1
|
Zhou D, Guo S, Wang Y, Zhao J, Liu H, Zhou F, Huang Y, Gu Y, Jin G, Zhang Y. Functional characteristics of DNA N6-methyladenine modification based on long-read sequencing in pancreatic cancer. Brief Funct Genomics 2024; 23:150-162. [PMID: 37279592 DOI: 10.1093/bfgp/elad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Abnormalities of DNA modifications are closely related to the pathogenesis and prognosis of pancreatic cancer. The development of third-generation sequencing technology has brought opportunities for the study of new epigenetic modification in cancer. Here, we screened the N6-methyladenine (6mA) and 5-methylcytosine (5mC) modification in pancreatic cancer based on Oxford Nanopore Technologies sequencing. The 6mA levels were lower compared with 5mC and upregulated in pancreatic cancer. We developed a novel method to define differentially methylated deficient region (DMDR), which overlapped 1319 protein-coding genes in pancreatic cancer. Genes screened by DMDRs were more significantly enriched in the cancer genes compared with the traditional differential methylation method (P < 0.001 versus P = 0.21, hypergeometric test). We then identified a survival-related signature based on DMDRs (DMDRSig) that stratified patients into high- and low-risk groups. Functional enrichment analysis indicated that 891 genes were closely related to alternative splicing. Multi-omics data from the cancer genome atlas showed that these genes were frequently altered in cancer samples. Survival analysis indicated that seven genes with high expression (ADAM9, ADAM10, EPS8, FAM83A, FAM111B, LAMA3 and TES) were significantly associated with poor prognosis. In addition, the distinction for pancreatic cancer subtypes was determined using 46 subtype-specific genes and unsupervised clustering. Overall, our study is the first to explore the molecular characteristics of 6mA modifications in pancreatic cancer, indicating that 6mA has the potential to be a target for future clinical treatment.
Collapse
Affiliation(s)
- Dianshuang Zhou
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yangyang Wang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Jiyun Zhao
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Honghao Liu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Feiyang Zhou
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Yan Huang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Yue Gu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- College of Pathology, Qiqihar Medical University, Qiqihar 161042, China
| |
Collapse
|
2
|
Tejeda-Munoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O'Brien N, De Robertis EM. The PMA phorbol ester tumor promoter increases canonical Wnt signaling via macropinocytosis. eLife 2023; 12:RP89141. [PMID: 37902809 PMCID: PMC10615368 DOI: 10.7554/elife.89141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Munoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science CenterOklahoma CityUnited States
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Neil O'Brien
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
Tejeda-Muñoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O’Brien N, De Robertis EM. The PMA Phorbol Ester Tumor Promoter Increases Canonical Wnt Signaling Via Macropinocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543509. [PMID: 37333286 PMCID: PMC10274750 DOI: 10.1101/2023.06.02.543509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- These authors contributed equally
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- These authors contributed equally
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Neil O’Brien
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| |
Collapse
|
4
|
Popiel-Kopaczyk A, Grzegrzolka J, Piotrowska A, Olbromski M, Smolarz B, Romanowicz H, Rusak A, Mrozowska M, Dziegiel P, Podhorska-Okolow M, Kobierzycki C. The Expression of Testin, Ki-67 and p16 in Cervical Cancer Diagnostics. Curr Issues Mol Biol 2023; 45:490-500. [PMID: 36661518 PMCID: PMC9857082 DOI: 10.3390/cimb45010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Testin is a protein expressed in normal human tissues, being responsible, with other cytoskeleton proteins, for the proper functioning of cell−cell junction areas and focal adhesion plaques. It takes part in the regulation of actin filament changes during cell spreading and motility. Loss of heterozygosity in the testin-encoding gene results in altered protein expression in many malignancies, as partly described for cervical cancer. The aim of our study was the assessment of the immunohistochemical (IHC) expression of testin in cervical cancer and its analysis in regard to clinical data as well the expression of the Ki-67 antigen and p16 protein. Moreover, testin expression was assessed by Western blot (WB) in commercially available cell lines. The IHC analysis disclosed that the expression of testin inversely correlated with p16 (r = −0.2104, p < 0.0465) and Ki-67 expression (r = −0.2359, p < 0.0278). Moreover, weaker testin expression was observed in cancer cases vs. control ones (p < 0.0113). The WB analysis of testin expression in the cervical cancer cell lines corresponded to the IHC results and showed a weaker expression compared to that in the control cell line. When we compared the expression of testin in cervical cancer cell lines, we found a weaker expression in HPV-negative cell lines. In summary, we found that the intensity of testin expression and the number of positive cells inversely correlated with the expression of Ki-67 (a marker of proliferation) and p16 (a marker of cell cycle dysregulation). This study shows that the combined assessment of testin, Ki-67 and p16 expression may improve cervical cancer diagnostics.
Collapse
Affiliation(s)
- Aneta Popiel-Kopaczyk
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: or
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Beata Smolarz
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | | | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
5
|
Zhang JJ, Shao C, Yin YX, Sun Q, Li YN, Zha YW, Li MY, Hu BL. Hypoxia-Related Signature Is a Prognostic Biomarker of Pancreatic Cancer. DISEASE MARKERS 2022; 2022:6449997. [PMID: 35789607 PMCID: PMC9250441 DOI: 10.1155/2022/6449997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
Background Hypoxia plays a significant role in the pathogenesis of pancreatic cancer, but the effect of hypoxia-related genes in pancreatic cancer remains to be elucidated. This study aimed to identify hypoxia-related genes related to pancreatic cancer and construct a prognostic signature. Methods Pancreatic cancer datasets were retrieved from TCGA database. Cox regression analyses were used to identify hypoxia-related genes and construct a prognostic signature. Datasets from International Cancer Genome Consortium and GEO databases were used as validated cohorts. The CIBERSORT method was applied to estimate the fractions of immune cell types. DNA methylation and protein levels of the genes in pancreatic cancer were examined. Results Three hypoxia-related genes (TES, LDHA, and ANXA2) were identified as associated with patient survival and selected to construct a prognostic signature. Patients were divided into high- and low-risk groups based on the signature. Those in the high-risk group showed worse survival than those in the low-risk group. The signature was shown to be involved in the HIF-1 signaling pathway. The time-dependent ROC analyses of three independent validated cohorts further revealed that this signature had a better prognostic value in the prediction of the survival of pancreatic cancer patients. Immune cells analysis for three datasets demonstrated that high-risk signature was significantly associated with macrophages and T cells. DNA methylation and protein levels of the three genes validated their aberrant expression in pancreatic cancer. Conclusions Our research provided a novel and reliable prognostic signature that composes of three hypoxia-related genes to estimate the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Jing-jing Zhang
- Cancer Institute of Zhongshan City People's Hospital, Zhongshan, 528403 Guangdong, China
| | - Chao Shao
- Cancer Institute of Zhongshan City People's Hospital, Zhongshan, 528403 Guangdong, China
| | - Yi-xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| | - Qiang Sun
- Department of Hepatobiliary Surgery, Zhongshan City People's Hospital, Zhongshan, 528403 Guangdong, China
| | - Ya-ni Li
- Cancer Institute of Zhongshan City People's Hospital, Zhongshan, 528403 Guangdong, China
| | - Ya-wen Zha
- Cancer Institute of Zhongshan City People's Hospital, Zhongshan, 528403 Guangdong, China
| | - Min-ying Li
- Cancer Institute of Zhongshan City People's Hospital, Zhongshan, 528403 Guangdong, China
| | - Bang-li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China
| |
Collapse
|
6
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
7
|
Preliminary Study on the Expression of Testin, p16 and Ki-67 in the Cervical Intraepithelial Neoplasia. Biomedicines 2021; 9:biomedicines9081010. [PMID: 34440214 PMCID: PMC8391355 DOI: 10.3390/biomedicines9081010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cervical cancer is one of the most common malignant cancers in women worldwide. The 5-year survival rate is 65%; nevertheless, it depends on race, age, and clinical stage. In the oncogenesis of cervical cancer, persistent HPV infection plays a pivotal role. It disrupts the expression of key proteins as Ki-67, p16, involved in regulating the cell cycle. This study aimed to identify the potential role of testin in the diagnosis of cervical precancerous lesions (CIN). The study was performed on selected archival paraffin-embedded specimens of CIN1 (31), CIN2 (75), and CIN3 (123). Moderate positive correlation was observed between testin and Ki-67 as well as testin and p16 expression in all dysplastic lesions (r = 0.4209, r = 0.5681; p < 0.0001 for both). Statistical analysis showed stronger expression of the testin in dysplastic lesions vs. control group (p < 0.0001); moreover, expression was significantly higher in HSIL than LSIL group (p < 0.0024). In addition, a significantly stronger expression of testin was observed in CIN3 vs. CIN1 and CIN3 vs. CIN2. In our study, expression of Ki-67, p16, and testin increased gradually as the lesion progressed from LSIL to HSIL. The three markers complemented each other effectively, which may improve test sensitivity and specificity when used jointly.
