1
|
Cheng X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes (Basel) 2024; 15:903. [PMID: 39062682 PMCID: PMC11275319 DOI: 10.3390/genes15070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2), a targetable transmembrane glycoprotein receptor of the epidermal growth factor receptor (EGFR) family, plays a crucial role in cell proliferation, survival, and differentiation. Aberrant HER2 signaling is implicated in various cancers, particularly in breast and gastric cancers, where HER2 overexpression or amplification correlates with aggressive tumor behavior and poor prognosis. HER2-activating mutations contribute to accelerated tumorigenesis and metastasis. This review provides an overview of HER2 biology, signaling pathways, mechanisms of dysregulation, and diagnostic approaches, as well as therapeutic strategies targeting HER2 in cancer. Understanding the intricate details of HER2 regulation is essential for developing effective targeted therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- Department of Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63108, USA
| |
Collapse
|
2
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
3
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
4
|
ETS transcription factor ESE-1/Elf3 is an independent prognostic factor of survival in HR +HER2 + breast cancer patients. Breast Cancer Res Treat 2020; 182:601-612. [PMID: 32562116 DOI: 10.1007/s10549-020-05734-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/08/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE The ETS transcription factor ESE-1 has been shown to be important in HER2+ breast cancer and ESE-1 mRNA expression has been shown to associate with prognostic outcomes in the HER2+ subtype, as well as in ER+, HER2+ luminal B patients. However, the clinical significance of ESE-1 protein expression remains unknown. The purpose of the current exploratory study is to evaluate the prognostic value of ESE-1 protein expression in molecular breast cancer subtypes with special emphasis on hormone receptor positive HER2+(HR+ HER2+) and the HER2 positive (HER2+-only) breast cancer patients. METHODS We developed a mouse monoclonal anti-ESE-1 antibody, verified its specificity, epitope, and used immunohistochemical staining to assess ESE-1 expression in an IBC approved archive of 957 breast tumor samples. Using Pearson product correlation, contingency analysis, and long rank P value testing, we analyzed the association of ESE-1 expression with clinicopathological features and survival outcomes in HR+HER2-; HR+HER2+; HR- HER2- (Triple negative) and HR-HER2+ (HER2 subtype) patients. RESULTS ESE-1, nuclear or cytoplasmic, was not significantly associated with survival outcomes in HR+HER2-, triple-negative, or HER2+-only breast cancer patients. However, high nuclear ESE-1 was associated with poor survival outcomes in hormone receptor positive (ERα+, PR+) HER2+ patients and was an independent prognostic marker for that group. CONCLUSIONS This study provides evidence for prognostic significance of nuclear ESE-1 in ERalpha positive breast cancers patients also positive for HER2 indicating that crosstalk between ERalpha and ESE-1 in HER2+ tumors could be important for prognostic outcomes. Further studies regarding the nature of interaction between ESE-1 and ERalpha in these tumors are warranted.
Collapse
|
5
|
Wang M, Yang C, Liu X, Zheng J, Xue Y, Ruan X, Shen S, Wang D, Li Z, Cai H, Liu Y. An upstream open reading frame regulates vasculogenic mimicry of glioma via ZNRD1-AS1/miR-499a-5p/ELF1/EMI1 pathway. J Cell Mol Med 2020; 24:6120-6136. [PMID: 32368853 PMCID: PMC7294115 DOI: 10.1111/jcmm.15217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that gliomas can supply blood through vasculogenic mimicry. In this study, the expression and function of ZNRD1‐AS1‐144aa‐uORF (144aa‐uORF) and some non‐coding RNAs in gliomas were assessed. Real‐time quantitative PCR or Western blot was used to discover the expression of 144aa‐uORF, ZNRD1‐AS1, miR‐499a‐5p, ELF1 and EMI1 in gliomas. In addition, RIP and RNA pull‐down assays were applied to explore the interrelationship between 144aa‐uORF and ZNRD1‐AS1. The role of the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis in vasculogenic mimicry formation of gliomas was analysed. This study illustrates the reduced expression of the 144aa‐uORF in glioma tissues and cells. Up‐regulation of 144aa‐uORF inhibits proliferation, migration, invasion and vasculogenic mimicry formation within glioma cells. The up‐regulated 144aa‐uORF can increase the degradation of ZNRD1‐AS1 through the nonsense‐mediated RNA decay (NMD) pathway. Knockdown of ZNRD1‐AS1 inhibits vasculogenic mimicry in glioma cells by modulating miR‐499a‐5p. At the same time, miR‐499a‐5p is down‐regulated and has a tumour‐suppressive effect in gliomas. In addition, ZNRD1‐AS1 serves as a competitive endogenous RNA (ceRNA) and regulates the expression of ELF1 by binding to miR‐499a‐5p. Notably, ELF1 binds to the promoter region of EMI1 and up‐regulates EMI1 expression, while simultaneously promoting vasculogenic mimicry in glioma cells. This study suggests that the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis takes key part in regulating the formation of vasculogenic mimicry in gliomas and may provide a potential target for glioma treatment.
Collapse
Affiliation(s)
- Mo Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
6
|
Wang L, Tang D, Wu T, Sun F. ELF1-mediated LUCAT1 promotes choroidal melanoma by modulating RBX1 expression. Cancer Med 2020; 9:2160-2170. [PMID: 31968402 PMCID: PMC7064025 DOI: 10.1002/cam4.2859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are essential regulators of gene expression and biological behaviors. However, the contribution of lncRNA LUCAT1 to choroidal melanoma (CM) remains unexplored. Here, we examined the expression of LUCAT1 in CM cells by qRT‐PCR and investigated its biological effects by cell counting kit‐8, EdU, TUNEL, transwell assays, and Western blot. Bioinformatics tools were applied to find RNA candidates for further study. Moreover, mechanistic experiments including RNA immunoprecipitation assay, pull‐down assay, and luciferase reporter assay confirmed the relation or interaction among the indicated molecules. Here, we reported ELF1 as the transcription activator of LUCAT1. Functionally, elevated expression of LUCAT1 positively regulated CM cell proliferation, metastasis, and epithelial‐mesenchymal transition process. In addition, we verified the competing endogenous RNA (ceRNA) hypothesis of LUCAT1 and confirmed LUCAT1 modulates CM progression by modulating miR‐514a/b‐3p/RBX1 axis. Meanwhile, miR‐514a/b‐3p was suggested to repress CM progression, whereas RBX1 was unmasked to aggravate CM development. Of note, RBX1 overexpression rescued the inhibitory effect of LUCAT1 silence on the biological processes of CM cells. Altogether, this study unveiled the modulation axis ELF1/LUCAT1/miR‐514a/b‐3p/RBX1 and evidenced LUCAT1 as a promoter in CM for the first time, providing a novel insight into future treatment of CM.
Collapse
Affiliation(s)
- Lina Wang
- Tianjin Medical University Eye Hospital, Tianjin, China.,Tianjin First Central Hospital, Tianjin, China
| | - Dongrun Tang
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Tong Wu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fengyuan Sun
- Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
7
|
Cui X, Chen H, Zhang Q, Xu M, Yuan G, Zhou J. Exploration of the Structure and Recognition of a G-quadruplex in the her2 Proto-oncogene Promoter and Its Transcriptional Regulation. Sci Rep 2019; 9:3966. [PMID: 30850693 PMCID: PMC6408435 DOI: 10.1038/s41598-019-39941-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
G-quadruplexes in oncogene promoters provide putative targets for transcriptional regulation. The structure of a putative G-quadruplex sequence (S1: GGAGAAGGAGGAGGTGGAGGAGGAGGG) in potassium solution in the her2 promoter has been resolved mainly through nuclear magnetic resonance (NMR) spectroscopy. By application of various NMR spectra, we proved the formation of a four-layer G-quadruplex composing of two G-tetrads and two G/A-mixed planes with a four-residues loop (A3-G4-A5-A6). Further evidence from a luciferase reporter assay, Q-RT-PCR and Western blotting indicates that S1 G-quadruplex formation can repress her2 promoter activity, and a selected G-quadruplex ligand cβ can enhance the repression by down regulating her2 transcription and expression. These findings provide a G-quadruplex target and perspective implications in her2 transcriptional regulation.
Collapse
Affiliation(s)
- Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Han Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Wang EY, Cheng JC, Thakur A, Yi Y, Tsai SH, Hoodless PA. YAP transcriptionally regulates ErbB2 to promote liver cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30039-7. [PMID: 30025876 DOI: 10.1016/j.bbagrm.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/20/2023]
Abstract
The Hippo signaling pathway is implicated in regulation of liver size and dysregulation of this pathway contributes to tumorigenesis. The transcriptional targets and downstream pathways of the Hippo pathway effector YAP that contribute to liver growth have yet to be well-characterized. We examined the liver transcriptome in response to YAP overexpression and identify the ErbB signaling pathway as a mediator of cell growth downstream of YAP. ErbB2 is transcriptionally regulated by YAP in both the mouse liver and in HepG2 human hepatoma cells. Knockdown of YAP or pharmacological inhibition with verteporfin reduced ERBB2 levels in HepG2 cells. Analysis of ChIP-seq data revealed enrichment of the transcription factor TEAD4 at the ERBB2 promoter. Using luciferase reporter and chromatin immunoprecipitation assays, we show that YAP and TEAD4 directly bind to and activate a regulatory element in the ErbB2 promoter in both the mouse liver and HepG2 cells. Functionally, knockdown of YAP reduced EGF-induced ERBB2-mediated HepG2 cell proliferation and PI3K/AKT activation. Our findings highlight a mechanism by which YAP exerts its effects on liver cell proliferation through the ErbB signaling pathway by directly regulating the transcription of ErbB2.
