1
|
High salt is a risk factor for cardiovascular and kidney diseases. What is next, fibrosis? J Hypertens 2021; 39:1309-1310. [PMID: 34074968 DOI: 10.1097/hjh.0000000000002853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Abstract
Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.
Collapse
|
3
|
Agalakova NI, Kolodkin NI, Adair CD, Trashkov AP, Bagrov AY. Preeclampsia: Cardiotonic Steroids, Fibrosis, Fli1 and Hint to Carcinogenesis. Int J Mol Sci 2021; 22:ijms22041941. [PMID: 33669287 PMCID: PMC7920043 DOI: 10.3390/ijms22041941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite prophylaxis and attempts to select a therapy, the frequency of preeclampsia does not decrease and it still takes the leading position in the structure of maternal mortality and morbidity worldwide. In this review, we present a new theory of the etiology and pathogenesis of preeclampsia that is based on the interaction of Na/K-ATPase and its endogenous ligands including marinobufagenin. The signaling pathway of marinobufagenin involves an inhibition of transcriptional factor Fli1, a negative regulator of collagen synthesis, followed by the deposition of collagen in the vascular tissues and altered vascular functions. Moreover, in vitro and in vivo neutralization of marinobufagenin is associated with the restoration of Fli1. The inverse relationship between marinobufagenin and Fli1 opens new possibilities in the treatment of cancer; as Fli1 is a proto-oncogene, a hypothesis on the suppression of Fli1 by cardiotonic steroids as a potential anti-tumor therapeutic strategy is discussed as well. We propose a novel therapy of preeclampsia that is based on immunoneutralization of the marinobufagenin by monoclonal antibodies, which is capable of impairing marinobufagenin-Na/K-ATPase interactions.
Collapse
Affiliation(s)
- Natalia I. Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Torez Prospect, 194223 St. Petersburg, Russia;
| | - Nikolai I. Kolodkin
- State Institute of Highly Pure Biopreparations and Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Torez Prospect, 194223 St. Petersburg, Russia; or
| | - C. David Adair
- Department of Obstetrics and Gynecology, University of Tennessee, Chattanooga, TN 37402, USA; or
| | - Alexander P. Trashkov
- Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, 1 Orlova Roshcha, 188300 Gatchina, Russia;
| | - Alexei Y. Bagrov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Torez Prospect, 194223 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
4
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
5
|
Abstract
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Collapse
Affiliation(s)
- Gregory M K Poon
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA.,b Center for Diagnostics and Therapeutics, Georgia State University , Atlanta , GA , USA
| | - Hye Mi Kim
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
6
|
Findlay VJ, LaRue AC, Turner DP, Watson PM, Watson DK. Understanding the role of ETS-mediated gene regulation in complex biological processes. Adv Cancer Res 2014; 119:1-61. [PMID: 23870508 DOI: 10.1016/b978-0-12-407190-2.00001-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ets factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, which when perturbed contribute to tumor progression. The well-documented alterations in ETS factor expression and function during cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. The anti- and prometastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such an understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection, as well as better diagnosis and staging of disease; (2) detection of minimal residual disease recurrences and evaluation of response to therapy; (3) prevention; and (4) novel treatment strategies. Increased understanding of ETS-regulated biological pathways will directly impact these areas.
Collapse
Affiliation(s)
- Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
7
|
Andrei M, Cramer SF, Kramer ZB, Zeidan A, Faltas B. Adult primary pulmonary primitive neuroectodermal tumor: molecular features and translational opportunities. Cancer Biol Ther 2012; 14:75-80. [PMID: 23114712 DOI: 10.4161/cbt.22635] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Primitive neuroectodermal tumors (PNET) arising directly from the lung are very rare but particularly aggressive neoplasms. We report a case of a 31-y-old man with primary pulmonary neuroectodermal tumor. We review the clinical as well as pathological features. As typical for these tumors, the diagnosis was initially delayed in our patient and prognosis was poor despite aggressive surgical resection, postoperative chemotherapy and local irradiation. Recent biological insights have revealed unique chromosomal translocations crucial to the pathogenesis of these tumors, most notably the EWS-FLI-1 translocation. We provide an overview of the molecular features of the Ewing Sarcoma Family of Tumors (ESFT) including PNET and their potential implications for therapeutic targeting.