Collapse
|
8
|
Sala S, Oakes PW. Stress fiber strain recognition by the LIM protein testin is cryptic and mediated by RhoA. Mol Biol Cell 2021; 32:1758-1771. [PMID: 34038160 PMCID: PMC8684727 DOI: 10.1091/mbc.e21-03-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin’s mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton’s mechanical state.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| |
Collapse
|
9
|
Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, Kahles A, Lehmann KV, Stegle O, Brazma A, Brooks AN, Rätsch G, Tan P, Göke J. A Pan-cancer Transcriptome Analysis Reveals Pervasive Regulation through Alternative Promoters. Cell 2020; 178:1465-1477.e17. [PMID: 31491388 DOI: 10.1016/j.cell.2019.08.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.
Collapse
Affiliation(s)
- Deniz Demircioğlu
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore; School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Engin Cukuroglu
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Martin Kindermans
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Tannistha Nandi
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Claudia Calabrese
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK; Genome Biology Unit, EMBL, Heidelberg, 69117, Germany
| | - Nuno A Fonseca
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK; CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Vairão 4485-601, Portugal
| | - André Kahles
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland; Department of Biology, ETH Zurich, Zurich 8093, Switzerland; Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Biomedical Informatics Research, University Hospital Zurich, Zurich 8091, Switzerland
| | - Kjong-Van Lehmann
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland; Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Biomedical Informatics Research, University Hospital Zurich, Zurich 8091, Switzerland
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK; Genome Biology Unit, EMBL, Heidelberg, 69117, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland; Department of Biology, ETH Zurich, Zurich 8093, Switzerland; Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Biomedical Informatics Research, University Hospital Zurich, Zurich 8091, Switzerland; Weill Cornell Medical College, New York, NY 10065, USA
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169856, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore; Singapore Gastric Cancer Consortium, Singapore 119074, Singapore
| | - Jonathan Göke
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.
| |
Collapse
|
10
|
Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-wide identification of loci associated with growth in rainbow trout. BMC Genomics 2020; 21:209. [PMID: 32138655 PMCID: PMC7059289 DOI: 10.1186/s12864-020-6617-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Growth is a major economic production trait in aquaculture. Improvements in growth performance will reduce time and cost for fish to reach market size. However, genes underlying growth have not been fully explored in rainbow trout. Results A previously developed 50 K gene-transcribed SNP chip, containing ~ 21 K SNPs showing allelic imbalances potentially associated with important aquaculture production traits including body weight, muscle yield, was used for genotyping a total of 789 fish with available phenotypic data for bodyweight gain. Genotyped fish were obtained from two consecutive generations produced in the NCCCWA growth-selection breeding program. Weighted single-step GBLUP (WssGBLUP) was used to perform a genome-wide association (GWA) analysis to identify quantitative trait loci (QTL) associated with bodyweight gain. Using genomic sliding windows of 50 adjacent SNPs, 247 SNPs associated with bodyweight gain were identified. SNP-harboring genes were involved in cell growth, cell proliferation, cell cycle, lipid metabolism, proteolytic activities, chromatin modification, and developmental processes. Chromosome 14 harbored the highest number of SNPs (n = 50). An SNP window explaining the highest additive genetic variance for bodyweight gain (~ 6.4%) included a nonsynonymous SNP in a gene encoding inositol polyphosphate 5-phosphatase OCRL-1. Additionally, based on a single-marker GWA analysis, 33 SNPs were identified in association with bodyweight gain. The highest SNP explaining variation in bodyweight gain was identified in a gene coding for thrombospondin-1 (THBS1) (R2 = 0.09). Conclusion The majority of SNP-harboring genes, including OCRL-1 and THBS1, were involved in developmental processes. Our results suggest that development-related genes are important determinants for growth and could be prioritized and used for genomic selection in breeding programs.
Collapse
Affiliation(s)
- Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV, USA
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
11
|
Cui C, Han S, Tang S, He H, Shen X, Zhao J, Chen Y, Wei Y, Wang Y, Zhu Q, Li D, Yin H. The Autophagy Regulatory Molecule CSRP3 Interacts with LC3 and Protects Against Muscular Dystrophy. Int J Mol Sci 2020; 21:ijms21030749. [PMID: 31979369 PMCID: PMC7037376 DOI: 10.3390/ijms21030749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
CSRP3/MLP (cysteine-rich protein 3/muscle Lim protein), a member of the cysteine-rich protein family, is a muscle-specific LIM-only factor specifically expressed in skeletal muscle. CSRP3 is critical in maintaining the structure and function of normal muscle. To investigate the mechanism of disease in CSRP3 myopathy, we performed siRNA-mediated CSRP3 knockdown in chicken primary myoblasts. CSRP3 silencing resulted in the down-regulation of the expression of myogenic genes and the up-regulation of atrophy-related gene expressions. We found that CSRP3 interacted with LC3 protein to promote the formation of autophagosomes during autophagy. CSRP3-silencing impaired myoblast autophagy, as evidenced by inhibited autophagy-related ATG5 and ATG7 mRNA expression levels, and inhibited LC3II and Beclin-1 protein accumulation. In addition, impaired autophagy in CSRP3-silenced cells resulted in increased sensitivity to apoptosis cell death. CSRP3-silenced cells also showed increased caspase-3 and caspase-9 cleavage. Moreover, apoptosis induced by CSRP3 silencing was alleviated after autophagy activation. Together, these results indicate that CSRP3 promotes the correct formation of autophagosomes through its interaction with LC3 protein, which has an important role in skeletal muscle remodeling and maintenance.
Collapse
|
12
|
Liu X, Zhang L, Han J, Yang L, Cui J, Che S, Cao B, Song Y. A comparative analysis of gene expression induced by the embryo in the caprine endometrium. Vet Med Sci 2019; 6:196-203. [PMID: 31782264 PMCID: PMC7196676 DOI: 10.1002/vms3.221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 10/19/2019] [Indexed: 12/25/2022] Open
Abstract
Transcriptomics is an established powerful tool to identify potential mRNAs and ncRNAs (non‐coding RNAs) for endometrial receptivity. In this study, the goat endometrium at estrus day 5 (ED5) and estrus day 15 (ED15) were selected to systematically analyse the differential expressed genes (DEGs) what were induced by the embryo. There were 1,847 genes which were significantly differential expressed in endometrium induced by the embryo at ED5, and 1,346 at ED15 (p‐value < .05). Secreted phosphoprotein 1 (SPP) was the responsive genes for embryo in the goat endometrium during estrus cycle, neurotensis (NTS) and pleiotrophin (PTN) were the responsive genes for embryo in the goat endometrium at ED5, Testin (TES) and Phosphate and Tension Homology Deleted on Chromsome ten (PTEN) at ED15. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis revealed cytoplasm and Endocytosis were indispensable for the endometrium development in dairy goat. In a word, this resulting view of the transcriptome greatly uncovered the global trends in mRNAs expression induced by the embryo in the endometrium of dairy goats.
Collapse
Affiliation(s)
- Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jincheng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lichun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Abstract
Testin is a protein expressed in almost all normal human tissues. It locates in the cytoplasm along stress fibers being recruited to focal adhesions. Together with zyxin and vasodilator stimulated protein it forms complexes with various cytoskeleton proteins such as actin, talin and paxilin. They jointly play significant role in cell motility and adhesion. In addition, their involvement in the cell cycle has been demonstrated. Expression of testin protein level correlates positively with percentage of cells in G1 phase, while overexpression can induce apoptosis and decreased colony forming ability. Decreased testin expression associate with loss by cells epithelial morphology and gain migratory and invasive properties of mesenchymal cells. Latest reports indicate that TES is a tumor suppressor gene which can contribute to cancerogenesis but the mechanism of loss TES gene expression is still unknown. Some authors point out hypermethylation of the CpG island as a main factor, however loss of heterozygosity may also play an important role [4, 5]. The altered expression of testin was found in malignant neoplasm, i.a. ovarian, lung, head and neck squamous cell cancer, breast, endometrial, colorectal, prostate and gastric cancers [1-9]. Testin participate in the processes of tumor growth, angiogenesis, and metastasis [10]. Many researchers stated involvement of testin in tumor progression, what suggest its potential usage in immunotherapy [7, 11]. Understanding the molecular functions of testin may be crucial in development personalized treatment. In the present manuscript up-to-date review of literature can be found.
Collapse
Affiliation(s)
- Aneta Popiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Wroclaw Medical University, Wroclaw, Poland.