Collapse
Affiliation(s)
- Evan Y Wang
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jung-Chien Cheng
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yuyin Yi
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Shu-Huei Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
9
|
Increased expression of EHF contributes to thyroid tumorigenesis through transcriptionally regulating HER2 and HER3. Oncotarget 2018; 7:57978-57990. [PMID: 27517321 PMCID: PMC5295405 DOI: 10.18632/oncotarget.11154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
E26 transformation-specific (ETS) transcription factor EHF plays a tumor suppressor role in prostate cancer and esophageal squamous cell carcinoma (ESCC), whereas it is overexpressed and may act as an oncogene in ovarian and mammary cancers. However, its biological role in thyroid cancer remains totally unknown. The aim of this study was to explore the biological functions of EHF and its potential as a therapeutic target in thyroid cancer. Using quantitative RT-PCR (qRT-PCR) assay, we evaluated mRNA expression of EHF in a cohort of primary papillary thyroid cancers (PTCs) and matched non-cancerous thyroid tissues. The functions of knockdown and ectopic expression of EHF in thyroid cancer cells were determine by a series of in vitro and in vivo experiments. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to identify its downstream targets. Our data showed that EHF expression was significantly increased in PTCs compared with matched non-cancerous thyroid tissues. EHF knockdown significantly inhibited thyroid cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrested and apoptosis by modulating the PI3K/Akt and MAPK/Erk signaling pathways. On the other hand, ectopic expression of EHF in thyroid cancer cells notably promoted cell growth and invasiveness. Importantly, EHF was identified as a new transcription factor for HER2 and HER3, contributing to thyroid tumorigenesis. Altogether, our findings suggest that EHF is a novel functional oncogene in thyroid cancer by transcriptionally regulating HER2 and HER3, and may represent a potential therapeutic target for this cancer.
Collapse
|
10
|
Garcia-Alonso L, Iorio F, Matchan A, Fonseca N, Jaaks P, Peat G, Pignatelli M, Falcone F, Benes CH, Dunham I, Bignell G, McDade SS, Garnett MJ, Saez-Rodriguez J. Transcription Factor Activities Enhance Markers of Drug Sensitivity in Cancer. Cancer Res 2017; 78:769-780. [PMID: 29229604 DOI: 10.1158/0008-5472.can-17-1679] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/16/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
Transcriptional dysregulation induced by aberrant transcription factors (TF) is a key feature of cancer, but its global influence on drug sensitivity has not been examined. Here, we infer the transcriptional activity of 127 TFs through analysis of RNA-seq gene expression data newly generated for 448 cancer cell lines, combined with publicly available datasets to survey a total of 1,056 cancer cell lines and 9,250 primary tumors. Predicted TF activities are supported by their agreement with independent shRNA essentiality profiles and homozygous gene deletions, and recapitulate mutant-specific mechanisms of transcriptional dysregulation in cancer. By analyzing cell line responses to 265 compounds, we uncovered numerous TFs whose activity interacts with anticancer drugs. Importantly, combining existing pharmacogenomic markers with TF activities often improves the stratification of cell lines in response to drug treatment. Our results, which can be queried freely at dorothea.opentargets.io, offer a broad foundation for discovering opportunities to refine personalized cancer therapies.Significance: Systematic analysis of transcriptional dysregulation in cancer cell lines and patient tumor specimens offers a publicly searchable foundation to discover new opportunities to refine personalized cancer therapies. Cancer Res; 78(3); 769-80. ©2017 AACR.
Collapse
Affiliation(s)
- Luz Garcia-Alonso
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom.,OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Francesco Iorio
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom.,OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Angela Matchan
- OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Nuno Fonseca
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Patricia Jaaks
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Gareth Peat
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom.,OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Miguel Pignatelli
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom.,OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Fiammetta Falcone
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Cyril H Benes
- Massachusetts General Hospital, Boston, Massachusetts
| | - Ian Dunham
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom.,OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Graham Bignell
- OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Mathew J Garnett
- OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom. .,OpenTargets, Wellcome Genome Campus, Cambridge, United Kingdom.,Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| |
Collapse
|
11
|
Azarhoosh R, Ebneghasem R, Besharat S. HER-2/neu gene amplification in gastric adenocarcinoma and its relationship with clinical and pathological findings. J Gastrointest Oncol 2017; 8:1046-1050. [PMID: 29299365 DOI: 10.21037/jgo.2017.10.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Amplification of the HER-2/neu oncogene influences the progression of gastric cancer, its prognosis, and therapy. A precise examination of HER-2/neu-amplified tumor tissue is essential for managing disease and prescribing the appropriate treatment. This study aimed to investigate the status of HER-2/neu gene in the gastric cancer samples and its relationship with clinical and pathological information. Methods In this study on 80 paraffin-embedded tissue samples from patients with gastric adenocarcinoma [2006-2011], DNA was extracted to quantify the gene expression levels of HER-2 using a polymerase chain reaction (PCR) method. Data were statistically analyzed by chi-square test using SPSS16.0 software. Results PCR results indicated that HER-2/neu gene amplifications occurred in 58 of the 80 samples (72.5%). HER-2/neu gene expression was not significantly related to age and sex, but the larger tumor size and the more advanced stage were significantly associated with HER-2/neu overexpression. Conclusions The data show the HER-2/neu gene is more amplified in stage 4 of gastric cancer with a larger size of mass. Older age and male sex also appear to be more associated with HER-2/neu gene expression.
Collapse
Affiliation(s)
- Ramin Azarhoosh
- Clinical Research Development Unit (CRDU), 5 azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Rokhsare Ebneghasem
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
A novel HER2 gene body enhancer contributes to HER2 expression. Oncogene 2017; 37:687-694. [PMID: 29035388 PMCID: PMC5794618 DOI: 10.1038/onc.2017.382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/09/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
The transcriptional regulation of the human epidermal growth factor receptor-2 (HER2) contributes to an enhanced HER2 expression in HER2-positive breast cancers with HER2 gene amplification and HER2-low or HER2-negative breast cancers following radiotherapy or endocrine therapy, and this drives tumorigenesis and the resistance to therapy. Epigenetic mechanisms are critical for transcription regulation, however, such mechanisms in the transcription regulation of HER2 are limited to the involvement of tri-methylated histone 3 lysine 4 (H3K4me3) and acetylated histone 3 lysine 9 (H3K9ac) at the HER2 promoter region. Here, we report the identification of a novel enhancer in the HER2 3’ gene body, which we have termed HER2 gene body enhancer (HGE). The HGE starts from the 3’ end of intron 19 and extends into intron 22, possesses enhancer histone modification marks in specific cells and enhances the transcriptional activity of the HER2 promoters. We also found that TFAP2C, a known regulator of HER2, binds to HGE and is required for its enhancer function and that DNA methylation in the HGE region inhibits the histone modifications characterizing enhancer and is inversely correlated with HER2 expression in breast cancer samples. The identification of this novel enhancer sheds a light on the roles of epigenetic mechanisms in HER2 transcription, in both HER2-positive breast cancer samples and individuals with HER2-low or HER2-negative breast cancers undergoing radiotherapy or endocrine therapy.
Collapse
|
13
|
Al-Kurdi B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 2017; 95:10-20. [PMID: 28135607 DOI: 10.1016/j.diff.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
The urothelial lining of the lower urinary tract is the most efficient permeability barrier in animals, exhibiting a highly differentiated phenotype and a remarkable regenerative capacity upon wounding. During development and possibly during repair, cells undergo a sequence of hierarchical transcriptional events that mark the transition of these cells from the least differentiated urothelial phenotype characteristic of the basal cell layer, to the most differentiated cellular phenotype characteristic of the superficial cell layer. Unraveling normal urothelial differentiation program is essential to uncover the underlying causes of many congenital abnormalities and for the development of an appropriate differentiation niche for stem cells, for future use in urinary tract tissue engineering and organ reconstruction. Kruppel like factor-5 appears to be at the top of the hierarchy activating several downstream transcription factors, the most prominent of which is peroxisome proliferator activator receptor-γ. Eventually those lead to the activation of transcription factors that directly regulate the expression of uroplakin proteins along with other proteins that mediate the permeability function of the urothelium. In this review, we discuss the most recent findings in the area of urothelial cellular differentiation and transcriptional regulation, aiming for a comprehensive overview that aids in a refined understanding of this process.
Collapse
Affiliation(s)
- Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
14
|
Osama A, Sabry D, Hassany SM, Abdelmoneim SS, Sabry A. SIRT-1expression is associated with expression of NANOG in patients with colorectal adenocarcinoma. Cancer Biomark 2017; 17:155-63. [PMID: 27540973 DOI: 10.3233/cbm-160626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS The study aimed to investigate the quantitative expression of NANOG, p38 α , NCF2, ELF and TGF-β genes in patients with colorectal adenocarcinoma, adenoma and normal colonic tissue and their correlation with SIRT-1 protein level expression. METHOD This study enrolled one hundred sixty seven patients; group A: 87 patients with colonoscopic findings of no adenoma or adenocarcinoma and group B: 80 patients with colorectal mass. Consecutive colonoscopic examinations were conducted, and tissue samples were taken from the colonic lesions/masses. Total RNA was isolated and mRNA expression level of NANOG, mitogen activated p38α , Neutrophil Cytosol Factor 2 (NCF2), Embryonic Liver Fodrin (ELF) and Transforming Growth Factor Beta (TGF-β) genes were quantified by qRT-PCR. Sirt-1 protein expression level was assessed by quantitative western blot. RESULTS There were significantly high level of mRNA transcripts expression of the genes studied in patients with adenocarcinoma and adenoma compared with normal tissue (P value < 0.01), NANOG, NCF2, ELF and TGF-β at a cut of > 0.314, > 0.392, 0.349 and 0.333 respectively showed sensitivity (96.5%, 98.8%, 95.3%, 98.8%) and specificity of (95.3%, 92.6%, 89.5%, 93.8%) respectively in diagnosing colonic adenocarcinoma. Sirt-1 protein level was significantly highly expressed in colorectal adenocarcinoma compared to normal and adenoma colonic tissue and positively correlated with NANOG. CONCLUSION Over expression of NANOG, p38α , NCF2, ELF and TGF-β genes in both cases of adenocarcinoma and adenoma could have a diagnostic value. SIRT-1 and NANOG are high correlated biological markers for diagnosis and prognosis follow up in patients with adenocarcinoma.
