1
|
Hu X, Zhou W, Pi R, Zhao X, Wang W. Genetically modified cancer vaccines: Current status and future prospects. Med Res Rev 2022; 42:1492-1517. [PMID: 35235212 DOI: 10.1002/med.21882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 12/13/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Vaccines can stimulate the immune system to protect individuals from infectious diseases. Moreover, vaccines have also been applied to the prevention and treatment of cancers. Due to advances in genetic engineering technology, cancer vaccines could be genetically modified to increase antitumor efficacy. Various genes could be inserted into cells to boost the immune response, such as cytokines, T cell costimulatory molecules, tumor-associated antigens, and tumor-specific antigens. Genetically modified cancer vaccines utilize innate and adaptive immune responses to induce durable antineoplastic capacity and prevent the recurrence. This review will discuss the major approaches used to develop genetically modified cancer vaccines and explore recent advances to increase the understanding of engineered cancer vaccines.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
2
|
Rose-John S. Therapeutic targeting of IL-6 trans-signaling. Cytokine 2021; 144:155577. [PMID: 34022535 DOI: 10.1016/j.cyto.2021.155577] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine, which is involved in innate and acquired immunity, in neural cell maintenance and in metabolism. IL-6 can be synthesized by many different cells including myeloid cells, fibroblasts, endothelial cells and lymphocytes. The synthesis of IL-6 is strongly stimulated by Toll like receptors and by IL-1. Therefore, IL-6 levels in the body are high during infection and inflammatory processes. Moreover, IL-6 is a prominent growth factor of tumor cells and plays a major role in inflammation associated cancer. On target cells, IL-6 binds to an IL-6 receptor, which is not signaling competent. The complex of IL-6 and IL-6 receptor associate with a second receptor subunit, glycoprotein gp130, which dimerizes and initiates intracellular signaling. Cells, which do not express the IL-6 receptor are not responsive to IL-6. They can, however, be stimulated by the complex of IL-6 and a soluble form of the IL-6 receptor, which is generated by limited proteolysis and to a lesser extent by translation from an alternatively spliced mRNA. This process has been named IL-6 trans-signaling. This review article will explain the biology of IL-6 trans-signaling and the specific inhibition of this mode of signaling, which has been recognized to be fundamental in inflammation and cancer.
Collapse
|
3
|
Gąbka-Buszek A, Kwiatkowska-Borowczyk E, Jankowski J, Kozłowska AK, Mackiewicz A. Novel Genetic Melanoma Vaccines Based on Induced Pluripotent Stem Cells or Melanosphere-Derived Stem-Like Cells Display High Efficacy in a Murine Tumor Rejection Model. Vaccines (Basel) 2020; 8:vaccines8020147. [PMID: 32224883 PMCID: PMC7348754 DOI: 10.3390/vaccines8020147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Therapeutic cancer vaccines have elicited renewed interest due to the development of immune checkpoint inhibitors. The role of these vaccines is to induce specific effector cells for killing cancer cells. Cancer stem cells (CSCs) are responsible for tumor growth and progression. Accordingly, they are targets for various cancer therapies, including immunotherapy. Here, we demonstrate the effectiveness of melanoma vaccines composed of genetically modified tumor cells admixed with melanoma stem-like cells (MSC) or induced pluripotent stem cells (iPSCs). Two vaccines were constructed. The first vaccine contained cells derived from B16F10 melanospheres (SFs) with CSC characteristics. The second vaccine contained syngeneic murine induced pluripotent stem cells (miPSCs). iPSCs or SF cells were admixed with B16F10 cells, modified with the designer cytokine Hyper-IL6(H6) (B16/H6). Control mice received B16/H6 cells, B16F10 cells or PBS. Immunization with either vaccine significantly inhibited tumor growth and increased disease-free survival (DFS) and overall survival (OS) in C57BL/6 mice. Mice treated with the SF or iPSC vaccine demonstrated increased activation of the immune response in the vaccination site and tumor microenvironment compared to those treated with B16/H6, B16F10 or PBS. Higher infiltration of dendritic cells (DCs) monocytes, and natural killer (NK) cells; lower numbers of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs); higher levels of the cytokines INFγ and IL-12 were observed with the novel vaccines than with the control treatments. In vitro restimulation of splenocytes derived from mice immunized with B16F10 cell, SF cell or miPSC lysates increased the proliferation of CD4+ T helper lymphocytes and secretion of cytokines. An increased serum titer of antibodies directed against B16F10 cells was found in mice immunized with the SF vaccine. The most effective DFS and OS extensions were reached with the miPSCs vaccine. The described results form the basis for a novel platform for the next generation of cancer vaccines composed of allogeneic cancer-specific cells modified with a molecular adjuvant gene and admixed with allogeneic miPSCs or SFs.
