dependent on the balance and complex interplay of both the metastasis promoters and suppressors in each step. Therefore, the basic strategy of our interventions is aimed at either blocking the promoters or potentiating the suppressors in this disease process. Toward this goal, various kinds of antibodies and small molecules have been designed. These include agents that block the ligand-recepter interaction of metastasis promoters (HGF/c-Met), antagonize the metastasis-promoting enzymes (AMF, uPA and MMP) and inhibit the transcriptional activity of metastasis promoter (beta-Catenin). On the other hand, the intriguing roles of metastasis suppressors and their signal pathways have been extensively studied and various attempts have been made to potentiate these factors. Small molecules have been developed to restore the expression or mimic the function of metastasis-suppressor genes such as NM23, E-cadherin, Kiss-1, MKK4 and NDRG1, and some of them are under clinical trials. This review summarizes our current understanding of the molecular pathway of tumor metastasis and discusses strategies and recent development of anti-metastatic drugs.
Collapse
|
4
|
Podar K, Raje N, Anderson KC. Inhibition of the TGF-beta signaling pathway in tumor cells. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2007; 172:77-97. [PMID: 17607937 DOI: 10.1007/978-3-540-31209-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
5
|
Raponi M, Harousseau JL, Lancet JE, Löwenberg B, Stone R, Zhang Y, Rackoff W, Wang Y, Atkins D. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 2007; 13:2254-60. [PMID: 17404110 DOI: 10.1158/1078-0432.ccr-06-2609] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Microarray technology was used to identify gene expression markers that predict response to the orally available farnesyltransferase inhibitor tipifarnib (Zarnestra, R115777) in acute myelogenous leukemia (AML). EXPERIMENTAL DESIGN Gene expression profiles from 58 bone marrow samples from a cohort of relapsed and refractory AML patients were analyzed on the Affymetrix U133A gene chip that contains approximately 22,000 genes. RESULTS Supervised statistical analysis identified eight gene expression markers that could predict patient response to tipifarnib. The most robust gene was the lymphoid blast crisis oncogene (AKAP13), which predicted response with an overall accuracy of 63%. This gene provided a negative predictive value of 93% and a positive predictive value of 31% (increased from 18%). AKAP13 was overexpressed in patients who were resistant to tipifarnib. When overexpressed in the HL60 and THP1 cell lines, AKAP13 increased the resistance to tipifarnib by approximately 5- to 7-fold. CONCLUSION Diagnostic gene expression signatures may be used to select a group of AML patients that might respond to tipifarnib.
Collapse
Affiliation(s)
- Mitch Raponi
- Veridex, L.L.C. a Johnson & Johnson Company, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Delarue FL, Adnane J, Joshi B, Blaskovich MA, Wang DA, Hawker J, Bizouarn F, Ohkanda J, Zhu K, Hamilton AD, Chellappan S, Sebti SM. Farnesyltransferase and geranylgeranyltransferase I inhibitors upregulate RhoB expression by HDAC1 dissociation, HAT association and histone acetylation of the RhoB promoter. Oncogene 2006; 26:633-40. [PMID: 16909123 DOI: 10.1038/sj.onc.1209819] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, we have shown that RhoB suppresses EGFR-, ErbB2-, Ras- and Akt-mediated malignant transformation and metastasis. In this paper, we demonstrate that the novel antitumor agents farnesyltransferase inhibitors (FTIs) and geranylgeranyltransferase I inhibitors (GGTIs) upregulate RhoB expression in a wide spectrum of human cancer cells including those from pancreatic, breast, lung, colon, bladder and brain cancers. RhoB induction by FTI-277 and GGTI-298 occurs at the transcriptional level and is blocked by actinomycin D. Reverse transcription-PCR experiments documented that the increase in RhoB protein levels is due to an increase in RhoB transcription. Furthermore, treatment with FTIs and GGTIs of cancer cells results in HDAC1 dissociation, HAT association and histone acetylation of the RhoB promoter. Thus, promoter acetylation is a novel mechanism by which RhoB expression levels are regulated following treatment with the anticancer agents FTIs and GGTIs.
Collapse
Affiliation(s)
- F L Delarue
- Drug Discovery Program at H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer 2006; 1775:21-62. [PMID: 16904831 DOI: 10.1016/j.bbcan.2006.06.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/24/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.