Collapse
Affiliation(s)
- Amany Osama
- Biochemistry Department, Assiut University, Assiut, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Cairo University, Cairo, Egypt
| | - Sahar M Hassany
- Tropical Medicine and Gastroenterology Department, Assiut University, Assiut, Egypt
| | | | - Abeer Sabry
- Internal Medicine Department, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Increased expression of EHF via gene amplification contributes to the activation of HER family signaling and associates with poor survival in gastric cancer. Cell Death Dis 2016; 7:e2442. [PMID: 27787520 PMCID: PMC5134001 DOI: 10.1038/cddis.2016.346] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 01/29/2023]
Abstract
The biological function of E26 transformation-specific (ETS) transcription factor EHF/ESE-3 in human cancers remains largely unknown, particularly gastric cancer. The aim of this study was to explore the role of EHF in tumorigenesis and its potential as a therapeutic target in gastric cancer. By using quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays, we investigated the expression and copy number of EHF in a cohort of gastric cancers and control subjects. Specific EHF siRNAs was used to determine the biologic impacts and mechanisms of altered EHF expression in vitro and in vivo. Dual-luciferase reporter, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) assays were performed to identify its downstream targets. Our results demonstrated that EHF was significantly upregulated and frequently amplified in gastric cancer tissues as compared with control subjects. Moreover, EHF amplification was positively correlated with its overexpression and significantly associated with poor clinical outcomes of gastric cancer patients. We also found that EHF knockdown notably inhibited gastric cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrest and apoptosis. Importantly, we identified EHF as a new HER2 transcription factor and the modulator of HER3 and HER4 in gastric cancer. Collectively, our findings suggest that EHF is a novel functional oncogene in gastric cancer by regulating the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and may represent a potential prognostic marker and therapeutic target for this cancer.
Collapse
|
16
|
HER. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Feik E, Schweifer N, Baierl A, Sommergruber W, Haslinger C, Hofer P, Maj-Hes A, Madersbacher S, Gsur A. Integrative analysis of prostate cancer aggressiveness. Prostate 2013; 73:1413-26. [PMID: 23813660 DOI: 10.1002/pros.22688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/22/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical management of prostate cancer (PC) is still highly demanding on the identification of robust biomarkers which will allow a more precise prediction of disease progression. METHODS We profiled both mRNA expression and DNA copy number alterations (CNAs) from laser capture microdissected cells from 31 PC patients and 17 patients with benign prostatic hyperplasia using Affymetrix GeneChip® technology. PC patients were subdivided into an aggressive (Gleason Score 8 or higher, and/or T3/T4 and/or N+/M+) and non-aggressive (all others) form of PC. Furthermore, we correlated the two datasets, as genes whose varied expression is due to a chromosomal alteration, may suggest a causal implication of these genes in the disease. All statistical analyses were performed in R version 2.15.0 and Bioconductor version 1.8.1., respectively. RESULTS We confirmed several common altered chromosomal regions as well as recently discovered loci such as deletions on chromosomes 3p14.1-3p13 and 13q13.3-13q14.11 supporting a possible role for RYBP, RGC32, and ELF1 in tumor suppression. Integrative analysis of expression and CN data combined with data retrieved from online databases propose PTP4A3 and ELF1 as possible factors for tumor progression. CONCLUSIONS Copy number data analysis revealed some significant differences between aggressive and non-aggressive tumors, while gene expression data alone could not define an aggressive group of patients. The assessment of CNA may have diagnostic and prognostic value in PC.
Collapse
Affiliation(s)
- Elisabeth Feik
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tzenov YR, Andrews PG, Voisey K, Popadiuk P, Xiong J, Popadiuk C, Kao KR. Human papilloma virus (HPV) E7-mediated attenuation of retinoblastoma (Rb) induces hPygopus2 expression via Elf-1 in cervical cancer. Mol Cancer Res 2013; 11:19-30. [PMID: 23284001 DOI: 10.1158/1541-7786.mcr-12-0510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human papillomavirus (HPV) is the etiologic agent of cervical cancer. In this study, we provide evidence for the human Pygopus (hPygo)2 gene as a cellular biomarker for HPV-related disease. In a tumor microarray of cervical cancer progression, hPygo2 levels were greater in high-grade lesions and squamous cell carcinomas than in normal epithelia. Similarly, hPygo2 mRNA and protein levels were greater in HPV-positive cervical cancer cells relative to uninfected primary cells. RNA interference (RNAi)-mediated depletion of HPV-E7 increased whereas E74-like factor (Elf)-1 RNAi decreased association of Retinoblastoma (Rb) tumor suppressor with the hPygo2 promoter in cervical cancer cell lines. Transfection of dominant-active Rb inhibited Elf-1-dependent activation of hPygo2, whereas Elf-1 itself increased hPygo2 expression. Chromatin immunoprecipitation assays showed that Rb repressed hPygo2 by inhibiting Elf-1 at the Ets-binding site in the hPygo2 promoter. These results suggested that abrogation of Rb by E7 resulted in derepression of Elf-1, which in turn stimulated expression of hPygo2. Thus, initiation of hPygo2 expression by Elf-1 was required for proliferation of cervical cancer cells and its expression therefore may act as a surrogate marker for dysplasia.
Collapse
Affiliation(s)
- Youlian R Tzenov
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, Canada, A1B 3V6
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang T, Zhang H, Wang Y, McGown LB. Capture and identification of proteins that bind to a GGA-rich sequence from the ERBB2 gene promoter region. Anal Bioanal Chem 2012; 404:1867-76. [PMID: 22899247 DOI: 10.1007/s00216-012-6322-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/15/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
The ERBB2 gene (HER2/neu) is overexpressed in many human breast cancers. It is an important therapeutic target and its product protein is a key biomarker for breast cancer. A 28-bp GGA repeat sequence (Pu28-mer) in the nuclease hypersensitive site of the ERBB2 promoter region may play an important role in the regulation of ERBB2 transcription, possibly involving the formation of a G-quadruplex. In order to investigate this possibility, an affinity MALDI-MS approach was used for in vitro protein capture from nuclear extracts from cultured MCF-7 and BT-474 cancer cells at Pu28-mer and control oligonucleotide-modified surfaces. Captured proteins from MCF-7 cells were analyzed by LC-MS/MS. Based on these results, Western blot was then used to interrogate captured proteins from both MCF-7 and the Her-2/neu-positive BT-474 cells. Results support the formation of a G-quadruplex by Pu28-mer, indicated by circular dichroism spectroscopy, that selectively captures transcription factors including Ku70, Ku80, PURA, nucleolin, and hnRNP K. Chromatin immunoprecipitation confirmed binding of Ku70, Ku80, PURA, and nucleolin to ERBB2 promoter in the live BT-474 cells. These findings may lead to a better understanding of the role of non-duplex DNA structures in gene regulation and provide a more complete picture of the regulation of ErbB2 expression in breast cancer. The results also provide a blueprint for development of "genome-inspired" aptamers based on the Pu28-mer sequence for in vitro and in vivo detection of proteins related to regulation of ERBB2 gene expression and breast cancer.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
20
|
Mitogen-activated protein kinase phosphorylation of splicing factor 45 (SPF45) regulates SPF45 alternative splicing site utilization, proliferation, and cell adhesion. Mol Cell Biol 2012; 32:2880-93. [PMID: 22615491 DOI: 10.1128/mcb.06327-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The regulation of alternative mRNA splicing factors by extracellular cues and signal transduction cascades is poorly understood. Using an engineered extracellular signal-regulated kinase 2 (ERK2) that can utilize ATP analogs, we have identified the alternative mRNA splicing factor 45 (SPF45), which is overexpressed in cancer, as a novel coimmunoprecipitating ERK2 substrate. ERK2 phosphorylated SPF45 on Thr71 and Ser222 in vitro and in cells in response to H-RasV12, B-RAF-V600E, and activated MEK1. Jun N-terminal kinase 1 (JNK1) and p38α also phosphorylated SPF45 in vitro and associated with SPF45 in cells. SPF45 was differentially phosphorylated in cells by all three mitogen-activated protein (MAP) kinases in response to phorbol myristate acid (PMA), H(2)O(2), UV, and anisomycin stimulation. ERK and p38 activation decreased SPF45-dependent exon 6 exclusion from fas mRNA in a minigene assay in cells. Stable overexpression of SPF45 in SKOV-3 cells dramatically inhibited cell proliferation in a phosphorylation-dependent manner through inhibition of ErbB2 expression. SPF45 overexpression also induced EDA inclusion into fibronectin transcripts and fibronectin expression in a phosphorylation-dependent and -independent manner, respectively, specifically affecting cellular adhesion to a fibronectin matrix. These data identify SPF45 as the first splicing factor regulated by multiple MAP kinase pathways and show effects of both SPF45 overexpression and phosphorylation.
Collapse
|
21
|
Rao VH, Kandel A, Lynch D, Pena Z, Marwaha N, Deng C, Watson P, Hansen LA. A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion. Oncogene 2011; 31:2888-98. [PMID: 21986939 PMCID: PMC3302945 DOI: 10.1038/onc.2011.460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased activation of epidermal growth factor receptor (EGFR) family members such as HER2/Erbb2 can result in more aggressive disease, resistance to chemotherapy and reduced survival of head and neck squamous cell carcinoma (HNSCC) patients. In order to identify mechanisms through which these receptor tyrosine kinases accelerate tumor progression, the regulation of metalloprotease expression by EGFR family members was investigated in 11 SCC cell lines. HER2 expression was significantly correlated with ADAM12 (A Disintegrin And Metalloprotease 12) expression in these cell lines and was co-expressed in human head and neck cancers. Inhibition of HER2 or EGFR decreased ADAM12 transcripts while HER2 transfection up-regulated ADAM12 expression. To understand the molecular mechanisms underlying HER2 regulation of ADAM12, we investigated the signaling pathways directing ADAM12 production in SCC cells. Inhibition of phosphatidyl inositol-3-kinase (PI3K) or mammalian Target of Rapamycin (mTOR) decreased ADAM12 transcripts in HER2-expressing SCC cells, while transfection with AKT increased ADAM12 mRNA. Experiments utilizing ADAM12 transfection or siRNA targeting of ADAM12 revealed that the protease increased both the migration and invasiveness of oral SCC cells. Surprisingly, ADAM12 also increased HER2 message, protein levels, and activity through an Ets1-dependent mechanism. Collectively, these results reveal a novel positive activation loop between ADAM12 and HER2 that may contribute to HNSCC progression.
