1
|
Establishment of reporter cells that respond to glucocorticoids by a transposon-mediated promoter-trapping system. Eur J Pharm Sci 2021; 162:105819. [PMID: 33775826 DOI: 10.1016/j.ejps.2021.105819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
Previously, we had established a highly sensitive trap vector system for the efficient isolation of reporter cells for a certain condition of interest. In this study, we used this system to screen reporter cells that express the luciferase and enhanced green fluorescent protein genes in response to dexamethasone, a glucocorticoid receptor agonist to facilitate glucocorticoid signaling research. In total, 10 clones were isolated. The insertion sites of the trap vector were analyzed using 5' rapid amplification of cDNA ends (5' RACE), whereupon LPIN1, PKP2, and FKBP5 were identified as genes that were upregulated by the dexamethasone treatment. Specifically, PKP2 has not previously been focused as a gene that responds to glucocorticoids. The PKP2 mRNA was analyzed and induction of the endogenous gene was confirmed by real-time polymerase chain reaction. Given that PKP2 does not appear to have a consensus glucocorticoid response element (GRE) sequence, this reporter clone could supplement the current GRE-based reporter systems that are prevalently used. Because different clones showed different responses to glucocorticoids, these clones should provide more information than analysis with a single reporter clone. This paper demonstrates that the previously developed trap vector technology can contribute to the rapid construction of drug evaluation systems.
Collapse
|
2
|
Kleinesudeik L, Rohde K, Fulda S. Regulation of the antiapoptotic protein cFLIP by the glucocorticoid Dexamethasone in ALL cells. Oncotarget 2018; 9:16521-16532. [PMID: 29662664 PMCID: PMC5893259 DOI: 10.18632/oncotarget.24782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/26/2018] [Indexed: 01/04/2023] Open
Abstract
We recently reported that the Smac mimetic BV6 and glucocorticoids, e.g. Dexamethasone (Dexa), synergize to induce cell death in acute lymphoblastic leukemia (ALL) in vitro and in vivo. Here, we discover that this synergism involves Dexa-stimulated downregulation of cellular FLICE-like inhibitory protein (cFLIP) in ALL cells. Dexa rapidly decreases cFLIPL protein levels, which is further enhanced by addition of BV6. While attenuating the activation of non-canonical nuclear factor-kappaB (NF-κB) signaling by BV6, Dexa suppresses cFLIPL protein but not mRNA levels pointing to a transcription-independent downregulation of cFLIPL by Dexa. Analysis of protein degradation pathways indicates that Dexa causes cFLIPL depletion independently of proteasomal, lysosomal or caspase pathways, as inhibitors of the proteasome, lysosomal enzymes or caspases all failed to protect from Dexa-mediated loss of cFLIPL protein. Also, Dexa alone or in combination with BV6 does not affect overall activity of the proteasome. Importantly, overexpression of cFLIPL to an extent that is no longer subject to Dexa-imposed downregulation rescues Dexa/BV6-mediated cell death. Vice versa, knockdown of cFLIP increases BV6-mediated cell death, thus mimicking the effect of Dexa. Altogether, these data demonstrate that Dexa-mediated downregulation of cFLIPL protein promotes Dexa/BV6-mediated cell death, thereby providing novel insights into the synergistic antitumor activity of this combination treatment.
Collapse
Affiliation(s)
- Lara Kleinesudeik
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner site Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Rohde
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner site Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Chen P, Shen T, Wang H, Ke Z, Liang Y, Ouyang J, Jiang T. MicroRNA-185-5p restores glucocorticoid sensitivity by suppressing the mammalian target of rapamycin complex (mTORC) signaling pathway to enhance glucocorticoid receptor autoregulation. Leuk Lymphoma 2017; 58:1-11. [PMID: 28278709 DOI: 10.1080/10428194.2017.1296143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overexpression of microRNA-185-5p (miR-185-5p) in glucocorticoid (GC)-sensitive acute lymphoblastic leukemia (ALL) was identified using a microarray and reverse transcription polymerase chain reaction and was further confirmed in ALL cell lines. A reporter assay confirmed that the Rictor-one component of mammalian target of rapamycin complex 2 (mTORC2) is a target of miR-185-5p. Decreased mTORC activity was also confirmed in GC-sensitive patients. Overexpression of miR-185-5p significantly enhanced GC sensitivity in CEM-C1 cells (GC resistance) by increasing the rate of cell apoptosis and cycle arrest, and decreasing cell survival, accompanied by a decrease in mTORC activity and an increase in GC-induced glucocorticoid receptor (GR) expression. Rapamycin, an mTORC1 inhibitor, showed similar effects to miR-185-5p. These results demonstrated that miR-185-5p enhances GC sensitivity via suppression of mTORC activity by enhancing GR autoupregulation and that miR-185-5p is a potential target for the diagnosis and reversion of GC resistance.
