1
|
Rao X, Zhang Z, Pu Y, Han G, Gong H, Hu H, Ji Q, Liu N. RSPO3 induced by Helicobacter pylori extracts promotes gastric cancer stem cell properties through the GNG7/β-catenin signaling pathway. Cancer Med 2024; 13:e7092. [PMID: 38581123 PMCID: PMC10997846 DOI: 10.1002/cam4.7092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3β (GSK-3β), p-Akt, p-GSK-3β, β-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/β-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of β-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3β, and the expression of β-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiwu Rao
- Department of OncologyThe First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhipeng Zhang
- Department of OncologyThe First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yunzhou Pu
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Gang Han
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hangjun Gong
- Department of GastroenterologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hao Hu
- Department of GastroenterologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qing Ji
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ningning Liu
- Department of OncologyShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Anastasiadou DP, Quesnel A, Duran CL, Filippou PS, Karagiannis GS. An emerging paradigm of CXCL12 involvement in the metastatic cascade. Cytokine Growth Factor Rev 2024; 75:12-30. [PMID: 37949685 DOI: 10.1016/j.cytogfr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the "metastatic cascade" among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dimitra P Anastasiadou
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Camille L Duran
- Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Miao X, Shen S, Koch G, Wang X, Li J, Shen X, Qu J, Straubinger RM, Jusko WJ. Systems pharmacodynamic model of combined gemcitabine and trabectedin in pancreatic cancer cells. Part I.Çô Effects on signal transduction pathways related to tumor growth. J Pharm Sci 2024; 113:214-227. [PMID: 38498417 PMCID: PMC11017371 DOI: 10.1016/j.xphs.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 03/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often chemotherapy-resistant, and novel drug combinations would fill an unmet clinical need. Previously we reported synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells, but underlying protein-level interaction mechanisms remained unclear. We employed a reliable, sensitive, comprehensive, quantitative, high-throughput IonStar proteomic workflow to investigate the time course of gemcitabine and trabectedin effects, alone and combined, upon pancreatic cancer cells. MiaPaCa-2 cells were incubated with vehicle (controls), gemcitabine, trabectedin, and their combinations over 72 hours. Samples were collected at intervals and analyzed using the label-free IonStar liquid chromatography-mass spectrometry (LC-MS/MS) workflow to provide temporal quantification of protein expression for 4,829 proteins in four experimental groups. To characterize diverse signal transduction pathways, a comprehensive systems pharmacodynamic (SPD) model was developed. The analysis is presented in two parts. Here, Part I describes drug responses in cancer cell growth and migration pathways included in the full model: receptor tyrosine kinase- (RTK), integrin-, G-protein coupled receptor- (GPCR), and calcium-signaling pathways. The developed model revealed multiple underlying mechanisms of drug actions, provides insight into the basis of drug interaction synergism, and offers a scientific rationale for potential drug combination strategies.
Collapse
Affiliation(s)
- Xin Miao
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States
| | - Shichen Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Gilbert Koch
- Pediatric Pharmacology and Pharmacometrics Research Center, University of Basel, Children's Hospital, Basel, Switzerland
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Jun Li
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Xiaomeng Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
4
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
5
|
Liao YC, Fulcher JM, Degnan DJ, Williams SM, Bramer LM, Veličković D, Zemaitis KJ, Veličković M, Sontag RL, Moore RJ, Paša-Tolić L, Zhu Y, Zhou M. Spatially Resolved Top-Down Proteomics of Tissue Sections Based on a Microfluidic Nanodroplet Sample Preparation Platform. Mol Cell Proteomics 2023; 22:100491. [PMID: 36603806 PMCID: PMC9944986 DOI: 10.1016/j.mcpro.2022.100491] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional proteomic approaches measure the averaged signal from mixed cell populations or bulk tissues, leading to the dilution of signals arising from subpopulations of cells that might serve as important biomarkers. Recent developments in bottom-up proteomics have enabled spatial mapping of cellular heterogeneity in tissue microenvironments. However, bottom-up proteomics cannot unambiguously define and quantify proteoforms, which are intact (i.e., functional) forms of proteins capturing genetic variations, alternatively spliced transcripts and posttranslational modifications. Herein, we described a spatially resolved top-down proteomics (TDP) platform for proteoform identification and quantitation directly from tissue sections. The spatial TDP platform consisted of a nanodroplet processing in one pot for trace samples-based sample preparation system and an laser capture microdissection-based cell isolation system. We improved the nanodroplet processing in one pot for trace samples sample preparation by adding benzonase in the extraction buffer to enhance the coverage of nucleus proteins. Using ∼200 cultured cells as test samples, this approach increased total proteoform identifications from 493 to 700; with newly identified proteoforms primarily corresponding to nuclear proteins. To demonstrate the spatial TDP platform in tissue samples, we analyzed laser capture microdissection-isolated tissue voxels from rat brain cortex and hypothalamus regions. We quantified 509 proteoforms within the union of top-down mass spectrometry-based proteoform identification and characterization and TDPortal identifications to match with features from protein mass extractor. Several proteoforms corresponding to the same gene exhibited mixed abundance profiles between two tissue regions, suggesting potential posttranslational modification-specific spatial distributions. The spatial TDP workflow has prospects for biomarker discovery at proteoform level from small tissue sections.
Collapse
Affiliation(s)
- Yen-Chen Liao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kevin J Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marija Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan L Sontag
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
6
|
Chemokine/GPCR Signaling-Mediated EMT in Cancer Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:2208176. [PMID: 36268282 PMCID: PMC9578795 DOI: 10.1155/2022/2208176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Metastasis, the chief cause of cancer-related deaths, is associated with epithelial-mesenchymal transition (EMT). In the tumor microenvironment, EMT can be triggered by chemokine/G-protein-coupled receptor (GPCR) signaling, which is closely associated with tumor progression. However, the functional links between chemokine/GPCR signaling-mediated EMT and metastasis remain unclear. Herein, we summarized the mechanisms of chemokine/GPCR signaling-mediated EMT with an insight into facilitating metastasis and clarified the role of chemokine in the local invasion, intravasation, circulation, extravasation, and colonization, respectively. Moreover, several potential pathways that might contribute to EMT based on the latest studies on GPCR signaling were proposed, including signaling mediated by G protein, β-arrestin, intracellular, dimerization activation, and transactivation. However, there is still limited evidence to support the EMT programme functional contribution to metastasis, which keeps a key question still open whether we should target EMT programme of cancer cells. Answers to that question might help develop an anticancer strategy or guide new directions for anticancer metastasis therapy.
Collapse
|
7
|
Villaseca S, Romero G, Ruiz MJ, Pérez C, Leal JI, Tovar LM, Torrejón M. Gαi protein subunit: A step toward understanding its non-canonical mechanisms. Front Cell Dev Biol 2022; 10:941870. [PMID: 36092739 PMCID: PMC9449497 DOI: 10.3389/fcell.2022.941870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, β, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.
Collapse
|
8
|
Modulating the tachykinin: Role of substance P and neurokinin receptor expression in ocular surface disorders. Ocul Surf 2022; 25:142-153. [PMID: 35779793 DOI: 10.1016/j.jtos.2022.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023]
Abstract
Substance P (SP) is a tachykinin expressed by various cells in the nervous and immune systems. SP is predominantly released by neurons and exerts its biological and immunological effects through the neurokinin receptors, primarily the neurokinin-1 receptor (NK1R). SP is essential for maintaining ocular surface homeostasis, and its reduced levels in disorders like diabetic neuropathy disrupt the corneal tissue. It also plays an essential role in promoting corneal wound healing by promoting the migration of keratocytes. In this review, we briefly discuss the structure, expression, and function of SP and its principal receptor NK1R. In addition, SP induces pro-inflammatory effects through autocrine or paracrine action on the immune cells in various ocular surface pathologies, including dry eye disease, herpes simplex virus keratitis, and Pseudomonas keratitis. We provide an in-depth review of the pathogenic role of SP in various ocular surface diseases and several new approaches developed to counter the immune-mediated effects of SP either through modulating its production or blocking its target receptor.