Collapse
Affiliation(s)
- V H Rao
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Deblois G, Chahrour G, Perry MC, Sylvain-Drolet G, Muller WJ, Giguère V. Transcriptional control of the ERBB2 amplicon by ERRalpha and PGC-1beta promotes mammary gland tumorigenesis. Cancer Res 2010; 70:10277-87. [PMID: 20961995 DOI: 10.1158/0008-5472.can-10-2840] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of ERBB2 and its neighboring genes on chromosome 17 occurs in approximately 25% of breast tumors and is associated with poor prognosis. While amplification of the 17q12-21 chromosomal region often correlates with an increase in the transcriptional rates of the locus, the molecular mechanisms and the factors involved in the coordinated expression of genes residing within the ERBB2 amplicon remain largely unknown. Here we demonstrate that estrogen-related receptor α (ERRα, NR3B1) and its coregulator PGC-1β are key effectors in this process. Using a mouse model of ERBB2-initiated mammary tumorigenesis, we first show that ablation of ERRα significantly delays ERBB2-induced tumor development and lowers the levels of amplicon transcripts. Chromosome 17q-wide binding site location analyses in human breast cancer cells show preferential recruitment of ERRα to DNA segments associated with the ERBB2 amplicon. Furthermore, ERRα directs the co-recruitment of the coactivator PGC-1β to segments in the 17q12 region and the recruitment of RNA polymerase II to the promoters of the ERBB2 and coamplified genes. ERRα and PGC-1β also participate in the de-repression of ERBB2 expression through competitive genomic cross-talk with estrogen receptor α (ERα) and, as a consequence, influence tamoxifen sensitivity in breast cancer cells. Taken together, our results suggest that ERRα and PGC-1β are key players in the etiology of malignant breast cancer by coordinating the transcriptional regulation of genes located in the 17q12 region, a process that also involves interference with the repressive function of ERα on ERBB2 expression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chromosomes, Human, Pair 17
- Drug Resistance, Neoplasm
- Female
- GRB7 Adaptor Protein/genetics
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Genes, erbB-2
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Transgenic
- RNA-Binding Proteins
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tamoxifen/pharmacology
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Geneviève Deblois
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Tabu K, Kimura T, Sasai K, Wang L, Bizen N, Nishihara H, Taga T, Tanaka S. Analysis of an alternative human CD133 promoter reveals the implication of Ras/ERK pathway in tumor stem-like hallmarks. Mol Cancer 2010; 9:39. [PMID: 20167130 PMCID: PMC2836276 DOI: 10.1186/1476-4598-9-39] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 02/19/2010] [Indexed: 12/13/2022] Open
Abstract
Background An increasing number of studies support the presence of stem-like cells in human malignancies. These cells are primarily responsible for tumor initiation and thus considered as a potential target to eradicate tumors. CD133 has been identified as an important cell surface marker to enrich the stem-like population in various human tumors. To reveal the molecular machinery underlying the stem-like features in tumor cells, we analyzed a promoter of CD133 gene using human colon carcinoma Caco-2 and synovial sarcoma Fuji cells, which endogenously express CD133 gene. Results A reporter analysis revealed that P5 promoter, located far upstream in a human CD133 gene locus, exhibits the highest activity among the five putative promoters (P1 to P5). Deletion and mutation analysis identified two ETS binding sites in the P5 region as being essential for its promoter activity. Electrophoretic mobility shift assays demonstrated the specific binding between nuclear factors and the ETS binding sequence. Overexpression of dominant-negative forms of Ets2 and Elk1 resulted in the significant decrease of P5 activity. Furthermore, treatment of Fuji cells with a specific MEK/ERK inhibitor, U0126, also markedly decreased CD133 expression, but there was no significant effect in Caco-2 cells, suggesting cell type-specific regulation of CD133 expression. Instead, the side population, another hallmark of TSLCs, was dramatically diminished in Caco-2 cells by U0126. Finally, Ras-mediated oncogenic transformation in normal human astrocytes conferred the stem-like capability to form neurosphere-like colonies with the increase of CD133 mRNA expression. Conclusions In conclusion, the Ras/ERK pathway at least in part contributes to the maintenance and the acquisition of stem-like hallmarks, although the extent of its contribution is varied in a cell type-specific manner. These findings could help our comprehensive understanding of tumor stemness, and also improve the development of eradicative therapies against human malignancies.
Collapse
Affiliation(s)
- Kouichi Tabu
- Laboratory of Cancer Research, Department of Pathology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Baker R, Kent CV, Silbermann RA, Hassell JA, Young LJT, Howe LR. Pea3 transcription factors and wnt1-induced mouse mammary neoplasia. PLoS One 2010; 5:e8854. [PMID: 20107508 PMCID: PMC2809747 DOI: 10.1371/journal.pone.0008854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/05/2010] [Indexed: 12/21/2022] Open
Abstract
The role of the PEA3 subfamily of Ets transcription factors in breast neoplasia is controversial. Although overexpression of PEA3 (E1AF/ETV4), and of the related factors ERM (ETV5) and ER81 (ETV1), have been observed in human and mouse breast tumors, PEA3 factors have also been ascribed a tumor suppressor function. Here, we utilized the MMTV/Wnt1 mouse strain to further interrogate the role of PEA3 transcription factors in mammary tumorigenesis based on our previous observation that Pea3 is highly expressed in MMTV/Wnt1 mammary tumors. Pea3 expression in mouse mammary tissues was visualized using a Pea3NLSlacZ reporter strain. In normal mammary glands, Pea3 expression is predominantly confined to myoepithelial cells. Wnt1 transgene expression induced marked amplification of this cell compartment in nontumorous mammary glands, accompanied by an apparent increase in Pea3 expression. The pattern of Pea3 expression in MMTV/Wnt1 mammary glands recapitulated the cellular profile of activated β-catenin/TCF signaling, which was visualized using both β-catenin immunohistochemistry and the β-catenin/TCF-responsive reporter Axin2NLSlacZ. To test the requirement for PEA3 factors in Wnt1-induced tumorigenesis, we employed a mammary-targeted dominant negative PEA3 transgene, ΔNPEA3En. Expression of ΔNPEA3En delayed early-onset tumor formation in MMTV/Wnt1 virgin females (P = 0.03), suggesting a requirement for PEA3 factor function for Wnt1-driven tumor formation. Consistent with this observation, expression of the ΔNPEA3En transgene was profoundly reduced in mammary tumors compared to nontumorous mammary glands from bigenic MMTV/Wnt1, MMTV/ΔNPEA3En mice (P = 0.01). Our data provide the first description of Wnt1-mediated expansion of the Pea3-expressing myoepithelial compartment in nontumorous mammary glands. Consistent with this observation, mammary myoepithelium was selectively responsive to Wnt1. Together these data suggest the MMTV/Wnt1 strain as a potential model of basal breast cancer. Furthermore, this study provides evidence for a protumorigenic role of PEA3 factors in breast neoplasia, and supports targeting the PEA3 transcription factor family in breast cancer.
Collapse
Affiliation(s)
- Rebecca Baker
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Strang Cancer Research Laboratory, Rockefeller University, New York, New York, United States of America
| | - Claire V. Kent
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Rachel A. Silbermann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Strang Cancer Research Laboratory, Rockefeller University, New York, New York, United States of America
| | - John A. Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence J. T. Young
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Louise R. Howe
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Strang Cancer Research Laboratory, Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nolens G, Pignon JC, Koopmansch B, Elmoualij B, Zorzi W, De Pauw E, Winkler R. Ku proteins interact with activator protein-2 transcription factors and contribute to ERBB2 overexpression in breast cancer cell lines. Breast Cancer Res 2009; 11:R83. [PMID: 19906305 PMCID: PMC2815545 DOI: 10.1186/bcr2450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 10/07/2009] [Accepted: 11/11/2009] [Indexed: 02/01/2023] Open
Abstract
Introduction Activator protein-2 (AP-2) α and AP-2γ transcription factors contribute to ERBB2 gene overexpression in breast cancer. In order to understand the mechanism by which the ERBB2 gene is overexpressed we searched for novel AP-2 interacting factors that contribute to its activity. Methods Ku proteins were identified as AP-2α interacting proteins by glutathione serine transferase (GST)-pull down followed by mass spectrometry. Transfection of the cells with siRNA, expression vectors and reporter vectors as well as chromatin immunoprecipitation (ChIP) assay were used to ascertain the implication of Ku proteins on ERBB2 expression. Results Nuclear proteins from BT-474 cells overexpressing AP-2α and AP-2γ were incubated with GST-AP2 or GST coated beads. Among the proteins retained specifically on GST-AP2 coated beads Ku70 and Ku80 proteins were identified by mass spectrometry. The contribution of Ku proteins to ERBB2 gene expression in BT-474 and SKBR3 cell lines was investigated by downregulating Ku proteins through the use of specific siRNAs. Depletion of Ku proteins led to downregulation of ERBB2 mRNA and protein levels. Furthermore, reduction of Ku80 in HCT116 cell line decreased the AP-2α activity on a reporter vector containing an AP-2 binding site linked to the ERBB2 core promoter, and transfection of Ku80 increased the activity of AP-2α on this promoter. Ku siRNAs also inhibited the activity of this reporter vector in BT-474 and SKBR3 cell lines and the activity of the ERBB2 promoter was further reduced by combining Ku siRNAs with AP-2α and AP-2γ siRNAs. ChIP experiments with chromatin extracted from wild type or AP-2α and AP-2γ or Ku70 siRNA transfected BT-474 cells demonstrated Ku70 recruitment to the ERBB2 proximal promoter in association with AP-2α and AP-2γ. Moreover, Ku70 siRNA like AP-2 siRNAs, greatly reduced PolII recruitment to the ERBB2 proximal promoter. Conclusions Ku proteins in interaction with AP-2 (α and γ) contribute to increased ERBB2 mRNA and protein levels in breast cancer cells.