Collapse
Affiliation(s)
- Peisong Chen
- a Department of Laboratory Medicine , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Ting Shen
- a Department of Laboratory Medicine , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Huimin Wang
- a Department of Laboratory Medicine , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Zhiyong Ke
- b Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Yaru Liang
- a Department of Laboratory Medicine , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Juan Ouyang
- a Department of Laboratory Medicine , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Tang Jiang
- a Department of Laboratory Medicine , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| |
Collapse
|
4
|
Kullmann MK, Grubbauer C, Goetsch K, Jäkel H, Podmirseg SR, Trockenbacher A, Ploner C, Cato ACB, Weiss C, Kofler R, Hengst L. The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells. Cell Cycle 2013; 12:2625-35. [PMID: 23907123 PMCID: PMC3865052 DOI: 10.4161/cc.25622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid therapy is an important treatment modality of hematological malignancies, especially T-cell acute lymphoblastic leukemia (T-ALL). Glucocorticoids are known to induce a cell cycle arrest and apoptosis in T-lymphoma cells. We could demonstrate that the cell cycle arrest induced by the synthetic glucocorticoid dexamethasone (Dex) clearly precedes apoptosis in human CEM T-ALL and murine S49.1 T-lymphoma cells. Cyclin D3 is strongly downregulated, whereas the CDK inhibitor p27Kip1 (p27) is strongly upregulated in response to dexamethasone in these cells. RNAi-mediated knockdown of p27 as well as overexpression of its negative regulator Skp2 revealed the critical function of p27 in the Dex-induced G1 arrest of CEM cells. Our studies indicate that several mechanisms contribute to the increase of p27 protein in our T-lymphoma cell lines. We found a significant upregulation of p27 mRNA in S49.1 and CEM cells. In addition, Dex treatment activated the mouse p27 promotor in reporter gene experiments, indicating a transcriptional regulation. However, the relatively moderate induction of p27 mRNA levels by Dex did not explain the strong increase of p27 protein in CEM and S49.1 cells. We found clear evidence for a posttranslational mechanism responsible for the robust increase in p27 protein. Dex treatment of S49.1 and CEM cells increases the half-life of p27 protein, which indicates that decreased protein degradation is the primary mechanism of p27 induction by glucocorticoids. Interestingly, we found that Dex treatment decreased the protein and mRNA levels of the negative regulator of p27 protein and E3 ubiquitin ligase subunit Skp2. We conclude that the cell cycle inhibitor p27 and its negative regulator Skp2 are key players in the glucocorticoid-induced growth suppression of T-lymphoma cells and should be considered as potential drug targets to improve therapies of T-cell malignancies.
Collapse
Affiliation(s)
- Michael K Kullmann
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes. Cell Death Dis 2013; 4:e453. [PMID: 23303127 PMCID: PMC3563981 DOI: 10.1038/cddis.2012.193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids.
Collapse
|
6
|
Zhao Y, Wang H, Gustafsson M, Muraro A, Bruhn S, Benson M. Combined multivariate and pathway analyses show that allergen-induced gene expression changes in CD4+ T cells are reversed by glucocorticoids. PLoS One 2012; 7:e39016. [PMID: 22701743 PMCID: PMC3373548 DOI: 10.1371/journal.pone.0039016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/15/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs) play a key role in the treatment of allergy. However, the genome-wide effects of GCs on gene expression in allergen-challenged CD4(+) T cells have not been described. The aim of this study was to perform a genome-wide analysis to investigate whether allergen-induced gene expression changes in CD4(+) T cells could be reversed by GCs. METHODOLOGY/PRINCIPAL FINDINGS Gene expression microarray analysis was performed to profile gene expression in diluent- (D), allergen- (A), and allergen + hydrocortisone- (T) challenged CD4(+) T cells from patients with seasonal allergic rhinitis. Principal component analysis (PCA) showed good separation of the three groups. To identify the correlation between changes in gene expression in allergen-challenged CD4(+) T cells before and after GC treatment, we performed orthogonal partial least squares discriminant analysis (OPLS-DA) followed by Pearson correlation analysis. This revealed that allergen-induced genes were widely reversed by GC treatment (r = -0.77, P<0.0001). We extracted 547 genes reversed by GC treatment from OPLS-DA models based on their high contribution to the discrimination and found that those genes belonged to several different inflammatory pathways including TNFR2 Signalling, Interferon Signalling, Glucocorticoid Receptor Signalling and T Helper Cell Differentiation. The results were supported by gene expression microarray analyses of two independent materials. CONCLUSIONS/SIGNIFICANCE Allergen-induced gene expression changes in CD4(+) T cells were reversed by treatment with glucocorticoids. The top allergen-induced genes that reversed by GC treatment belonged to several inflammatory pathways and genes of known or potential relevance for allergy.
