1
|
Luo Q, Beaver JM, Liu Y, Zhang Z. Dynamics of p53: A Master Decider of Cell Fate. Genes (Basel) 2017; 8:genes8020066. [PMID: 28208785 PMCID: PMC5333055 DOI: 10.3390/genes8020066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cellular stress-induced temporal alterations—i.e., dynamics—are typically exemplified by the dynamics of p53 that serve as a master to determine cell fate. p53 dynamics were initially identified as the variations of p53 protein levels. However, a growing number of studies have shown that p53 dynamics are also manifested in variations in the activity, spatial location, and posttranslational modifications of p53 proteins, as well as the interplay among all p53 dynamical features. These are essential in determining a specific outcome of cell fate. In this review, we discuss the importance of the multifaceted features of p53 dynamics and their roles in the cell fate decision process, as well as their potential applications in p53-based cancer therapy. The review provides new insights into p53 signaling pathways and their potentials in the development of new strategies in p53-based cancer therapy.
Collapse
Affiliation(s)
- Qingyin Luo
- Department of Environmental Health and Occupational Medicine, Sichuan University West China School of Public Health, Chengdu 610041, China.
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Jill M Beaver
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA.
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Sciences Institute, School of Integrated Sciences and Humanity, Florida International University, Miami, FL 33199, USA.
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, Sichuan University West China School of Public Health, Chengdu 610041, China.
| |
Collapse
|
2
|
Olivos DJ, Mayo LD. Emerging Non-Canonical Functions and Regulation by p53: p53 and Stemness. Int J Mol Sci 2016; 17:ijms17121982. [PMID: 27898034 PMCID: PMC5187782 DOI: 10.3390/ijms17121982] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/15/2023] Open
Abstract
Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009) reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells. We will focus on general themes shared among p53's functions in non-malignant stem cells and cancer stem-like cells (CSCs) and the influence of p53 on the microenvironment and CSC niche. We will also examine p53 gain of function (GOF) roles in stemness. Mutant p53 (mutp53) GOFs that lead to survival, drug resistance and colonization are reviewed in the context of the acquisition of advantageous transformation processes, such as differentiation and dedifferentiation, epithelial-to-mesenchymal transition (EMT) and stem cell senescence and quiescence. Finally, we will conclude with therapeutic strategies that restore wild-type p53 (wtp53) function in cancer and CSCs, including RING finger E3 ligases and CSC maintenance. The mechanisms by which wtp53 and mutp53 influence stemness in non-malignant stem cells and CSCs or tumor-initiating cells (TICs) are poorly understood thus far. Further elucidation of p53's effects on stemness could lead to novel therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- David J Olivos
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology; Medical School ; University of Leipzig ; Leipzig , Germany
| | | | | |
Collapse
|
4
|
Involvement of Mitogen-Activated Protein Kinase Pathway in T-2 Toxin-Induced Cell Cycle Alteration and Apoptosis in Human Neuroblastoma Cells. Mol Neurobiol 2014; 51:1379-94. [DOI: 10.1007/s12035-014-8816-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022]
|
5
|
Kim JK, Jackson TL. Mechanisms that enhance sustainability of p53 pulses. PLoS One 2013; 8:e65242. [PMID: 23755198 PMCID: PMC3670918 DOI: 10.1371/journal.pone.0065242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1) the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2) intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3) coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.