Collapse
Affiliation(s)
- Grégory Nolens
- Laboratory of Molecular Oncology, GIGA Cancer, University of Liège, B34, avenue de l'hopital, Liege, 4000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sakurai T, Kondoh N, Arai M, Hamada JI, Yamada T, Kihara-Negishi F, Izawa T, Ohno H, Yamamoto M, Oikawa T. Functional roles of Fli-1, a member of the Ets family of transcription factors, in human breast malignancy. Cancer Sci 2009; 98:1775-84. [PMID: 17727680 DOI: 10.1111/j.1349-7006.2007.00598.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Ets family of transcription factors is implicated in malignant transformation and tumor progression, including invasion, metastasis and neo-angiogenesis. In the present study, we found that the Fli-1 gene, a member of the Ets family, was highly expressed in several breast cancer cell lines (MDA-MB231, MDA-MB436, BT-549 and HCC1395). To investigate the functional roles of Fli-1 in breast cancer malignancy, we introduced an expression plasmid containing full-length Fli-1 cDNA into MCF7 breast cancer cells in which endogenous expression of Fli-1 was barely detectable.Overexpression of Fli-1 in MCF7 cells led to inhibition of apoptosis induced by serum depletion or ultraviolet irradiation, although it did not affect cell growth rate in liquid media, colony formation in soft agar or the in vitro invasion capacity of the cells. Expression of Fli-1 and antiapoptotic bcl-2 was coordinately upregulated by serum depletion in MCF7 cells, and the upregulation was inhibited by treatment of the cells with a c-Jun-NH(2)-terminal kinase-specific inhibitor. Furthermore, expression of the bcl-2 gene and protein was enhanced in Fli-1-overexpressing MCF7 cells compared with mock-transfected cells. In addition, human bcl-2 promoter activity was transactivated by Fli-1. These results suggest that Fli-1 contributes to the malignancy of human breast cancer by inhibiting apoptosis through upregulated expression of the bcl-2 gene.
Collapse
Affiliation(s)
- Takuya Sakurai
- Department of Cell Genetics, Sasaki Institute, Kanda-Surugadai, Tokoyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Osunkoya AO, Yin-Goen Q, Phan JH, Moffitt RA, Stokes TH, Wang MD, Young AN. Diagnostic biomarkers for renal cell carcinoma: selection using novel bioinformatics systems for microarray data analysis. Hum Pathol 2009; 40:1671-8. [PMID: 19695674 DOI: 10.1016/j.humpath.2009.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 11/15/2022]
Abstract
The differential diagnosis of clear cell, papillary, and chromophobe renal cell carcinoma is clinically important, because these tumor subtypes are associated with different pathobiology and clinical behavior. For cases in which histopathology is equivocal, immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction can assist in the differential diagnosis by measuring expression of subtype-specific biomarkers. Several renal tumor biomarkers have been discovered in expression microarray studies. However, due to heterogeneity of gene and protein expression, additional biomarkers are needed for reliable diagnostic classification. We developed novel bioinformatics systems to identify candidate renal tumor biomarkers from the microarray profiles of 45 clear cell, 16 papillary, and 10 chromophobe renal cell carcinomas; the microarray data was derived from 2 independent published studies. The ArrayWiki biocomputing system merged the microarray data sets into a single file, so gene expression could be analyzed from a larger number of tumors. The caCORRECT system removed non-random sources of error from the microarray data, and the omniBioMarker system analyzed data with several gene-ranking algorithms to identify algorithms effective at recognizing previously described renal tumor biomarkers. We predicted these algorithms would also be effective at identifying unknown biomarkers that could be verified by independent methods. We selected 6 novel candidate biomarkers from the omniBioMarker analysis and verified their differential expression in formalin-fixed paraffin-embedded tissues by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. The candidate biomarkers were carbonic anhydrase IX, ceruloplasmin, schwannomin-interacting protein 1, E74-like factor 3, cytochrome c oxidase subunit 5a, and acetyl-CoA acetyltransferase 1. Quantitative reverse transcriptase-polymerase chain reaction was performed on 17 clear cell, 13 papillary and 7 chromophobe renal cell carcinoma. Carbonic anhydrase IX and ceruloplasmin were overexpressed in clear cell renal cell carcinoma; schwannomin-interacting protein 1 and E74-like factor 3 were overexpressed in papillary renal cell carcinoma; and cytochrome c oxidase subunit 5a and acetyl-CoA acetyltransferase 1 were overexpressed in chromophobe renal cell carcinoma. Immunohistochemistry was performed on tissue microarrays containing 66 clear cell, 16 papillary, and 12 chromophobe renal cell carcinomas. Cytoplasmic carbonic anhydrase IX staining was significantly associated with clear cell renal cell carcinoma. Strong cytoplasmic schwannomin-interacting protein 1 and cytochrome c oxidase subunit 5a staining were significantly more frequent in papillary and chromophobe renal cell carcinoma, respectively. In summary, we developed a novel process for identifying candidate renal tumor biomarkers from microarray data, and verifying differential expression in independent assays. The tumor biomarkers have potential utility as a multiplex expression panel for classifying renal cell carcinoma with equivocal histology. Biomarker expression assays are increasingly important for renal cell carcinoma diagnosis, as needle core biopsies become more common and different therapies for tumor subtypes continue to be developed.
Collapse
Affiliation(s)
- Adeboye O Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Justenhoven C, Pierl CB, Haas S, Fischer HP, Hamann U, Baisch C, Harth V, Spickenheuer A, Rabstein S, Vollmert C, Illig T, Pesch B, Brüning T, Dippon J, Ko YD, Brauch H. Polymorphic loci of E2F2, CCND1 and CCND3 are associated with HER2 status of breast tumors. Int J Cancer 2009; 124:2077-81. [PMID: 19142864 DOI: 10.1002/ijc.24198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overexpression of the human epidermal growth factor receptor 2 (HER2) in breast tumors is associated with bad prognosis. Therefore, it is highly relevant to further improve understanding of the regulatory mechanisms of HER2 expression. In addition to gene amplification, transcriptional regulation plays a crucial role in HER2 overexpression. In this study, we analyzed 3 polymorphisms E2F2_-5368_A>G, CCND1_870_A>G and CCND3_-677_C>T located in genes involved in cell cycle regulation in the GENICA population-based and age-matched breast cancer case-control study from Germany. We genotyped 1,021 cases and 1,015 controls by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Statistical analyses were performed by conditional logistic regression. We observed no differences in genotype frequencies between breast cancer cases and controls. Subgroup analysis showed associations between carriers of the E2F2_-5368_G allele (OR: 0.60, 95% CI: 0.42-0.85), carriers of the CCND1_870_G allele (OR: 0.66, 95% CI: 0.45-0.96) and carriers of the CCND3_-677_T allele (OR: 1.72, 95% CI: 1.20-2.49) and HER2 expression in breast tumors. This finding points to an association of an increased expression of these cell cycle regulators with lower expression of HER2. An explanation for this observation might be that low expression of E2F2, CCND1 and CCND3 decrease levels of factors down-regulating HER2. We conclude that the analyzed polymorphisms located in E2F2, CCND1 and CCND3 are potential markers for HER2 status of breast tumors.
Collapse
|
29
|
Hua G, Zhu B, Rosa F, Deblon N, Adélaïde J, Kahn-Perlès B, Birnbaum D, Imbert J. A negative feedback regulatory loop associates the tyrosine kinase receptor ERBB2 and the transcription factor GATA4 in breast cancer cells. Mol Cancer Res 2009; 7:402-14. [PMID: 19276186 DOI: 10.1158/1541-7786.mcr-08-0175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of the ERBB2 gene, linked to genomic and transcriptional amplifications, is a poor prognosis indicator in 25% to 30% of breast cancers. In contrast to some well-documented genomic amplifications, molecular mechanisms leading to ERBB2 transcriptional overexpression remain poorly characterized. Gene expression analyses of breast cancer have characterized distinct transcriptional signatures allowing a molecular classification of breast carcinoma. Coexpression of the ERBB2 and GATA4 genes was originally observed in tumors. Both genes are essential for cardiovascular development and GATA4 has been proposed to control the transcription of critical genes for the differentiation and the function of myocardium. We determined that ERBB2-targeted small interfering RNA repressed both ERBB2 and GATA4 genes, whereas GATA4-targeted small interfering RNA repressed GATA4 and activated ERBB2 transcription. Transfected GATA4-expressing construct repressed ERBB2 promoter. Phylogenetic foot printing revealed multiple putative GATA4 binding sites conserved in mammals within the ERBB2 promoter region. Chromatin immunoprecipitation showed that GATA4 binds specifically to several ERBB2 gene noncoding regions. Electrophoretic mobility shift assay revealed GATA4 binding to a well-conserved consensus motif. Site-directed mutagenesis confirmed the role of this new regulatory element for the activity of the ERBB2 gene enhancer. In agreement with a repressor role of GATA4 on ERBB2 gene expression balanced by ERBB2 activation of the GATA4 gene, a negative correlation between the relative levels of ERBB2 and GATA4 mRNA was observed in breast cancer cell lines and breast tumor samples. We propose that the negative feedback loop linking ERBB2 and GATA4 plays a role in the transcriptional dysregulation of ERBB2 gene expression in breast cancer.
Collapse
Affiliation(s)
- Guoqiang Hua
- Université de la Méditerranée, Institut Paoli-Calmettes, Centre de Cancérologie de Marseille, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Birnbaum D, Sircoulomb F, Imbert J. A reason why the ERBB2 gene is amplified and not mutated in breast cancer. Cancer Cell Int 2009; 9:5. [PMID: 19226453 PMCID: PMC2649042 DOI: 10.1186/1475-2867-9-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/18/2009] [Indexed: 12/15/2022] Open
Abstract
Alterations of receptor-type tyrosine kinases (RTK) are frequent in human cancers. They can result from translocation, mutation or amplification. The ERBB2 RTK is encoded by a gene that is amplified in about 20% breast cancers. The question is: why is this RTK specifically subjected to this type of alteration? We propose that ERBB2 gene amplification is used to overcome repression of its expression by sequence-specific transcription factors.
Collapse
Affiliation(s)
- Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm and Institut Paoli-Calmettes, Marseille, F-13009, France.
| | | | | |
Collapse
|
31
|
Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, Hofmann WK, Baldus CD. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res 2008; 33:817-22. [PMID: 19108891 DOI: 10.1016/j.leukres.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 12/31/2022]
Abstract
Expression of ERG is of prognostic significance in acute myeloid leukemia (AML) and T-lymphoblastic leukemia (T-ALL) pointing to its role in leukemogenesis. To unravel its transcriptional regulation we analyzed the expression of ERG specific isoforms. Expression of the two main isoforms ERG2 and ERG3 was found in AML and normal CD34+ cells, whereas T-ALL blasts only expressed ERG isoforms harboring exon 5 (ERG3) lacking expression of ERG2. Bisulfite sequencing revealed hypermethylation of a CpG island within the ERG2 promoter region in T-ALL. Treatment of the T-lymphoblastic cell line BE13 with decitabine led to re-expression of ERG2 and pyrosequencing showed concordant DNA hypomethylation, thus confirming a methylation regulated expression of ERG2. Moreover, the identification of a new ERG isoform (ERG3Deltaex12) suggests the association with different interaction partners and adds to the complexity of downstream pathways mediated by the expression of specific ERG transcripts in acute leukemia.