Collapse
Affiliation(s)
- Agnieszka Gąbka-Buszek
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15, Garbary Street, 61-866 Poznan, Poland
- Correspondence:
| | - Eliza Kwiatkowska-Borowczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15, Garbary Street, 61-866 Poznan, Poland
| | - Jakub Jankowski
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
| | - Anna Karolina Kozłowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8, Rokietnicka Street, 60-806 Poznan, Poland; (E.K.-B.); (J.J.); (A.K.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15, Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
4
|
Czerwinska P, Rucinski M, Wlodarczyk N, Jaworska A, Grzadzielewska I, Gryska K, Galus L, Mackiewicz J, Mackiewicz A. Therapeutic melanoma vaccine with cancer stem cell phenotype represses exhaustion and maintains antigen-specific T cell stemness by up-regulating BCL6. Oncoimmunology 2020; 9:1710063. [PMID: 32002306 PMCID: PMC6959432 DOI: 10.1080/2162402x.2019.1710063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
We developed a therapeutic, gene-modified, allogeneic melanoma vaccine (AGI-101H), which, upon genetic modification, acquired melanoma stem cell-like phenotype. Since its initial clinical trial in 1997, the vaccine has resulted in the long-term survival of a substantial fraction of immunized patients (up to 20 years). Here, we investigated the potential molecular mechanisms underlying the long-lasting effect of AGI-101H using transcriptome profiling of patients' peripheral T lymphocytes. Magnetically-separated T lymphocytes from AGI-101H-immunized long-term survivors, untreated melanoma patients, and healthy controls were subjected to transcriptome profiling using the microarray analyses. Data were analyzed with a multitude of bioinformatics tools (WebGestalt, DAVID, GSEA) and the results were validated with RT-qPCR. We found substantial differences in the transcriptomes of healthy controls and melanoma patients (both untreated and AGI-101H-vaccinated). AGI-101H immunization induced similar profiles of peripheral T cells as tumor residing in untreated patients. This suggests that whole stem cells immunization mobilizes analogous peripheral T cells to the natural adaptive anti-melanoma response. Moreover, AGI-101H treatment activated the TNF-α and TGF-β signaling pathways and dampened IL2-STAT5 signaling in T cells, which finally resulted in the significant up-regulation of a BCL6 transcriptional repressor, a known amplifier of the proliferative capacity of central memory T cells and mediator of a progenitor fate in antigen-specific T cells. In the present study, high levels of BCL6 transcripts negatively correlated with the expression of several exhaustion markers (CTLA4, KLRG1, PTGER2, IKZF2, TIGIT). Therefore, Bcl6 seems to promote a progenitor fate for cancer-experienced T cells from AGI-101H-vaccinated patients by repressing the exhaustion markers.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nikola Wlodarczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Iga Grzadzielewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Gryska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
5
|
Kwiatkowska-Borowczyk E, Czerwińska P, Mackiewicz J, Gryska K, Kazimierczak U, Tomela K, Przybyła A, Kozłowska AK, Galus Ł, Kwinta Ł, Dondajewska E, Gąbka-Buszek A, Żakowska M, Mackiewicz A. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology 2018; 7:e1509821. [PMID: 30377573 PMCID: PMC6205007 DOI: 10.1080/2162402x.2018.1509821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022] Open
Abstract
Allogeneic whole cell gene modified therapeutic melanoma vaccine (AGI-101H) comprising of two melanoma cell lines transduced with cDNA encoding fusion protein composed of IL-6 linked with the soluble IL-6 receptor (sIL-6R), referred to as H6 was developed. H6 served as a molecular adjuvant, however, it has altered vaccine cells phenotype towards melanoma stem cells (MSC)-like with high activity of aldehyde dehydrogenase isoenzyme (ALDH1A1). AGI-101H was applied in advanced melanoma patients with non-resected and resected disease. In the adjuvant setting, it was combined with surgery in case of recurring metastases, which were surgically removed and vaccination continued. A significant fraction of AGI-101H treated melanoma patients is still alive (11–19 years). Out of 106 living patients, 39 were HLA-A2 positive and were the subject of the study. Immunization of melanoma patients resulted in the generation of cytotoxic CD8+ T cells specific for ALDH1A1, which were detected in circulation by HLA-A0201 MHC dextramers loaded with ALDH1A188-96(LLYKLADLI) peptide. Phenotypically they were central memory CD8+ T cells. Re-stimulation with ALDH1A188-96ex vivo resulted in IFN-γ secretion and cells degranulation. Following each vaccine dose administration, the number of ALDH1A1-CD8+ T cells increased in circulation and returned to the previous level until next dose injection (one month). ALDH1A1-CD8+ T cells were also found, however in the lower number than in vaccinated patients, in the circulation of untreated melanoma with stage IV but were not found in stage II or III and healthy donors. Specific anti-ALDH1 antibodies were present in treated patients. Long-term survival suggests immuno-targeting of MSC in treated patients.