Collapse
Affiliation(s)
- Jae Kyoung Kim
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Viotti J, Duplan E, Caillava C, Condat J, Goiran T, Giordano C, Marie Y, Idbaih A, Delattre JY, Honnorat J, Checler F, Alves da Costa C. Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 2013; 33:1764-75. [DOI: 10.1038/onc.2013.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
|
7
|
Oscillations by the p53-Mdm2 feedback loop. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 641:28-38. [PMID: 18783169 DOI: 10.1007/978-0-387-09794-7_2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The p53 network is perhaps the most important pathway involved in preventing the initiation of cancer, p53 levels and activity are upregulated in response to various stresses including DNA damage, hypoxia, and oncogene activation. Active p53 initiates different transcriptional programs that result in cell cycle arrest, cellular senescence or apoptosis. p53 also activates the transcription of Mdm2, which in turns target p53 for degradation, therefore creating a negative feedback loop on p53. Previous studies showed that the level of p53 increased dramatically after exposure to damaging radiation, then declined in a series of damped oscillations. Recent quantitative studies examined p53 responses in individual living cells, using time-lapse fluorescent microscopy and showed that-on an individual cell level-the oscillations are not damped. Instead, one cell may have only one pulse of p53, while its neighbor may show several repeated pulses. As the amount of irradiation increased, the percentage of cells showing a high number of p53 pulses also increased. The mean height and width of the pulses was constant and did not depend on the damage level. These observations opened new questions regarding the mechanism and function of p53 oscillatory dynamics. In this chapter I will review the different models that have been suggested for p53 oscillations, including proposed reasons for variation between cells, and will discuss potential functions for oscillatory dynamics in the p53 signaling pathway and in stress responses in general.
Collapse
|
8
|
Meiller A, Alvarez S, Drané P, Lallemand C, Blanchard B, Tovey M, May E. p53-dependent stimulation of redox-related genes in the lymphoid organs of gamma-irradiated--mice identification of Haeme-oxygenase 1 as a direct p53 target gene. Nucleic Acids Res 2007; 35:6924-34. [PMID: 17933770 PMCID: PMC2175302 DOI: 10.1093/nar/gkm824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent data showed that p53 stimulates the expression of genes encoding not only pro- but also antioxidant enzymes. It was suggested that antioxidant genes could be induced under physiologic levels of stress while the prooxidant ones respond to higher level of stress. Results presented in this article illustrate an additional degree of complexity. We show that the expression of Haeme-oxygenase 1 (HO-1), a stress-inducible gene that codes for an enzyme having antioxidant properties, is stimulated in a p53-dependent manner in the thymus and spleen of irradiated mice. We prove that HO-1 is a direct p53 target gene by showing that the p53RE identified within human and mouse genes is specifically bound by p53. The threshold of irradiation dose required to induce a significant response of HO-1 in the lymphoid organs of the irradiated mice is higher than that for Waf1/p21 that encodes an universal inhibitor of cell cycle. Moreover, induction of HO-1 occurs later than that of Waf1/p21. Finally, the higher stimulation of HO-1 is reached when Waf1/p21 stimulation starts to decrease.
Collapse
Affiliation(s)
- Anne Meiller
- Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR217, route du Panorama BP6, 92265 Fontenay-aux-Roses Cedex and CNRS FRE2937, Institut André Lwoff, 7, rue Guy Moquet, BP8, 94801 Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Barbier J, Dutertre M, Bittencourt D, Sanchez G, Gratadou L, de la Grange P, Auboeuf D. Regulation of H-ras splice variant expression by cross talk between the p53 and nonsense-mediated mRNA decay pathways. Mol Cell Biol 2007; 27:7315-33. [PMID: 17709397 PMCID: PMC2168895 DOI: 10.1128/mcb.00272-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When cells are exposed to a genotoxic stress, a DNA surveillance pathway that involves p53 is activated, allowing DNA repair. Eukaryotic cells have also evolved a mechanism called mRNA surveillance that controls the quality of mRNAs. Indeed, mutant mRNAs carrying premature translation termination codons (PTCs) are selectively degraded by the nonsense-mediated mRNA decay (NMD) pathway. However, in the case of particular genes, such as proto-oncogenes, mutations that do not create PTCs and therefore that do not induce mRNA degradation, can be harmful to cells. In this study, we showed that the H-ras gene in the absence of mutations produces an NMD-target splice variant that is degraded in the cytosol. We observed that a treatment with the genotoxic stress inducer camptothecin for 6 h favored the production of the H-ras NMD-target transcript degraded in the cytosol by the NMD process. Our data indicated that the NMD process allowed the elimination of transcripts produced in response to a short-term treatment with camptothecin from the major proto-oncogene H-ras, independently of PTCs induced by mutations. The camptothecin effects on H-ras gene expression were p53 dependent and involved in part modulation of the SC35 splicing factor. Interestingly, a long-term treatment with camptothecin as well as p53 overexpression for 24 h resulted in the accumulation of the H-ras NMD target in the cytosol, although the NMD process was not completely inhibited as other NMD targets are not stabilized. Finally, Upf1, a major NMD effector, was necessary for optimal p53 activation by camptothecin, which is consistent with recent data showing that NMD effectors are required for genome stability. In conclusion, we identified cross talk between the p53 and NMD pathways that regulates the expression levels of H-ras splice variants.