Collapse
Affiliation(s)
- Yelin Zhao
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Hui Wang
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Mika Gustafsson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Antonella Muraro
- Department of Pediatrics, Center for Food Allergy Diagnosis and Treatment, Veneto Region, University of Padua, Padua, Italy
| | - Sören Bruhn
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
7
|
Harada M, Pokrovskaja-Tamm K, Söderhäll S, Heyman M, Grander D, Corcoran M. Involvement of miR17 pathway in glucocorticoid-induced cell death in pediatric acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53:2041-50. [PMID: 22475310 DOI: 10.3109/10428194.2012.678004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Analysis of the microRNA transcriptome following dexa- methasone treatment of the acute lymphocytic leukemia (ALL) cell line RS4;11 showed a global down-regulation of microRNA levels. MIR17HG was rapidly down-regulated following treatment, with chromatin immunoprecipitation (ChIP) analysis demonstrating the promoter to be a direct target of glucocorticoid (GC)-transcriptional repression and revealing the miR17-92 cluster as a prime target for dexamethasone-induced repression. The loss of miR17 family expression and concomitant increases in the miR17 target Bim occurred in an additional ALL cell line SUP-B15 but not in the dexamethasone-resistant REH. Alteration of miR17 levels through up-regulation or inhibition resulted in an decrease and increase, respectively, in Bim protein levels and dexamethasone-induced cell death. Primary ex vivo ALL cells that underwent apoptosis induced by dexamethasone also down-regulated miR17 levels. Thus, down-regulation of miR17 plays an important role in glucocorticoid-induced cell death suggesting that targeting miR17 may improve the current ALL combination therapy.
Collapse
Affiliation(s)
- Masako Harada
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Bhadri VA, Cowley MJ, Kaplan W, Trahair TN, Lock RB. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia. BMC Genomics 2011; 12:565. [PMID: 22093874 PMCID: PMC3228854 DOI: 10.1186/1471-2164-12-565] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to investigate clinically-relevant mechanisms of drug-induced gene regulation in ALL; the 8 hour timepoint provides the highest number of significantly differentially expressed genes; time-matched controls are redundant and excellent recovery scores can be obtained with 3 replicates.
Collapse
Affiliation(s)
- Vivek A Bhadri
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia
| | | | | | | | | |
Collapse
|
9
|
Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Finkel TH, Matsuyama S, Distelhorst CW. Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem 2011; 286:30181-9. [PMID: 21733849 DOI: 10.1074/jbc.m111.245423] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glucocorticoid hormones, including dexamethasone, induce apoptosis in lymphocytes and consequently are used clinically as chemotherapeutic agents in many hematologic malignancies. Dexamethasone also induces autophagy in lymphocytes, although the mechanism is not fully elucidated. Through gene expression analysis, we found that dexamethasone induces the expression of a gene encoding a stress response protein variously referred to as Dig2, RTP801, or REDD1. This protein is reported to inhibit mammalian target of rapamycin (mTOR) signaling. Because autophagy is one outcome of mTOR inhibition, we investigated the hypothesis that Dig2/RTP801/REDD1 elevation contributes to autophagy induction in dexamethasone-treated lymphocytes. In support of this hypothesis, RNAi-mediated suppression of Dig2/RTP801/REDD1 reduces mTOR inhibition and autophagy in glucocorticoid-treated lymphocytes. We observed similar results in Dig2/Rtp801/Redd1 knock-out murine thymocytes treated with dexamethasone. Dig2/RTP801/REDD1 knockdown also leads to increased levels of dexamethasone-induced cell death, suggesting that Dig2/RTP801/REDD1-mediated autophagy promotes cell survival. Collectively, these findings demonstrate for the first time that elevation of Dig2/RTP801/REDD1 contributes to the induction of autophagy.
Collapse
Affiliation(s)
- Jason K Molitoris
- Department of Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Establishing a sensitive and specific assay for determination of glucocorticoid bioactivity. Wien Klin Wochenschr 2011; 123:222-9. [PMID: 21465082 DOI: 10.1007/s00508-011-1562-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
Glucocorticoids are hormones that play a major role in energy homeostasis and stress response of the body. As drugs they are most frequently used for immunosuppressive and anti-inflammatory purposes. Glucocorticoids are exploited successfully in the treatment of a wide variety of diseases; however, some patients develop side-effects, while others fail to respond to this form of therapy. Alterations in pharmacodynamic and pharmacokinetic actions might contribute to individual differences in glucocorticoid sensitivity. Antibody-based methods such as RIA (Radioimmunoassay) and ELISA (Enzyme-linked immunosorbent assay) are routinely used to determine glucocorticoid serum levels. However, as these techniques measure the total amount of a specific glucocorticoid and do not discriminate between protein-bound and freely available (i.e. biologically active) glucocorticoids, the results do not necessarily reflect the active levels of glucocorticoid, i.e. the "glucocorticoid milieu" in a patient. Being able to determine glucocorticoid bioactivity in serum or other body fluids could help identifying glucocorticoid-sensitive or -resistant patients and help finding explanations for different responses in individual patients. For this reason, we established a glucocorticoid bioactivity assay that is based on the measurement of glucocorticoid-dependent reporter gene activity. Making use of a human T-cell leukemia line, equipped with the glucocorticoid receptor and the fluorescence protein Venus as the assay's reporter (Jurkat(GR)-MMTV-VNP), glucocorticoid bioactivity can be determined from small amounts of serum or other biologic fluids. The developed glucocorticoid bioassay is both sensitive and reproducible, without any relevant cross-reactivity with steroid hormones other than glucocorticoids and can be practically applied in daily laboratory routine.