Collapse
Affiliation(s)
- Eliza Kwiatkowska-Borowczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Patrycja Czerwińska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Gryska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Urszula Kazimierczak
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Tomela
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Przybyła
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Łukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Łukasz Kwinta
- Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Ewelina Dondajewska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Monika Żakowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
6
|
Brandl K, Glück T, Hartmann P, Salzberger B, Falk W. A designed TLR4/MD-2 complex to capture LPS. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110040301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The family of Toll-like receptors (TLRs) is involved in the defense of an organism to microbial attack. TLR4-induced signaling is involved in infectious diseases, chronic inflammatory diseases and sepsis; therefore, we aimed at modulating TLR4-signaling via ligand-binding soluble receptors. Because recognition of microbial structures shows some species-specific traits, we specifically selected the mouse model for later in vivo studies. We first prepared the N-terminally Flag-tagged mouse (m) recombinant (r) soluble (s) fusion proteins mrsTLR4-IgGFc (T4Fc) and mrsMD-2 in Drosophila melanogaster Schneider 2 (S2) cells. The function of these molecules was tested by inhibition of synthesis of pro-inflammatory cytokines after stimulation of mouse macrophage RAW 264.7 cells with purified lipopolysaccharide (LPS). T4Fc alone had no inhibitory activity; however, a T4Fc/MD-2 complex blocked LPS activity. By analogy with `cytokine traps', we then prepared a designer molecule (LPS-Trap) by fusing MD-2 to the C-terminus of soluble TLR4 via a flexible linker. LPS-Trap significantly inhibited TNF production by LPS-stimulated RAW 264.7 cells. Thus, the T4Fc/MD-2 complex as well as the LPS-Trap blocked LPS activity in vitro and might thus represent a new therapeutic option in sepsis by neutralization of TLR4-activating ligands.
Collapse
Affiliation(s)
- Katharina Brandl
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany, -regensburg.de
| | - Thomas Glück
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
| | - Pia Hartmann
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
| | - Werner Falk
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Engineered monoclonal antibody with novel antigen-sweeping activity in vivo. PLoS One 2013; 8:e63236. [PMID: 23667591 PMCID: PMC3646756 DOI: 10.1371/journal.pone.0063236] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Monoclonal antibodies are widely used to target disease-related antigens. However, because conventional antibody binds to the antigen but cannot eliminate the antigen from plasma, and rather increases the plasma antigen concentration by reducing the clearance of the antigen, some clinically important antigens are still difficult to target with monoclonal antibodies because of the huge dosages required. While conventional antibody can only bind to the antigen, some natural endocytic receptors not only bind to the ligands but also continuously eliminate them from plasma by pH-dependent dissociation of the ligands within the acidic endosome and subsequent receptor recycling to the cell surface. Here, we demonstrate that an engineered antibody, named sweeping antibody, having both pH-dependent antigen binding (to mimic the receptor-ligand interaction) and increased binding to cell surface neonatal Fc receptor (FcRn) at neutral pH (to mimic the cell-bound form of the receptor), selectively eliminated the antigen from plasma. With this novel antigen-sweeping activity, antibody without in vitro neutralizing activity exerted in vivo efficacy by directly eliminating the antigen from plasma. Moreover, conversion of conventional antibody with in vitro neutralizing activity into sweeping antibody further potentiated the in vivo efficacy. Depending on the binding affinity to FcRn at neutral pH, sweeping antibody reduced antigen concentration 50- to 1000-fold compared to conventional antibody. Thereby, sweeping antibody antagonized excess amounts of antigen in plasma against which conventional antibody was completely ineffective, and could afford marked reduction of dosage to a level that conventional antibody can never achieve. Thus, the novel mode of action of sweeping antibody provides potential advantages over conventional antibody and may allow access to the target antigens which were previously undruggable by conventional antibody.