Collapse
Affiliation(s)
- Mirela Andrei
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY USA.
| | | | | | | | | |
Collapse
|
8
|
Kayali S, Giraud G, Morlé F, Guyot B. Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia. PLoS One 2012; 7:e46799. [PMID: 23056458 PMCID: PMC3466182 DOI: 10.1371/journal.pone.0046799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023] Open
Abstract
Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.
Collapse
Affiliation(s)
- Samer Kayali
- CGPhiMC, CNRS UMR5534, Université Claude Bernard Lyon1, Lyon, France
| | | | | | | |
Collapse
|
9
|
Ellis SL, Gysbers V, Manders PM, Li W, Hofer MJ, Müller M, Campbell IL. The cell-specific induction of CXC chemokine ligand 9 mediated by IFN-gamma in microglia of the central nervous system is determined by the myeloid transcription factor PU.1. THE JOURNAL OF IMMUNOLOGY 2010; 185:1864-77. [PMID: 20585034 DOI: 10.4049/jimmunol.1000900] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IFN-gamma-inducible chemokines CXCL9 and CXCL10 are implicated in the pathogenesis of T cell-mediated immunity in the CNS. However, in various CNS immune pathologies the cellular localization of these chemokines differs, with CXCL9 produced by macrophage/microglia whereas CXCL10 is produced by both macrophage/microglia and astrocytes. In this study, we determined the mechanism for the microglial cell-restricted expression of the Cxcl9 gene induced by IFN-gamma. In cultured glial cells, the induction of the CXCL9 (in microglia) and CXCL10 (in microglia and astrocytes) mRNAs by IFN-gamma was not inhibited by cycloheximide. Of various transcription factors involved with IFN-gamma-mediated gene regulation, PU.1 was identified as a constitutively expressed NF in microglia but not in astrocytes. STAT1 and PU.1 bound constitutively to the Cxcl9 gene promoter in microglia, and this increased significantly following IFN-gamma treatment with IFN regulatory factor-8 identified as an additional late binding factor. However, in astrocytes, STAT1 alone bound to the Cxcl9 gene promoter. STAT1 was critical for IFN-gamma induction of both the Cxcl9 and Cxcl10 genes in microglia and in microglia and astrocytes, respectively. The small interfering RNA-mediated knockdown of PU.1 in microglia markedly impaired IFN-gamma-induced CXCL9 but not STAT1 or IFN regulatory factor-8. Cells of the D1A astrocyte line showed partial reprogramming to a myeloid-like phenotype posttransduction with PU.1 and, in addition to the expression of CD11b, acquired the ability to produce CXCL9 in response to IFN-gamma. Thus, PU.1 not only is crucial for the induction of CXCL9 by IFN-gamma in microglia but also is a key determinant factor for the cell-specific expression of this chemokine by these myeloid cells.
Collapse
Affiliation(s)
- Sally L Ellis
- School of Molecular Bioscience and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Elkareh J, Periyasamy SM, Shidyak A, Vetteth S, Schroeder J, Raju V, Hariri IM, El-Okdi N, Gupta S, Fedorova L, Liu J, Fedorova OV, Kahaleh MB, Xie Z, Malhotra D, Watson DK, Bagrov AY, Shapiro JI. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy. Am J Physiol Renal Physiol 2009; 296:F1219-26. [PMID: 19261738 DOI: 10.1152/ajprenal.90710.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cardiotonic steroid marinobufagenin (MBG) has been implicated in the pathogenesis of experimental uremic cardiomyopathy, which is characterized by progressive cardiac fibrosis. We examined whether the transcription factor Friend leukemia integration-1 (Fli-1) might be involved in this process. Fli-1-knockdown mice demonstrated greater cardiac collagen-1 expression and fibrosis compared with wild-type mice; both developed increased cardiac collagen expression and fibrosis after 5/6 nephrectomy. There was a strong inverse relationship between the expressions of Fli-1 and procollagen in primary culture of rat cardiac and human dermal fibroblasts as well as a cell line derived from renal fibroblasts and MBG-induced decreases in nuclear Fli-1 as well as increases in procollagen-1 expression in these cells. Transfection of a Fli-1 expression vector prevented increased procollagen-1 expression from MBG. MBG exposure induced a rapid translocation of the delta-isoform of protein kinase C (PKCdelta) to the nucleus. This translocation was prevented by pharmacological inhibition of phospholipase C, and MBG-induced increases in procollagen-1 expression were prevented with a PKCdelta- but not a PKCalpha-specific inhibitor. Finally, immunoprecipitation studies strongly suggest that MBG induced phosphorylation of Fli-1. We feel these data support a causal relationship with MBG-induced translocation of PKCdelta, which results in phosphorylation of as well as decreases in nuclear Fli-1 expression, which, in turn, leads to increases in collagen production. Should these findings be confirmed, we speculate that this pathway may represent a therapeutic target for uremic cardiomyopathy as well as other conditions associated with excessive fibrosis.