Collapse
|
11
|
Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther 2009; 125:286-327. [PMID: 19932713 DOI: 10.1016/j.pharmthera.2009.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are widely used to treat various inflammatory lung diseases. Acting via the glucocorticoid receptor (GR), they exert clinical effects predominantly by modulating gene transcription. This may be to either induce (transactivate) or repress (transrepress) gene transcription. However, certain individuals, including those who smoke, have certain asthma phenotypes, chronic obstructive pulmonary disease (COPD) or some interstitial diseases may respond poorly to the beneficial effects of glucocorticoids. In these cases, high dose, often oral or parental, glucocorticoids are typically prescribed. This generally leads to adverse effects that compromise clinical utility. There is, therefore, a need to enhance the clinical efficacy of glucocorticoids while minimizing adverse effects. In this context, a long-acting beta(2)-adrenoceptor agonist (LABA) can enhance the clinical efficacy of an inhaled corticosteroid (ICS) in asthma and COPD. Furthermore, LABAs can augment glucocorticoid-dependent gene expression and this action may account for some of the benefits of LABA/ICS combination therapies when compared to ICS given as a monotherapy. In addition to metabolic genes and other adverse effects that are induced by glucocorticoids, there are many other glucocorticoid-inducible genes that have significant anti-inflammatory potential. We therefore advocate a move away from the search for ligands of GR that dissociate transactivation from transrepression. Instead, we submit that ligands should be functionally screened by virtue of their ability to induce or repress biologically-relevant genes in target tissues. In this review, we discuss pharmacological methods by which selective GR modulators and "add-on" therapies may be exploited to improve the clinical efficacy of glucocorticoids while reducing potential adverse effects.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
12
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
13
|
Davis MC, McColl KS, Zhong F, Wang Z, Malone MH, Distelhorst CW. Dexamethasone-induced inositol 1,4,5-trisphosphate receptor elevation in murine lymphoma cells is not required for dexamethasone-mediated calcium elevation and apoptosis. J Biol Chem 2008; 283:10357-65. [PMID: 18272518 DOI: 10.1074/jbc.m800269200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucocorticosteroid hormones, including dexamethasone, have diverse effects on immature lymphocyte function that ultimately lead to cell death. Previous studies established that glucocorticoid-induced alterations in intracellular calcium homeostasis promote apoptosis, but the mechanism by which glucocorticoids disrupt calcium homeostasis is unknown. Through gene expression array analysis, we found that dexamethasone induces a striking elevation of inositol 1,4,5-trisphosphate receptor (IP(3)R) levels in two murine lymphoma cell lines, WEHI7.2 and S49.A2. IP(3)R elevation was confirmed at both mRNA and protein levels. However, there was not a strong correlation between IP(3)R elevation and altered calcium homeostasis in terms of either kinetics or dose response. Moreover, IP(3)R knockdown, by either antisense or small interfering RNA, did not prevent either calcium disruption or apoptosis. Finally, DT40 lymphoma cells lacking all three IP(3)R isoforms were just as sensitive to dexamethasone-induced apoptosis as wild-type DT40 cells expressing all three IP(3)R isoforms. Thus, although alterations in intracellular calcium homeostasis contribute to glucocorticoid-induced apoptosis, these calcium alterations are not directly attributable to IP(3)R elevation.