Collapse
Affiliation(s)
- Katerina Pardali
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
8
|
Abstract
Transforming growth factor beta (TGF-beta) is a ubiquitous and essential regulator of cellular and physiologic processes including proliferation, differentiation, migration, cell survival, angiogenesis, and immunosurveillance. Alterations in the TGF-beta signaling pathway, including mutation or deletion of members of the signaling pathway and resistance to TGF-beta-mediated inhibition of proliferation are frequently observed in human cancers. Although these alterations define a tumor suppressor role for the TGF-beta pathway in human cancer, TGF-beta also mediates tumor-promoting effects, either through differential effects on tumor and stromal cells or through a fundamental alteration in the TGF-beta responsiveness of the tumor cells themselves. TGF-beta and members of the TGF-beta signaling pathway are being evaluated as prognostic or predictive markers for cancer patients. Ongoing advances in understanding the TGF-beta signaling pathway will enable targeting of this pathway for the chemoprevention and treatment of human cancers.
Collapse
Affiliation(s)
- Rebecca L Elliott
- Department of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, 221 BMSRB Research Drive, Box 2631 DUMC, Durham, NC 27710, USA
| | | |
Collapse
|
9
|
Raponi M, Belly RT, Karp JE, Lancet JE, Atkins D, Wang Y. Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia. BMC Cancer 2004; 4:56. [PMID: 15329151 PMCID: PMC516036 DOI: 10.1186/1471-2407-4-56] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 08/25/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Farnesyl protein transferase inhibitors (FTIs) were originally developed to inhibit oncogenic ras, however it is now clear that there are several other potential targets for this drug class. The FTI tipifarnib (ZARNESTRA, R115777) has recently demonstrated clinical responses in adults with refractory and relapsed acute leukemias. This study was conducted to identify genetic markers and pathways that are regulated by tipifarnib in acute myeloid leukemia (AML). METHODS Tipifarnib-mediated gene expression changes in 3 AML cell lines and bone marrow samples from two patients with AML were analyzed on a cDNA microarray containing approximately 7000 human genes. Pathways associated with these expression changes were identified using the Ingenuity Pathway Analysis tool. RESULTS The expression analysis identified a common set of genes that were regulated by tipifarnib in three leukemic cell lines and in leukemic blast cells isolated from two patients who had been treated with tipifarnib. Association of modulated genes with biological functional groups identified several pathways affected by tipifarnib including cell signaling, cytoskeletal organization, immunity, and apoptosis. Gene expression changes were verified in a subset of genes using real time RT-PCR. Additionally, regulation of apoptotic genes was found to correlate with increased Annexin V staining in the THP-1 cell line but not in the HL-60 cell line. CONCLUSIONS The genetic networks derived from these studies illuminate some of the biological pathways affected by FTI treatment while providing a proof of principle for identifying candidate genes that might be used as surrogate biomarkers of drug activity.
Collapse
Affiliation(s)
- Mitch Raponi
- Veridex, LLC, a Johnson and Johnson company, San Diego, CA 9212, USA
| | - Robert T Belly
- Veridex, LLC, a Johnson and Johnson company, San Diego, CA 9212, USA
| | - Judith E Karp
- The Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | | - David Atkins
- Veridex, LLC, a Johnson and Johnson company, San Diego, CA 9212, USA
| | - Yixin Wang
- Veridex, LLC, a Johnson and Johnson company, San Diego, CA 9212, USA
| |
Collapse
|
10
|
Angibaud P, Bourdrez X, End DW, Freyne E, Janicot M, Lezouret P, Ligny Y, Mannens G, Damsch S, Mevellec L, Meyer C, Muller P, Pilatte I, Poncelet V, Roux B, Smets G, Van Dun J, Van Remoortere P, Venet M, Wouters W. Substituted azoloquinolines and -quinazolines as new potent farnesyl protein transferase inhibitors. Bioorg Med Chem Lett 2003; 13:4365-9. [PMID: 14643327 DOI: 10.1016/j.bmcl.2003.08.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A series of (4-chlorophenyl)-alpha-(1-methyl-1H-imidazol-5-yl)azoloquinolines and -quinazolines was prepared. These compounds displayed potent Farnesyl Protein Transferase inhibitory activity and tetrazolo[1,5-a]quinazolines are promising agents for oral in vivo inhibition.
Collapse
Affiliation(s)
- Patrick Angibaud
- Medicinal Chemistry Department Johnson & Johnson Pharmaceutical Research & Development (J&JPRD), Campus de Maigremont BP615, 27106, Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Angibaud P, Saha AK, Bourdrez X, End DW, Freyne E, Lezouret P, Mannens G, Mevellec L, Meyer C, Pilatte I, Poncelet V, Roux B, Smets G, Van Dun J, Venet M, Wouters W. 4-Methyl-1,2,4-triazol-3-yl heterocycle as an alternative to the 1-methylimidazol-5-yl moiety in the Farnesyltransferase inhibitor ZARNESTRA ™. Bioorg Med Chem Lett 2003; 13:4361-4. [PMID: 14643326 DOI: 10.1016/j.bmcl.2003.09.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replacement of the 1-methylimidazol-5-yl moiety in the farnesyltransferase inhibitor ZARNESTRA series by a 4-methyl-1,2,4-triazol-3-yl group gave us compounds with similar structure-activity relationship profiles showing that this triazole is potentially a good surrogate to imidazole for farnesyltransferase inhibition.