Collapse
Affiliation(s)
- Jihad Elkareh
- Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Sørensen AB, Lund AH, Kunder S, Quintanilla-Martinez L, Schmidt J, Wang B, Wabl M, Pedersen FS. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus. Retrovirology 2007; 4:46. [PMID: 17617899 PMCID: PMC1936429 DOI: 10.1186/1742-4690-4-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/06/2007] [Indexed: 01/25/2023] Open
Abstract
Background Mutations of an alternative splice donor site located within the gag region has previously been shown to broaden the pathogenic potential of the T-lymphomagenic gammaretrovirus Moloney murine leukemia virus, while the equivalent mutations in the erythroleukemia inducing Friend murine leukemia virus seem to have no influence on the disease-inducing potential of this virus. In the present study we investigate the splice pattern as well as the possible effects of mutating the alternative splice sites on the oncogenic properties of the B-lymphomagenic Akv murine leukemia virus. Results By exon-trapping procedures we have identified a novel gammaretroviral exon, resulting from usage of alternative splice acceptor (SA') and splice donor (SD') sites located in the capsid region of gag of the B-cell lymphomagenic Akv murine leukemia virus. To analyze possible effects in vivo of this novel exon, three different alternative splice site mutant viruses, mutated in either the SA', in the SD', or in both sites, respectively, were constructed and injected into newborn inbred NMRI mice. Most of the infected mice (about 90%) developed hematopoietic neoplasms within 250 days, and histological examination of the tumors showed that the introduced synonymous gag mutations have a significant influence on the phenotype of the induced tumors, changing the distribution of the different types as well as generating tumors of additional specificities such as de novo diffuse large B cell lymphoma (DLBCL) and histiocytic sarcoma. Interestingly, a broader spectrum of diagnoses was made from the two single splice-site mutants than from as well the wild-type as the double splice-site mutant. Both single- and double-spliced transcripts are produced in vivo using the SA' and/or the SD' sites, but the mechanisms underlying the observed effects on oncogenesis remain to be clarified. Likewise, analyses of provirus integration sites in tumor tissues, which identified 111 novel RISs (retroviral integration sites) and 35 novel CISs (common integration sites), did not clearly point to specific target genes or pathways to be associated with specific tumor diagnoses or individual viral mutants. Conclusion We present here the first example of a doubly spliced transcript within the group of gammaretroviruses, and we show that mutation of the alternative splice sites that define this novel RNA product change the oncogenic potential of Akv murine leukemia virus.
Collapse
Affiliation(s)
- Annette Balle Sørensen
- Department of Molecular Biology, University of Aarhus, Denmark
- The State and University Library, Universitetsparken, DK-8000 Aarhus C, Denmark
| | - Anders H Lund
- Department of Molecular Biology, University of Aarhus, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Sandra Kunder
- Institute of Pathology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Jörg Schmidt
- Department of Comparative Medicine GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Matthias Wabl
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
13
|
Riggi N, Stamenkovic I. The Biology of Ewing sarcoma. Cancer Lett 2007; 254:1-10. [PMID: 17250957 DOI: 10.1016/j.canlet.2006.12.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/05/2006] [Accepted: 12/12/2006] [Indexed: 12/19/2022]
Abstract
Sarcomas account for less than 10% of all human malignancies that are believed to originate from as yet poorly defined mesenchymal progenitor cells. They constitute some of the most aggressive adult and childhood cancers in that they have a high metastatic proclivity and are typically refractory to conventional chemo- and radiation therapy. Ewing's sarcoma is a member of Ewing's family tumors (ESFT) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The resulting EWS-FLI-1 fusion protein is believed to behave as an aberrant transcriptional activator that contributes to ESFT development by altering the expression of its target genes in a permissive cellular environment. Although ESFTs are among the best studied sarcomas, the mechanisms involved in EWS-FLI-1-induced transformation require further elucidation and the primary cells from which ESFTs originate need to be identified. This review will highlight some of the most recent discoveries in the field of Ewing sarcoma biology and origins.