Collapse
Affiliation(s)
- Jérôme Barbier
- INSERM U685, Equipe AVENIR, Hopital Saint-Louis, 1 Avenue Claude Vellefaux, Paris 75010, France
| | | | | | | | | | | | | |
Collapse
|
10
|
An HJ, Maeng O, Kang KH, Lee JO, Kim YS, Paik SG, Lee H. Activation of Ras Up-regulates Pro-apoptotic BNIP3 in Nitric Oxide-induced Cell Death. J Biol Chem 2006; 281:33939-48. [PMID: 16954213 DOI: 10.1074/jbc.m605819200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) produced by NO synthases causes nitration and nitrosylation of cellular factors. We have shown previously that endogenously produced or exogenously added NO induces expression of BNIP3 (Bcl-2/adenovirus E1B 19 kDa-interacting protein 3), leading to death of macrophages (Yook, Y.-H., Kang, K.-H., Maeng, O., Kim, T.-R., Lee, J.-O., Kang, K.-i., Kim, Y.-S., Paik, S.-G., and Lee, H. (2004) Biochem. Biophys. Res. Commun. 321, 298-305). We now provide evidence that Ras mediates NO-induced BNIP3 expression via the MEK/ERK/hypoxia-inducible factor (HIF)-1 pathway. (a) ras-Q61L, a constitutively active form of Ras, up-regulated BNIP3 protein expression by enhancing Bnip3 promoter activity, and ras-S17N, a dominant-negative form, and ras-C118S, an S-nitrosylation mutant, blocked NO-induced BNIP3 expression, suggesting that Ras acts downstream of NO and that NO activates Ras by nitrosylation. (b) U0126, a specific MEK inhibitor, completely abolished BNIP3 expression and the stimulation of promoter activity by NO and Ras, whereas 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, SB203580, and wortmannin, specific inhibitors of soluble guanylyl cyclase, p38 MAPK, and phosphatidylinositol 3-kinase, respectively, had no effect. Ras, MEK1/2, and ERK1/2 were sequentially activated by NO treatment of macrophages. (c) Mutation of the HIF-1-binding site (hypoxia-response element) in the Bnip3 promoter abolished BNIP3 induction, and HIF-1alpha was strongly induced by NO. (d) Transient expression of activated Ras promoted macrophage death, as did NO, and this Ras-mediated cell death was inhibited by silencing BNIP3 expression. These results suggest that NO-induced death of macrophages is mediated, at least in part, by BNIP3 induction.
Collapse
Affiliation(s)
- Hyun-Jung An
- Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
p53 is the most commonly mutated gene in human cancer. It is now known that the p53 family proteins p63 and p73 play important roles in tumor suppression as well as in development. Because p63 and p73 are rarely mutated in human cancer, understanding the signaling pathways that activate p63 and p73 will not only shed light on the developmental processes regulated by p63 and p73 but may also yield insight into ways to harness p63 and p73 activity for cancer therapy. Recent research has shown that an alternative splice form of c-H-ras, called p19ras, is a positive regulator of p73beta through a mechanism that involves the E3 ubiquitin ligase Mdm2. Implications for this previously unidentified means of regulation are discussed in light of tumor suppression and are extended to p53 and p63.