Collapse
Affiliation(s)
- Michael C Davis
- Division of Hematology/Oncology, Departments of Medicine and Pharmacology, Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
14
|
Miller AL, Komak S, Webb MS, Leiter EH, Thompson EB. Gene expression profiling of leukemic cells and primary thymocytes predicts a signature for apoptotic sensitivity to glucocorticoids. Cancer Cell Int 2007; 7:18. [PMID: 18045478 PMCID: PMC2228275 DOI: 10.1186/1475-2867-7-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 11/28/2007] [Indexed: 01/26/2023] Open
Abstract
Background Glucocorticoids (GC's) play an integral role in treatment strategies designed to combat various forms of hematological malignancies. GCs also are powerful inhibitors of the immune system, through regulation of appropriate cytokines and by causing apoptosis of immature thymocytes. By activating the glucocorticoid receptor (GR), GCs evoke apoptosis through transcriptional regulation of a complex, interactive gene network over a period of time preceding activation of the apoptotic enzymes. In this study we used microarray technology to determine whether several disparate types of hematologic cells, all sensitive to GC-evoked apoptosis, would identify a common set of regulated genes. We compared gene expression signatures after treatment with two potent synthetic GCs, dexamethasone (Dex) and cortivazol (CVZ) using a panel of hematologic cells. Pediatric CD4+/CD8+ T-cell leukemia was represented by 3 CEM clones: two sensitive, CEM-C7–14 and CEM-C1–6, and one resistant, CEM-C1–15, to Dex. CEM-C1–15 was also tested when rendered GC-sensitive by several treatments. GC-sensitive pediatric B-cell leukemia was represented by the SUP-B15 line and adult B-cell leukemia by RS4;11 cells. Kasumi-1 cells gave an example of the rare Dex-sensitive acute myeloblastic leukemia (AML). To test the generality of the correlations in malignant cell gene sets, we compared with GC effects on mouse non-transformed thymocytes. Results We identified a set of genes regulated by GCs in all GC-sensitive malignant cells. A portion of these were also regulated in the thymocytes. Because we knew that the highly Dex-resistant CEM-C1–15 cells could be killed by CVZ, we tested these cells with the latter steroid and again found that many of the same genes were now regulated as in the inherently GC-sensitive cells. The same result was obtained when we converted the Dex-resistant clone to Dex-sensitive by treatment with forskolin (FSK), to activate the adenyl cyclase/protein kinase A pathway (PKA). Conclusion Our results have identified small sets of genes that correlate with GC-sensitivity in cells from several hematologic malignancies. Some of these are also regulated in normal mouse thymocytes.
Collapse
Affiliation(s)
- Aaron L Miller
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | | | |
Collapse
|
15
|
Rhein P, Scheid S, Ratei R, Hagemeier C, Seeger K, Kirschner-Schwabe R, Moericke A, Schrappe M, Spang R, Ludwig WD, Karawajew L. Gene expression shift towards normal B cells, decreased proliferative capacity and distinct surface receptors characterize leukemic blasts persisting during induction therapy in childhood acute lymphoblastic leukemia. Leukemia 2007; 21:897-905. [PMID: 17330098 DOI: 10.1038/sj.leu.2404613] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/22/2006] [Accepted: 01/15/2007] [Indexed: 02/07/2023]
Abstract
In childhood acute lymphoblastic leukemia (ALL), persistence of leukemic blasts during therapy is of crucial prognostic significance. In the present study, we address molecular and cell biologic features of blasts persisting after 1 week of induction glucocorticoid therapy. Genome-wide gene expression analysis of leukemic samples from precursor B-cell ALL patients (n=18) identified a set of genes differentially expressed in blasts at diagnosis day 0 (d0) and persisting on day 8 (d8). Expression changes indicate a shift towards mature B cells, inhibition of cell cycling and increased expression of adhesion (CD11b/ITGAM) and cytokine (CD119/IFNGR1) receptors. A direct comparison with normal B cells, which are largely therapy resistant, confirmed the differentiation shift at the mRNA (n=10) and protein (n=109) levels. Flow cytometric analysis in independent cohorts of patients confirmed both a decreased proliferative activity (n=13) and the upregulation of CD11b and CD119 (n=29) in d8 blasts. The differentiation shift and low proliferative activity in d8 blasts may account for the persistence of blasts during therapy and affect their sensitivity to further therapeutic treatment. CD11b and CD119 are potential specific markers for d8 blast persistence and detection of minimal residual disease, which warrant further investigation.
Collapse
Affiliation(s)
- P Rhein
- Department of Hematology, Oncology, and Tumor Immunology, Robert-Rossle-Clinic at the HELIOS Klinikum Berlin-Buch, Charité Medical School, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tissing WJE, den Boer ML, Meijerink JPP, Menezes RX, Swagemakers S, van der Spek PJ, Sallan SE, Armstrong SA, Pieters R. Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood 2007; 109:3929-35. [PMID: 17218380 DOI: 10.1182/blood-2006-11-056366] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids are keystone drugs in the treatment of childhood acute lymphoblastic leukemia (ALL). To get more insight in signal transduction pathways involved in glucocorticoid-induced apoptosis, Affymetrix U133A GeneChips were used to identify transcriptionally regulated genes on 3 and 8 hours of prednisolone exposure in leukemic cells of 13 children as compared with nonexposed cells. Following 3 hours of exposure no significant changes in gene expression could be identified. Following 8 hours of exposure, 51 genes were differentially expressed (P < .001 and false discovery rate < 10%) with 39 genes being up-regulated (median, 2.4-fold) and 12 genes were down-regulated (median, 1.7-fold). Twenty-one of those genes have not been identified before to be transcriptionally regulated by prednisolone. Two of the 3 most highly up-regulated genes were tumor suppressor genes, that is, thioredoxin-interacting protein (TXNIP; 3.7-fold) and zinc finger and BTB domain containing 16 (ZBTB16; 8.8-fold). About 50% of the differentially expressed genes were functionally categorized in 3 major routes, namely MAPK pathways (9 genes), NF-kappaB signaling (11 genes), and carbohydrate metabolism (5 genes). Biologic characterization of these genes and pathways might elucidate the action of glucocorticoids in ALL cells, possibly suggesting causes of glucocorticoid resistance and new potential targets for therapy.