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
14
|
Wang DD, Chen YB, Zhao JJ, Zhang XF, Zhu GC, Weng DS, Pan K, Lv L, Pan QZ, Jiang SS, Wang LL, Xia JC. TES functions as a Mena-dependent tumor suppressor in gastric cancer carcinogenesis and metastasis. Cancer Commun (Lond) 2019; 39:3. [PMID: 30728082 PMCID: PMC6366075 DOI: 10.1186/s40880-019-0347-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background In our previous study, we identified a candidate tumor suppressor gene, testin LIM domain protein (TES), in primary gastric cancer (GC). TES contains three LIM domains, which are specific interacting regions for the cell adhesion and cytoskeleton regulatory proteins. Mena is a known cytoskeleton regulator that regulates the assembly of actin filaments and modulates cell adhesion and motility by interacting with Lamellipodin (Lpd). Therefore, we hypothesized that TES plays a role as tumor suppressor in GC through interacting with Mena. This study aimed to investigate the tumor suppressive functions of TES in GC. Methods We explored the tumor suppressive effect of TES in GC by in vitro cell proliferation assay, colony formation assay, cell cycle analysis, Transwell assays, and in vivo tumorigenicity and metastasis assays. The interaction of TES and Mena was investigated through immunoprecipitation-based mass spectrometry. We also analyzed the expression of TES and Mena in 172 GC specimens using immunohistochemistry and investigated the clinicopathological and prognostic significance of TES and Mena in GC. Results TES suppressed GC cell proliferation and colony formation, induced cell cycle arrest, and inhibited tumorigenicity in vitro. Additionally, it inhibited GC cell migration and invasion in vitro and suppressed metastasis in vivo. TES interacted with Mena, and inhibited the interaction of Mena with Lpd. Transwell assays suggested that TES suppressed migration and invasion of GC cells in a Mena-dependent fashion. In GC patients with high Mena expression, the expression of TES was associated with tumor infiltration (P = 0.005), lymph node metastasis (P = 0.003), TNM stage (P = 0.003), and prognosis (P = 0.010). However, no significant association was observed in GC patients with low Mena expression. Conclusions We believe that TES functions as a Mena-dependent tumor suppressor. TES represents a valuable prognostic marker and potential target for GC treatment. Electronic supplementary material The online version of this article (10.1186/s40880-019-0347-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.,Shandong Medicinal Biotechnology Centre, Back and Neck Pain Hospital, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, P.R. China
| | - Yi-Bing Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.,Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Jing-Jing Zhao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Xiao-Fei Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Guang-Chao Zhu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - De-Sheng Weng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Ke Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Lin Lv
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Qiu-Zhong Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Shan-Shan Jiang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Lei-Lei Wang
- Key Laboratory for Applied Microbiology of Shandong Province, Ecology Institute of Shandong Academy of Sciences, Jinan, 250014, Shandong, P.R. China
| | - Jian-Chuan Xia
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China. .,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.
| |
Collapse
|
15
|
Zhang L, Liu X, Ma X, Liu Y, Che S, Cui J, An X, Cao B, Song Y. Testin was regulated by circRNA3175-miR182 and inhibited endometrial epithelial cell apoptosis in pre-receptive endometrium of dairy goats. J Cell Physiol 2018; 233:6965-6974. [PMID: 29693265 DOI: 10.1002/jcp.26614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Circular RNAs (circRNAs) in various tissues and cell types from mammalian sources have been studied. However, present knowledge on circRNAs in the development of pre-receptive endometrium (PE) in dairy goats is limited. In the pre-receptive endometrium of dairy goats, higher circRNA3175 (ciR3175) levels, lower miR-182 levels and higher Testin (TES) levels were detected. And ciR3175 could decreased the miR-182 levels by acting as a miRNA sponge, and miR-182 could down-regulated the expression level of TES via the predicted target site in endometrial epithelial cells (EECs) in vitro. Via this way, ciR3175 functioned as a competing endogenous RNAs (ceRNA) that sequestered miR-182, thereby protecting TES transcripts from miR-182-mediated suppression in EECs in vitro. Further, TES inhibited EECs apoptosis by decreasing the expression level of BCL-2/BAX via the MAPK pathway. Thus, a ciR3175-miR182-TES pathway in the endometrium was identified in EECs, and the modulation of which could emerge as a potential target in regulating the pre-receptive endometrium development in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xingna Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
16
|
Li H, Huang K, Gao L, Wang L, Niu Y, Liu H, Wang Z, Wang L, Wang G, Wang J. TES inhibits colorectal cancer progression through activation of p38. Oncotarget 2018; 7:45819-45836. [PMID: 27323777 PMCID: PMC5216763 DOI: 10.18632/oncotarget.9961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/29/2016] [Indexed: 02/06/2023] Open
Abstract
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Sala S, Van Troys M, Medves S, Catillon M, Timmerman E, Staes A, Schaffner-Reckinger E, Gevaert K, Ampe C. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations. J Proteome Res 2017; 16:2054-2071. [DOI: 10.1021/acs.jproteome.7b00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | | | - Sandrine Medves
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Laboratory of Experimental Cancer Research, LIH, 1445 Strassen, Luxembourg
| | - Marie Catillon
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Evy Timmerman
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - An Staes
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Elisabeth Schaffner-Reckinger
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
18
|
Epigenetic basis of cancer health disparities: Looking beyond genetic differences. Biochim Biophys Acta Rev Cancer 2017; 1868:16-28. [PMID: 28108348 DOI: 10.1016/j.bbcan.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Despite efforts at various levels, racial health disparities still exist in cancer patients. These inequalities in incidence and/or clinical outcome can only be explained by a multitude of factors, with genetic basis being one of them. Several investigations have provided convincing evidence to support epigenetic regulation of cancer-associated genes, which results in the differential transcriptome and proteome, and may be linked to a pre-disposition of individuals of certain race/ethnicity to early or more aggressive cancers. Recent technological advancements and the ability to quickly analyze whole genome have aided in these efforts, and owing to their relatively easy detection, methylation events are much well-characterized, than the acetylation events, across human populations. The early trend of investigating a pre-determined set of genes for differential epigenetic regulation is paving way for more unbiased screening. This review summarizes our current understanding of the epigenetic events that have been tied to the racial differences in cancer incidence and mortality. A better understanding of the epigenetics of racial diversity holds promise for the design and execution of novel strategies targeting the human epigenome for reducing the disparity gaps.
Collapse
|
19
|
Wang M, Wang Q, Peng WJ, Hu JF, Wang ZY, Liu H, Huang LN. Testin is a tumor suppressor in non-small cell lung cancer. Oncol Rep 2016; 37:1027-1035. [PMID: 28000866 DOI: 10.3892/or.2016.5316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022] Open
Abstract
The Testin gene was previously identified in the fragile chromosomal region FRA7G at 7q31.2. It has been implicated in several types of cancers including prostate, ovarian, breast and gastric cancer. In the present study, we investigated the function of the candidate tumor-suppressor Testin gene in non-small cell lung cancer (NSCLC). In NSCLC cell lines, we observed lower expression of Testin compared to that noted in normal human bronchial epithelial cells. MTT assays, flow cytometry, clonogenic assay and invasion assay showed that the overexpression of the Testin gene inhibited cancer cell proliferation, invasion and colony formation. In tumor xenograft models, Testin markedly inhibited lung cancer cell xenograft formation and growth in athymic nude mice. Taken together, these data suggest that Testin plays an important role in the development and progression of NSCLC. Testin may be an effective novel target in NSCLC prevention and treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qian Wang
- Department of Respiration, The People's Hospital of Lingbi, Suzhou, Anhui 234000, P.R. China
| | - Wen-Jia Peng
- Department of Epidemiology and Health Statistics, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jun-Feng Hu
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Zu-Yi Wang
- Department of Cardiothoracic Surgery of the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hao Liu
- Department of Pharmacy, Engineering Technology Research Center of Biochemical Pharmaceuticals, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Li-Nian Huang
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
20
|
Kanki M, Gi M, Fujioka M, Wanibuchi H. Detection of non-genotoxic hepatocarcinogens and prediction of their mechanism of action in rats using gene marker sets. J Toxicol Sci 2016; 41:281-92. [PMID: 26961613 DOI: 10.2131/jts.41.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several studies have successfully detected hepatocarcinogenicity in rats based on gene expression data. However, prediction of hepatocarcinogens with certain mechanisms of action (MOAs), such as enzyme inducers and peroxisome proliferator-activated receptor α (PPARα) agonists, can prove difficult using a single model and requires a highly toxic dose. Here, we constructed a model for detecting non-genotoxic (NGTX) hepatocarcinogens and predicted their MOAs in rats. Gene expression data deposited in the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) was used to investigate gene marker sets. Principal component analysis (PCA) was applied to discriminate different MOAs, and a support vector machine algorithm was applied to construct the prediction model. This approach identified 106 probe sets as gene marker sets for PCA and enabled the prediction model to be constructed. In PCA, NGTX hepatocarcinogens were classified as follows based on their MOAs: cytotoxicants, PPARα agonists, or enzyme inducers. The prediction model detected hepatocarcinogenicity with an accuracy of more than 90% in 14- and 28-day repeated-dose studies. In addition, the doses capable of predicting NGTX hepatocarcinogenicity were close to those required in rat carcinogenicity assays. In conclusion, our PCA and prediction model using gene marker sets will help assess the risk of hepatocarcinogenicity in humans based on MOAs and reduce the number of two-year rodent bioassays.