Collapse
|
9
|
Zhao A, Li D, Mao X, Yang M, Deng W, Hu W, Chen C, Yang G, Li L. GNG2 acts as a tumor suppressor in breast cancer through stimulating MRAS signaling. Cell Death Dis 2022; 13:260. [PMID: 35322009 PMCID: PMC8943035 DOI: 10.1038/s41419-022-04690-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 01/02/2023]
Abstract
G-protein gamma subunit 2 (GNG2) is involved in several cell signaling pathways, and is essential for cell proliferation and angiogenesis. However, the role of GNG2 in tumorigenesis and development remains unclear. In this study, 1321 differentially expressed genes (DEGs) in breast cancer (BC) tissues were screened using the GEO and TCGA databases. KEGG enrichment analysis showed that most of the enriched genes were part of the PI3K-Akt signaling pathway. We identified GNG2 from the first five DEGs, its expression was markedly reduced in all BC subtype tissues. Cox regression analysis showed that GNG2 was independently associated with overall survival in patients with luminal A and triple-negative breast cancers (TNBC). GNG2 over-expression could significantly block the cell cycle, inhibit proliferation, and promote apoptosis in BC cells in vitro. In animal studies, GNG2 over-expression inhibited the growth of BC cells. Further, we found that GNG2 significantly inhibited the activity of ERK and Akt in an MRAS-dependent manner. Importantly, GNG2 and muscle RAS oncogene homolog (MRAS) were co-localized in the cell membrane, and the fluorescence resonance energy transfer (FRET) experiment revealed that they had direct interaction. In conclusion, the interaction between GNG2 and MRAS likely inhibits Akt and ERK activity, promoting apoptosis and suppressing proliferation in BC cells. Increasing GNG2 expression or disrupting the GNG2-MRAS interaction in vivo could therefore be a potential therapeutic strategy to treat BC.
Collapse
Affiliation(s)
- Anjiang Zhao
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dan Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiongmin Mao
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Wenjing Hu
- Chongqing Prevention and Treatment Hospital for Occupational Diseases, Chongqing, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, 4072, Australia
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Chen S, Huang M, Hu X. Interference with KCNJ2 inhibits proliferation, migration and EMT progression of apillary thyroid carcinoma cells by upregulating GNG2 expression. Mol Med Rep 2021; 24:622. [PMID: 34212982 PMCID: PMC8261621 DOI: 10.3892/mmr.2021.12261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Papillary thyroid carcinoma is a common malignant tumor of the endocrine system. The specific role and molecular mechanism of potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) in papillary thyroid carcinoma remain unknown. In the present study, the underlying mechanism of KCNJ2 in papillary thyroid carcinoma was explored. KCNJ2 expression in thyroid cancer tissues was predicted using the Gene Expression Profiling Interactive Analysis database, and reverse transcription‑quantitative PCR and western blot analyses were performed to detect KCNJ2 expression in papillary thyroid carcinoma cell lines. Cell transfection was performed to inhibit KCNJ2 and G protein subunit γ2 (GNG2) expression. In addition, cell proliferation was detected via the colony formation and MTT assays. The wound healing and Transwell assays were performed to assess cell migration and invasion, respectively. Western blot analysis was performed to detect the expression levels of transport‑related proteins and interstitial related proteins. The StarBase database was used to detect GNG2 expression in thyroid cancer. The results demonstrated that KCNJ2 expression was upregulated in papillary thyroid carcinoma cells. In addition, interfering with KCNJ2 expression inhibited the proliferation, invasion and migration of papillary thyroid carcinoma cells, and inhibited the epithelial‑to‑mesenchymal transition (EMT). These processes may be influenced by the upregulation of GNG2 expression induced by KCNJ2 knockdown. Overall , the results of the present study demonstrated that interference with KCNJ2 inhibited proliferation, migration and EMT progression of papillary thyroid carcinoma cells by upregulating GNG2 expression.
Collapse
Affiliation(s)
- Siyuan Chen
- The First Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| | - Miaoming Huang
- Department of Otolaryngology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| | - Xiarong Hu
- The First Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
11
|
Zhang Y, Zhou B, Sun J, He Q, Zhao Y. Knockdown of GPSM1 Inhibits the Proliferation and Promotes the Apoptosis of B-Cell Acute Lymphoblastic Leukemia Cells by Suppressing the ADCY6-RAPGEF3-JNK Signaling Pathway. Pathol Oncol Res 2021; 27:643376. [PMID: 34257610 PMCID: PMC8262160 DOI: 10.3389/pore.2021.643376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the common type of blood cancer. Although the remission rate has increased, the current treatment options for B-ALL are usually related to adverse reactions and recurrence, so it is necessary to find other treatment options. G protein signaling modulator 1 (GPSM1) is one of several factors that affect the basic activity of the G protein signaling system, but its role in B-ALL has not yet been clarified. In this study, we analyzed the expression of GPSM1 in the Oncomine database and found that the GPSM1 levels were higher in B-ALL cells than in peripheral blood mononuclear cells (PBMCs). Analyses of the Gene Expression Profiling Interactive Analysis (GEPIA) demonstrated that patients with high GPSM1 levels had shorter survival times than those with low levels. Additionally, gene set enrichment analysis (GSEA) suggested that GPSM1 was positively correlated with proliferation, G protein-coupled receptor (GPCR) ligand binding, Gαs signaling and calcium signaling pathways. In further experiments, GPSM1 was found to be highly expressed in Acute lymphoblastic leukemia (ALL) cell lines, and downregulation of GPSM1 inhibited proliferation and promoted cell cycle arrest and apoptosis in BALL-1 and Reh cells. Moreover, knockdown of GPSM1 suppressed ADCY6 and RAPGEF3 expression in BALL-1 and Reh cells. Furthermore, we reported that GPSM1 regulated JNK expression via ADCY6-RAPGEF3. The present study demonstrates that GPSM1 promotes tumor growth in BALL-1 and Reh cells by modulating ADCY6-RAPGEF3-JNK signaling.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Bo Zhou
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Jingjing Sun
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Qun He
- Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Yujie Zhao
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Pérez-Rubio G, Ponce-Gallegos MA, Domínguez-Mazzocco BA, Ponce-Gallegos J, García-Ramírez RA, Falfán-Valencia R. Role of the Host Genetic Susceptibility to 2009 Pandemic Influenza A H1N1. Viruses 2021; 13:344. [PMID: 33671828 PMCID: PMC7926867 DOI: 10.3390/v13020344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
Influenza A virus (IAV) is the most common infectious agent in humans, and infects approximately 10-20% of the world's population, resulting in 3-5 million hospitalizations per year. A scientific literature search was performed using the PubMed database and the Medical Subject Headings (MeSH) "Influenza A H1N1" and "Genetic susceptibility". Due to the amount of information and evidence about genetic susceptibility generated from the studies carried out in the last influenza A H1N1 pandemic, studies published between January 2009 to May 2020 were considered; 119 papers were found. Several pathways are involved in the host defense against IAV infection (innate immune response, pro-inflammatory cytokines, chemokines, complement activation, and HLA molecules participating in viral antigen presentation). On the other hand, single nucleotide polymorphisms (SNPs) are a type of variation involving the change of a single base pair that can mean that encoded proteins do not carry out their functions properly, allowing higher viral replication and abnormal host response to infection, such as a cytokine storm. Some of the most studied SNPs associated with IAV infection genetic susceptibility are located in the FCGR2A, C1QBP, CD55, and RPAIN genes, affecting host immune responses through abnormal complement activation. Also, SNPs in IFITM3 (which participates in endosomes and lysosomes fusion) represent some of the most critical polymorphisms associated with IAV infection, suggesting an ineffective virus clearance. Regarding inflammatory response genes, single nucleotide variants in IL1B, TNF, LTA IL17A, IL8, IL6, IRAK2, PIK3CG, and HLA complex are associated with altered phenotype in pro-inflammatory molecules, participating in IAV infection and the severest form of the disease.