Collapse
Affiliation(s)
- Wim J E Tissing
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia Children's Hospital, Dr Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Turner JD, Schote AB, Macedo JA, Pelascini LPL, Muller CP. Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol 2006; 72:1529-37. [PMID: 16930562 DOI: 10.1016/j.bcp.2006.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/04/2006] [Accepted: 07/11/2006] [Indexed: 01/28/2023]
Abstract
The CpG island upstream of the GR is highly structured and conserved at least in all the animal species that have been investigated. Sequence alignment of these CpG islands shows inter-species homology ranging from 64 to 99%. This 3.1kb CpG rich region upstream of the GR exon 2 encodes 5' untranslated mRNA regions. These CpG rich regions are organised into multiple first exons and, as we and others have postulated, each with its own promoter region. Alternative mRNA transcript variants are obtained by the splicing of these alternative first exons to a common acceptor site in the second exon of the GR. Exon 2 contains an in-frame stop codon immediately upstream of the ATG start codon to ensure that this 5' heterogeneity remains untranslated, and that the sequence and structure of the GR is unaffected. Tissue specific differential usage of exon 1s has been observed in a range of human tissues, and to a lesser extent in the rat and mouse. The GR expression level is tightly controlled within each tissue or cell type at baseline and upon stimulation. We suggest that no single promoter region may be capable of containing all the necessary promoter elements and yet preserve the necessary proximity to the transcription initiation site to produce such a plethora of responses. Thus we further suggest that alternative first exons each under the control of specific transcription factors control both the tissue specific GR expression and are involved in the tissue specific GR transcriptional response to stimulation. Spreading the necessary promoter elements over multiple promoter regions, each with an associated alternative transcription initiation site would appear to vastly increase the capacity for transcriptional control of GR.
Collapse
Affiliation(s)
- Jonathan D Turner
- Institute of Immunology, Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Grand Duchy of Luxembourg
| | | | | | | | | |
Collapse
|
18
|
Tissing WJE, Meijerink JPP, Brinkhof B, Broekhuis MJC, Menezes RX, den Boer ML, Pieters R. Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood 2006; 108:1045-9. [PMID: 16574952 DOI: 10.1182/blood-2006-01-0261] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGlucocorticoid (GC) resistance is an adverse prognostic factor in childhood acute lymphoblastic leukemia (ALL), but little is known about causes of GC resistance. Up-regulation of the glucocorticoid receptor (GR) has been suggested as an essential step to the induction of apoptosis in leukemic cells. In this study we investigated whether baseline mRNA expression levels of the 5 different GR promoter transcripts (1A1, 1A2, 1A3, 1B, and 1C) or differences in the degree of regulation of the GR or GR promoter transcripts upon GC exposure are related to GC resistance. Therefore, mRNA levels of the 5 GR promoter transcripts and of the GR were measured by quantitative real-time reverse transcriptase–polymerase chain reaction (RT-PCR; Taqman) technology in primary ALL cells prior to and after 3, 8, and 24 hours of prednisolone exposure. GR expression is induced upon GC exposure in primary ALL patient samples, which is opposite to what is found in tissues in which GCs do not induce apoptosis. GC resistance in childhood ALL cannot be attributed to an inability of resistant cells to up-regulate the expression of the GR upon GC exposure, nor to differences in GR promoter usage (at baseline and upon GC exposure).