Collapse
Affiliation(s)
- Nicolò Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Switzerland
| | | |
Collapse
|
14
|
Rodenburg M, Fischer M, Engelmann A, Harbers SO, Ziegler M, Löhler J, Stocking C. Importance of receptor usage, Fli1 activation, and mouse strain for the stem cell specificity of 10A1 murine leukemia virus leukemogenicity. J Virol 2006; 81:732-42. [PMID: 17079317 PMCID: PMC1797452 DOI: 10.1128/jvi.01430-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Murine leukemia viruses (MuLV) induce leukemia through a multistage process, a critical step being the activation of oncogenes through provirus integration. Transcription elements within the long terminal repeats (LTR) are prime determinants of cell lineage specificity; however, the influence of other factors, including the Env protein that modulates cell tropism through receptor recognition, has not been rigorously addressed. The ability of 10A1-MuLV to use both PiT1 and PiT2 receptors has been implicated in its induction of blast cell leukemia. Here we show that restricting receptor usage of 10A1-MuLV to PiT2 results in loss of blast cell transformation capacity. However, the pathogenicity was unaltered when the env gene is exchanged with Moloney MuLV, which uses the Cat1 receptor. Significantly, the leukemic blasts express erythroid markers and consistently contain proviral integrations in the Fli1 locus, a target of Friend MuLV (F-MuLV) during erythroleukemia induction. Furthermore, an NB-tropic variant of 10A1 was unable to induce blast cell leukemia in C57BL/6 mice, which are also resistant to F-MuLV transformation. We propose that 10A1- and F-MuLV actually induce identical (erythro)blastic leukemia by a mechanism involving Fli1 activation and cooperation with inherent genetic mutations in susceptible mouse strains. Furthermore, we demonstrate that deletion of the Icsbp tumor suppressor gene in C57BL/6 mice is sufficient to confer susceptibility to 10A1-MuLV leukemia induction but with altered specificity. In summary, we validate the significance of the env gene in leukemia specificity and underline the importance of a complex interplay of cooperating oncogenes and/or tumor suppressors in determining the pathogenicity of MuLV variants.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Fibroblasts
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/virology
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/metabolism
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/pathology
- Leukemia, Experimental/virology
- Mice
- Mice, Inbred C57BL
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Receptors, Virus/metabolism
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Species Specificity
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
|
15
|
Rücker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Fröhling S, Bentz M, Miller S, Scholl C, Schlenk RF, Radlwimmer B, Kestler HA, Pollack JR, Lichter P, Döhner K, Döhner H. Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. J Clin Oncol 2006; 24:3887-94. [PMID: 16864856 DOI: 10.1200/jco.2005.04.5450] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To identify novel genomic regions of interest in acute myeloid leukemia (AML) with complex karyotypes, we applied comparative genomic hybridization to microarrays (array-CGH), allowing high-resolution genome-wide screening of genomic imbalances. PATIENTS AND METHODS Sixty AML cases with complex karyotypes were analyzed using array-CGH; parallel analysis of gene expression was performed in a subset of cases. RESULTS Genomic losses were found more frequently than gains. The most frequent losses affected 5q (77%), 17p (55%), and 7q (45%), and the most frequent genomic gains 11q (40%) and 8q (38%). Critical segments could be delineated to genomic fragments of only 0.8 to a few megabase-pairs of DNA. In lost/gained regions, gene expression profiling detected a gene dosage effect with significant lower/higher average gene expression levels across the genes located in the respective regions. Furthermore, high-level DNA amplifications were identified in several regions: 11q23.3-q24.1 (n = 7), 21q22 (n = 6), 11q23.3 (n = 5), 13q12 (n = 3), 8q24 (n = 3), 9p24 (n = 2), 12p13 (n = 2), and 20q11 (n = 2). Parallel analysis of gene expression in critical amplicons displayed overexpressed candidate genes (eg, C8FW and MYC in 8q24). CONCLUSION In conclusion, a large spectrum of genomic imbalances, including novel recurring changes in AML with complex karyotypes, was identified using array-CGH. In addition, the combined analysis of array-CGH data with gene expression profiles allowed the detection of candidate genes involved in the pathogenesis of AML.