Collapse
Affiliation(s)
- Masayuki Kanki
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine
| | | | | | | |
Collapse
|
21
|
Steponaitis G, Kazlauskas A, Skiriute D, Valiulyte I, Skauminas K, Tamasauskas A, Vaitkiene P. Testin ( TES) as a candidate tumour suppressor and prognostic marker in human astrocytoma. Oncol Lett 2016; 12:3305-3311. [PMID: 27899997 PMCID: PMC5103931 DOI: 10.3892/ol.2016.5077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Astrocytomas are one of the most common brain tumours; however, the current methods used to characterize these tumours are inadequate. The establishment of molecular markers may identify variables required to improve tumour characterization and subtyping, and may aid to specify targets for improved treatment with essential prognostic value for patient survival. One such candidate is testin (TES), which was reported to have prognostic value for glioblastoma patients. However, the role of TES protein in gliomagenesis is currently unknown. In the present study, the methylation status of the TES promoter was investigated in post-operative astrocytoma tumours of different malignancy grade, and its association with the survival of astrocytoma patients was evaluated. In addition, the expression of TES protein was investigated in the same set of astrocytoma tumours tissue, and the association of protein expression with glioma patients survival was evaluated. The methylation status of TES was assessed by methylation-specific polymerase chain reaction in 138 different grade astrocytoma samples. Western blot analysis was used to characterize the expression pattern of TES in 86 different grade astrocytoma specimens: 13 of pathological grade I, 31 of pathological grade II, 17 of pathological grade III and 25 of pathological grade IV (glioblastoma). Statistical analyses were conducted to investigate the association between tumour molecular pattern, patient clinical variables and overall survival. The methylation analysis of the TES promoter exhibited a distinct profile between astrocytomas of different malignancy grade (P<0.001). Furthermore, gene promoter methylation was significantly associated with patients' age, survival and pathological grade (P<0.001). The protein expression level of TES was significantly lower in glioblastoma (grade IV astrocytoma) than in lower grade (II–III) astrocytoma tissue (P=0.028 and P=0.04, respectively). Additionally, short overall survival of patients was markedly associated with low TES protein expression (P=0.007). However, no association between TES methylation and TES protein expression was noticed. The present study demonstrated that decreased expression of TES may be important in tumour progression and prognosis in human astrocytomas. TES may be a useful marker for predicting the clinical outcome of astrocytoma patients.
Collapse
Affiliation(s)
- Giedrius Steponaitis
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Arunas Kazlauskas
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Daina Skiriute
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Indre Valiulyte
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Kestutis Skauminas
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Arimantas Tamasauskas
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Paulina Vaitkiene
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| |
Collapse
|
22
|
Zhong Z, Zhang F, Yin SC. Effects of TESTIN gene expression on proliferation and migration of the 5-8F nasopharyngeal carcinoma cell line. Asian Pac J Cancer Prev 2016; 16:2555-9. [PMID: 25824796 DOI: 10.7314/apjcp.2015.16.6.2555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate effects of the TESTIN (TES) gene on proliferation and migration of highly metastatic nasopharyngeal carcinoma cell line 5-8F and the related mechanisms. MATERIALS AND METHODS The target gene of human nasopharyngeal carcinoma cell line 5-8F was amplified by PCR and cloned into the empty plasmid pEGFP-N1 to construct a eukaryotic expression vector pEGFP-N1-TES. This was then transfected into 5-8F cells. MTT assays, flow cytometry and scratch wound tests were used to detect the proliferation and migration of transfected 5-8F cells. RESULTS A cell model with stable and high expression of TES gene was successfully established. MTT assays showed that the OD value of 5-8F/TES cells was markedly lower than that of 5-8F/GFP cells and 5-8F cells (p<0.05). Flow cytometry showed that the apoptosis rate of 5-8F/TES cells was prominently increased compared with 5-8F/GFP cells and 5-8F cells (p<0.05). In vitro scratch wound assays showed that, the width of the wound area of 5-8F/TES cells narrowed slightly, while the width of the wound area of 5-8F/ GFP cells and 5-8F cells narrowed sharply, suggesting that the TES overexpression could inhibit the migration ability. CONCLUSIONS TES gene expression remarkably inhibits the proliferation of human nasopharyngeal carcinoma cell line 5-8F and reduces its migration in vitro. Thus, it may be a potential tumor suppressor gene for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Zhun Zhong
- Department of Otolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China E-mail :
| | | | | |
Collapse
|
23
|
An Improved Opposition-Based Learning Particle Swarm Optimization for the Detection of SNP-SNP Interactions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:524821. [PMID: 26236727 PMCID: PMC4509494 DOI: 10.1155/2015/524821] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/22/2022]
Abstract
SNP-SNP interactions have been receiving increasing attention in understanding the mechanism underlying susceptibility to complex diseases. Though many works have been done for the detection of SNP-SNP interactions, the algorithmic development is still ongoing. In this study, an improved opposition-based learning particle swarm optimization (IOBLPSO) is proposed for the detection of SNP-SNP interactions. Highlights of IOBLPSO are the introduction of three strategies, namely, opposition-based learning, dynamic inertia weight, and a postprocedure. Opposition-based learning not only enhances the global explorative ability, but also avoids premature convergence. Dynamic inertia weight allows particles to cover a wider search space when the considered SNP is likely to be a random one and converges on promising regions of the search space while capturing a highly suspected SNP. The postprocedure is used to carry out a deep search in highly suspected SNP sets. Experiments of IOBLPSO are performed on both simulation data sets and a real data set of age-related macular degeneration, results of which demonstrate that IOBLPSO is promising in detecting SNP-SNP interactions. IOBLPSO might be an alternative to existing methods for detecting SNP-SNP interactions.
Collapse
|
24
|
Abstract
Background: The expression of TES, a novel tumor suppressor gene, is found to be down-regulated in the left anterior descending aorta of patients with coronary artery disease (CAD) compared with non-CAD subjects. This study aimed to investigate the expression of TES during the development of atherosclerosis in rabbits. Methods: Thirty-two New Zealand rabbits were randomly divided into a normal diet (ND) and high-fat diet (HFD) groups. Body weight and serum lipid levels were measured at 0, 4, and 12 weeks after diet treatment. The degree of atherosclerosis in thoracic aortas was analyzed by histological examinations. The expression of Testin in the tissue samples was inspected via immunohistochemical and immunofluorescence confocal microscopy. Real time-polymerase chain reaction and Western blot analysis were performed to evaluate the expression of TES/Testin at mRNA and protein levels in the aortic tissues. Results: After 12 weeks postenrollment, rabbits in HFD group had a higher level of serum lipids and atherosclerotic plaque compared to ND group (P < 0.05). Testin expression was detected at high levels in the endothelium and a weak expression on the subendothelium area. The expression of TES mRNA was markedly reduced by 10-fold in the aortic tissues in the HFD group compared with the ND group (P = 0.015), and the protein level was also significantly decreased in the HFD group (P < 0.05). Conclusions: Reduced TES/Testin expression is associated with the development of atherosclerosis, implicating a potentially important role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang-Ping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease (Key Lab-TIC), Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
25
|
Conway K, Edmiston SN, Tse CK, Bryant C, Kuan PF, Hair BY, Parrish EA, May R, Swift-Scanlan T. Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 2015; 24:921-30. [PMID: 25809865 PMCID: PMC4452445 DOI: 10.1158/1055-9965.epi-14-1228] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND African American (AA) women are diagnosed with more advanced breast cancers and have worse survival than white women, but a comprehensive understanding of the basis for this disparity remains unclear. Analysis of DNA methylation, an epigenetic mechanism that can regulate gene expression, could help to explain racial differences in breast tumor clinical biology and outcomes. METHODS DNA methylation was evaluated at 1,287 CpGs in the promoters of cancer-related genes in 517 breast tumors of AA (n = 216) or non-AA (n = 301) cases in the Carolina Breast Cancer Study (CBCS). RESULTS Multivariable linear regression analysis of all tumors, controlling for age, menopausal status, stage, intrinsic subtype, and multiple comparisons [false discovery rate (FDR)], identified seven CpG probes that showed significant (adjusted P < 0.05) differential methylation between AAs and non-AAs. Stratified analyses detected an additional four CpG probes differing by race within hormone receptor-negative (HR(-)) tumors. Genes differentially methylated by race included DSC2, KCNK4, GSTM1, AXL, DNAJC15, HBII-52, TUSC3, and TES; the methylation state of several of these genes may be associated with worse survival in AAs. TCGA breast tumor data confirmed the differential methylation by race and negative correlations with expression for most of these genes. Several loci also showed racial differences in methylation in peripheral blood leukocytes (PBL) from CBCS cases, indicating that these variations were not necessarily tumor-specific. CONCLUSIONS Racial differences in the methylation of cancer-related genes are detectable in both tumors and PBLs from breast cancer cases. IMPACT Epigenetic variation could contribute to differences in breast tumor development and outcomes between AAs and non-AAs.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Sharon N Edmiston
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chiu-Kit Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher Bryant
- Department of Biostatistics, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York
| | - Brionna Y Hair
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eloise A Parrish
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan May
- The EMMES Corporation, Rockville, Maryland
| | - Theresa Swift-Scanlan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Dong R, Pu H, Wang Y, Yu J, Lian K, Mao C. TESTIN was commonly hypermethylated and involved in the epithelial-mesenchymal transition of endometrial cancer. APMIS 2015; 123:394-400. [PMID: 25720371 DOI: 10.1111/apm.12361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Ruofan Dong
- Department of Reproductive Center; First Affiliated Hospital of Soochow University; Suzhou Jiangsu Province China
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Hong Pu
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Yuan Wang
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Kuixian Lian
- Department of Obstetrics and Gynecology; Affiliated Hospital of Binzhou Medical College; Binzhou Shandong Province China
| | - Caiping Mao
- Department of Reproductive Center; First Affiliated Hospital of Soochow University; Suzhou Jiangsu Province China
| |
Collapse
|
27
|
Bai Y, Zhang QG, Wang XH. Downregulation of TES by hypermethylation in glioblastoma reduces cell apoptosis and predicts poor clinical outcome. Eur J Med Res 2014; 19:66. [PMID: 25498217 PMCID: PMC4279594 DOI: 10.1186/s40001-014-0066-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/17/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gliomas are the most common human brain tumors. Glioblastoma, also known as glioblastoma multiform (GBM), is the most aggressive, malignant, and lethal glioma. The investigation of prognostic and diagnostic molecular biomarkers in glioma patients to provide direction on clinical practice is urgent. Recent studies demonstrated that abnormal DNA methylation states play a key role in the pathogenesis of this kind of tumor. In this study, we want to identify a novel biomarker related to glioma initiation and find the role of the glioma-related gene. METHODS We performed a methylation-specific microarray on the promoter region to identify methylation gene(s) that may affect outcome of GBM patients. Normal and GBM tissues were collected from Tiantan Hospital. Genomic DNA was extracted from these tissues and analyzed with a DNA promoter methylation microarray. Testis derived transcript (TES) protein expression was analyzed by immunohistochemistry in paraffin-embedded patient tissues. Western blotting was used to detect TES protein expression in the GBM cell line U251 with or without 5-aza-dC treatment. Cell apoptosis was evaluated by flow cytometry analysis using Annexin V/PI staining. RESULTS We found that the TES promoter was hypermethylated in GBM compared to normal brain tissues under DNA promoter methylation microarray analysis. The GBM patients with TES hypermethylation had a short overall survival (P <0.05, log-rank test). Among GBM samples, reduced TES protein level was detected in 33 (89.2%) of 37 tumor tissues by immunohistochemical staining. Down regulation of TES was also correlated with worse patient outcome (P <0.05, log-rank test). Treatment on the GBM cell line U251 with 5-aza-dC can greatly increase TES expression, confirming the hypermethylation of TES promoter in GBM. Up-regulation of TES prompts U251 apoptosis significantly. This study demonstrated that both TES promoter hypermethylation and down-regulated protein expression significantly correlated with worse patient outcome. Treatment on the GBM cell line (U251) with 5-aza-dC can highly release TES expression resulting in significant apoptosis in these cells. CONCLUSIONS Our findings suggest that the TES gene is a novel tumor suppressor gene and might represent a valuable prognostic marker for glioblastoma, indicating a potential target for future GBM therapy.