Collapse
Affiliation(s)
- Arend Bohne
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Granulocyte-colony stimulating factor upregulates ErbB2 expression on breast cancer cell lines and converts primary resistance to trastuzumab. Anticancer Drugs 2008; 19:689-96. [DOI: 10.1097/cad.0b013e3283050083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Andrews PGP, Kennedy MW, Popadiuk CM, Kao KR. Oncogenic activation of the human Pygopus2 promoter by E74-like factor-1. Mol Cancer Res 2008; 6:259-66. [PMID: 18314487 DOI: 10.1158/1541-7786.mcr-07-0068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pygopus is a component of the T-cell factor/beta-catenin transcriptional complex essential for activation of Wnt target genes and is also required for cell regulation in the absence of Wnt signaling. Human Pygopus2 (hPygo2) is overexpressed in a high proportion of breast and epithelial ovarian malignant tumors and is required for the growth of several cell lines derived from these carcinomas. The mechanisms regulating hPygo2 gene activation, however, are unknown. Here, we have determined cis- and trans-interacting factors responsible for hPygo2 expression in cancer. The minimal region required for a maximal 109-fold activation of the hPygo2 promoter in MCF-7 breast cancer cells is 48 bp upstream of the start of transcription. Within 25 bp of the transcriptional start, there are two overlapping tandem Ets transcription factor-binding sites, which are critical for hPygo2 promoter activity. In vitro DNA pull-down assays and proteomic analyses identified the Ets family members Elk-1 and E74-like factor-1 (Elf-1) as potential hPygo2 promoter binding factors, whereas in vivo chromatin immunoprecipitation assays verified that only Elf-1 specifically bound to the hPygo2 promoter in MCF-7 cells. Modulation of elf-1 in MCF-7 cells by silencing via RNA interference or overexpression caused a corresponding decrease or increase, respectively, in hPygo2 promoter activity. Overexpression of Elf-1 in HeLa cells, in which Elf-1 is expressed at a lower level than in MCF-7 cells, caused a 4-fold increase in endogenous hPygo2 mRNA levels. These results provide new evidence that Elf-1 is involved in transcriptional activation of hPygo2. Like hPygo2, previous studies implicated Elf-1 in breast and ovarian cancer and our present findings suggest that the oncogenic requirement of hPygo2 is fulfilled, in part, by Elf-1.
Collapse
Affiliation(s)
- Phillip G P Andrews
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
34
|
Palumbo SL, Memmott RM, Uribe DJ, Krotova-Khan Y, Hurley LH, Ebbinghaus SW. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res 2008; 36:1755-69. [PMID: 18252774 PMCID: PMC2330228 DOI: 10.1093/nar/gkm1069] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)(4) repeats. Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter.
Collapse
Affiliation(s)
- SunMi L Palumbo
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
35
|
Prostate-derived Ets transcription factor overexpression is associated with nodal metastasis and hormone receptor positivity in invasive breast cancer. Neoplasia 2007; 9:788-96. [PMID: 17971898 DOI: 10.1593/neo.07460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 11/18/2022] Open
Abstract
Prostate-derived Ets transcription factor (PDEF) has recently been associated with invasive breast cancer, but no expression profile has been defined in clinical specimens. We undertook a comprehensive PDEF transcriptional expression study of 86 breast cancer clinical specimens, several cell lines, and normal tissues. PDEF expression profile was analyzed according to standard clinicopathologic parameters and compared with hormonal receptor and HER-2/neu status and to the expression of the new tumor biomarker Dikkopf-1 (DKK1). Wide ranging PDEF overexpression was observed in 74% of tested tumors, at higher levels than the average expression found in normal breasts. High PDEF expression was associated with hormone receptor positivity (P < .001), moderate to good differentiation (less than grade III, P = .01), and dissemination to axillary lymph nodes (P = .002). PDEF was an independent risk factor for nodal involvement (multivariate analysis, odds ratio 1.250, P = .002). It was expressed in a different subgroup compared to DKK1-expressing tumors (P < .001). Our data imply that PDEF mRNA expression could be useful in breast cancer molecular staging. Further insights into PDEF functions at the protein level, and possible links with hormone receptors biology, bear great potential for new therapeutic avenues.
Collapse
|
36
|
An EGR2/CITED1 transcription factor complex and the 14-3-3sigma tumor suppressor are involved in regulating ErbB2 expression in a transgenic-mouse model of human breast cancer. Mol Cell Biol 2007; 27:8648-57. [PMID: 17938205 DOI: 10.1128/mcb.00866-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amplification and elevated expression of the ErbB2 receptor tyrosine kinase occurs in 20% of human breast cancers and is associated with a poor prognosis. We have previously demonstrated that mammary tissue-specific expression of activated ErbB2 under the control of its endogenous promoter results in mammary tumor formation. Tumor development was associated with amplification and overexpression of ErbB2 at both the transcript and protein levels. Here we demonstrate that the EGR2/Krox20 transcription factor and its coactivator CITED1 are coordinately upregulated during ErbB2 tumor induction. We have identified an EGR2 binding site in the erbB2 promoter and demonstrated by chromatin immunoprecipitation assays that EGR2 and CITED1 associate specifically with this region of the promoter. EGR2 and CITED1 were shown to associate, and expression from an erbB2 promoter-reporter construct was stimulated by EGR2 and was further enhanced by CITED1 coexpression. Furthermore, expression of the 14-3-3sigma tumor suppressor led to downregulation of ErbB2 protein levels and relocalization of EGR2 from the nucleus to the cytoplasm. Taken together, these observations suggest that, in addition to an increased gene copy number and upregulation of EGR2 and CITED1, an elevated erbB2 transcript level involves the loss of 14-3-3sigma, which sequesters a key transcriptional regulator of the erbB2 promoter.
Collapse
|
37
|
Manavathi B, Rayala SK, Kumar R. Phosphorylation-dependent regulation of stability and transforming potential of ETS transcriptional factor ESE-1 by p21-activated kinase 1. J Biol Chem 2007; 282:19820-30. [PMID: 17491012 DOI: 10.1074/jbc.m702309200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Differential phosphorylation of transcription factors by signal transduction pathways play an important role in regulation of gene expression and functions. ESE-1 is an epithelium-specific ETS transcription factor that transforms human breast epithelial cells through a serine- and aspartic acid-rich domain (SAR) by an unknown cytoplasmic mechanism. Here we found that a signaling kinase, p21-activated kinase-1 (Pak1), interacts with and phosphorylates ESE-1. Interestingly, Pak1 selectively phosphorylates ESE-1 at Ser(207), which is located within the SAR domain. A S207A substitution in ESE-1 reduced its ability to transform breast cancer cells. We also found that ESE-1 is a labile protein and by interacting with F-box-binding protein beta-TrCP, undergoes ubiquitin-dependent proteolysis. Intriguingly, Pak1 phosphorylation inactive mutant ESE1-S207A is more unstable than either wild-type ESE-1 or its Pak1 phosphorylation mimetic mutant, i.e. ESE1-S207E. These findings provide novel insights into the mechanism of transformation potential of ESE-1 and discovered that ESE-1 functions are coordinately regulated by Pak1 phosphorylation and beta-TrCP-dependent ubiquitin-proteasome pathways.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
38
|
Zhang B, Tomita Y, Qiu Y, He J, Morii E, Noguchi S, Aozasa K. E74-like factor 2 regulates valosin-containing protein expression. Biochem Biophys Res Commun 2007; 356:536-41. [PMID: 17368566 DOI: 10.1016/j.bbrc.2007.02.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Enhanced expression of valosin-containing protein (VCP) correlates with invasion and metastasis of cancers. To clarify the transcription mechanism of VCP, human and mouse genomic sequence was compared, revealing a 260 bp DNA sequence in the 5'-flanking region of VCP gene to be highly conserved between the two, in which binding motif of E74-like factor 2/new Ets-related factor (ELF2/NERF) was identified. Chromatin immunoprecipitation assay showed binding of ELF2/NERF to the 5'-flanking region of VCP gene. Knock-down of ELF2/NERF by siRNA decreased expression level of VCP. Viability of cells under tumor necrosis factor-alpha treatment significantly reduced in ELF2/NERF-knock-down breast cancer cell line. Immunohistochemical analysis on clinical breast cancer specimens showed a correlation of nuclear ELF2/NERF expression with VCP expression and proliferative activity of cells shown by Ki-67 immunohistochemistry. These findings indicate that ELF2/NERF promotes VCP transcription and that ELF2/NERF-VCP pathway might be important for cell survival and proliferation under cytokine stress.
Collapse
Affiliation(s)
- Binglin Zhang
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Benz CC, Fedele V, Xu F, Ylstra B, Ginzinger D, Yu M, Moore D, Hall RK, Wolff DJ, Disis ML, Eppenberger-Castori S, Eppenberger U, Schittulli F, Tommasi S, Paradiso A, Scott GK, Albertson DG. Altered promoter usage characterizes monoallelic transcription arising with ERBB2 amplification in human breast cancers. Genes Chromosomes Cancer 2006; 45:983-94. [PMID: 16883574 DOI: 10.1002/gcc.20364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of a collection of human breast cancers (n = 150), enriched in ERBB2-positive cases (n = 57) and involving tumor genotyping relative to population-matched blood genotyping (n = 749) for a common ERBB2 single nucleotide polymorphism Ala(G)1170Pro(C), revealed that ERBB2 amplification in breast cancer is invariably monoallelic. Analysis of paired breast cancer and blood samples from informative (G1170C heterozygotic) ERBB2-positive (n = 12) and ERBB2-negative (n = 17) cases not only confirmed monoallelic amplification and ERBB2 transcriptional overexpression but also revealed that most low ERBB2 expressing breast cancers (12/17) exhibit unbalanced allelic transcription, showing 3-fold to nearly 5,000-fold preferential expression from one of two inherited alleles. To explore cis-acting transcriptional mechanisms potentially selected during ERBB2 amplification, levels of four different ERBB2 transcript variants (5.2, 4.7, 2.1, and 1.4 kb) were correlated with total (4.6 kb) ERBB2 mRNA levels in ERBB2-positive (n = 14) versus ERBB2-negative (n = 43) primary breast cancers. Relative expression of only the 2.1 kb extracellular domain-encoding splice variant and a 4.7 kb mRNA variant that uses an alternative start site were significantly increased in association with ERBB2-positivity, implicating altered promoter usage and selective transcript regulation within the ERBB2 amplicon. Altogether, these findings provide new mechanistic insights into the development of ERBB2-positive breast cancer and strong rationale for delineating candidate cis-acting regulatory elements that may link allele-specific ERBB2 transcription in premalignant breast epithelia with subsequent development of breast cancers bearing monoallelic ERBB2 amplicons.