Collapse
|
8
|
Kozłowska A, Mackiewicz J, Mackiewicz A. Therapeutic gene modified cell based cancer vaccines. Gene 2013; 525:200-7. [PMID: 23566846 DOI: 10.1016/j.gene.2013.03.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 01/04/2023]
Abstract
History of cancer immunotherapy lasts for more than 120 years. In 1891 William B. Coley injected bacteria into inoperable cancer (bone sarcoma) and observed tumor shrinkage. He is recognized as the "'"Father of Immunotherapy"'". Cancer immunotherapy is based on the ability of the immune system to recognize cancer cells and to affect their growth and expansion. Beside the fact that, tumor cells are genetically distinct from their normal counterparts, and should be recognized and eliminated by immune system, the tumor associated antigens (TAAs) are often poorly immunogenic due to immunoediting. This process allows tumor to evolve during continuous interactions with the host immune system, and eventually escape from immune surveillance. Furthermore, tumor microenvironment consists of immunosuppressive cells that release immunosuppressive factors including IL-6, IL-10, IDO, TGFβ or VEGF. Interactions between cancer and stroma cells create network of immunosuppressive pathways, while activation of immune defense is inhibited. A key to successful immunotherapy is to overcome the local immunosuppression within tumor microenvironment and activate mechanisms that lead to tumor eradication. There are two clinical approaches of immunotherapy: active and passive. Active immunotherapy involves stimulation of immune response to tumor associated antigens (TAAs), either non-specifically via immunomodulating agents or specifically employing cancer vaccines. This review presents the progress and breakthroughs in design, development and clinical application of selected cell-based tumor vaccines achieved due to the generation and development of gene transfer technologies.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Cancer Immunology, Poznań University of Medical Sciences, Poznań, Poland
| | | | | |
Collapse
|
9
|
Nilvebrant J, Dunlop DC, Sircar A, Wurch T, Falkowska E, Reichert JM, Helguera G, Piccione EC, Brack S, Berger S. IBC's 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics International Conferences and the 2011 Annual Meeting of The Antibody Society, December 5-8, 2011, San Diego, CA. MAbs 2012; 4:153-81. [PMID: 22453091 DOI: 10.4161/mabs.4.2.19495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics international conferences, and the 2011 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-8, 2011 in San Diego, CA. The meeting drew ~800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a preview to the main events, a pre-conference workshop held on December 4, 2011 focused on antibodies as probes of structure. The Antibody Engineering Conference comprised eight sessions: (1) structure and dynamics of antibodies and their membrane receptor targets; (2) model-guided generation of binding sites; (3) novel selection strategies; (4) antibodies in a complex environment: targeting intracellular and misfolded proteins; (5) rational vaccine design; (6) viral retargeting with engineered binding molecules; (7) the biology behind potential blockbuster antibodies and (8) antibodies as signaling modifiers: where did we go right, and can we learn from success? The Antibody Therapeutics session comprised five sessions: (1)Twenty-five years of therapeutic antibodies: lessons learned and future challenges; (2) preclinical and early stage development of antibody therapeutics; (3) next generation anti-angiogenics; (4) updates of clinical stage antibody therapeutics and (5) antibody drug conjugates and bispecific antibodies.
Collapse
Affiliation(s)
- Johan Nilvebrant
- School of Biotechnology; Department of Proteomics; Royal Institute of Technology (KTH); AlbaNova University Center; Stockholm, Sweden
| | | | - Aroop Sircar
- EMD Serono Research Institute; Billlerica, MA USA
| | - Thierry Wurch
- Oncology Research Division, Institut de Recherche SERVIER; Croissy sur Seine, France
| | | | | | - Gustavo Helguera
- Farmacotecnia I, Facultad de Farmacia y Bioquímica; University of Buenos Aires; Ciudad Autónoma de Buenos Aires, Argentina
| | - Emily C Piccione
- Standford Cancer Institute; Stanford University School of Medicine; Stanford, CA USA
| | | | - Sven Berger
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre; St Julien en Genevois, France
| |
Collapse
|
10
|
Suchorska WM, Dams-Kozlowska H, Kazimierczak U, Wysocki PJ, Mackiewicz A. Hyper-interleukin-11 novel designer molecular adjuvant targeting gp130 for whole cell cancer vaccines. Expert Opin Biol Ther 2011; 11:1555-67. [PMID: 21995459 DOI: 10.1517/14712598.2011.627852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hyper-IL-11 (H11) is a fusion protein comprising IL-11 and soluble IL-11 receptor directly targeting gp130. We evaluated efficacy of H11 as a molecular adjuvant in therapeutic whole tumor cell vaccine formulation. METHODS H11 was tested in ectopic and orthotopic murine renal cell carcinoma (RENCA) models. H11 cDNA was transduced into RENCA cells (RENCA-H11). Mice were immunized with RENCA-H11 or control vaccine (RENCA-IRR) in prophylactic, adjuvant and therapeutic settings. Tumor formation, survival and immune mechanisms activated by H11 were studied. RESULTS Biologically active H11 was secreted by RENCA-H11 cells. Immunization with RENCA-H11 resulted in mounting specific anti-RENCA response. Treatment of tumor bearing mice in adjuvant setting prevented disease recurrence in therapeutic setting eradicated tumors. In induction phase H11 inhibited T-regulatory cell formation and activated recruitment and maturation of dendritic cells. Downstream of immunization tumors were densely infiltrated by CD8(+), CD4(+), NK cells, cells expressing CD8(+)CD69(+) and CD4(+)CD62L(low). CONCLUSIONS H11 is a good candidate for adjuvant of whole tumor cell vaccines. Direct targeting of gp130 leads to induction of specific and long lasting anticancer immune response. Enhancement of tumor antigen presentation, abrogation of immune tolerance, and activation of NK cells and generation of memory cells lead to eradication of existing tumors.