Collapse
Affiliation(s)
- Yu Bai
- Department of Blood transfusion, The Central Hospital of China Aerospace Corporation, Beijing, 100049, China.
| | - Quan-Geng Zhang
- Department of Immunology, Capital Medical University, Beijing, 100069, China.
| | - Xin-Hua Wang
- Department of Blood transfusion, The Central Hospital of China Aerospace Corporation, Beijing, 100049, China.
| |
Collapse
|
28
|
Yongbin Y, Jinghua L, Zhanxue Z, Aimin Z, Youchao J, Yanhong S, Manjing J. TES was epigenetically silenced and suppressed the epithelial–mesenchymal transition in breast cancer. Tumour Biol 2014; 35:11381-9. [DOI: 10.1007/s13277-014-2472-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
|
29
|
Blanc V, Park E, Schaefer S, Miller M, Lin Y, Kennedy S, Billing AM, Hamidane HB, Graumann J, Mortazavi A, Nadeau JH, Davidson NO. Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol 2014; 15:R79. [PMID: 24946870 PMCID: PMC4197816 DOI: 10.1186/gb-2014-15-6-r79] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RNA editing encompasses a post-transcriptional process in which the genomically templated sequence is enzymatically altered and introduces a modified base into the edited transcript. Mammalian C-to-U RNA editing represents a distinct subtype of base modification, whose prototype is intestinal apolipoprotein B mRNA, mediated by the catalytic deaminase Apobec-1. However, the genome-wide identification, tissue-specificity and functional implications of Apobec-1-mediated C-to-U RNA editing remain incompletely explored. RESULTS Deep sequencing, data filtering and Sanger-sequence validation of intestinal and hepatic RNA from wild-type and Apobec-1-deficient mice revealed 56 novel editing sites in 54 intestinal mRNAs and 22 novel sites in 17 liver mRNAs, all within 3' untranslated regions. Eleven of 17 liver RNAs shared editing sites with intestinal RNAs, while 6 sites are unique to liver. Changes in RNA editing lead to corresponding changes in intestinal mRNA and protein levels for 11 genes. Analysis of RNA editing in vivo following tissue-specific Apobec-1 adenoviral or transgenic Apobec-1 overexpression reveals that a subset of targets identified in wild-type mice are restored in Apobec-1-deficient mouse intestine and liver following Apobec-1 rescue. We find distinctive polysome profiles for several RNA editing targets and demonstrate novel exonic editing sites in nuclear preparations from intestine but not hepatic apolipoprotein B RNA. RNA editing is validated using cell-free extracts from wild-type but not Apobec-1-deficient mice, demonstrating that Apobec-1 is required. CONCLUSIONS These studies define selective, tissue-specific targets of Apobec-1-dependent RNA editing and show the functional consequences of editing are both transcript- and tissue-specific.
Collapse
Affiliation(s)
- Valerie Blanc
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| | - Eddie Park
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Sabine Schaefer
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Melanie Miller
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| | - Yiing Lin
- Departments of Surgery, Washington University St Louis, St Louis, MO 63110, USA
| | - Susan Kennedy
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| | - Anja M Billing
- Proteomics Core, Weill Cornell Medical College in Qatar, Doha, Qatar
| | | | - Johannes Graumann
- Proteomics Core, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Ali Mortazavi
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| |
Collapse
|
30
|
Gu Z, Ding G, Liang K, Zhang H, Guo G, Zhang L, Cui J. TESTIN suppresses tumor growth and invasion via manipulating cell cycle progression in endometrial carcinoma. Med Sci Monit 2014; 20:980-7. [PMID: 24929083 PMCID: PMC4067424 DOI: 10.12659/msm.890544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The TESTIN gene was demonstrated to be a tumor suppressor in prostate and breast cancer through inhibiting tumor growth and invasion. Herein, we aimed to investigate the detailed functions of TESTIN in the highly sexual hormone (estrogen)-dependent malignancy, endometrial carcinoma. MATERIAL AND METHODS TESTIN mRNA and protein expression were measured by qRT-PCR, Western blot and immunohistochemistry. Upregulation of TESTIN was achieved by transfecting the pcDNA3.1-TESTIN plasmids into AN3CA cells. Knockdown of TESTIN was achieved by transfecting the shRNA-TESTIN into Ishikawa cells. MTT assay, colony formation assay, and Transwell assay were used to investigate the effects of TESTIN on cellular proliferation and invasion. The apoptotic status and cell cycle were analyzed using flow cytometry. MMP2 secretion was determined by ELISA assay. The xenograft assay was used to investigate the functions of TESTIN in nude mice. RESULTS Compared to the non-malignant adjacent endometrium, 54% of tumor samples presented downregulation of TESTIN (P<0.001). Loss of TESTIN protein was correlated with advanced tumor stage (P=0.047), high grade (P=0.034), and lymphatic vascular space invasion (P=0.036). In vitro, overexpression of TESTIN suppressed cell proliferation, induced dramatic G1 arrest, and inhibited tumor invasion through blocking the secretion of MMP2. Loss of TESTIN accelerated cellular proliferation, promoted cell cycle progression, and enhanced tumor invasion by increasing the secretion of MMP2. Consistently, TESTIN could significantly delay the growth of xenografts in nude mice. CONCLUSIONS TESTIN was commonly downregulated in human endometrial carcinoma and was associated with poor prognostic markers. Moreover, TESTIN significantly inhibited tumor growth and invasion via arresting cell cycle in in vitro and in vivo experiments. Therefore, we propose that TESTIN might be a prognostic marker and therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Zhenpeng Gu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Guofeng Ding
- Department of Infectious Diseases, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Kuixiang Liang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Hongtao Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Guanghong Guo
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Lili Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Jinxiu Cui
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| |
Collapse
|
31
|
Furukawa D, Chijiwa T, Matsuyama M, Mukai M, Matsuo EI, Nishimura O, Kawai K, Suemizu H, Hiraoka N, Nakagohri T, Yasuda S, Nakamura M. Zinc finger protein 185 is a liver metastasis-associated factor in colon cancer patients. Mol Clin Oncol 2014; 2:709-713. [PMID: 25054034 DOI: 10.3892/mco.2014.298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/25/2014] [Indexed: 01/03/2023] Open
Abstract
LIM domain proteins are involved in several fundamental biological processes, including cell lineage specification, cytoskeleton organization and organ development. Zinc finger protein 185 (ZNF185) is one of the LIM domain proteins considered to be involved in the regulation of cellular differentiation and/or proliferation. However, the detailed functions and properties of ZNF185 in the multistep process of cancer biology have not yet been elucidated. In this study, we analyzed the association between ZNF185 and the clinicopathological characteristics of colon cancer, such as patient age and gender, histological type, lymphatic and venous involvement, T and N status, liver metastasis and stage. ZNF185 protein expression was immunohistochemically analyzed and ZNF185 was detected in the cancer cells of 78 of the 87 colon cancer patients. The correlation between ZNF185 and histological type was significant (P=0.010, G-test). ZNF185 expression was also significantly correlated with liver metastasis (P=0.030, G-test). A multivariate analysis using the Cox proportional hazards model was performed among cause-specific survival rate, ZNF185 expression and clinicopathological characteristics. Histological type, liver metastasis and ZNF185 expression were found to be independent prognostic indicators (P=0.028, P<0.0001 and P=0.036, respectively). Therefore, ZNF185 expression was found to be an independent indicator of liver metastasis and prognosis in patients with colon cancer.