Collapse
Affiliation(s)
- Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Marco Antonio Ponce-Gallegos
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Bruno André Domínguez-Mazzocco
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Jaime Ponce-Gallegos
- High Speciality Cardiology Unit “Korazón”, Puerta de Hierro Hospital, Tepic 63173, Nayarit, Mexico;
| | - Román Alejandro García-Ramírez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| |
Collapse
|
13
|
Gorabi AM, Aslani S, Barreto GE, Báez-Jurado E, Kiaie N, Jamialahmadi T, Sahebkar A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic Biol Med 2021; 162:471-477. [PMID: 33166649 DOI: 10.1016/j.freeradbiomed.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Neuroglobin is the third member of the globin family to be identified in 2000 in neurons of both human and mouse nervous systems. Neuroglobin is an oxygen-binding globin found in neurons within the central nervous system as well as in peripheral neurons, that produces a protective effect against hypoxic/ischemic damage induced by promoting oxygen availability within the mitochondria. Numerous investigations have demonstrated that impaired neuroglobin functioning is implicated in the pathogenesis of multiple neurodegenerative disorders. Several in vitro and animal studies have reported the potential of neuroglobin upregulation in improving the neuroprotection through modulation of mitochondrial functions, such as ATP production, clearing reactive oxygen species (ROS), promoting the dynamics of mitochondria, and controlling apoptosis. Neuroglobin acts as a stress-inducible globin, which has been associated hypoxic/ischemic insults where it acts to protect the heart and brain, providing a wide range of applicability in the treatment of human disorders. This review article discusses normal physiological functions of neuroglobin in mitochondria-associated pathways, as well as outlining how dysregulation of neuroglobin is associated with the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eliana Báez-Jurado
- Departamento de Química, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
14
|
The Transcriptomic Analysis of NSC-34 Motor Neuron-Like Cells Reveals That Cannabigerol Influences Synaptic Pathways: A Comparative Study with Cannabidiol. Life (Basel) 2020; 10:life10100227. [PMID: 33019509 PMCID: PMC7600552 DOI: 10.3390/life10100227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/28/2023] Open
Abstract
More than 120 cannabinoids were isolated from Cannabis sativa. In particular, Cannabidiol (CBD) and Cannabigerol (CBG) represent the two most studied non-psychoactive cannabinoids. However, CBG is less studied and less data are available on its biological properties and influence on synaptic transmission. On the contrary, CBD is already known to modulate brain excitatory glutamate, inhibitory γ-aminobutyric acid (GABA) and dopamine neurotransmission. In this study, using Next-Generation Sequencing (NGS) technology, we evaluated how CBG (1 or 5 µM) and CBD (1 or 5 µM) influence the transcriptome of the main neurotransmission pathways in NSC-34 motor neuron-like cells. At first, we evaluated that CBG and CBD were not cytotoxic and decreased the expression of pro-apoptotic genes. CBG and CBD are able to influence the expression of the genes involved in glutamate, GABA and dopamine signaling. Interestingly, the transcriptional changes induced by CBG were similar compared to CBD.
Collapse
|
15
|
Gao J, Pan H, Zhu Z, Yu T, Huang B, Zhou Y. Guanine nucleotide-binding protein subunit beta-4 promotes gastric cancer progression via activating Erk1/2. Acta Biochim Biophys Sin (Shanghai) 2020; 52:975-987. [PMID: 32747927 DOI: 10.1093/abbs/gmaa084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/01/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and lethal malignancies worldwide, and its poor prognosis is mainly due to the rapid tumor progression including tumor invasion, distant metastasis, etc. Understanding the molecular mechanisms regulating GC progression lays the basis for the development of targeted therapeutic agents. Increasing evidence suggests that guanine nucleotide-binding protein subunit beta-4 (GNB4), a key subunit of heterotrimeric G protein, plays a crucial role in the initiation and progression of multiple malignancies. However, whether and how GNB4 promotes GC progression are still unknown. In this study, we found that GNB4 was highly expressed in GC tissues compared to that in non-tumor tissues and was significantly associated with tumor invasion depth, pathological stage and poor survival rate of GC patients. Both gain-of-function and loss-of-function studies revealed that GNB4 significantly enhanced GC cell growth and motility both in vitro and in vivo. Further studies revealed that GNB4 overexpression induced G1-S transition and promoted the process of epithelial-mesenchymal transformation. These tumor promoting effects were mediated by GNB4 which activates the Erk1/2 pathway through upregulating Erk1/2 phosphorylation, as U0126, an Erk1/2 phosphorylation inhibitor, could significantly inhibit GNB4-mediated cell proliferation, migration and invasion. In summary, GNB4 contributes to the proliferation and metastasis of GC cells by activating the Erk1/2 signaling pathway, and it may serve as a potential therapeutic target of GC.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenglun Zhu
- Department of Gastrointestinal Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teng Yu
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Binhao Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ye Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Targeting RGS4 Ablates Glioblastoma Proliferation. Int J Mol Sci 2020; 21:ijms21093300. [PMID: 32392739 PMCID: PMC7247588 DOI: 10.3390/ijms21093300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most common type of adult primary brain tumor with a median survival rate of less than 15 months, regardless of the current standard of care. Cellular heterogeneity, self-renewal ability and tumorigenic glioma cancer stem cell (GSC) populations contribute to the difficulty in treating GBM. G-protein-coupled receptors (GPCRs) are the largest group of membrane proteins and mediate many cellular responses. Regulators of G-protein signaling 4 (RGS4) are negative regulators of G-protein signaling, and elevated levels of RGS4 are reportedly linked with several human diseases, including cancer. This study investigates the effect of silencing RGS4, resulting in inhibition of GSC growth, invasion and migration. Data obtained from The Cancer Genome Atlas (TCGA) demonstrated poor patient survival with high expression of RGS4. Immunohistochemistry and immunoblot analysis conducted on GBM patient biopsy specimens demonstrated increased RGS4 expression correlative with the TCGA data. RNA sequencing confirmed a significant decrease in the expression of markers involved in GSC invasion and migration, particularly matrix metalloproteinase-2 (MMP2) in knockout of RGS4 using CRISPR plasmid (ko-RGS4)-treated samples compared to parental controls. Gelatin zymography confirmed the reduced activity of MMP2 in ko-RGS4-treated samples. Silencing RGS4 further reduced the invasive and migratory abilities and induction of apoptosis of GSCs as evidenced by Matrigel plug assay, wound healing assay and human apoptosis array. Collectively, our results showed that the silencing of RGS4 plays an important role in regulating multiple cellular functions, and is an important therapeutic target in GBM.
Collapse
|
17
|
Eapen PM, Rao CM, Nampoothiri M. Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders. Rev Neurosci 2019; 30:233-243. [PMID: 30260793 DOI: 10.1515/revneuro-2018-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
The neurokinin 1 receptor with the natural substrate substance P is one of the intensely studied receptors among the neurokinin receptors. The intracellular signaling mechanism uses G protein-coupled transduction regulating various physiological processes from nausea to Alzheimer's disease. The neurokinin 1 receptor plays a significant role in neuroinflammation-mediated alterations in neural circuitry. Neurokinin 1 receptor antagonists are selective, potent and exhibited efficacy in animal models of nervous system disorders. Evolving data now strengthen the viewpoint of brain substance P/neurokinin 1 receptor axis-mediated action in neural circuit dysfunction. Thus, a deep-rooted analysis of disease mechanism in which the neurokinin 1 receptor is involved is necessary for augmenting disease models which encourage the pharmaceutical industry to intensify the research pipeline. This review is an attempt to outline the concept of neurokinin 1 receptor signaling interlinked to the brain innate immune system. We also uncover the mechanisms of the neurokinin 1 receptor involved in neurological disorder and various methods of modulating the neurokinin 1 receptor, which may result in therapeutic action.