Collapse
MESH Headings
- Acute Disease
- Allelic Imbalance
- Chromosome Aberrations
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 20
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 7
- Chromosomes, Human, Pair 8
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Linkage
- Genomic Instability
- Humans
- Karyotyping
- Leukemia, Myeloid/genetics
- Loss of Heterozygosity
- Microarray Analysis
- Nucleic Acid Amplification Techniques
- Nucleic Acid Hybridization
Collapse
Affiliation(s)
- Frank G Rücker
- Department of Neural Information Processing, University Hospital of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bandrés E, Malumbres R, Escalada A, Cubedo E, González I, Honorato B, Zarate R, García-Foncillas J, de Alava E. Gene expression profile of ewing sarcoma cell lines differing in their EWS-FLI1 fusion type. J Pediatr Hematol Oncol 2005; 27:537-42. [PMID: 16217257 DOI: 10.1097/01.mph.0000184576.38835.e2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The t(11;22)(q24;q12) translocation is present in up to 95% of Ewing tumor patients and results in the formation of an EWS-FLI-1 fusion gene that encodes a chimeric transcription factor. Many alternative forms of EWS-FLI-1 exist because of variations in the location of the EWS and FLI-1 genomic breakpoints. Previous reports have shown that the type 1 fusion is associated with a significantly better prognosis than the other fusion types. It has been suggested that the observed clinical discrepancies result from different transactivation potentials of the various EWS-FLI-1 fusion proteins. In an attempt to identify genes whose expression levels are differentially modulated by structurally different EWS-FLI-1 transcription factors, we have used microarray technology to interrogate 19,000 sequence genes to compare gene expression profile of type 1 or non-type 1 Ewing sarcoma cell lines. Data analysis showed few qualitative differences on gene expression; expression of only 41 genes (0.215% of possible sequences analyzed) differed significantly between Ewing tumor cell lines carrying EWS-FLI-1 fusion type 1 with respect to those with non-type 1 fusion.
Collapse
Affiliation(s)
- Eva Bandrés
- Laboratory of Pharmacogenomics, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kawagoe H, Potter M, Ellis J, Grosveld GC. TEL2, an ETS factor expressed in human leukemia, regulates monocytic differentiation of U937 Cells and blocks the inhibitory effect of TEL1 on ras-induced cellular transformation. Cancer Res 2004; 64:6091-100. [PMID: 15342392 DOI: 10.1158/0008-5472.can-04-0839] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TEL2 is a member of the ETS family of transcription factors, which is highly similar to TEL1/ETV6. It binds to DNA via the ETS domain and interacts with itself or TEL1 via the pointed domain. The expression of TEL2 in normal and leukemic hematopoietic cells suggests a role in hematopoietic development. In this article, we describe the role of TEL2 in hematopoietic differentiation and cellular transformation. Quantitative reverse transcription-PCR showed that the expression of TEL2 mRNA was down-regulated during monocytic differentiation of U937 and HL60 induced by 1,25-(OH)2 vitamin D3 and 12-O-tetradecanoylphorbol 13-acetate, respectively. Overexpression of TEL2 in U937 cells inhibited differentiation induced by vitamin D3. In contrast, overexpression of a TEL2 mutant lacking either the pointed domain or a functional ETS domain induced both differentiation of U937 cells and inhibited their growth in vitro and in vivo. In addition, these mutants blocked TEL2-mediated transcriptional repression of a synthetic promoter containing TEL2 binding sites. These data suggest that dominant-negative inhibition of TEL2 might cause differentiation. Quantitative reverse transcription-PCR demonstrated that TEL2 is expressed at higher level in some primary human leukemia samples than in normal bone marrow. Furthermore, overexpression of TEL2 in NIH3T3-UCLA cells blocked the inhibitory effect of TEL1 on Ras-induced cellular transformation. These results suggest that TEL2 may play an important role in hematopoiesis and oncogenesis.
Collapse
Affiliation(s)
- Hiroyuki Kawagoe
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The Ets1 proto-oncoprotein is a member of the Ets family of transcription factors that share a unique DNA binding domain, the Ets domain. The DNA binding activity of Ets1 is controlled by kinases and transcription factors. Some transcription factors, such as AML-1, regulate Ets1 by targeting its autoinhibitory module. Others, such as Pax-5, alter Ets1 DNA binding properties. Ets1 harbors two phosphorylation sites, threonine-38 and an array of serines within the exon VII domain. Phosphorylation of threonine-38 by ERK1/2 activates Ets1, whereas phosphorylation of the exon VII domain by CaMKII or MLCK inhibits Ets1 DNA binding activity. Ets1 is expressed by numerous cell types. In haemotopoietic cells, it contributes to the regulation of cellular differentiation. In a variety of other cells, including endothelial cells, vascular smooth muscle cells and epithelial cancer cells, Ets1 promotes invasive behavior. Regulation of MMP1, MMP3, MMP9 and uPA as well as of VEGF and VEGF receptor gene expression has been ascribed to Ets1. In tumors, Ets1 expression is indicative of poorer prognosis.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Universität Halle-Wittenberg Universitätsklinik und Poliklinik für Gynäkologie Magdeburger Str, 24 06097 Halle, Saale, Germany.