Collapse
Affiliation(s)
- Daisuke Furukawa
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Tsuyoshi Chijiwa
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Masahiro Matsuyama
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masaya Mukai
- Department of Surgery, Tokai University Hachioji Hospital, Hachioji, Tokyo 192-0032, Japan
| | - Ei-Ichi Matsuo
- Global Application Development Center, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Osamu Nishimura
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
| | - Kenji Kawai
- Pathological Analysis Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshio Nakagohri
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Seiei Yasuda
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masato Nakamura
- Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
32
|
Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 2013; 14:14024-63. [PMID: 23880854 PMCID: PMC3742230 DOI: 10.3390/ijms140714024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis.
Collapse
Affiliation(s)
- Aaron Robertson
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1872-256-432; Fax: +44-1872-256-497
| | - James Allen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| | - Robin Laney
- Clinical Oncology, Sunrise Centre, Royal Cornwall Hospital, Truro, Cornwall TR1 3LJ, UK; E-Mail:
| | - Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| |
Collapse
|
33
|
Sarti M, Pinton S, Limoni C, Carbone GM, Pagani O, Cavalli F, Catapano CV. Differential expression of testin and survivin in breast cancer subtypes. Oncol Rep 2013; 30:824-32. [PMID: 23715752 DOI: 10.3892/or.2013.2502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022] Open
Abstract
Testin (TES) is a putative tumour-suppressor gene downregulated in various types of cancers. Survivin is a nodal protein involved in multiple signalling pathways, tumour maintenance and inhibition of apoptosis. Previous studies indicate that TES and survivin can functionally interact and modulate cell death and proliferation in breast cancer cells. The aim of the present study was to investigate the expression and prognostic relevance of TES and survivin in breast cancer subtypes examining a large cohort of breast cancer patients. We determined the expression of TES and survivin by immunohistochemistry (IHC) in tissue samples from 242 breast cancer patients diagnosed between 1981 and 2009. The expression of these proteins was compared with clinical and pathological data. There was a significant association of nuclear survivin overexpression and TES downregulation with triple-negative tumours [P=0.009; univariate odds ratio (OR), 3.20; 95% CI, 1.34-7.66] (P=0.018; multivariate OR, 2.90; 95% CI, 1.20‑6.97). A further significant correlation was observed between TES downregulation and the luminal B subtype (P=0.019, univariate OR: 2.90; 95% CI, 1.19‑7.06) (P=0.032, multivariate OR, 2.67; 95% CI, 1.09-6.65), independent of survivin expression. Our results demonstrated a statistically significant association between TES downregulation and highly aggressive breast tumour subtypes, such as triple-negative and luminal B tumours, along with the prognostic relevance of nuclear expression of survivin. To our knowledge, this is the first demonstration of such an association.
Collapse
Affiliation(s)
- Manuela Sarti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
34
|
Stricker SH, Feber A, Engström PG, Carén H, Kurian KM, Takashima Y, Watts C, Way M, Dirks P, Bertone P, Smith A, Beck S, Pollard SM. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev 2013; 27:654-69. [PMID: 23512659 PMCID: PMC3613612 DOI: 10.1101/gad.212662.112] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/20/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic changes are frequently observed in cancer. However, their role in establishing or sustaining the malignant state has been difficult to determine due to the lack of experimental tools that enable resetting of epigenetic abnormalities. To address this, we applied induced pluripotent stem cell (iPSC) reprogramming techniques to invoke widespread epigenetic resetting of glioblastoma (GBM)-derived neural stem (GNS) cells. GBM iPSCs (GiPSCs) were subsequently redifferentiated to the neural lineage to assess the impact of cancer-specific epigenetic abnormalities on tumorigenicity. GiPSCs and their differentiating derivatives display widespread resetting of common GBM-associated changes, such as DNA hypermethylation of promoter regions of the cell motility regulator TES (testis-derived transcript), the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C; p57KIP2), and many polycomb-repressive complex 2 (PRC2) target genes (e.g., SFRP2). Surprisingly, despite such global epigenetic reconfiguration, GiPSC-derived neural progenitors remained highly malignant upon xenotransplantation. Only when GiPSCs were directed to nonneural cell types did we observe sustained expression of reactivated tumor suppressors and reduced infiltrative behavior. These data suggest that imposing an epigenome associated with an alternative developmental lineage can suppress malignant behavior. However, in the context of the neural lineage, widespread resetting of GBM-associated epigenetic abnormalities is not sufficient to override the cancer genome.
Collapse
Affiliation(s)
- Stefan H. Stricker
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
- Samantha Dickson Brain Cancer Unit
| | - Andrew Feber
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Pär G. Engström
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Helena Carén
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Kathreena M. Kurian
- Department of Neuropathology, Frenchay Hospital, Bristol BS16 1LE, United Kingdom
| | - Yasuhiro Takashima
- Wellcome Trust-Medical Research Council Stem Cell Institute
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Colin Watts
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Michael Way
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Peter Dirks
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Paul Bertone
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute
- Genome Biology Unit
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Stephan Beck
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Steven M. Pollard
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
- Samantha Dickson Brain Cancer Unit
| |
Collapse
|
35
|
Gurzu S, Ciortea D, Ember I, Jung I. The possible role of Mena protein and its splicing-derived variants in embryogenesis, carcinogenesis, and tumor invasion: a systematic review of the literature. BIOMED RESEARCH INTERNATIONAL 2013; 2013:365192. [PMID: 23956979 PMCID: PMC3728509 DOI: 10.1155/2013/365192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/16/2013] [Accepted: 07/02/2013] [Indexed: 02/05/2023]
Abstract
The Ena/VASP (enabled/vasodilator stimulated phosphoprotein) family includes the binding actin proteins such as mammalian Ena (Mena), VASP, and Ena-VASP-like. It is known that the perturbation of actin cycle could determine alteration in the mobility of cells and in consequence of organogenesis. Few recent studies have revealed that Mena protein could play a role in breast or pancreatic carcinogenesis. Based on our researches, we observed that the intensity of Mena expression increased from premalignant to malignant lesions in some organs such as large bowel, stomach, cervix, and salivary glands. These findings prove that Mena could be a marker of premalignant epithelial lesions. In premalignant lesions, it could be helpful to define more accurately the risk for malignant transformation. In malignant tumors, correlation of expression of its splice variants could indicate metastatic behavior. In conclusion, we consider that it is necessary to analyze the expression of Mena splice variants in a higher number of cases, in different epithelial lesions, and also in experimental studies to define its exact role in carcinogenesis and also its possible prognostic and predictive values.
Collapse
Affiliation(s)
- Simona Gurzu
- Department of Pathology, University of Medicine and Pharmacy of Targu-Mures, 38 Ghe Marinescu Street, 540193 Targu Mures, Romania.
| | | | | | | |
Collapse
|
36
|
Han B, Chen XW, Talebizadeh Z, Xu H. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S14. [PMID: 23281790 PMCID: PMC3524021 DOI: 10.1186/1752-0509-6-s3-s14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Detecting epistatic interactions plays a significant role in improving pathogenesis, prevention, diagnosis, and treatment of complex human diseases. Applying machine learning or statistical methods to epistatic interaction detection will encounter some common problems, e.g., very limited number of samples, an extremely high search space, a large number of false positives, and ways to measure the association between disease markers and the phenotype. RESULTS To address the problems of computational methods in epistatic interaction detection, we propose a score-based Bayesian network structure learning method, EpiBN, to detect epistatic interactions. We apply the proposed method to both simulated datasets and three real disease datasets. Experimental results on simulation data show that our method outperforms some other commonly-used methods in terms of power and sample-efficiency, and is especially suitable for detecting epistatic interactions with weak or no marginal effects. Furthermore, our method is scalable to real disease data. CONCLUSIONS We propose a Bayesian network-based method, EpiBN, to detect epistatic interactions. In EpiBN, we develop a new scoring function, which can reflect higher-order epistatic interactions by estimating the model complexity from data, and apply a fast Branch-and-Bound algorithm to learn the structure of a two-layer Bayesian network containing only one target node. To make our method scalable to real data, we propose the use of a Markov chain Monte Carlo (MCMC) method to perform the screening process. Applications of the proposed method to some real GWAS (genome-wide association studies) datasets may provide helpful insights into understanding the genetic basis of Age-related Macular Degeneration, late-onset Alzheimer's disease, and autism.