Collapse
Affiliation(s)
- Prasanth M Eapen
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
18
|
Yao Y, Xie S, Wang F. Identification of key genes and pathways in chronic rhinosinusitis with nasal polyps using bioinformatics analysis. Am J Otolaryngol 2019; 40:191-196. [PMID: 30661889 DOI: 10.1016/j.amjoto.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Chronic rhinosinusitis with nasal polyps (CRSwNP) is a prevalent inflammatory disease of yet unknown etiology. The purpose of this study was to uncover key genes and pathways related to the pathogenesis of CRSwNP via bioinformatics approaches. MATERIALS AND METHODS The gene expression profile of GSE36830 extracted from Gene Expression Omnibus database was used to screen differentially expressed genes (DEGs) between nasal polyp samples and control samples. Furthermore, functional and pathway enrichment analysis was performed using the clusterProfiler package in R language. In addition, protein-protein interaction (PPI) network was constructed by STRING database and functional modules were detected using Molecular Complex Detection algorithm. RESULTS A total of 538 DEGs (326 up-regulated and 212 down-regulated) were identified. The most significantly enriched pathways for up-regulated and down-regulated genes were hematopoietic cell lineage and salivary secretion, respectively. Moreover, twenty hub genes with high connectivity degrees were selected from the PPI network, such as TYRO protein tyrosine kinase binding protein (TYROBP), G protein subunit gamma 2 (GNG2), CCR7, and CCR3. Besides, six important modules were obtained, which were highly associated with chemokine signaling pathway, Th1 and Th2 cell differentiation, complement and coagulation cascades, cell cycle, systemic lupus erythematosus, and Staphylococcus aureus infection. CONCLUSIONS The results of this study may provide new insights into potential molecular mechanisms of CRSwNP. Nevertheless, further experiments are needed to confirm these findings.
Collapse
Affiliation(s)
- Yao Yao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Shaobing Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Fengjun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| |
Collapse
|
19
|
Abstract
SIGNIFICANCE G protein-coupled receptors (GPCR) are the largest group of cell surface receptors, which link cells to their environment. Reactive oxygen species (ROS) can act as important cellular signaling molecules. The family of NADPH oxidases generates ROS in response to activated cell surface receptors. Recent Advances: Various signaling pathways linking GPCRs and activation of NADPH oxidases have been characterized. CRITICAL ISSUES Still, a more detailed analysis of G proteins involved in the GPCR-mediated activation of NADPH oxidases is needed. In addition, a more precise discrimination of NADPH oxidase activation due to either upregulation of subunit expression or post-translational subunit modifications is needed. Also, the role of noncanonical modulators of NADPH oxidase activation in the response to GPCRs awaits further analyses. FUTURE DIRECTIONS As GPCRs are one of the most popular classes of investigational drug targets, further detailing of G protein-coupled mechanisms in the activation mechanism of NADPH oxidases as well as better understanding of the link between newly identified NADPH oxidase interaction partners and GPCR signaling will provide new opportunities for improved efficiency and decreased off target effects of therapies targeting GPCRs.
Collapse
Affiliation(s)
- Andreas Petry
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany
| | - Agnes Görlach
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
20
|
Kitz A, Singer E, Hafler D. Regulatory T Cells: From Discovery to Autoimmunity. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029041. [PMID: 29311129 DOI: 10.1101/cshperspect.a029041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a genetically mediated autoimmune disease of the central nervous system. Allelic variants lead to lower thresholds of T-cell activation resulting in activation of autoreactive T cells. Environmental factors, including, among others, diet, vitamin D, and smoking, in combination with genetic predispositions, play a substantial role in disease development and activation of autoreactive T cells. FoxP3+ regulatory T cells (Tregs) have emerged as central in the control of autoreactive T cells. A consistent finding in patients with MS is defects in Treg cell function with reduced suppression of effector T cells and production of proinflammatory cytokines. Emerging data suggests that functional Tregs become effector-like T cells with loss of function associated with T-bet expression and interferon γ (IFN-γ) secretion.
Collapse
Affiliation(s)
- Alexandra Kitz
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Emily Singer
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - David Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
21
|
Trotta MC, Maisto R, Alessio N, Hermenean A, D'Amico M, Di Filippo C. The Melanocortin MC5R as a New Target for Treatment of High Glucose-Induced Hypertrophy of the Cardiac H9c2 Cells. Front Physiol 2018; 9:1475. [PMID: 30416452 PMCID: PMC6212602 DOI: 10.3389/fphys.2018.01475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
The study explored the anti-hypertrophic effect of the melanocortin MC5R stimulation in H9c2 cardiac myocytes exposed to high glucose. This has been done by using α-MSH and selective MC5R agonists and assessing the expression of GLUT4 and GLUT1 transporters, miR-133 and urotensin receptor levels as a marker of cardiac hypertrophy. The study shows for the first time an up-regulation of MC5R expression levels in H9c2 cardiomyocytes exposed to high glucose medium (33 mM D-glucose) for 48 h, compared to cells grown in normal glucose medium (5.5 mM D-glucose). Moreover, H9c2 cells exposed to high glucose showed a significant reduction in cell viability (-40%), a significant increase in total protein per cell number (+109%), and an increase of the urotensin receptor expression levels as an evidence of cells hypertrophy. The pharmacological stimulation of MC5R with α-MSH (90 pM)of the high glucose exposed H9c2 cells increased the cell survival (+50,8%) and reduced the total protein per cell number (-28,2%) with respect to high glucose alone, confirming a reduction of the hypertrophic state as per cell area measurement. Similarly, PG-901 (selective agonist, 10-10 M) significantly increased cell viability (+61,0 %) and reduced total protein per cell number (-40,2%), compared to cells exposed to high glucose alone. Interestingly, the MC5R agonist reduced the GLUT1/GLUT4 glucose transporters ratio on the cell membranes exhibited by the hypertrophic H9c2 cells and increased the intracellular PI3K activity, mediated by a decrease of the levels of the miRNA miR-133a. The beneficial effects of MC5R agonism on the cardiac hypertrophy caused by high glucose was also observed also by echocardiographic evaluations of rats made diabetics with streptozotocin (65 mg/kg i.p.). Therefore, the melanocortin MC5R could be a new target for the treatment of high glucose-induced hypertrophy of the cardiac H9c2 cells.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Maisto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clara Di Filippo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
22
|
Shen Z, Yang X, Chen Y, Shi L. CAPA periviscerokinin-mediated activation of MAPK/ERK signaling through Gq-PLC-PKC-dependent cascade and reciprocal ERK activation-dependent internalized kinetics of Bom-CAPA-PVK receptor 2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:1-15. [PMID: 29730398 DOI: 10.1016/j.ibmb.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A27 is a specific receptor for B. mori capability (CAPA) periviscerokinin (PVK), that is, Bom-CAPA-PVK receptor 2. Upon stimulation of Bom-CAPA-PVK-1 or -PVK-2, Bom-CAPA-PVK receptor 2 significantly increases cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. However, the underlying mechanism(s) for CAPA/CAPA receptor system mediation of extracellular signal-regulated kinases1/2 (ERK1/2) activation remains to be explained further. Here, we discovered that Bom-CAPA-PVK receptor 2 stimulated ERK1/2 phosphorylation in a dose- and time-dependent manner in response to Bom-CAPA-PVK-1 or -PVK-2 with similar potencies. Furthermore, ERK1/2 phosphorylation can be inhibited by Gq inhibitor UBO-QIC, PLC inhibitor U73122, protein kinase C (PKC) inhibitor Go 6983, phospholipase D (PLD) inhibitor FIPI and Ca2+ chelators EGTA and BAPTA-AM. Moreover, Bom-CAPA-PVK-R2-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ-specific inhibitors, phosphatidylinositol 3-kinase (PI3K)-specific inhibitor Wortmannin and Src-specific inhibitor PP2. Our data also demonstrate that receptor tyrosine kinase (RTK) transactivation pathways are involved in the mechanisms of Bom-CAPA-PVK receptor to ERK1/2 phosphorylation. In addition, β-arrestin1/2 is not involved in Bom-CAPA-PVK-R2-mediated ERK1/2 activation but required for the agonist-independent, ERK1/2 activation-dependent internalization of the G protein-coupled receptor (GPCR).