Collapse
Affiliation(s)
- Kelly Lynn Harms
- Department of Cell Biology, University of Alabama, Birmingham, AL 35294, USA
| | | |
Collapse
|
12
|
Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005; 19:2122-37. [PMID: 16131611 PMCID: PMC1221884 DOI: 10.1101/gad.1339905] [Citation(s) in RCA: 604] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The recently discovered p53-related genes, p73 and p63, express multiple splice variants and N-terminally truncated forms initiated from an alternative promoter in intron 3. To date, no alternative promoter and multiple splice variants have been described for the p53 gene. In this study, we show that p53 has a gene structure similar to the p73 and p63 genes. The human p53 gene contains an alternative promoter and transcribes multiple splice variants. We show that p53 variants are expressed in normal human tissue in a tissue-dependent manner. We determine that the alternative promoter is conserved through evolution from Drosophila to man, suggesting that the p53 family gene structure plays an essential role in the multiple activities of the p53 family members. Consistent with this hypothesis, p53 variants are differentially expressed in human breast tumors compared with normal breast tissue. We establish that p53beta can bind differentially to promoters and can enhance p53 target gene expression in a promoter-dependent manner, while Delta133p53 is dominant-negative toward full-length p53, inhibiting p53-mediated apoptosis. The differential expression of the p53 isoforms in human tumors may explain the difficulties in linking p53 status to the biological properties and drug sensitivity of human cancer.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Apoptosis/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Drosophila/genetics
- Evolution, Molecular
- Gene Expression Regulation, Neoplastic
- Genes, Insect
- Genes, Reporter
- Genes, p53
- Genetic Variation
- HT29 Cells
- Humans
- Introns
- Luciferases/metabolism
- Promoter Regions, Genetic
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Jean-Christophe Bourdon
- Department of Surgery, Cancer Research-UK Cell Transformation Research Group, University of Dundee, Ninewells Hospital, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Komuro K, Tada M, Tamoto E, Kawakami A, Matsunaga A, Teramoto KI, Shindoh G, Takada M, Murakawa K, Kanai M, Kobayashi N, Fujiwara Y, Nishimura N, Hamada JI, Ishizu A, Ikeda H, Kondo S, Katoh H, Moriuchi T, Yoshiki T. Right- and left-sided colorectal cancers display distinct expression profiles and the anatomical stratification allows a high accuracy prediction of lymph node metastasis. J Surg Res 2005; 124:216-24. [PMID: 15820251 DOI: 10.1016/j.jss.2004.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 01/14/2023]
Abstract
Accurate preoperative prediction of lymph node metastasis and degree of tumor invasion would facilitate an appropriate decision of the extent of surgical resection of cancers to reduce unnecessary complication or to minimize the risk of recurrence in patients. We analyzed gene expression profiles characteristic of the invasiveness of colorectal carcinoma in a total of 89 cases, using a cDNA array and pattern classification algorithms. We set binary classes for a panel of clinicopathologic parameters, each of which was divided at different levels for categories (discrete) or values (continuous). We searched an optimal combination of genes to discriminate the classes by using of a feature subset selection algorithm, which was applied to a set of genes preselected on the basis of statistical difference in expression (two-sided t test, P < or = 0.05). We used a sequential forward feature selection which additively searched a combination of genes, giving a minimal leave-one-out classification error rate of a k-nearest neighbor classifier. In the process of gene preselection, we found a remarkable difference in the expression pattern of genes according to the anatomical location of cancers. The difference was most prominent when the classes were set for cecum, ascending colon, transverse colon, and descending colon (CATD) versus sigmoid colon and rectum (SR). By stratifying these two locations, we were able to extract gene expression profiles characteristic of the classes of the presence versus absence of lymph node metastasis, lymphatic invasion, vascular invasion and degree of mural invasion, and pathological stages, with an accuracy of more than 90%. These results suggest that colorectal cancers harbor distinct molecular pathophysiological statuses according to their right-to-left locations, of which stratification is important for pattern classification of cDNA array data.