Collapse
Affiliation(s)
- Bing Han
- Bioinformatics and Computational Life-Sciences Laboratory, ITTC, Department of Electrical Engineering and Computer Science, University of Kansas, 1520 West 15th Street, Lawrence, KS 66045, USA
| | - Xue-wen Chen
- Department of Computer Science Wayne State University Detroit, MI 48202
| | - Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, MO 64108, USA
| | - Hua Xu
- School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston, TX 77030
| |
Collapse
|
37
|
Zhu J, Li X, Kong X, Moran MS, Su P, Haffty BG, Yang Q. Testin is a tumor suppressor and prognostic marker in breast cancer. Cancer Sci 2012; 103:2092-101. [PMID: 22957844 DOI: 10.1111/cas.12020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/23/2012] [Accepted: 09/01/2012] [Indexed: 12/11/2022] Open
Abstract
The testin (TES) gene was previously identified in the fragile chromosomal region FRA7G at 7q31.2. In the present study, we aimed to investigate the candidate tumor suppressor function of TES and explore its correlations to clinicopathologic features and prognosis in breast cancer. In clinical samples, we showed that the expression of TES decreased gradually from normal through ductal hyperplasia without atypia, atypical ductal hyperplasia, and ductal carcinoma in situ, to invasive ductal carcinoma. To explore the possible tumor suppressing function of TES, the expression of TES in breast cancer cells was manipulated by ectopic expression or by RNAi. We revealed that ectopic TES expression significantly inhibited cell proliferation, invasive ability, and angiogenesis, whereas knockdown of TES by RNAi enhanced cell proliferation, invasive ability, and angiogenesis. In an animal model, TES markedly inhibited breast cancer cell xenograft formation in athymic nude mice and reduced breast cancer cell metastasis to lung. Moreover, we revealed that TES inhibited the invasion and angiogenesis of breast cancer partially through miR-29b-mediated MMP-2 inhibition. Using the tissue microarray of breast cancer from Yale University, we found that lower TES expression was an independent prognostic factor for shorter overall survival and disease-free survival with univariate and multivariate analyses. Taken together, these data suggest that TES, as a valuable marker of breast cancer prognosis, plays an important role in the development and progression of breast cancer. TES may be an effective novel target in breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Rounbehler RJ, Fallahi M, Yang C, Steeves MA, Li W, Doherty JR, Schaub FX, Sanduja S, Dixon DA, Blackshear PJ, Cleveland JL. Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 2012; 150:563-74. [PMID: 22863009 DOI: 10.1016/j.cell.2012.06.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 10/10/2011] [Accepted: 06/14/2012] [Indexed: 12/27/2022]
Abstract
Myc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.
Collapse
Affiliation(s)
- Robert J Rounbehler
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
FEPI-MB: identifying SNPs-disease association using a Markov Blanket-based approach. BMC Bioinformatics 2011; 12 Suppl 12:S3. [PMID: 22168374 PMCID: PMC3247084 DOI: 10.1186/1471-2105-12-s12-s3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The interactions among genetic factors related to diseases are called epistasis. With the availability of genotyped data from genome-wide association studies, it is now possible to computationally unravel epistasis related to the susceptibility to common complex human diseases such as asthma, diabetes, and hypertension. However, the difficulties of detecting epistatic interaction arose from the large number of genetic factors and the enormous size of possible combinations of genetic factors. Most computational methods to detect epistatic interactions are predictor-based methods and can not find true causal factor elements. Moreover, they are both time-consuming and sample-consuming. RESULTS We propose a new and fast Markov Blanket-based method, FEPI-MB (Fast EPistatic Interactions detection using Markov Blanket), for epistatic interactions detection. The Markov Blanket is a minimal set of variables that can completely shield the target variable from all other variables. Learning of Markov blankets can be used to detect epistatic interactions by a heuristic search for a minimal set of SNPs, which may cause the disease. Experimental results on both simulated data sets and a real data set demonstrate that FEPI-MB significantly outperforms other existing methods and is capable of finding SNPs that have a strong association with common diseases. CONCLUSIONS FEPI-MB algorithm outperforms other computational methods for detection of epistatic interactions in terms of both the power and sample-efficiency. Moreover, compared to other Markov Blanket learning methods, FEPI-MB is more time-efficient and achieves a better performance.
Collapse
|
40
|
Chang CY, Lin SC, Su WH, Ho CM, Jou YS. Somatic LMCD1 mutations promoted cell migration and tumor metastasis in hepatocellular carcinoma. Oncogene 2011; 31:2640-52. [DOI: 10.1038/onc.2011.440] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Boëda B, Knowles PP, Briggs DC, Murray-Rust J, Soriano E, Garvalov BK, McDonald NQ, Way M. Molecular recognition of the Tes LIM2-3 domains by the actin-related protein Arp7A. J Biol Chem 2011; 286:11543-54. [PMID: 21278383 PMCID: PMC3064208 DOI: 10.1074/jbc.m110.171264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/15/2010] [Indexed: 11/06/2022] Open
Abstract
Actin-related proteins (Arps) are a highly conserved family of proteins that have extensive sequence and structural similarity to actin. All characterized Arps are components of large multimeric complexes associated with chromatin or the cytoskeleton. In addition, the human genome encodes five conserved but largely uncharacterized "orphan" Arps, which appear to be mostly testis-specific. Here we show that Arp7A, which has 43% sequence identity with β-actin, forms a complex with the cytoskeletal proteins Tes and Mena in the subacrosomal layer of round spermatids. The N-terminal 65-residue extension to the actin-like fold of Arp7A interacts directly with Tes. The crystal structure of the 1-65(Arp7A)·LIM2-3(Tes)·EVH1(Mena) complex reveals that residues 28-49 of Arp7A contact the LIM2-3 domains of Tes. Two alanine residues from Arp7A that occupy equivalent apolar pockets in both LIM domains as well as an intervening GPAK linker that binds the LIM2-3 junction are critical for the Arp7A-Tes interaction. Equivalent occupied apolar pockets are also seen in the tandem LIM domain structures of LMO4 and Lhx3 bound to unrelated ligands. Our results indicate that apolar pocket interactions are a common feature of tandem LIM domain interactions, but ligand specificity is principally determined by the linker sequence.
Collapse
Affiliation(s)
- Batiste Boëda
- From the Cell Motility and
- the Cell Polarity and Migration Group, CNRS 2582, Institut Pasteur, 75724 Paris, France, and
| | - Phillip P. Knowles
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - David C. Briggs
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Judith Murray-Rust
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Erika Soriano
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Boyan K. Garvalov
- the Institute of Neuropathology, Justus Liebig University, Aulweg 123, 35392 Giessen, Germany
| | - Neil Q. McDonald
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
- the Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | |
Collapse
|
42
|
Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 2011; 12:983-1008. [PMID: 21541038 PMCID: PMC3083685 DOI: 10.3390/ijms12020983] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/19/2011] [Accepted: 01/28/2011] [Indexed: 02/08/2023] Open
Abstract
The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes.
Collapse
|
43
|
Pang H, Ebisu K, Watanabe E, Sue LY, Tong T. Analysing breast cancer microarrays from African Americans using shrinkage-based discriminant analysis. Hum Genomics 2010; 5:5-16. [PMID: 21106486 PMCID: PMC3042882 DOI: 10.1186/1479-7364-5-1-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer tumours among African Americans are usually more aggressive than those found in Caucasian populations. African-American patients with breast cancer also have higher mortality rates than Caucasian women. A better understanding of the disease aetiology of these breast cancers can help to improve and develop new methods for cancer prevention, diagnosis and treatment. The main goal of this project was to identify genes that help differentiate between oestrogen receptor-positive and -negative samples among a small group of African-American patients with breast cancer. Breast cancer microarrays from one of the largest genomic consortiums were analysed using 13 African-American and 201 Caucasian samples with oestrogen receptor status. We used a shrinkage-based classification method to identify genes that were informative in discriminating between oestrogen receptor-positive and -negative samples. Subset analysis and permutation were performed to obtain a set of genes unique to the African-American population. We identified a set of 156 probe sets, which gave a misclassification rate of 0.16 in distinguishing between oestrogen receptor-positive and -negative patients. The biological relevance of our findings was explored through literature-mining techniques and pathway mapping. An independent dataset was used to validate our findings and we found that the top ten genes mapped onto this dataset gave a misclassification rate of 0.15. The described method allows us best to utilise the information available from small sample size microarray data in the context of ethnic minorities.
Collapse
Affiliation(s)
- Herbert Pang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
44
|
Ma H, Weng D, Chen Y, Huang W, Pan K, Wang H, Sun J, Wang Q, Zhou Z, Wang H, Xia J. Extensive analysis of D7S486 in primary gastric cancer supports TESTIN as a candidate tumor suppressor gene. Mol Cancer 2010; 9:190. [PMID: 20626849 PMCID: PMC2915979 DOI: 10.1186/1476-4598-9-190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High frequency of loss of heterozygosity (LOH) was found at D7S486 in primary gastric cancer (GC). And we found a high frequency of LOH region on 7q31 in primary GC from China, and identified D7S486 to be the most frequent LOH locus. This study was aimed to determine what genes were affected by the LOH and served as tumor suppressor genes (TSGs) in this region. Here, a high-throughput single nucleotide polymorphisms (SNPs) microarray fabricated in-house was used to analyze the LOH status around D7S486 on 7q31 in 75 patients with primary GC. Western blot, immunohistochemistry, and RT-PCR were used to assess the protein and mRNA expression of TESTIN (TES) in 50 and 140 primary GC samples, respectively. MTS assay was used to investigate the effect of TES overexpression on the proliferation of GC cell lines. Mutation and methylation analysis were performed to explore possible mechanisms of TES inactivation in GC. RESULTS LOH analysis discovered five candidate genes (ST7, FOXP2, MDFIC, TES and CAV1) whose frequencies of LOH were higher than 30%. However, only TES showed the potential to be a TSG associated with GC. Among 140 pairs of GC samples, decreased TES mRNA level was found in 96 (68.6%) tumor tissues when compared with matched non-tumor tissues (p < 0.001). Also, reduced TES protein level was detected in 36 (72.0%) of all 50 tumor tissues by Western blot (p = 0.001). In addition, immunohistochemical staining result was in agreement with that of RT-PCR and Western blot. Down regulation of TES was shown to be correlated with tumor differentiation (p = 0.035) and prognosis (p = 0.035, log-rank test). Its overexpression inhibited the growth of three GC cell lines. Hypermethylation of TES promoter was a frequent event in primary GC and GC cell lines. However, no specific gene mutation was observed in the coding region of the TES gene. CONCLUSIONS Collectively, all results support the role of TES as a TSG in gastric carcinogenesis and that TES is inactivated primarily by LOH and CpG island methylation.