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyuan Yang
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
23
|
Nair D, Ramesh V, Gozal D. Cognitive Deficits Are Attenuated in Neuroglobin Overexpressing Mice Exposed to a Model of Obstructive Sleep Apnea. Front Neurol 2018; 9:426. [PMID: 29922222 PMCID: PMC5996123 DOI: 10.3389/fneur.2018.00426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Obstructive sleep apnea (OSA) is a highly prevalent disease manifesting as intermittent hypoxia during sleep (IH) and is increasingly recognized as being independently associated with neurobehavioral deficits. These deficits may be due to increased apoptosis in the hippocampus and cerebral cortex, as well as increased oxidative stress and inflammation. It has been reported that neuroglobin (Ngb) is upregulated in response to hypoxia-ischemia insults and exhibits a protective role in ischemia-reperfusion brain injury. We hypothesized that transgenic overexpression of Ngb would attenuate spatial learning deficits in a murine model of OSA. Methods:Wild-type mice and Ngb overexpressing male mice (Ngb-TG) were randomly assigned to either IH or room air (RA) exposures. The effects of IH during the light period on performance in a water maze spatial task were assessed, as well as anxiety and depressive-like behaviors using elevated plus maze (EPM) and forced swim tests. Cortical tissues from all the mice were extracted for biochemical studies for lipid peroxidation. Results:Ngb TG mice exhibited increased Ngb immunoreactivity in brain tissues and IH did not elicit significant changes in Ngb expression in either Ngb-TG mice or WT mice. On a standard place training task in the water maze, Ngb-TG mice displayed preserved spatial learning, and were protected from the reduced spatial learning performances observed in WT mice exposed to IH. Furthermore, anxiety and depression levels were enhanced in WT mice exposed to IH as compared to RA controls, while alterations emerged in Ngb-TG mice exposed to IH. Furthermore, WT mice, but not Ngb-TG mice had significantly elevated levels of malondialdehyde in cortical lysates following IH exposures. Conclusions:In a murine model of OSA, oxidative stress responses and neurocognitive and behavioral impairments induced by IH during sleep are attenuated by the neuroprotective effects of Ngb.
Collapse
Affiliation(s)
- Deepti Nair
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States.,Atlantic Health System, Morristown, NJ, United States.,Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, United States
| | - Vijay Ramesh
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - David Gozal
- Section of Sleep Medicine, Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
24
|
Garcia CC, Tavares LP, Dias ACF, Kehdy F, Alvarado-Arnez LE, Queiroz-Junior CM, Galvão I, Lima BH, Matos AR, Gonçalves APF, Soriani FM, Moraes MO, Marques JT, Siqueira MM, Machado AMV, Sousa LP, Russo RC, Teixeira MM. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients. Front Immunol 2018; 9:975. [PMID: 29867955 PMCID: PMC5962662 DOI: 10.3389/fimmu.2018.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.
Collapse
Affiliation(s)
- Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina F Dias
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Kehdy
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lucia Elena Alvarado-Arnez
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Coordinación Nacional de Investigación, UNIFRANZ, La Paz, Bolivia
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Braulio H Lima
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Inflamação e Dor, Departamento de Farmacologia, Prédio Central, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aline R Matos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula F Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Frederico M Soriani
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milton O Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - João T Marques
- Laboratório de RNA de Interferência, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Alexandre M V Machado
- Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Hu HH, Deng H, Ling S, Sun H, Kenakin T, Liang X, Fang Y. Chemical genomic analysis of GPR35 signaling. Integr Biol (Camb) 2018; 9:451-463. [PMID: 28425521 DOI: 10.1039/c7ib00005g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GPR35, a family A orphan G protein-coupled receptor, has been implicated in inflammatory, neurological, and cardiovascular diseases. However, not much is known about the signaling and functions of GPR35. We performed a label-free kinome short hairpin RNA screen and identified a putative signaling network of GPR35 in HT-29 cells, some of which was validated using gene expression, biochemical and cellular assays. The results showed that GPR35 induced hypoxia-inducible factor 1α, and was involved in synaptic transmission, sensory perception, the immune system, and morphogenetic processes. Collectively, our data suggest that GPR35 may play an important role in response to hypoxic stress and be a potential target for the treatment of inflammatory, cardiovascular, and neurological disorders.
Collapse
Affiliation(s)
- Heidi Haibei Hu
- Biochemical Technologies, Corning R&D Corporation, Corning Incorporated, Corning, NY 14831, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Ramírez-Reveco A, Villarroel-Espíndola F, Rodríguez-Gil JE, Concha II. Neuronal signaling repertoire in the mammalian sperm functionality. Biol Reprod 2017; 96:505-524. [PMID: 28339693 DOI: 10.1095/biolreprod.116.144154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
The common embryonic origin has been a recurrent explanation to understand the presence of "neural receptors" in sperm. However, this designation has conditioned a bias marked by the classical neurotransmission model, dismissing the possibility that neurotransmitters can play specific roles in the sperm function by themselves. For instance, the launching of acrosome reaction, a fundamental sperm function, includes several steps that recall the process of presynaptic secretion. Unlike of postsynaptic neuron, whose activation is mediated by molecular interaction between neurotransmitter and postsynaptic receptors, the oocyte activation is not mediated by receptors, but by cytosolic translocation of sperm phospholipase (PLCζ). Thus, the sperm has a cellular design to access and activate the oocyte and restore the ploidy of the species by an "allogenic pronuclear fusion." At subcellular level, the events controlling sperm function, particularly the capacitation process, are activated by chemical signals that trigger ion fluxes, sterol oxidation, synthesis of cyclic adenosine monophosphate, protein kinase A activation, tyrosine phosphorylations and calcium signaling, which correspond to second messengers similar to those associated with exocytosis and growth cone guidance in neurons. Classically, the sperm function associated with neural signals has been analyzed as a unidimensional approach (single ligand-receptor effect). However, the in vivo sperm are exposed to multidimensional signaling context, for example, the GABAergic, monoaminergic, purinergic, cholinergic, and melatoninergic, to name a few. The aim of this review is to present an overview of sperm functionality associated with "neuronal signaling" and possible cellular and molecular mechanisms involved in their regulation.
Collapse
Affiliation(s)
- Alfredo Ramírez-Reveco
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Franz Villarroel-Espíndola
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Department of Pathology and Pediatric Pathology, Yale University, New Haven, Connecticut, USA
| | - Joan E Rodríguez-Gil
- Unitat de Reproducció Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ilona I Concha
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
28
|
Wong-Lin K, Wang DH, Moustafa AA, Cohen JY, Nakamura K. Toward a multiscale modeling framework for understanding serotonergic function. J Psychopharmacol 2017; 31:1121-1136. [PMID: 28417684 PMCID: PMC5606304 DOI: 10.1177/0269881117699612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin.
Collapse
Affiliation(s)
- KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Derry~Londonderry, UK
| | - Da-Hui Wang
- School of Systems Science, and National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, and Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, Australia
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
29
|
Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017; 595:5875-5893. [PMID: 28714121 DOI: 10.1113/jp274527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
Collapse
Affiliation(s)
- Michael Leist
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Ania Aissaoui
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| |
Collapse
|
30
|
Abstract
Since their ‘re-discovery’ more than two decades ago, FOXP3+ regulatory T cells (Tregs) have been an important subject of investigation in the biomedical field and our understanding of the mechanisms that drive their phenotype and function in health and disease has advanced tremendously. During the past few years it has become clear that Tregs are not a terminally differentiated population but show some degree of plasticity, and can, under specific environmental conditions, acquire the phenotype of effector T cells. In particular, recent works have highlighted the acquisition of a Th1-like phenotype by Tregs in several pathological environments. In this review we give an update on the concept of Treg plasticity and the advances in defining the molecular mechanisms that underlie the generation of Th1-like Tregs during an immune response and in different disease settings.