| |
Collapse
|
19
|
McNagny KM, Graf T. E26 leukemia virus converts primitive erythroid cells into cycling multilineage progenitors. Blood 2003; 101:1103-10. [PMID: 12393697 DOI: 10.1182/blood-2002-04-1050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute chicken leukemia retroviruses, because of their capacity to readily transform hematopoietic cells in vitro, are ideal models to study the mechanisms governing the cell-type specificity of oncoproteins. Here we analyzed the transformation specificity of 2 acute chicken leukemia retroviruses, the Myb-Ets- encoding E26 virus and the ErbA/ErbB-encoding avian erythroblastosis virus (AEV). While cells transformed by E26 are multipotent (designated "MEP" cells), those transformed by AEV resemble erythroblasts. Using antibodies to separate subpopulations of precirculation yolk sac cells, both viruses were found to induce the proliferation of primitive erythroid progenitors within 2 days of infection. However, while AEV induced a block in differentiation of the cells, E26 induced a gradual shift in their phenotype and the acquisition of the potential for multilineage differentiation. These results suggest that the Myb-Ets oncoprotein of the E26 leukemia virus converts primitive erythroid cells into proliferating definitive-type multipotent hematopoietic progenitors.
Collapse
Affiliation(s)
- Kelly M McNagny
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
20
|
Wasylyk C, Schlumberger SE, Criqui-Filipe P, Wasylyk B. Sp100 interacts with ETS-1 and stimulates its transcriptional activity. Mol Cell Biol 2002; 22:2687-702. [PMID: 11909962 PMCID: PMC133711 DOI: 10.1128/mcb.22.8.2687-2702.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 09/10/2001] [Accepted: 01/04/2002] [Indexed: 12/12/2022] Open
Abstract
The cell nucleus is highly organized into distinct domains that spatially separate physiological processes. One of these domains, the Sp100-promyelocytic leukemia protein nuclear body (NB), is implicated in pathological processes, such as cancer and viral infection, yet its functions remain poorly understood. We show here that Sp100 interacts physically and functionally with ETS-1 and that NB morphology is affected by ETS-1. ETS-1 is a member of the ets family of transcription factors, which are key mediators of physiological and pathological processes. We have found that Sp100 interacts with two regions of ETS-1 (domains A+B and D+E+F). ETS-1 alters NBs while remaining localized throughout the nucleus, apparently by recruitment of the core component Sp100 away from the NBs. Sp100 strongly increases ETS-1 activation of natural and ets-focused promoters, through a mechanism involving the activation (C) domain of ETS-1 in addition to the interaction domains. Sp100 acts as a novel coactivator that potentiates the activator function of ETS-1. Our results provide an important new connection between nuclear structures and an important regulator of gene expression.
Collapse
Affiliation(s)
- Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|
21
|
Abstract
Tumor-associated chromosomal translocations lead to the formation of chimeric fusions between the EWS gene and one of five different ETS transcription factors in Ewing's family tumors (EFTs). The resultant EWS/ETS proteins promote oncogenesis in a dominant fashion in model systems and are necessary for continued growth of EFT cell lines. EWS belongs to a family of genes that encode proteins that may serve as adapters between the RNA polymerase II complex and RNA splicing factors. EWS/ETS fusions have biochemical characteristics of aberrant transcription factors and appear to promote abnormal cellular growth by transcriptionally modulating a network of target genes. Early evidence suggests that EWS/ETS proteins may also impact gene expression through alteration in RNA processing. Elucidation of EWS/ETS target gene networks in the context of other signaling pathways will hopefully lead to biology based therapeutic strategies for EFT.
Collapse
Affiliation(s)
- A Arvand
- Department of Pathology and Laboratory Medicine, Gwynne Hazen Cherry Memorial Labs, University of California at Los Angeles, California, USA
| | | |
Collapse
|