Collapse
Affiliation(s)
- Haiqing Ma
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weeks RJ, Kees UR, Song S, Morison IM. Silencing of TESTIN by dense biallelic promoter methylation is the most common molecular event in childhood acute lymphoblastic leukaemia. Mol Cancer 2010; 9:163. [PMID: 20573277 PMCID: PMC3224738 DOI: 10.1186/1476-4598-9-163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aberrant promoter DNA methylation has been reported in childhood acute lymphoblastic leukaemia (ALL) and has the potential to contribute to its onset and outcome. However, few reports demonstrate consistent, prevalent and dense promoter methylation, associated with tumour-specific gene silencing. By screening candidate genes, we have detected frequent and dense methylation of the TESTIN (TES) promoter. RESULTS Bisulfite sequencing showed that 100% of the ALL samples (n = 20) were methylated at the TES promoter, whereas the matched remission (n = 5), normal bone marrow (n = 6) and normal PBL (n = 5) samples were unmethylated. Expression of TES in hyperdiploid, TEL-AML+, BCR-ABL+, and E2A-PBX+ subtypes of B lineage ALL was markedly reduced compared to that in normal bone marrow progenitor cells and in B cells. In addition TES methylation and silencing was demonstrated in nine out of ten independent B ALL propagated as xenografts in NOD/SCID mice. CONCLUSION In total, 93% of B ALL samples (93 of 100) demonstrated methylation with silencing or reduced expression of the TES gene. Thus, TES is the most frequently methylated and silenced gene yet reported in ALL. TES, a LIM domain-containing tumour suppressor gene and component of the focal adhesion complex, is involved in adhesion, motility, cell-to-cell interactions and cell signalling. Our data implicate TES methylation in ALL and provide additional evidence for the involvement of LIM domain proteins in leukaemogenesis.
Collapse
Affiliation(s)
- Robert J Weeks
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | | | | | |
Collapse
|
46
|
Qiu H, Zhu J, Yuan C, Yan S, Yang Q, Kong B. Frequent hypermethylation and loss of heterozygosity of the testis derived transcript gene in ovarian cancer. Cancer Sci 2010; 101:1255-60. [PMID: 20180808 PMCID: PMC11159749 DOI: 10.1111/j.1349-7006.2010.01497.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Testis derived transcript (TES) is a candidate tumor suppressor gene located at the human chromosome 7q31, and its function in ovarian cancer is still unknown. Using ovarian cancer cell lines and tissue samples, we demonstrated that both loss of heterozygosity and hypermethylation of the TES gene occurred in ovarian cancer at high frequencies, and there were significant correlations between TES expression and hypermethylation or loss of heterozygosity. We also detected methylation in ovarian cancer cell line A2780 after treatment with 5-aza-2-deoxycytidine. The expression level of TES was enormously up-regulated, then caused changes to the biological behaviors of A2780 cells: cell growth properties were greatly impaired, colony formatting abilities were suppressed to very low levels, and the apoptosis rate was highly raised compared to the control group. Our findings suggest that the TES gene functions as a tumor suppressor gene and is frequently silenced by hypermethylation and loss of heterozygosity in ovarian cancers.
Collapse
Affiliation(s)
- Haifeng Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
47
|
Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 2010; 12:235-46. [PMID: 20173741 DOI: 10.1038/ncb2023] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/02/2010] [Indexed: 02/07/2023]
Abstract
Silencing of individual genes can occur by genetic and epigenetic processes during carcinogenesis, but the underlying mechanisms remain unclear. By creating an integrated prostate cancer epigenome map using tiling arrays, we show that contiguous regions of gene suppression commonly occur through long-range epigenetic silencing (LRES). We identified 47 LRES regions in prostate cancer, typically spanning about 2 Mb and harbouring approximately 12 genes, with a prevalence of tumour suppressor and miRNA genes. Our data reveal that LRES is associated with regional histone deacetylation combined with subdomains of different epigenetic remodelling patterns, which include re-enforcement, gain or exchange of repressive histone, and DNA methylation marks. The transcriptional and epigenetic state of genes in normal prostate epithelial and human embryonic stem cells can play a critical part in defining the mode of cancer-associated epigenetic remodelling. We propose that consolidation or effective reduction of the cancer genome commonly occurs in domains through a combination of LRES and LOH or genomic deletion, resulting in reduced transcriptional plasticity within these regions.
Collapse
|
48
|
Vanaja DK, Grossmann ME, Cheville JC, Gazi MH, Gong A, Zhang JS, Ajtai K, Burghardt TP, Young CYF. PDLIM4, an actin binding protein, suppresses prostate cancer cell growth. Cancer Invest 2009; 27:264-72. [PMID: 19212833 DOI: 10.1080/07357900802406319] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We investigated the molecular function of PDLIM4 in prostate cancer cells. PDLIM4 mRNA and protein-expression levels were reduced in LNCaP, LAPC4, DU145, CWR22, and PC3 prostate cancer cells. The re-expression of PDLIM4 in prostate cancer cells has significantly reduced the cell growth and clonogenicity with G1 phase of cell-cycle arrest. We have shown the direct interaction of PDLIM4 with F-actin. Restoration of PDLIM4 expression resulted in reduction of tumor growth in xenografts. These results suggest that PDLIM4 may function as a tumor suppressor, involved in the control of cell proliferation by associating with actin in prostate cancer cells.
Collapse
Affiliation(s)
- Donkena Krishna Vanaja
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
DNA hypermethylation, Her-2/neu overexpression and p53 mutations in ovarian carcinoma. Gynecol Oncol 2008; 111:320-9. [PMID: 18757082 DOI: 10.1016/j.ygyno.2008.07.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/16/2008] [Accepted: 07/19/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To define patterns of aberrant DNA methylation, p53 mutation and Her-2/neu overexpression in tissues from benign (n=29), malignant (n=100), and border line malignant ovaries (n=10), as compared to normal (n=68) ovarian tissues. Further, to explore the relationship between the presence of genetic and epigenetic abnormalities in ovarian cancers, and assess the association between epigenetic changes and clinical stage of malignancy at presentation and response to therapy. METHODS The methylation status of 23 genes that were previously reported associated with various epithelial malignancies was assessed in normal and abnormal ovarian tissues by methylation-specific PCR. The presence of p53 mutation (n=82 cases) and Her-2/neu overexpression (n=51 cases) were assessed by DNA sequencing and immunohistochemistry, respectively. RESULTS Methylation of four genes (MINT31, HIC1, RASSF1, and CABIN1) was significantly associated with ovarian cancer but not other ovarian pathology. Her-2/neu overexpression was associated with aberrant methylation of three genes (MINT31, RASSF1, and CDH13), although aberrant methylation was not associated with p53 mutations. Methylation of RASSF1 and HIC1 was more frequent in early compared to late stage ovarian cancer, while methylation of CABIN1 and RASSF1 was associated with response to chemotherapy. CONCLUSION DNA methylation of tumor suppressor genes is a frequent event in ovarian cancer, and in some cases is associated with Her-2/neu overexpression. Methylation of CABIN1 and RASSF1 may have the utility to predict response to therapy.
Collapse
|
50
|
LIM domain protein TES changes its conformational states in different cellular compartments. Mol Cell Biochem 2008; 320:85-92. [PMID: 18696217 DOI: 10.1007/s11010-008-9901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 07/25/2008] [Indexed: 01/14/2023]
Abstract
The human TESTIN (TES) is a putative tumor suppressor and localizes to the cytoplasm as a component of focal adhesions and cell contacts. TES contains a PET domain in the NH(2)-terminus and three tandem LIM domains in the COOH-terminus. It has been hypothesized that interactions between two termini of TES might lead to a "closed" conformational state of the protein. Here, we provide evidence for different conformational states of TES. We confirmed that the NH(2)-terminus of TES can interact with its third LIM domain in the COOH-terminus by GST pull-down assays. In addition, antisera against the full-length or two truncations of TES were prepared to examine the relationship between the conformation and cellular distribution of the protein. We found that these antisera recognize different regions of TES and showed that TES is co-localised with the marker protein B23 in nucleolus, in addition to its localization in endoplasmic reticulum (ER). Furthermore, our co-immunoprecipitation (co-IP) analysis of TES and B23 demonstrated their co-existence in the same complex. Taken together, our results suggest that TES has different conformational states in different cellular compartments, and a "closed" conformational state of TES may be involved in nucleolar localization.
Collapse
|