Collapse
Affiliation(s)
- Wim J E Tissing
- Department of Pediatric Oncology/Hematology, Erasmus MC, Sophia Children's Hospital, University Medical Center Rotterdam, Dr Molewaterplein 60, 3015 GJ Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Lu NZ, Cidlowski JA. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol 2006; 16:301-7. [PMID: 16697199 DOI: 10.1016/j.tcb.2006.04.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 03/06/2006] [Accepted: 04/13/2006] [Indexed: 12/21/2022]
Abstract
Glucocorticoids are necessary for life and are essential in all aspects of health and disease as they regulate processes from mitosis to apoptosis, from metabolism to growth and development. However, responses to glucocorticoids vary among individuals, cells and tissues. Recent evidence indicates that multiple glucocorticoid receptor (GR) isoforms are generated from one single GR gene by alternative splicing and alternative translation initiation. These isoforms all have unique tissue distribution patterns and transcriptional regulatory profiles. Furthermore, each is subject to various post-translational modifications that affect receptor function. Thus, increasing evidence suggests that unique GR isoform compositions within cells could determine the cell-specific response to glucocorticoids. Here, we discuss a new molecular model potentially underlying tissue-specific glucocorticoid resistance and selectivity.
Collapse
Affiliation(s)
- Nick Z Lu
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
20
|
Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmüller C, Presul E, Skvortsov S, Crazzolara R, Fiegl M, Raivio T, Jänne OA, Geley S, Meister B, Kofler R. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 2005; 107:2061-9. [PMID: 16293608 DOI: 10.1182/blood-2005-07-2853] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability of glucocorticoids (GCs) to kill lymphoid cells led to their inclusion in essentially all chemotherapy protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (ALL). GCs mediate apoptosis via their cognate receptor and subsequent alterations in gene expression. Previous investigations, including expression profiling studies with subgenome microarrays in model systems, have led to a number of attractive, but conflicting, hypotheses that have never been tested in a clinical setting. Here, we present a comparative whole-genome expression profiling approach using lymphoblasts (purified at 3 time points) from 13 GC-sensitive children undergoing therapy for ALL. For comparisons, expression profiles were generated from an adult patient with ALL, peripheral blood lymphocytes from GC-exposed healthy donors, GC-sensitive and -resistant ALL cell lines, and mouse thymocytes treated with GCs in vivo and in vitro. This generated an essentially complete list of GC-regulated candidate genes in clinical settings and experimental systems, allowing immediate analysis of any gene for its potential significance to GC-induced apoptosis. Our analysis argued against most of the model-based hypotheses and instead identified a small number of novel candidate genes, including PFKFB2, a key regulator of glucose metabolism; ZBTB16, a putative transcription factor; and SNF1LK, a protein kinase implicated in cell-cycle regulation.
Collapse
Affiliation(s)
- Stefan Schmidt
- Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Erlacher M, Knoflach M, Stec IEM, Böck G, Wick G, Wiegers GJ. TCR signaling inhibits glucocorticoid-induced apoptosis in murine thymocytes depending on the stage of development. Eur J Immunol 2005; 35:3287-96. [PMID: 16224812 DOI: 10.1002/eji.200526279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signaling by either the TCR or glucocorticoid receptor (GR) induces apoptosis in thymocytes. Interestingly, it has been shown previously that hybridoma T cells escape apoptosis induced by either TCR or GR when both of these receptors signal simultaneously. Whether such mutual antagonism is present in primary thymocytes was the subject of the present study. Both glucocorticoids (GC) and anti-TCR/CD28 (or anti-CD3/CD28) mAb induced apoptosis in total thymocytes. When these signals were present at the same time, GC-induced apoptosis was partially inhibited by TCR/CD3 signaling. Costimulation by anti-CD28 enhanced the inhibitory effects of anti-CD3 on GC-induced apoptosis about 30-fold. However, subset analysis revealed that most cells rescued from GC-induced apoptosis were mature CD4+ and CD8+ thymocytes, and these cells were resistant to TCR/CD3-induced apoptosis in the absence of GC. Similar results were obtained with mature splenic CD4+ and CD8+ T cells. TCR/CD3 signaling alone, while inducing apoptosis in CD4+(CD8+)TCRlow thymocytes, rescued a small subset of CD4+(CD8+)TCRlow thymocytes from GC-induced apoptosis. Thus, TCR signaling increasingly reverses GC-induced apoptosis as thymocyte development progresses. As GC are infinitely present in vivo, these findings support a model wherein TCR signaling may be required to prevent GC-induced apoptosis both under basal and immune challenging conditions.