Collapse
Affiliation(s)
- Kazuteru Komuro
- Department of Pathology/Pathophysiology, Division of Pathophysiological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bates GJ, Nicol SM, Wilson BJ, Jacobs AMF, Bourdon JC, Wardrop J, Gregory DJ, Lane DP, Perkins ND, Fuller-Pace FV. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 2005; 24:543-53. [PMID: 15660129 PMCID: PMC548656 DOI: 10.1038/sj.emboj.7600550] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 12/20/2004] [Indexed: 11/08/2022] Open
Abstract
The DEAD box RNA helicase, p68, has been implicated in various cellular processes and has been shown to possess transcriptional coactivator function. Here, we show that p68 potently synergises with the p53 tumour suppressor protein to stimulate transcription from p53-dependent promoters and that endogenous p68 and p53 co-immunoprecipitate from nuclear extracts. Strikingly, RNAi suppression of p68 inhibits p53 target gene expression in response to DNA damage, as well as p53-dependent apoptosis, but does not influence p53 stabilisation or expression of non-p53-responsive genes. We also show, by chromatin immunoprecipitation, that p68 is recruited to the p21 promoter in a p53-dependent manner, consistent with a role in promoting transcriptional initiation. Interestingly, p68 knock-down does not significantly affect NF-kappaB activation, suggesting that the stimulation of p53 transcriptional activity is not due to a general transcription effect. This study represents the first report of the involvement of an RNA helicase in the p53 response, and highlights a novel mechanism by which p68 may act as a tumour cosuppressor in governing p53 transcriptional activity.
Collapse
Affiliation(s)
- Gaynor J Bates
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Samantha M Nicol
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Brian J Wilson
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Anne-Marie F Jacobs
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Jean-Christophe Bourdon
- Department of Surgery & Molecular Oncology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Julie Wardrop
- Department of Surgery & Molecular Oncology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - David J Gregory
- Division of Gene Expression and Regulation, School of Life Sciences, University of Dundee, Dundee, UK
| | - David P Lane
- Department of Surgery & Molecular Oncology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Neil D Perkins
- Division of Gene Expression and Regulation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Frances V Fuller-Pace
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| |
Collapse
|
15
|
Marchetti A, Cecchinelli B, D'Angelo M, D'Orazi G, Crescenzi M, Sacchi A, Soddu S. p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK. Cell Death Differ 2005; 11:596-607. [PMID: 15150542 DOI: 10.1038/sj.cdd.4401368] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stimulation of the Ras/MAPK cascade can either activate p53 and promote replicative senescence and apoptosis, or degrade p53 and promote cell survival. Here we show that p53 can directly counteract the Ras/MAPK signaling by inactivating ERK2/MAPK. This inactivation is due to a caspase cleavage of the ERK2 protein and contributes to p53-mediated growth arrest. We found that in Ras-transformed cells, growth arrest induced by p53, but not p21(Waf1), is associated with a strong reduction in ERK2 activity, phosphorylation, and protein half-life, and with the appearance of caspase activity. Likewise, DNA damage-induced cell cycle arrest correlates with p53-dependent ERK2 downregulation and caspase activation. Furthermore, caspase inhibitors or expression of a caspase-resistant ERK2 mutant interfere with ERK2 cleavage and restore proliferation in the presence of p53 activation, indicating that caspase-mediated ERK2 degradation contributes to p53-induced growth arrest. These findings strongly point to ERK2 as a novel p53 target in growth suppression.