Collapse
|
11
|
Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, Vardam TD, Weis EL, Passanese J, Wang WC, Gollnick SO, Dewhirst MW, Rose-John S, Repasky EA, Baumann H, Evans SS. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest 2011; 121:3846-59. [PMID: 21926464 DOI: 10.1172/jci44952] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 08/03/2011] [Indexed: 12/26/2022] Open
Abstract
Immune cells are key regulators of neoplastic progression, which is often mediated through their release of cytokines. Inflammatory cytokines such as IL-6 exert tumor-promoting activities by driving growth and survival of neoplastic cells. However, whether these cytokines also have a role in recruiting mediators of adaptive anticancer immunity has not been investigated. Here, we report that homeostatic trafficking of tumor-reactive CD8+ T cells across microvascular checkpoints is limited in tumors despite the presence of inflammatory cytokines. Intravital imaging in tumor-bearing mice revealed that systemic thermal therapy (core temperature elevated to 39.5°C ± 0.5°C for 6 hours) activated an IL-6 trans-signaling program in the tumor blood vessels that modified the vasculature such that it could support enhanced trafficking of CD8+ effector/memory T cells (Tems) into tumors. A concomitant decrease in tumor infiltration by Tregs during systemic thermal therapy resulted in substantial enhancement of Tem/Treg ratios. Mechanistically, IL-6 produced by nonhematopoietic stromal cells acted cooperatively with soluble IL-6 receptor-α and thermally induced gp130 to promote E/P-selectin- and ICAM-1-dependent extravasation of cytotoxic T cells in tumors. Parallel increases in vascular adhesion were induced by IL-6/soluble IL-6 receptor-α fusion protein in mouse tumors and patient tumor explants. Finally, a causal link was established between IL-6-dependent licensing of tumor vessels for Tem trafficking and apoptosis of tumor targets. These findings suggest that the unique IL-6-rich tumor microenvironment can be exploited to create a therapeutic window to boost T cell-mediated antitumor immunity and immunotherapy.
Collapse
Affiliation(s)
- Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Santer FR, Malinowska K, Culig Z, Cavarretta IT. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 2010; 17:241-53. [PMID: 19966016 PMCID: PMC2829126 DOI: 10.1677/erc-09-0200] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interleukin-6 (IL-6) is suggested to have a pathogenic role in the progression of prostate cancer (PC), therefore representing an attractive target for new therapies. However, due to the pleiotropy of this cytokine, targeting IL-6 results in different and unpredictable responses. In order to better understand the mechanisms underlying the different responses to the cytokine, we focused our attention on IL-6 receptors (IL-6Rs) that represent the first element in the cascade of cytokine-activated signalling pathways. IL-6 signal transduction may indeed occur through the membrane IL-6R (classical signalling) and/or through the less studied soluble IL-6R (sIL-6R; IL-6 trans-signalling (IL-6TS)). We provide the first evidence how responses to IL-6 may depend on the different content of IL-6Rs in PC. In particular, the studies of (3)H-thymidine incorporation and exploitation of different approaches (i.e. activation or inhibition of IL-6TS in sIL-6R-negative and -positive cell lines and transfection of IL-6R siRNA) allowed us to demonstrate that IL-6TS specifically accounts for an anti-proliferative effect of the cytokine in three PC cell lines that are known to respond differently to IL-6. Additionally, by applying migration-, scratch- and adhesion assays, we show that IL-6TS increases motility and migration and decreases adhesion of prostate cells facilitating thereby processes that determine metastasis initiation and spread. Finally, by western analyses, we uncovered an IL-6- and sIL-6R-dependent downregulation of the tumour suppressor maspin. Collectively, these data suggest that selective targeting of IL-6TS might allow to refine the currently available experimental anti-IL-6 therapies against PC.
Collapse
|
13
|
Gene-modified tumor vaccine secreting a designer cytokine Hyper-Interleukin-6 is an effective therapy in mice bearing orthotopic renal cell cancer. Cancer Gene Ther 2010; 17:465-75. [PMID: 20168352 DOI: 10.1038/cgt.2010.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although renal cell cancer (RCC) is known to be immunogenic, clinical efficacy of various immunotherapeutic approaches remains unsatisfactory. Novel targeted therapies showing cytostatic rather than cytotoxic activity are unable to cure RCC patients. In our studies, we evaluated the therapeutic efficacy of whole-cell vaccine based on irradiated murine RENCA cells genetically modified to secrete designer cytokine--Hyper-IL6 (H6)--comprising IL-6 and soluble IL-6 receptor. An orthotopic RCC model based on a subcapsular implantation of RENCA cells into kidneys of Balb/C mice was employed. The efficacy of RENCA-H6 vaccine was compared with control vaccine (RENCA-wt) in relation to naive (non-immunized) animals. Three sets of vaccination experiments were carried out in a (i) protective, (ii) palliative and (iii) adjuvant (following nephrectomy) setting. The influence of vaccination on survival of RCC-bearing animals was analyzed. Specificity of vaccine-induced immune response was studied using model antigen-GFP. RCC-bearing animals immunized with RENCA-H6 vaccine showed prolonged survival compared with other groups. In palliative and adjuvant settings the survival RENCA-H6-immunized animals exceeded 75%. Administration of RENCA-H6 inhibited formation and recruitment of Treg cells (CD4+CD25+Foxp3+) and increased maturation of DCs. RENCA tumors in RENCA-H6- vaccinated animals contained large populations of NK cells and activated CD4+, CD8+ T cells. In addition, in mice vaccinated with RENCA-H6 cells large population of CD4+ and CD8+ memory cells (CD62Llow) were detected. In the orthotopic RCC model, RENCA-H6 vaccine showed high therapeutic potential, which resulted from modulation of numerous immunological mechanisms.