Collapse
Affiliation(s)
- Patrick Angibaud
- Medicinal Chemistry Department Johnson & Johnson Pharmaceutical Research & Development (J&JPRD), Campus de Maigremont BP615, 27106, Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kracklauer MP, Schmidt C, Sclabas GM. TGFbeta1 signaling via alphaVbeta6 integrin. Mol Cancer 2003; 2:28. [PMID: 12935295 PMCID: PMC184456 DOI: 10.1186/1476-4598-2-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/07/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transforming growth factor beta1 (TGFbeta1) is a potent inhibitor of epithelial cell growth, thus playing an important role in tissue homeostasis. Most carcinoma cells exhibit a reduced sensitivity for TGFbeta1 mediated growth inhibition, suggesting TGFbeta1 participation in the development of these cancers. The tumor suppressor gene DPC4/SMAD4, which is frequently inactivated in carcinoma cells, has been described as a key player in TGFbeta1 mediated growth inhibition. However, some carcinoma cells lacking functional SMAD4 are sensitive to TGFbeta1 induced growth inhibition, thus requiring a SMAD4 independent TGFbeta1 pathway. RESULTS Here we report that mature TGFbeta1 is a ligand for the integrin alphaVbeta6, independent of the common integrin binding sequence motif RGD. After TGFbeta1 binds to alphaVbeta6 integrin, different signaling proteins are activated in TGFbeta1-sensitive carcinoma cells, but not in cells that are insensitive to TGFbeta1. Among others, interaction of TGFbeta1 with the alphaVbeta6 integrin resulted in an upregulation of the cell cycle inhibitors p21/WAF1 and p27 leading to growth inhibition in SMAD4 deleted as well as in SMAD4 wildtype carcinoma cells. CONCLUSIONS Our data provide support for the existence of an alternate TGFbeta1 signaling pathway that is independent of the known SMAD pathway. This alternate pathway involves alphaVbeta6 integrin and the Ras/MAP kinase pathway and does not employ an RGD motif in TGFbeta1-sensitive tumor cells. The combined action of these two pathways seems to be necessary to elicit a complete TGFbeta1 signal.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station, A4800, 78712, Austin, TX, USA
| | - Christian Schmidt
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Guido M Sclabas
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Department of Visceral and Transplantation Surgery, The University of Bern, Inselspital, Bern, 3010, Switzerland
| |
Collapse
|
13
|
Angibaud P, Bourdrez X, Devine A, End DW, Freyne E, Ligny Y, Muller P, Mannens G, Pilatte I, Poncelet V, Skrzat S, Smets G, Van Dun J, Van Remoortere P, Venet M, Wouters W. 5-imidazolyl-quinolinones, -quinazolinones and -benzo-azepinones as farnesyltransferase inhibitors. Bioorg Med Chem Lett 2003; 13:1543-7. [PMID: 12699751 DOI: 10.1016/s0960-894x(03)00180-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The evaluation of structure-activity relationships associated with the modification of the R115777 quinolinone ring moiety displaying potent in vitro inhibiting activity is described.