Collapse
Affiliation(s)
- A Marchetti
- Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 2004; 36:147-50. [PMID: 14730303 DOI: 10.1038/ng1293] [Citation(s) in RCA: 667] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2003] [Accepted: 12/15/2003] [Indexed: 01/10/2023]
Abstract
The tumor suppressor p53, one of the most intensely investigated proteins, is usually studied by experiments that are averaged over cell populations, potentially masking the dynamic behavior in individual cells. We present a system for following, in individual living cells, the dynamics of p53 and its negative regulator Mdm2 (refs. 1,4-7): this system uses functional p53-CFP and Mdm2-YFP fusion proteins and time-lapse fluorescence microscopy. We found that p53 was expressed in a series of discrete pulses after DNA damage. Genetically identical cells had different numbers of pulses: zero, one, two or more. The mean height and duration of each pulse were fixed and did not depend on the amount of DNA damage. The mean number of pulses, however, increased with DNA damage. This approach can be used to study other signaling systems and suggests that the p53-Mdm2 feedback loop generates a 'digital' clock that releases well-timed quanta of p53 until damage is repaired or the cell dies.
Collapse
Affiliation(s)
- Galit Lahav
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Göhler T, Reimann M, Cherny D, Walter K, Warnecke G, Kim E, Deppert W. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J Biol Chem 2002; 277:41192-203. [PMID: 12171916 DOI: 10.1074/jbc.m202344200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional activation of p53-regulated genes is initiated by sequence-specific DNA binding of p53 to target binding sites. Regulation of sequence-specific DNA binding is complex and occurs at various levels. We demonstrate that DNA topology is an important parameter for regulating the selective and highly specific interaction of p53 with its target binding sites. Specific binding of wild-type p53 is greatly enhanced when cognate binding sites are present in a non-linear stem-loop conformation. The C-terminal domain plays a key role in regulating the specific interactions of p53 with target binding sites in a DNA conformation-dependent manner. The C-terminal domain is required for binding to target sites in a non-linear DNA conformation in contrast to the strong inhibitory effects of the C terminus on p53 interaction with linear DNA. We propose that selective binding of p53 to various promoters may be determined by the DNA conformation within p53 cognate sites.
Collapse
Affiliation(s)
- Thomas Göhler
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Martinistrasse 52, Hamburg D-20251, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Bourdon JC, Renzing J, Robertson PL, Fernandes KN, Lane DP. Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane. J Cell Biol 2002; 158:235-46. [PMID: 12135983 PMCID: PMC2173124 DOI: 10.1083/jcb.200203006] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
p53 is a transcription factor that induces growth arrest or apoptosis in response to cellular stress. To identify new p53-inducible proapoptotic genes, we compared, by differential display, the expression of genes in spleen or thymus of normal and p53 nullizygote mice after gamma-irradiation of whole animals. We report the identification and characterization of human and mouse Scotin homologues, a novel gene directly transactivated by p53. The Scotin protein is localized to the ER and the nuclear membrane. Scotin can induce apoptosis in a caspase-dependent manner. Inhibition of endogenous Scotin expression increases resistance to p53-dependent apoptosis induced by DNA damage, suggesting that Scotin plays a role in p53-dependent apoptosis. The discovery of Scotin brings to light a role of the ER in p53-dependent apoptosis.