Collapse
|
14
|
Mackiewicz J, Mackiewicz A. Design of clinical trials for therapeutic cancer vaccines development. Eur J Pharmacol 2009; 625:84-9. [PMID: 19835869 DOI: 10.1016/j.ejphar.2009.09.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022]
Abstract
Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.
Collapse
Affiliation(s)
- Jacek Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | | |
Collapse
|
15
|
Lacreusette A, Barbieux I, Nguyen JM, Pandolfino MC, Dréno B, Jacques Y, Godard A, Blanchard F. Defective activations of STAT3 Ser727 and PKC isoforms lead to oncostatin M resistance in metastatic melanoma cells. J Pathol 2009; 217:665-76. [DOI: 10.1002/path.2490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Unraveling viral interleukin-6 binding to gp130 and activation of STAT-signaling pathways independently of the interleukin-6 receptor. J Virol 2009; 83:5117-26. [PMID: 19264784 DOI: 10.1128/jvi.01601-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 encodes a viral version of interleukin-6 (vIL-6) which shows 25% sequence homology with human IL-6. In contrast to human IL-6, which first binds to the IL-6 receptor (IL-6R) and only subsequently associates with the signal transducing receptor subunit gp130, vIL-6 has been shown to directly bind to gp130 without the need of IL-6R. As a functional consequence, vIL-6 can activate far more target cells in the body since all cells express gp130, but only cells such as hepatocytes and some leukocytes express IL-6R. We sought to understand which amino acid sequences within the vIL-6 protein were responsible for its ability to bind and activate gp130 independent of IL-6R. As a first approach, we constructed chimeric IL-6 proteins in which all known gp130 interacting sites (sites II and III) were sequentially transferred from vIL-6 into the human IL-6 protein. To our surprise, human IL-6 carrying all gp130 interacting sites from vIL-6 did not show IL-6R-independent gp130 activation. Even more surprisingly, the loop between helix B and C of vIL-6, clearly shown in the crystal structure not to be in contact with gp130, is indispensable for direct binding to and activation of gp130. This points to an IL-6R induced change of site III conformation in human IL-6, which is already preformed in vIL-6. These data indicate a novel activation mechanism of human IL-6 by the IL-6R that will be important for the construction of novel hyperactive cytokine variants.
Collapse
|
17
|
Lacreusette A, Lartigue A, Nguyen J, Barbieux I, Pandolfino M, Paris F, Khammari A, Dréno B, Jacques Y, Blanchard F, Godard A. Relationship between responsiveness of cancer cells to Oncostatin M and/or IL‐6 and survival of stage III melanoma patients treated with tumour‐infiltrating lymphocytes. J Pathol 2008; 216:451-9. [DOI: 10.1002/path.2416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- A Lacreusette
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Lartigue
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | | | - I Barbieux
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - M‐C Pandolfino
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
| | - F Paris
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Khammari
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - B Dréno
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - Y Jacques
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - F Blanchard
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- INSERM ERI7, Nantes F‐44035, France
| | - A Godard
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Laboratoire de Biochimie, CHU de Nantes, Nantes F‐44093, France
| |
Collapse
|
18
|
Brounais B, Chipoy C, Mori K, Charrier C, Battaglia S, Pilet P, Richards CD, Heymann D, Rédini F, Blanchard F. Oncostatin M Induces Bone Loss and Sensitizes Rat Osteosarcoma to the Antitumor Effect of Midostaurin In vivo. Clin Cancer Res 2008; 14:5400-9. [DOI: 10.1158/1078-0432.ccr-07-4781] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Kang KW, Wagley Y, Kim HW, Pokharel YR, Chung YY, Chang IY, Kim JJ, Moon JS, Kim YK, Nah SY, Kang HS, Oh JW. Novel role of IL-6/SIL-6R signaling in the expression of inducible nitric oxide synthase (iNOS) in murine B16, metastatic melanoma clone F10.9, cells. Free Radic Biol Med 2007; 42:215-27. [PMID: 17189827 DOI: 10.1016/j.freeradbiomed.2006.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/15/2006] [Accepted: 10/08/2006] [Indexed: 12/27/2022]
Abstract