Collapse
Affiliation(s)
- Alexandra Kitz
- Departments of Neurology and Immunobiology, Yale School of Medicine, 300 George Street, New Haven, CT, 06519, USA
| | - Margarita Dominguez-Villar
- Department of Neurology, Human and Translational Immunology Program, Yale School of Medicine, 300 George Street, New Haven, CT, 06519, USA.
| |
Collapse
|
31
|
Mantamadiotis T. Towards Targeting PI3K-Dependent Regulation of Gene Expression in Brain Cancer. Cancers (Basel) 2017; 9:cancers9060060. [PMID: 28556811 PMCID: PMC5483879 DOI: 10.3390/cancers9060060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022] Open
Abstract
The PI3K pathway is one of the most highly perturbed cell signaling pathways in human cancer, including the most common malignant brain tumors, gliomas, where either activating mutations of positive pathway effectors or loss/inactivation of pathway inhibitors occurs. Knowledge of the precise transcription factors modulated by PI3K in tumor cells remains elusive but there are numerous PI3K-responsive signaling factors, including kinases, which can activate many transcription factors. In the context of cancer, these transcription factors participate in the regulation of target genes expression networks to support cancer cell characteristics such as survival, proliferation, migration and differentiation. This review focuses on the role of PI3K signaling-regulated transcription in brain cancer cells from a series of recent investigations. A deeper understanding of this regulation is beginning to provide the hope of developing more sophisticated anti-cancer targeting approaches, where both upstream and downstream components of the PI3K pathway may be targeted by existing and novel drugs.
Collapse
Affiliation(s)
- Theo Mantamadiotis
- Department of Pathology, School of Biomedical Sciences, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
32
|
Franco R, Martínez-Pinilla E, Navarro G, Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Prog Neurobiol 2017; 149-150:21-38. [PMID: 28189739 DOI: 10.1016/j.pneurobio.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Despite efforts to understand the mechanism of neuronal cell death, finding effective therapies for neurodegenerative diseases is still a challenge. Cognitive deficits are often associated with neurodegenerative diseases. Remarkably, in the absence of consensus biomarkers, diagnosis of diseases such as Alzheimer's still relies on cognitive tests. Unfortunately, all efforts to translate findings in animal models to the patients have been unsuccessful. Alzheimer's disease may be addressed from two different points of view, neuroprotection or cognitive enhancement. Based on recent data, the mammalian target of rapamycin (mTOR) pathway arises as a versatile player whose modulation may impact on mechanisms of both neuroprotection and cognition. Whereas direct targeting of mTOR does not seem to constitute a convenient approach in drug discovery, its indirect modulation by other signaling pathways seems promising. In fact, G-protein-coupled receptors (GPCRs) remain the most common 'druggable' targets and as such pharmacological manipulation of GPCRs with selective ligands may modulate phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and mTOR signaling pathways. Thus, GPCRs become important targets for potential drug treatments in different neurodegenerative disorders including, but not limited to, Alzheimer's disease. GPCR-mediated modulation of mTOR may take advantage of different GPCRs coupled to different G-dependent and G-independent signal transduction routes, of functional selectivity and/or of biased agonism. Signals mediated by GPCRs may act as coincidence detectors to achieve different benefits in different stages of the neurodegenerative disease.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
33
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
|
34
|
Gβγ subunits-Different spaces, different faces. Pharmacol Res 2016; 111:434-441. [PMID: 27378564 DOI: 10.1016/j.phrs.2016.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Gβγ subunits play key roles in modulation of canonical effectors in G protein-coupled receptor (GPCR)-dependent signalling at the cell surface. However, a number of recent studies of Gβγ function have revealed that they regulate a large number of molecules at distinct subcellular sites. These novel, non-canonical Gβγ roles have reshaped our understanding of how important Gβγ signalling is compared to our original notion of Gβγ subunits as simple negative regulators of Gα subunits. Gβγ dimers have now been identified as regulators of transcription, anterograde and retrograde trafficking and modulators of second messenger molecule generation in intracellular organelles. Here, we review some recent advances in our understanding of these novel non-canonical roles of Gβγ.
Collapse
|
35
|
Kitz A, de Marcken M, Gautron AS, Mitrovic M, Hafler DA, Dominguez-Villar M. AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease. EMBO Rep 2016; 17:1169-83. [PMID: 27312110 DOI: 10.15252/embr.201541905] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Foxp3(+) regulatory T cells (Tregs) exhibit plasticity, which dictates their function. Secretion of the inflammatory cytokine IFNγ, together with the acquisition of a T helper 1 (Th1)-like effector phenotype as observed in cancer, infection, and autoimmune diseases, is associated with loss of Treg suppressor function through an unknown mechanism. Here, we describe the signaling events driving the generation of human Th1-Tregs. Using a genome-wide gene expression approach and pathway analysis, we identify the PI3K/AKT/Foxo1/3 signaling cascade as the major pathway involved in IFNγ secretion by human Tregs. Furthermore, we describe the opposing roles of AKT isoforms in Th1-Treg generation ex vivo Finally, we employ multiple sclerosis as an in vivo model with increased but functionally defective Th1-Tregs. We show that the PI3K/AKT/Foxo1/3 pathway is activated in ex vivo-isolated Tregs from untreated relapsing-remitting MS patients and that blockade of the pathway inhibits IFNγ secretion and restores the immune suppressive function of Tregs. These data define a fundamental pathway regulating the function of human Tregs and suggest a novel treatment paradigm for autoimmune diseases.
Collapse
Affiliation(s)
- Alexandra Kitz
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Marine de Marcken
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Anne-Sophie Gautron
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mitja Mitrovic
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
36
|
Abstract
Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.
Collapse
|
37
|
Biological and Pharmacological Aspects of the NK1-Receptor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:495704. [PMID: 26421291 PMCID: PMC4573218 DOI: 10.1155/2015/495704] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/19/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis.
Collapse
|
38
|
Khan SM, Min A, Gora S, Houranieh GM, Campden R, Robitaille M, Trieu P, Pétrin D, Jacobi AM, Behlke MA, Angers S, Hébert TE. Gβ 4 γ 1 as a modulator of M3 muscarinic receptor signalling and novel roles of Gβ 1 subunits in the modulation of cellular signalling. Cell Signal 2015; 27:1597-608. [DOI: 10.1016/j.cellsig.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023]
|
39
|
Yuce-Dursun B, Danis O, Demir S, Ogan A, Onat F. Proteomic changes in the cortex membrane fraction of genetic absence epilepsy rats from Strasbourg. J Integr Neurosci 2015; 13:633-44. [PMID: 25352154 DOI: 10.1142/s021963521450023x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epilepsy is a serious neurodegenerative disorder with a high incidence and a variety of presentations and causes. Studies on brain from various animal models including chronic models: Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are very useful for understanding the fundamental mechanisms associated with human epilepsy. Individual regions of the brain have different protein composition in different conditions. Therefore, proteomic analyses of the brain compartments are preferred for the development of new therapeutic targets in different pathophysiological conditions like neurodegenerative disorders. In this study, we describe a proteomic profiling of membrane fraction of cortex tissue from epileptic GAERS and non-epileptic Wistar rat brain by two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectroscopy. Comparing the optical density of spots between groups, we found that one protein expression was significantly down-regulated (guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1) and one protein expression was significantly up-regulated (14-3-3 protein epsilon isoform) in GAERS group. Our results indicate that these proteins might have played a significant role in epilepsy and may be considered as valuable therapeutic targets in the absence of epilepsy.
Collapse
Affiliation(s)
- Basak Yuce-Dursun
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, 34722, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
40
|
Overland AC, Insel PA. Heterotrimeric G proteins directly regulate MMP14/membrane type-1 matrix metalloprotease: a novel mechanism for GPCR-EGFR transactivation. J Biol Chem 2015; 290:9941-7. [PMID: 25759388 DOI: 10.1074/jbc.c115.647073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 02/02/2023] Open
Abstract
Agonist stimulation of G protein-coupled receptors (GPCRs) can transactivate epidermal growth factor receptors (EGFRs), but the precise mechanisms for this transactivation have not been defined. Key to this process is the protease-mediated "shedding" of membrane-tethered ligands, which then activate EGFRs. The specific proteases and the events involved in GPCR-EGFR transactivation are not fully understood. We have tested the hypothesis that transactivation can occur by a membrane-delimited process: direct increase in the activity of membrane type-1 matrix metalloprotease (MMP14, MT1-MMP) by heterotrimeric G proteins, and in turn, the generation of heparin-binding epidermal growth factor (HB-EGF) and activation of EGFR. Using membranes prepared from adult rat cardiac myocytes and fibroblasts, we found that MMP14 activity is increased by angiotensin II, phenylephrine, GTP, and guanosine 5'-O-[γ-thio]triphosphate (GTPγS). MMP14 activation by GTPγS occurs in a concentration- and time-dependent manner, does not occur in response to GMP or adenosine 5'-[γ-thio]triphosphate (ATPγS), and is not blunted by inhibitors of Src, PKC, phospholipase C (PLC), PI3K, or soluble MMPs. This activation is specific to MMP14 as it is inhibited by a specific MMP14 peptide inhibitor and siRNA knockdown. MMP14 activation by GTPγS is pertussis toxin-sensitive. A role for heterotrimeric G protein βγ subunits was shown by using the Gβγ inhibitor gallein and the direct activation of recombinant MMP14 by purified βγ subunits. GTPγS-stimulated activation of MMP14 also results in membrane release of HB-EGF and the activation of EGFR. These results define a previously unrecognized, membrane-delimited mechanism for EGFR transactivation via direct G protein activation of MMP14 and identify MMP14 as a heterotrimeric G protein-regulated effector.