Collapse
|
40
|
Marx C, Berger C, Xu F, Amend C, Scott GK, Hann B, Park JW, Benz CC. Validated high-throughput screening of drug-like small molecules for inhibitors of ErbB2 transcription. Assay Drug Dev Technol 2006; 4:273-84. [PMID: 16834533 DOI: 10.1089/adt.2006.4.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A whole cell high-throughput screening assay was developed and tested against > 2,000 structurally and functionally diverse drug-like small molecules to identify lead compounds capable of cell permeability and selective silencing of ErbB2 transcription. Screening employed reporter sublines clonally selected from ErbB2-negative MCF7 breast cancer cells after stable genomic integration of the ErbB2 proximal promoter driving a luciferase reporter; anti-ErbB2 activities (50% inhibitory concentration values) were compared to inhibition of control MCF7 sublines bearing integrated reporters driven by either a mutated ErbB2 promoter or the cyclin D1 promoter. Of the seven resulting lead compounds, four emerged from the National Cancer Institute (NCI)/ Developmental Therapeutics Program (DTP) Structural Diversity Set (NSC-131547, NSC-176328, NSC-259968, and NSC-321237); three others emerged from a panel of anticancer compounds with known mechanistic actions and included a minor groove DNA-binding antibiotic (NSC-58514, chromomycin A3), a hydroxamic acid inhibitor of histone deacetylases (NSC-709238, trichostatin A), and a tripeptide aldehyde proteasome inhibitor (MG-132). For optimization, 58 scaffold analogs of the four NCI/DTP structural leads and nine functional analogs of the mechanistic leads were secondarily screened to identify seven compounds with comparable or superior activity relative to the leads, including an approved anticancer drug, PS-341 (bortezomib). PS-341 activity was validated against cultured ErbB2-positive breast cancer cell lines (SKBr3 and BT474) and a trastuzumab-resistant ErbB2-positive breast cancer xenograft model (B585), in which PS-341 antitumor activity correlated with selective down-regulation of ErbB2 mRNA and protein levels, confirming the ErbB2- silencing potential of proteasome inhibitors.
Collapse
Affiliation(s)
- Corina Marx
- Program of Cancer and Development Therapeutics, Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xia WY, Lien HC, Wang SC, Pan Y, Sahin A, Kuo YH, Chang KJ, Zhou X, Wang H, Yu Z, Hortobagyi G, Shi DR, Hung MC. Expression of PEA3 and lack of correlation between PEA3 and HER-2/neu expression in breast cancer. Breast Cancer Res Treat 2006; 98:295-301. [PMID: 16752078 DOI: 10.1007/s10549-006-9162-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 01/02/2006] [Indexed: 01/19/2023]
Abstract
The ETS protein PEA3 functions as a transcription factor to regulate gene expression. Although members of the ETS family have been reported to be involved in tumor progression, ectopic expression of PEA3 has been shown to suppress tumor formation. Despite several studies demonstrated frequent expression of PEA3 and its high association with HER-2/neu and have suggested a potential role of PEA3 in breast cancer, contradictory result has shown that the PEA3 was associated with better survival rate in breast cancer. In the current study, we address this discrepancy by examining the expression of PEA3 and HER-2/neu on 289 archived breast cancer tumor tissues and their correlation with clinicopathologic factors and prognosis. The staining of PEA3 was further validated by in situ hybridization for PEA3 mRNA. We found PEA3 was positive in 22.2% (64/289) of all cases and only 25.6% (21/82) of HER-2/neu-overexpressing cases showed co-expression of PEA3. In contrast to HER-2/neu, PEA3 expression was not correlated with prognosis or major clinicopathologic factors, except for a negative correlation with lymphovascular permeation ( p=0.007). This study demonstrates that PEA3 expression is not correlated with HER-2/neu expression in breast cancer tumor tissues, nor is it associated with adverse clinicopathologic factors or prognosis.
Collapse
Affiliation(s)
- Wei-Ya Xia
- Department of Molecular and Cellular Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qian L, Chen L, Shi M, Yu M, Jin B, Hu M, Xia Q, Zhang X, Shen B, Guo N. A novel cis-acting element in Her2 promoter regulated by Stat3 in mammary cancer cells. Biochem Biophys Res Commun 2006; 345:660-8. [PMID: 16696944 DOI: 10.1016/j.bbrc.2006.04.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 11/25/2022]
Abstract
Stat3 plays important roles in the development of breast malignancies and oncogenesis. In the present study, a palindromic cis-acting element displaying repression activity in breast cancer cells expressing low level of Her2 was found in Her2 promoter. Deletion analysis showed that the novel element was located within Pal2 region spanning nucleotides -529 to -505. The sequence analysis of Pal2 region revealed a DNA sequence (TTAAGATAA) homologous to the binding site of Stat3, starting from position -529 to -521bp. By reporter assay, Pal2 was found to be regulated by constitutive activated Stat3C. A stimulatory effect both on Her2 mRNA and protein expressions was observed in MCF-7 cells stably expressing Stat3C, suggesting that Stat3 regulated Her2 expression. Using ChIP assays the binding of Stat3 to Her2 promoter was confirmed. The data obtained in this study indicate constitutive activated Stat3 regulates Her2 expression. Further investigation of differential effects of Stat3 exerting on breast cancer cells expressing Her2 at different levels will provide more insights into the roles of Stat3 in Her2 expression as well as the regulation of diverse biological activities.
Collapse
Affiliation(s)
- Lu Qian
- Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chang X, Gao JX, Jiang Q, Wen J, Seifers N, Su L, Godfrey VL, Zuo T, Zheng P, Liu Y. The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. ACTA ACUST UNITED AC 2006; 202:1141-51. [PMID: 16230479 PMCID: PMC2213221 DOI: 10.1084/jem.20050157] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Scurfy mutation of the FoxP3 gene (FoxP3sf) in the mouse and analogous mutations in human result in lethal autoimmunity. The mutation of FoxP3 in the hematopoietic cells impairs the development of regulatory T cells. In addition, development of the Scurfy disease also may require mutation of the gene in nonhematopoietic cells. The T cell–extrinsic function of FoxP3 has not been characterized. Here we show that the FoxP3sf mutation leads to defective thymopoiesis, which is caused by inactivation of FoxP3 in the thymic stromal cells. FoxP3 mutation also results in overexpression of ErbB2 in the thymic stroma, which may be involved in defective thymopoiesis. Our data reveal a novel T cell–extrinsic function of FoxP3. In combination, the T cell–intrinsic and –extrinsic defects provide plausible explanation for the severity of the autoimmune diseases in the scurfy mice and in patients who have immunodysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome.
Collapse
Affiliation(s)
- Xing Chang
- Division of Cancer Immunology, Department of Pathology and Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Delacroix L, Begon D, Chatel G, Jackers P, Winkler R. Distal ERBB2 promoter fragment displays specific transcriptional and nuclear binding activities in ERBB2 overexpressing breast cancer cells. DNA Cell Biol 2006; 24:582-94. [PMID: 16153159 DOI: 10.1089/dna.2005.24.582] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overexpression of the ERBB2 gene occurs in 30% of human breast cancers and is correlated with poor prognosis. The deregulation is the consequence of an increased transcription level and gene amplification. Several laboratories, including our own, have identified, in the proximal promoter, enhancers implicated in the gene overexpression. However, our previous studies of a 6-kb ERBB2 promoter fragment revealed the presence of repressing fragments, which were able to overcome the effect of the proximal enhancers. These repressing elements were functional in all cell lines, regardless of their endogenous ERBB2 expression level. Here, we show that a distal ERBB2 promoter region restores high transcription rates specifically in ERBB2 overexpressing breast cancer cells. This distal promoter region thus contains enhancers essential for the overexpression of the gene. By EMSA, performed with nuclear extract of cells overexpressing (BT-474) or not (MDA-MB-231) the ERBB2 gene, we show that at least two sequences of the distal promoter region are bound exclusively by BT-474 extract. Further experiments reveal that AP-2 transcription factors contribute to this differential binding activity, by binding recognition sequences located 4500 bp and 4000 bp upstream of the transcription start site. These sites are occupied by AP2 in vivo, as demonstrated by ChIP assay. Inactivation of AP-2 proteins in ERBB2 overexpressing cells reduces the distal promoter activity up to 70%, indicating the AP-2 factors are implicated in the strong distal enhancing effect. Moreover, we identified a 54-bp fragment that is bound specifically by BT-474 nuclear extract. Further experiments did not lead to the identification of the protein responsible for this binding. Our results thus highlight the importance of ERBB2 distal promoter region and further implicate AP-2 in ERBB2 overexpression in breast cancer cells.