Inducible nitric oxide synthase (iNOS) has been shown to be frequently expressed in melanomas; up-regulation of this enzyme is though to be associated with tumor progression. In this study, we investigated whether diverse cytokines such as: IL-6, TNF-alpha, IL-1beta, IFN-gamma and IL6RIL6 (a highly active fusion protein of the soluble form of the IL-6R (sIL-6R) and IL-6) enhance the iNOS gene expression in B16/F10.9 murine metastatic melanoma cells. An increase at iNOS expression and NO production was observed with the co-treatment of IL6RIL6 plus TNF-alpha. Gel shift and reporter gene analyses revealed that IL6RIL6 selectively activated AP-1; while TNF-alpha increased the activities of both NF-kappaB and AP-1. Persistent activation of AP-1 was also seen in cells treated with IL6RIL6 plus TNF-alpha. Stimulation of cells with IL6RIL6/TNF-alpha resulted in the activation of mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (JNK) and p38, and the abrogation by pretreatment with JNK or p38 MAPK inhibitor. IL6RIL6 or IL6RIL6/TNFalpha-inducible AP-1 binding increase was supershifted by anti-c-Jun or c-Fos antibodies, and the activation of c-Jun and c-Fos was dependent on JNK and p38, respectively. These results suggest that IL-6/sIL-6R/gp130 complex signaling has an unexpected positive effect on iNOS gene expression through JNK/p38 MAPK mediated-AP-1 activation in melanoma cells.
Collapse
Affiliation(s)
- Keon Wook Kang
- College of Pharmacy, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lacreusette A, Nguyen JM, Pandolfino MC, Khammari A, Dreno B, Jacques Y, Godard A, Blanchard F. Loss of oncostatin M receptor beta in metastatic melanoma cells. Oncogene 2006; 26:881-92. [PMID: 16909117 DOI: 10.1038/sj.onc.1209844] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oncostatin M (OSM) is an interleukin-6 (IL-6) type cytokine originally described by its capacity to inhibit melanoma proliferation in vitro. Here, the mechanisms involved in resistance to growth inhibition by OSM were analysed for the first time on a large panel of metastatic melanoma cell lines. OSM resistance did not strictly correlate with IL-6, interferon-gamma or tumor necrosis factor-alpha resistance. Rather, it correlated with a specific loss of the OSM receptor-beta (OSMRbeta) subunit, in conjunction with a lower level of histone acetylation in the OSMRbeta promoter region. Treatment of various OSM-resistant melanoma cells with the histone deacetylase inhibitor Trichostatin A increased activity and histone acetylation of the OSMRbeta promoter as well as expression of OSMRbeta mRNA and protein, allowing OSM to activate the signal transducer and activator of transcription 3 (STAT3) and to inhibit proliferation. Other defects associated with OSM resistance were identified at the level of OSMRbeta transcription or protein expression, as well as downstream of or parallel to STAT3 activation. Altogether, our results suggest a role for OSM in the prevention of melanoma progression and that metastatic melanoma cells could escape this growth control by the epigenetic silencing of OSMRbeta.
Collapse
Affiliation(s)
- A Lacreusette
- INSERM, U601, Groupe de Recherche Cytokines et Récepteurs, Institut de Biologie, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sharma S, Karakousis CP, Takita H, Shin K, Brooks SP. Cytokines and chemokines are expressed at different levels in small and large murine colon-26 tumors following intratumoral injections of CpG ODN. Neoplasia 2005; 6:523-8. [PMID: 15548360 PMCID: PMC1531655 DOI: 10.1593/neo.04166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct tumor injections of (CpG ODN) into murine colon tumor 26 (CT-26) tumors can induce a potent antitumor response. Tumor size at the beginning of treatment determines the final therapeutic outcome, with smaller tumors responding favorably to CpG ODN therapy whereas large tumors do not. CpG ODN injections in small tumors resulted in tumor necrosis and extensive inflammatory cell infiltration, with average survival that is significantly higher (48.1 +/- 34 days) when compared to control ODN-treated mice (16.1 +/- 3.5 days). Cytokines and chemokines are expressed at different levels in small and large CT-26 tumors following intratumoral injections of CpG ODN. We observed that granulocyte-macrophage colony-stimulating factor and interleukin (IL) 6 are the major cytokines that were overexpressed in CpG ODN-treated small tumors but not in large tumors. Similarly, several chemokines (CXCL1, CCL2, and CCL3) were also significantly higher in CpG ODN-treated small tumors compared to control ODN-treated tumors.