Collapse
Affiliation(s)
| | - Paul A Insel
- From the Departments of Pharmacology and Medicine, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
41
|
Huang YJ, Zhou ZW, Xu M, Ma QW, Yan JB, Wang JY, Zhang QQ, Huang M, Bao L. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope. Pediatr Cardiol 2015; 36:475-80. [PMID: 25367286 DOI: 10.1007/s00246-014-1036-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/27/2014] [Indexed: 11/24/2022]
Abstract
Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Yu-Juan Huang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhou Y, Chen HIH, Lin A, Dang H, Haack K, Cole SA, Huang Y, Yu H, Chen Y, Yeh CK. Early gene expression in salivary gland after isoproterenol treatment. J Cell Biochem 2015; 116:431-7. [PMID: 25336019 PMCID: PMC4620551 DOI: 10.1002/jcb.24995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022]
Abstract
Isoproterenol, a β-adrenergic agonist, has been shown to induce salivary gland hyperplasia. However, the mechanism involved in this pharmacological phenomenon is not well understood. To gain a better understanding of the underlying changes, including genes, networks and pathways altered by isoproterenol, microarray-based gene expression analysis was conducted on rat parotid glands at 10, 30, and 60 min after isoproterenol injection. After isoproterenol treatment, the number of differentially expressed genes was increased in a time-dependent manner. Pathway analysis showed that cell hyperplasia, p38(MAPK), and IGF-1 were the most altered function, network and pathway, respectively. The balanced regulation of up- and down-expression of genes related to cell proliferation/survival may provide a better understanding of the mechanism of isoproterenol-induced parotid gland enlargement without tumor transformation.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, P.R. China 310000
| | - Hung-I H. Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3309, USA
| | - A.L. Lin
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - H. Dang
- Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Haiyang Yu
- West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China 610041
| | - Yidong Chen
- Department of Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3309, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Geriatric Research, Education & Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229-4404 USA
| |
Collapse
|
43
|
Sun H, Li G, Zhang W, Zhou Q, Yu Y, Shi Y, Offermanns S, Lu J, Zhou N. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2. PLoS One 2014; 9:e112310. [PMID: 25375133 PMCID: PMC4223033 DOI: 10.1371/journal.pone.0112310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/04/2014] [Indexed: 01/27/2023] Open
Abstract
Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.
Collapse
Affiliation(s)
- Huawang Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo Li
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjuan Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yena Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Shi
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (NZ); (JL)
| | - Naiming Zhou
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (NZ); (JL)
| |
Collapse
|
44
|
Huang J, Nalli AD, Mahavadi S, Kumar DP, Murthy KS. Inhibition of Gαi activity by Gβγ is mediated by PI 3-kinase-γ- and cSrc-dependent tyrosine phosphorylation of Gαi and recruitment of RGS12. Am J Physiol Gastrointest Liver Physiol 2014; 306:G802-10. [PMID: 24578342 PMCID: PMC4010651 DOI: 10.1152/ajpgi.00440.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Others and we have characterized several Gβγ-dependent effectors in smooth muscle, including G protein-coupled receptor kinase 2 (GRK2), PLCβ3, and phosphatidylinositol (PI) 3-kinase-γ, and have identified various signaling targets downstream of PI 3-kinase-γ, including cSrc, integrin-linked kinase, and Rac1-Cdc42/p21-activated kinase/p38 MAP kinase. This study identified a novel mechanism whereby Gβγ acting via PI 3-kinase-γ and cSrc exerts an inhibitory influence on Gαi activity. The Gi2-coupled δ-opioid receptor agonist d-penicillamine (2,5)-enkephalin (DPDPE) activated cSrc, stimulated tyrosine phosphorylation of Gαi2, and induced regulator of G protein signaling 12 (RGS12) association; all three events were blocked by PI 3-kinase (LY294002) and cSrc (PP2) inhibitors and by expression of the COOH-terminal sequence of GRK2-(495-689), a Gβγ-scavenging peptide. Inhibition of forskolin-stimulated cAMP and muscle relaxation by DPDPE was augmented by PP2, LY294002, and a selective PI 3-kinase-γ inhibitor, AS-605420. Expression of tyrosine-deficient (Y69F, Y231F, or Y321F) Gαi2 mutant or knockdown of RGS12 blocked Gαi2 phosphorylation and Gαi2-RGS12 association and caused greater inhibition of cAMP. Parallel studies using somatostatin, cyclopentyl adenosine, or ACh to activate, respectively, Gi1-coupled somatostatin (sstr3) receptors, and Gi3-coupled adenosine A1 or muscarinic m2 receptors elicited cSrc activation, Gαi1 or Gαi3 phosphorylation, Gαi1-RGS12 or Gαi3-RGS12 association, and inhibition of cAMP. Inhibition of cAMP and muscle relaxation was greatly increased by AS-605240 and PP2. The results demonstrate that Gβγ-dependent tyrosine phosphorylation of Gαi1/2/3 by cSrc facilitated recruitment of RGS12, a Gαi-specific RGS protein with a unique phosphotyrosine-binding domain, resulting in rapid deactivation of Gαi and facilitation of smooth muscle relaxation.
Collapse
Affiliation(s)
- Jiean Huang
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ancy D. Nalli
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P. Kumar
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
45
|
Distinct pathways of ERK1/2 activation by hydroxy-carboxylic acid receptor-1. PLoS One 2014; 9:e93041. [PMID: 24671202 PMCID: PMC3966839 DOI: 10.1371/journal.pone.0093041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022] Open
Abstract
Mechanistic investigations have shown that, upon agonist activation, hydroxy-carboxylic acid receptor-1(HCA1) couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for HCA1 signaling remain largely unknown. Using CHO-K1 cells stably expressing HCA1, and L6 cells, which endogenously express rat HCA1 receptors, we found that activation of ERK1/2 by HCA1 was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin. Furthermore, time course experiments with different kinase inhibitors demonstrated that HCA1 induced ERK1/2 activation via the extracellular Ca2+, PKC and IGF-I receptor transactivation-dependent pathways. In addition, we observed that pretreated the cells with M119K, an inhibitor of Gβγ subunit-dependent signaling, effectively attenuated the ERK1/2 activation triggered by HCA1, suggesting a critical role for βγ-subunits in HCA1-activated ERK1/2 phosphorylation. Furthermore, the present results also indicated that the arrestin2/3 were not required for ERK1/2 activation. In conclusion, our findings demonstrate that upon binding to agonist, HCA1 receptors initially activate Gi, leading to dissociation of the Gβγ subunit from activated Gi, and subsequently induce ERK1/2 activation via two distinct pathways: one PKC-dependent pathway and the other IGF-IR transactivation-dependent pathway. Our results provide the first in-depth evidence that defines the molecular mechanism of HCA1-mediated ERK1/2 activation.