Collapse
Affiliation(s)
- J-C Bourdon
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, Cancer Research Campaign (CRC) Cell Transformation Research Group, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | | | | | | | | |
Collapse
|
19
|
Drané P, Leblanc V, Miro-Mur F, Saffroy R, Debuire B, May E. Accumulation of an inactive form of p53 protein in cells treated with TNF alpha. Cell Death Differ 2002; 9:527-37. [PMID: 11973611 DOI: 10.1038/sj.cdd.4400983] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Revised: 10/24/2001] [Accepted: 11/13/2001] [Indexed: 11/09/2022] Open
Abstract
In MCF-7 cells, TNF alpha induces a G1 arrest with an increased expression of p21/Waf1, an activation of NF-kappa B and an accumulation of p53. NF-kappa B and p53 are two transcriptional factors known to activate p21/Waf1 gene expression. Here we show that p53 inhibition has no effect on p21/Waf1 mRNA accumulation following TNF alpha treatment. In contrast, inactivation of NF-kappa B inhibits p21/Waf1 expression without affecting G1 arrest. The fact that p21/Waf1 gene expression is still stimulated when p53 is inactivated strongly suggests that TNF alpha induces accumulation of an inactive form of p53 protein. This assumption was further supported by the following observations: (i) the p53 DNA-binding activity to its consensus sequence was not stimulated following TNF alpha treatment, (ii) phosphorylation at Ser-15, -20 or -392 was not detected in response to TNF alpha, (iii) the transcription rate of Ddb2, another p53 target gene, was not stimulated by TNF alpha. Finally, the accumulation of p53 in the nuclei of TNF alpha-treated MCF-7 cells was concomitant with an increase in p53 mRNA level, suggesting a regulation at the transcription level.
Collapse
Affiliation(s)
- P Drané
- Commissariat à l'Energie Atomique, Laboratoire de Cancérogenèse Moléculaire, UMR217 CEA-CNRS, DRR, DSV, BP6 92265 Fontenay-aux-Roses Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The proto-oncogene Trks encode the high-affinity receptor tyrosine kinases for neurotrophins of a nerve growth factor (NGF) family. The Trk signals spatiotemporally regulate neural development and maintenance of neural network. However, Trk was originally cloned as an oncogene fused with the tropomyosin gene in the extracellular domain. Accumulating evidence has demonstrated that the rearranged Trk oncogene is often observed in non-neuronal neoplasms such as colon and papillary thyroid cancers, while the signals through the receptors encoded by the proto-oncogene Trks regulate growth, differentiation and apoptosis of the tumors with neuronal origin such as neuroblastoma and medulloblastoma. The intracellular Trk signaling pathway is also different depending on the Trk family receptors, cell types and the grade of transformation. Furthermore, developmentally programmed cell death of neuron, which is largely regulated by neurotrophin signaling, is at least in part controlled by tumor suppressors p53 and p73 as well as their antagonist DeltaNp73. Thus, the Trks and their downstream signaling function in both ontogenesis and oncogenesis. In this short review, the dynamic role of the Trk family receptors signaling in neural development, neurogenic tumors and other cancers will be discussed.
Collapse
Affiliation(s)
- A Nakagawara
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, 260-8717, Chiba, Japan.
| |
Collapse
|
21
|
Drane P, Bravard A, Bouvard V, May E. Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 2001; 20:430-9. [PMID: 11313974 DOI: 10.1038/sj.onc.1204101] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Revised: 11/14/2000] [Accepted: 11/14/2000] [Indexed: 11/09/2022]
Abstract
p53 regulates the transcription of a number of genes among which are different redox-related genes. It has been proposed that these genes can induce a cellular oxidative stress leading to p53-dependent apoptosis (Polyak et al., 1997). MnSOD, the product of superoxide dismutase 2 (SOD2) gene, is one of the major cellular defences against oxidative stress. We demonstrate here that p53 is able to repress SOD2 gene expression and that this repression takes place at promoter level. We show the importance of this regulation for the p53 function, by demonstrating that an overexpression of MnSOD decreases p53-mediated induction of apoptosis. Moreover, we demonstrate that MnSOD overexpression decreases p53-gene expression at the promoter level. These findings raise the hypothesis that p53 and SOD2 genes are mutually regulated leading to the modulation of various cellular processes including apoptosis.
Collapse
Affiliation(s)
- P Drane
- Commissariat à l'Energie Atomique (CEA), Laboratoire de Cancérogenèse Moléculaire, UMR217 CEA-CNRS, DRR, DSV, BP6 92265 Fontenay-aux-Roses Cedex, France
| | | | | | | |
Collapse
|