Collapse
Affiliation(s)
- Sanjay Sharma
- Department of Surgery, SUNY Buffalo and Kaleida Health, Buffalo General Hospital, Buffalo, NY 14203, USA
| | | | | | | | | |
Collapse
|
22
|
Zhang WG, Liu SH, Cao XM, Cheng YX, Ma XR, Yang Y, Wang YL. A phase-I clinical trial of active immunotherapy for acute leukemia using inactivated autologous leukemia cells mixed with IL-2, GM-CSF, and IL-6. Leuk Res 2005; 29:3-9. [PMID: 15541469 DOI: 10.1016/j.leukres.2004.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 04/28/2004] [Indexed: 11/17/2022]
Abstract
UNLABELLED We evaluated the efficacy and toxicity of vaccination in 29 patients with relapsed or refractory acute leukemia using inactivated autologous leukemia cells combined with interleukin-2 (IL-2), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-6. MHC-I, MHC-II, and B7-1 expression status on the surface of leukemia cells and the cytokine profile of IFN-gamma and IL-10 in serum before and after vaccination was detected. RESULTS Five achieved a complete remission (CR) and six a partial remission (PR) in this vaccination procedure. Adverse effects were erythema, swelling erosion, and even ulcers at vaccination sites and low grade fever during the first three days of vaccination. No other significant side effects were observed. The expression of MHC-I and MHC-II on leukemia cells was 100% and 90% positive, respectively. B7-1 was exclusively expressed on some cases of M4 and M5. The efficacy of the vaccine was statistically associated with the expression status of B7-1 on leukemia cells (P < 0.01). The serum level of IL-10 reduced significantly in the five patients who achieved complete remission (CR) after vaccination as compared with when they were originally diagnosed (P < 0.01). CONCLUSION We presented here a promising immunotherapy in the treatment of acute leukemia, especially for F.A.B. M5.
Collapse
Affiliation(s)
- Wang-Gang Zhang
- The Department of Clinical Hematology, the Affiliated No.2 hospital, the 5th west avenue, Xi'an JiaoTong University, Xi'an 710004, PR China.
| | | | | | | | | | | | | |
Collapse
|
23
|
James LP, Lamps LW, McCullough S, Hinson JA. Interleukin 6 and hepatocyte regeneration in acetaminophen toxicity in the mouse. Biochem Biophys Res Commun 2003; 309:857-63. [PMID: 13679052 DOI: 10.1016/j.bbrc.2003.08.085] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To determine the importance of IL-6 in acetaminophen (APAP) toxicity, wild type (WT) and IL-6 knock out (KO) mice were dosed with APAP (300 mg/kg i.p.) and sacrificed at 4 and 24h. No differences were found between the two groups by analysis of serum AST levels or histopathology. Also, the relative amounts of APAP protein binding and nitrotyrosine formation were equal. Subsequently, WT and KO mice were dosed with APAP (300 mg/kg i.p.) and sacrificed at 24, 48, and 72 h. AST normalized by 48 h in the WT mice, but not until 72 h in the KO mice. The severity of the histopathological alterations was comparable in the two groups of mice; however, fewer regenerating hepatocytes were present in the KO mice. Immunohistochemistry for proliferating cell nuclear antigen (PCNA) showed reduced staining in the KO mice. Pretreatment of KO mice with IL-6 lowered AST and normalized PCNA staining in the IL-6 KO mice. These data suggest that IL-6 is important in hepatocyte regeneration following APAP toxicity in the mouse.
Collapse
Affiliation(s)
- Laura P James
- Department of Pediatrics, Univerisity of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | | | |
Collapse
|
24
|
Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:323-43. [PMID: 12421676 DOI: 10.1016/s0167-4889(02)00325-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of cells that do not express the membrane bound interleukin-6 6 receptor (IL-6R) by IL-6 and the soluble IL-6 receptor (sIL-6R) is termed transsignalling. Transsignalling may be an pathogenetic factor in human diseases as diverse as multiple myeloma (MM), Castleman's disease, prostate carcinoma, Crohn's disease, systemic sclerosis, Still's disease, osteoporosis and cardiovascular diseases. IL-6 and sIL-6R may directly or indirectly enhance their own production on endothelial or bone marrow stromal cells. Positive feedback autocrine loops thus created in affected organs may either cause or maintain disease progression. In autoimmune or vasculitic disease, the ability of the IL-6/sIL-6R complex to inhibit apoptosis of autoreactive T-cells may be central to the development of tissue specific autoimmunity. The anti-apoptotic effect of the IL-6/sIL-6R complex may be involved in tumour genesis and resistance to chemotherapy. Only in rare cases, where counterregulation has failed, there is a notable systemic effect of IL-6/sIL-6R. Appropriate animal models are necessary to establish the pathogenetic role of the IL-6/sIL-6R complex. A specific treatment option for diseases influenced by the sIL-6R could be based on gp130-Fc, a soluble gp130 (sgp130) linked to the Fc-fragment of IgG1. gp130-Fc has shown efficacy in vivo in animal models of Crohn's disease.
Collapse
Affiliation(s)
- Karl-Josef Kallen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Germany.
| |
Collapse
|