Collapse
Affiliation(s)
- Laurence Delacroix
- Molecular Oncology Laboratory, GIGA/Experimental Cancer Research Centre, University of Liege, Belgium
| | | | | | | | | |
Collapse
|
45
|
Ziemba AJ, Zhilina ZV, Krotova-Khan Y, Stankova L, Ebbinghaus SW. Targeting and regulation of the HER-2/neu oncogene promoter with bis-peptide nucleic acids. Oligonucleotides 2005; 15:36-50. [PMID: 15788899 DOI: 10.1089/oli.2005.15.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antigene oligonucleotides have the potential to regulate gene expression through site-specific DNA binding. However, in vivo applications have been hindered by inefficient cellular uptake, degradation, and strand displacement. Peptide nucleic acids (PNAs) address several of these problems, as they are resistant to degradation and bind DNA with high affinity. We designed two cationic pyrimidine bis-PNAs (cpy-PNAs) to target the polypurine tract of the HER-2/neu promoter and compared them to an unmodified phosphodiester triplex-forming oligonucleotide (TFO1) and a TFO-nitrogen mustard conjugate (TFO2). PNA1 contains a + 2 charge and bound two adjacent 9-bp target sequences with high affinity and specificity, but only at low pH. PNA2 contains a +5 charge and bound one 11-bp target with high affinity up to pH 7.4, but with lower specificity. The PNA:DNA:PNA triplex formed by these cpy-bis-PNAs presented a stable barrier to DNA polymerase extension. The cpy-bis-PNAs and the TFO-alkylator conjugate prevented HER-2/neu transcription in a reporter gene assay (TFO2 = PNA1 > PNA2 >> TFO1). Both PNAs and TFOs were effective at binding the target sequence in naked genomic DNA, but only the TFO-alkylator (TFO2) and the more cationic PNA (PNA2) were detected at the endogenous HER-2/neu promoter in permeabilized cells. This work demonstrates the potential for preventing HER-2/neu gene expression with cpy-bis-PNAs in tumor cells.
Collapse
|
46
|
Lanteri M, Ollier L, Giordanengo V, Lefebvre JC. Designing a HER2/neu promoter to drive alpha1,3galactosyltransferase expression for targeted anti-alphaGal antibody-mediated tumor cell killing. Breast Cancer Res 2005; 7:R487-94. [PMID: 15987454 PMCID: PMC1175063 DOI: 10.1186/bcr1034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/10/2005] [Accepted: 04/05/2005] [Indexed: 12/04/2022] Open
Abstract
Introduction Our goal was to specifically render tumor cells susceptible to natural cytolytic anti-αGal antibodies by using a murine α1,3galactosyltransferase (mαGalT) transgene driven by a designed form of HER2/neu promoter (pNeu), the transcription of which is frequently observed to be above basal in breast tumors. Indeed, the αGalT activity that promotes Galα1,3Galβ1,4GlcNAc-R (αGal) epitope expression has been mutationally disrupted during the course of evolution, starting from Old World primates, and this has led to the counter-production of large amounts of cytotoxic anti-αGal antibodies in recent primates, including man. Method Expression of the endogenous c-erbB-2 gene was investigated in various cell lines by northern blotting. A mαGalT cDNA was constructed into pcDNA3 vector downstream of the original CMV promoter (pCMV/mαGalT) and various forms of pNeu were prepared by PCR amplification and inserted in the pCMV/mαGalT construct upstream of the mαGalT cDNA, in the place of the CMV promoter. These constructs were transferred into HEK-293 control and breast tumor cell lines. Stably transfected cells were analyzed by northern blotting for their expression of αGalT and c-erbB-2, and by flow cytometry for their binding with fluorescein isothiocyanate-conjugated Griffonia simplicifolia/isolectin B4. Results We show that expression of the mαGalT was up- or down-modulated according to the level of endogenous pNeu activity and the particular form of constructed pNeu. Among several constructs, two particular forms of the promoter, pNeu250 containing the CCAAT box and the PEA3 motif adjacent to the TATAA box, and pNeu664, which has three additional PEA3 motifs upstream of the CCAAT box, were found to promote differential αGalT expression. Conclusion Our results strengthen current concepts about the crucial role played by the proximal PEA3 motif of pNeu, and may represent a novel therapeutic approach for the development of targeted transgene expression.
Collapse
Affiliation(s)
- Marion Lanteri
- INSERM U526, Laboratoire de Virologie, Faculté de Médecine, avenue de Valombrose, 06107, Nice cedex 2, France
| | - Laurence Ollier
- INSERM U526, Laboratoire de Virologie, Faculté de Médecine, avenue de Valombrose, 06107, Nice cedex 2, France
| | - Valérie Giordanengo
- INSERM U526, Laboratoire de Virologie, Faculté de Médecine, avenue de Valombrose, 06107, Nice cedex 2, France
| | - Jean-Claude Lefebvre
- INSERM U526, Laboratoire de Virologie, Faculté de Médecine, avenue de Valombrose, 06107, Nice cedex 2, France
| |
Collapse
|
47
|
Fleming FJ, Myers E, Kelly G, Crotty TB, McDermott EW, O'Higgins NJ, Hill ADK, Young LS. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J Clin Pathol 2004; 57:1069-74. [PMID: 15452162 PMCID: PMC1770462 DOI: 10.1136/jcp.2004.016733] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In human breast cancer, the growth factor receptor HER2 is associated with disease progression and resistance to endocrine treatment. Growth factor induced mitogen activated protein kinase activity can phosphorylate not only the oestrogen receptor, but also its coactivator proteins AIB1 and SRC-1. AIM To determine whether insensitivity to endocrine treatment in HER2 positive patients is associated with enhanced expression of coactivator proteins, expression of the HER2 transcriptional regulator, PEA3, and coregulatory proteins, AIB1 and SRC-1, was assessed in a cohort of patients with breast cancer of known HER2 status. METHODS PEA3, AIB1, and SRC-1 protein expression in 70 primary breast tumours of known HER2 status (HER2 positive, n = 35) and six reduction mammoplasties was assessed using immunohistochemistry. Colocalisation of PEA3 with AIB1 and SRC-1 was determined using immunofluorescence. Expression of PEA3, AIB1, and SRC-1 was correlated with clinicopathological parameters. RESULTS In primary breast tumours expression of PEA3, AIB1, and SRC-1 was associated with HER2 status (p = 0.0486, p = 0.0444, and p = 0.0012, respectively). In the HER2 positive population, PEA3 expression was associated with SRC-1 (p = 0.0354), and both PEA3 and SRC-1 were significantly associated with recurrence on univariate analysis (p = 0.0345; p<0.0001). On multivariate analysis, SRC-1 was significantly associated with disease recurrence in HER2 positive patients (p = 0.0066). CONCLUSION Patients with high expression of HER2 in combination with SRC-1 have a greater probability of recurrence on endocrine treatment compared with those who are HER2 positive but SRC-1 negative. SRC-1 may be an important predictive indicator and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- F J Fleming
- Department of Surgery, Saint Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lund CV, Blancafort P, Popkov M, Barbas CF. Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J Mol Biol 2004; 340:599-613. [PMID: 15210357 DOI: 10.1016/j.jmb.2004.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/30/2022]
Abstract
Regulation of endogenous gene expression has been achieved using synthetic zinc finger proteins fused to activation or repression domains, zinc finger transcription factors (TFZFs). Two key aspects of selective gene regulation using TFZFs are the accessibility of a zinc finger protein to its target DNA sequence and the interaction of the fused activation or repression domain with endogenous proteins. Previous work has shown that predicting a biologically active binding site at which a TF(ZF) can control gene expression is not always straightforward. Here, we used a library of preassembled three-finger zinc finger proteins (ZFPs) displayed on filamentous phage, and selected for ZFPs that bound along a 1.4 kb promoter fragment of the human ErbB-2 gene. Following affinity selection by phage display, 13 ZFPs were isolated and sequenced. Transcription factors were prepared by fusion of the zinc finger proteins with a VP64 activation domain or a KRAB repression domain and the transcriptional control imposed by these TFZFs was evaluated using luciferase reporter assays. Endogenous gene regulation activity was studied following retroviral delivery into A431 cells. Additional ZFP characterization included DNaseI footprinting to evaluate the integrity of each predicted protein:DNA interaction. The most promising TFZFs able to both up-regulate and down-regulate ErbB-2 expression were extended to six-finger proteins. The increased affinity and refined specificity demonstrated by the six-finger proteins provided reliable transcriptional control. As a result of studies with the six-finger proteins, the specific region of the promoter most accessible to transcriptional control by VP64-ZFP and KRAB-ZFP fusion proteins was elucidated and confirmed by DNaseI footprinting, flow cytometric analysis and immunofluorescence. The ZFP phage display library strategy disclosed here, coupled with the growing availability of genome sequencing information, provides a route to identifying gene-regulating TFZFs without the prerequisite of well-defined promoter elements.
Collapse
Affiliation(s)
- Caren V Lund
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Ets family (ETS) transcription factors, characterized by an evolutionally conserved Ets domain, play important roles in cell development, cell differentiation, cell proliferation, apoptosis and tissue remodeling. Most of them are downstream nuclear targets of Ras-MAP kinase signaling, and the deregulation of ETS genes results in the malignant transformation of cells. Several ETS genes are rearranged in human leukemia and Ewing tumors to produce chimeric oncoproteins. Furthermore, the aberrant expression of several ETS genes is often observed in various types of human malignant tumors. Considering that some ETS transcription factors are involved in malignant transformation and tumor progression, including invasion, metastasis and neo-angiogenesis through the activation of cancer-related genes, they could be potential molecular targets for selective cancer therapy.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
50
|
Zhong XP, Maltzman JS, Hainey EA, Koretzky GA. Transcriptional regulation of Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa: dissection of key promoter elements. THE JOURNAL OF IMMUNOLOGY 2003; 171:6621-9. [PMID: 14662865 DOI: 10.4049/jimmunol.171.12.6621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa) is an adaptor molecule expressed in all hemopoietic cell lineages except mature B cells and is known to play critical roles in the function of T cells, mast cells, and platelets and in vascular differentiation. Although great progress has been achieved in our understanding of SLP-76 function, little is known about the mechanisms regulating its expression. In this study we report the initial characterization of essential elements that control SLP-76 transcription. We identify several DNase I-hypersensitive sites in the SLP-76 locus, with a prominent site located in its promoter region. This site exists in T cells and monocytic cells, but not in B cells or fibroblasts. Using transient transfection assays, we identify a 507-bp fragment containing the 5'-untranslated region of the first exon and the immediate upstream sequence that confers transcriptional activation in T cells and monocytic cells, but not in B cells. Analysis of the 5' ends of SLP-76 transcripts reveals differential regulation of SLP-76 transcription initiation between T cells and monocytic cells. Mutational and gel-shift analyses further indicate a critical role within this region for a binding site for Ets family transcription factors. The present study provides the first data to address the mechanisms controlling SLP-76 transcription by providing evidence for several key cis-regulatory elements in the promoter region.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Signal Transduction Program, The Abramson Family Cancer Research Institute, and Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|