Collapse
|
46
|
Longman MR, Ranieri A, Avkiran M, Snabaitis AK. Regulation of PP2AC carboxylmethylation and cellular localisation by inhibitory class G-protein coupled receptors in cardiomyocytes. PLoS One 2014; 9:e86234. [PMID: 24475092 PMCID: PMC3903491 DOI: 10.1371/journal.pone.0086234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
The enzymatic activity of the type 2A protein phosphatase (PP2A) holoenzyme, a major serine/threonine phosphatase in the heart, is conferred by its catalytic subunit (PP2AC). PP2AC activity and subcellular localisation can be regulated by reversible carboxylmethylation of its C-terminal leucine309 (leu309) residue. Previous studies have shown that the stimulation of adenosine type 1 receptors (A1.Rs) induces PP2AC carboxylmethylation and altered subcellular distribution in adult rat ventricular myocytes (ARVM). In the current study, we show that the enzymatic components that regulate the carboxylmethylation status of PP2AC, leucine carboxylmethyltransferase-1 (LCMT-1) and phosphatase methylesterase-1 (PME-1) are abundantly expressed in, and almost entirely localised in the cytoplasm of ARVM. The stimulation of Gi-coupled A1.Rs with N6-cyclopentyladenosine (CPA), and of other Gi-coupled receptors such as muscarinic M2 receptors (stimulated with carbachol) and angiotensin II AT2 receptors (stimulated with CGP42112) in ARVM, induced PP2AC carboxylmethylation at leu309 in a concentration-dependent manner. Exposure of ARVM to 10 µM CPA increased the cellular association between PP2AC and its methyltransferase LCMT-1, but not its esterase PME-1. Stimulation of A1.Rs with 10 µM CPA increased the phosphorylation of protein kinase B at ser473, which was abolished by the PI3K inhibitor LY294002 (20 µM), thereby confirming that PI3K activity is upregulated in response to A1.R stimulation by CPA in ARVM. A1.R-induced PP2AC translocation to the particulate fraction was abrogated by adenoviral expression of the alpha subunit (Gαt1) coupled to the transducin G-protein coupled receptor. A similar inhibitory effect on A1.R-induced PP2AC translocation was also seen with LY294002 (20 µM). These data suggest that in ARVM, A1.R-induced PP2AC translocation to the particulate fraction occurs through a GiPCR-Gβγ-PI3K mediated intracellular signalling pathway, which may involve elevated PP2AC carboxylmethylation at leu309.
Collapse
Affiliation(s)
- Michael R. Longman
- School of Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Kingston-upon-Thames, Surrey, United Kingdom
| | - Antonella Ranieri
- King's College London British Heart Foundation Centre, Cardiovascular Division, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Metin Avkiran
- King's College London British Heart Foundation Centre, Cardiovascular Division, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Andrew K. Snabaitis
- School of Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Kingston-upon-Thames, Surrey, United Kingdom
- King's College London British Heart Foundation Centre, Cardiovascular Division, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 2013; 6:1347-61. [PMID: 24124379 PMCID: PMC3794844 DOI: 10.2147/ott.s36109] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The chemokine CXCL12 (SDF-1) and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs), plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management.
Collapse
Affiliation(s)
- Monica Cojoc
- OncoRay National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Jackson TC, Verrier JD, Drabek T, Janesko-Feldman K, Gillespie DG, Uray T, Dezfulian C, Clark RS, Bayir H, Jackson EK, Kochanek PM. Pharmacological inhibition of pleckstrin homology domain leucine-rich repeat protein phosphatase is neuroprotective: differential effects on astrocytes. J Pharmacol Exp Ther 2013; 347:516-28. [PMID: 24023368 DOI: 10.1124/jpet.113.206888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) inhibits protein kinase B (AKT) survival signaling in neurons. Small molecule pan-PHLPP inhibitors (selective for PHLPP1 and PHLPP2) may offer a translatable method to induce AKT neuroprotection. We tested several recently discovered PHLPP inhibitors (NSC117079 and NSC45586; benzoic acid, 5-[2-[4-[2-(2,4-diamino-5-methylphenyl)diazenyl]phenyl]diazenyl]-2-hydroxy-,sodium salt.) in rat cortical neurons and astrocytes and compared the biochemical response of these agents with short hairpin RNA (shRNA)-mediated PHLPP1 knockdown (KD). In neurons, both PHLPP1 KD and experimental PHLPP inhibitors activated AKT and ameliorated staurosporine (STS)-induced cell death. Unexpectedly, in astrocytes, both inhibitors blocked AKT activation, and NSC117079 reduced viability. Only PHLPP2 KD mimicked PHLPP inhibitors on astrocyte biochemistry. This suggests that these inhibitors could have possible detrimental effects on astrocytes by blocking novel PHLPP2-mediated prosurvival signaling mechanisms. Finally, because PHLPP1 levels are reportedly high in the hippocampus (a region prone to ischemic death), we characterized hippocampal changes in PHLPP and several AKT targeting prodeath phosphatases after cardiac arrest (CA)-induced brain injury. PHLPP1 levels increased in rat brains subjected to CA. None of the other AKT inhibitory phosphatases increased after global ischemia (i.e., PHLPP2, PTEN, PP2A, and PP1). Selective PHLPP1 inhibition (such as by shRNA KD) activates AKT survival signaling in neurons and astrocytes. Nonspecific PHLPP inhibition (by NSC117079 and NSC45586) only activates AKT in neurons. Taken together, these results suggest that selective PHLPP1 inhibitors should be developed and may yield optimal strategies to protect injured hippocampal neurons and astrocytes-namely from global brain ischemia.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Safar Center for Resuscitation Research (T.C.J., P.M.K., H.B., R.S.C, K.J.F., C.D., T.U.) and Department of Pharmacology and Chemical Biology (J.D.V., D.G.G., E.K.J.),University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Anesthesiology, Presbyterian Hospital (T.D.), Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yu L, Al-Khalili O, Duke BJ, Stockand JD, Eaton DC, Bao HF. The inhibitory effect of Gβγ and Gβ isoform specificity on ENaC activity. Am J Physiol Renal Physiol 2013; 305:F1365-73. [PMID: 23863469 DOI: 10.1152/ajprenal.00009.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na(+) channel (ENaC) activity, which determines the rate of renal Na(+) reabsorption, can be regulated by G protein-coupled receptors. Regulation of ENaC by Gα-mediated downstream effectors has been studied extensively, but the effect of Gβγ dimers on ENaC is unclear. A6 cells endogenously contain high levels of Gβ1 but low levels of Gβ3, Gβ4, and Gβ5 were detected by Q-PCR. We tested Gγ2 combined individually with Gβ1 through Gβ5 expressed in A6 cells, after which we recorded single-channel ENaC activity. Among the five β and γ2 combinations, β1γ2 strongly inhibits ENaC activity by reducing both ENaC channel number (N) and open probability (Po) compared with control cells. In contrast, the other four β-isoforms combined with γ2 have no significant effect on ENaC activity. By using various inhibitors to probe Gβ1γ2 effects on ENaC regulation, we found that Gβ1γ2-mediated ENaC inhibition involved activation of phospholipase C-β and its enzymatic products that induce protein kinase C and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural Univ., Nanjing 210095, China.
| | | | | | | | | | | |
Collapse
|
50
|
Mitochondrial mechanisms of neuroglobin's neuroprotection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:756989. [PMID: 23634236 PMCID: PMC3619637 DOI: 10.1155/2013/756989] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/24/2012] [Accepted: 02/21/2013] [Indexed: 01/18/2023]
Abstract
Neuroglobin (Ngb) is an oxygen-binding globin protein that has been demonstrated to be neuroprotective against stroke and related neurological disorders. However, the underlying mechanisms of Ngb's neuroprotection remain largely undefined. Mitochondria play critical roles in multiple physiological pathways including cell respiration, energy production, free radical generation, and cellular homeostasis and apoptosis. Mitochondrial dysfunction is widely involved in the pathogenesis of stroke and neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases. Accumulating evidence showed that elevated Ngb level is associated with preserved mitochondrial function, suggesting that Ngb may play neuroprotective roles through mitochondria-mediated pathways. In this paper we briefly discuss the mitochondria-related mechanisms in Ngb's neuroprotection, especially those involved in ATP production, ROS generation and scavenging, and mitochondria-mediated cell death signaling pathways.
Collapse
|