Collapse
Affiliation(s)
- Patrick Angibaud
- Medicinal Chemistry Department, Johnson & Johnson Pharmaceutical Research & Development, Campus de Maigremont BP615, 27106 Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alcock RA, Dey S, Chendil D, Inayat MS, Mohiuddin M, Hartman G, Chatfield LK, Gallicchio VS, Ahmed MM. Farnesyltransferase inhibitor (L-744,832) restores TGF-beta type II receptor expression and enhances radiation sensitivity in K-ras mutant pancreatic cancer cell line MIA PaCa-2. Oncogene 2002; 21:7883-90. [PMID: 12420225 DOI: 10.1038/sj.onc.1205948] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 07/31/2002] [Accepted: 08/07/2002] [Indexed: 11/09/2022]
Abstract
Activated ras is known to dysregulate TGF-beta signaling by altering the expression of TGF-beta type II receptor (RII). It is well documented that tumor cells harboring mutant ras are more resistant to radiation than cells with wild-type ras. In this study, we hypothesized that the use of farnesyltransferase inhibitor (FTI, L-744,832) may directly restore TGF-beta signaling through RII expression via ras dependent or independent pathway leading to induction of radiation sensitivity. Two pancreatic cancer cell lines, BxPC-3 and MIA PaCa-2 were used in this study. FTI inhibited farnesylation of Ras protein more significantly in MIA PaCa-2 than BxPC-3 cells. In contrast, MIA PaCa-2 cells were resistant to radiation when compared to BxPC-3 cells. BxPC-3 cells were more resistant to FTI than MIA PaCa-2 cells. In combination treatment, no significant radiosensitizing effect of FTI was observed in BxPC-3 cells at 5 or 10 microM. However, in MIA PaCa-2 cells, a significant radiosensitizing effect was observed at both 5 and 10 microM concentrations (P>0.004). The TGF-beta effector gene p21(waf1/cip1) was elevated in combination treatment in MIA PaCa-2 but not in BxPC-3 cells. In MIA PaCa-2 cells, FTI induced TGF-beta responsive promoter activity as assessed by 3TP-luciferase activity. A further induction of luciferase activity was observed in MIA PaCa-2 cells treated with radiation and FTI. Induction of TGF-beta signaling by FTI was mediated through restoration of the RII expression, as demonstrated by RT-PCR analysis. In addition, re-expression of RII by FTI was associated with a decrease in DNA methyltransferase 1 (DNMT1) levels. Thus, these findings suggest that the L-744,832 treatment restores the RII expression through inhibition of DNMT1 levels causing induction of TGF-beta signaling by radiation and this forms a novel molecular mechanism of radiosensitization by FTI.
Collapse
Affiliation(s)
- Rachael A Alcock
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dy GK, Adjei AA. The Role of Farnesyltransferase Inhibitors in Lung Cancer Therapy. Clin Lung Cancer 2002; 4:57-62. [PMID: 14653878 DOI: 10.3816/clc.2002.n.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein farnesylation is required for the localization and function of several proteins pivotal to signal transduction pathways and cytoskeletal organization, including the Ras proteins. Ras proteins are constitutively activated in 30% of human tumors, including lung cancer tumors, as a consequence of mutations in ras genes. Farnesyltransferase inhibitors (FTIs) were thus designed to curtail the Ras-mediated aberrant signals that regulate cell proliferation, apoptosis, invasion, and angiogenesis. These processes are vital to the perpetuation of the malignant phenotype. However, current evidence suggests that the antitumor activity of FTIs is Ras-independent. This article reviews preclinical and clinical data pertinent to the use of FTIs in lung cancer.
Collapse
Affiliation(s)
- Grace K Dy
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
16
|
Adnane J, Seijo E, Chen Z, Bizouarn F, Leal M, Sebti SM, Muñoz-Antonia T. RhoB, not RhoA, represses the transcription of the transforming growth factor beta type II receptor by a mechanism involving activator protein 1. J Biol Chem 2002; 277:8500-7. [PMID: 11741970 DOI: 10.1074/jbc.m104367200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transforming growth factor-beta (TGF-beta) type I (T beta R-I) and type II (T beta R-II) receptors are responsible for transducing TGF-beta signals. We have previously shown that inhibition of farnesyltransferase activity results in an increase in T beta R-II expression, leading to enhanced TGF-beta binding, signaling, and inhibition of tumor cell growth, suggesting that a farnesylated protein(s) exerts a repressive effect on T beta R-II expression. Likely candidates are farnesylated proteins such as Ras and RhoB, which are both farnesylated and involved in cell growth control. Neither a dominant negative Ha-Ras, constitutively activated Ha-Ras, or a pharmacological inhibitor of MEK1 affected T beta R-II transcription. However, ectopic expression of RhoB, but not the closely related family member RhoA, resulted in a 5-fold decrease of T beta R-II promoter activity. Furthermore, ectopic expression of RhoB, but not RhoA, resulted in a significant decrease of T beta R-II protein expression and resistance of tumor cells to TGF-beta-mediated cell growth inhibition. Deletion analysis of the T beta R-II promoter identified a RhoB-responsive region, and mutational analysis of this region revealed that a site for the transcription factor activator protein 1 (AP1) is critical for RhoB-mediated repression of T beta R-II transcription. Electrophoretic mobility shift assays clearly showed that the binding of AP1 to its DNA-binding site is strongly inhibited by RhoB. Consequently, transcription assays using an AP1 reporter showed that AP1-mediated transcription is down-regulated by RhoB. Altogether, these results identify a mechanism by which RhoB antagonizes TGF-beta action through transcriptional down-regulation of AP1 in T beta R-II promoter.
Collapse
Affiliation(s)
- Jalila Adnane
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|