Collapse
Affiliation(s)
- Miriam Erlacher
- Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Benson M. Pathophysiological effects of glucocorticoids on nasal polyps: an update. Curr Opin Allergy Clin Immunol 2005; 5:31-5. [PMID: 15643341 DOI: 10.1097/00130832-200502000-00007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The exact mechanisms by which glucocorticoids exert their beneficial effects on nasal polyps are not clearly defined. Nasal polyps, asthma and allergic rhinitis share common features such as mucosal infiltration with eosinophils and mast cells as well as local IgE production. The present review is an update on the pathophysiological mechanisms of glucocorticoids on nasal polyps described during the last 2 years. RECENT FINDINGS The reduction of leukocyte numbers in nasal polyps following glucocorticoid treatment depends on several mechanisms, for example altered balance between the two isoforms of the human glucocorticoid receptors, GRalpha and GRbeta. Another explanation may be inhibition of CD4+ T by CD8+ T cells. Increased expression of the antiinflammatory cytokine transforming growth factor beta may contribute to this. A DNA microarray study which examined the expression of some 22 000 genes showed increased expression of several antiinflammatory genes in nasal polyps after treatment with glucocorticoids. The antiinflammatory gene that increased most was uteroglobin (also known as Clara cell protein 16) which is abundantly expressed in airway secretions and thought to have an important role in regulating inflammation. SUMMARY Glucocorticoids affect both pro and antiinflammatory pathways in nasal polyps. Upregulation of antiinflammatory genes such as transforming growth factor beta and uteroglobin may play an important role. Elucidation of these mechanisms may help us to understand not only the effects of glucocorticoids on nasal polyps, but also on related disorders such as allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Mikael Benson
- Pediatric Allergy Research Group, Queen Silvia Children's Hospital, Gothenburg, Sweden.
| |
Collapse
|
23
|
Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 2005; 11 Suppl 1:S45-55. [PMID: 15243581 DOI: 10.1038/sj.cdd.4401456] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability of glucocorticoids (GC) to efficiently kill lymphoid cells has led to their inclusion in essentially all chemotherapy protocols for lymphoid malignancies. This review summarizes recent findings related to the molecular basis of GC-induced apoptosis and GC resistance, and discusses their potential clinical implications. Accumulating evidence suggests that GC may induce cell death via different pathways resulting in apoptotic or necrotic morphologies, depending on the availability/responsiveness of the apoptotic machinery. The former might result from regulation of typical apoptosis genes such as members of the Bcl-2 family, the latter from detrimental GC effects on essential cellular functions possibly perpetuated by GC receptor (GR) autoinduction. Although other possibilities exist, GC resistance might frequently result from defective GR expression, perhaps the most efficient means to target multiple antileukemic GC effects. Numerous novel drug combinations are currently being tested to prevent resistance and improve GC efficacy in the therapy of lymphoid malignancies.
Collapse
Affiliation(s)
- S Schmidt
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
24
|
Miller AL, Webb MS, Copik AJ, Wang Y, Johnson BH, Kumar R, Thompson EB. p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 2005; 19:1569-83. [PMID: 15817653 DOI: 10.1210/me.2004-0528] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glucocorticoids (GCs) induce apoptosis in lymphoid cells through activation of the GC receptor (GR). We have evaluated the role of p38, a MAPK, in lymphoid cell apoptosis upon treatment with the synthetic GCs dexamethasone (Dex) or deacylcortivazol (DAC). The highly conserved phosphoprotein p38 MAPK is activated by specific phosphorylation of its threonine180 and tyrosine182 residues. We show that Dex and DAC stimulate p38 MAPK phosphorylation and increase the mRNA of MAPK kinase 3, a specific immediate upstream activator of p38 MAPK. Enzymatic assays confirmed elevated activity of p38 MAPK. Pharmacological inhibition of p38 MAPK activity was protective against GC-driven apoptosis in human and mouse lymphoid cells. In contrast, inhibition of the MAPKs, ERK and cJun N-terminal kinase, enhanced apoptosis. Activated p38 MAPK phosphorylates specific downstream targets. Because phosphorylation of the GR is affected by MAPKs, we examined its phosphorylation state in our system. We found serine 211 of the human GR to be a substrate for p38 MAPK both in vitro and intracellularly. Mutation of this site to alanine greatly diminished GR-driven gene transcription and apoptosis. Our results clearly demonstrate a role for p38 MAPK signaling in the pathway of GC-induced apoptosis of lymphoid cells.
Collapse
Affiliation(s)
- Aaron L Miller
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, 301 University Boulevard, Room 5.104, Medical Research Building, Route 1068, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ploner C, Schmidt S, Presul E, Renner K, Schröcksnadel K, Rainer J, Riml S, Kofler R. Glucocorticoid-induced apoptosis and glucocorticoid resistance in acute lymphoblastic leukemia. J Steroid Biochem Mol Biol 2005; 93:153-60. [PMID: 15860257 DOI: 10.1016/j.jsbmb.2004.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoid cells, and therefore constitute a central component in the treatment of lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (ALL). In spite of its clinical significance and considerable efforts in many laboratories, however, the molecular basis of GC-induced apoptosis and the clinically important resistance phenomenon remains poorly defined. The anti-leukemic GC effects are critically dependent upon sufficient expression of the GC receptor (GR) throughout the response. In ALL cell lines, this is associated with, and may depend upon, GR autoinduction. In corresponding in vitro models, GC resistance frequently results from mutations in the GR gene and/or deficient regulation of its expression. The downstream components of the pathway, i.e., the GC-regulated genes responsible for cell death induction, have been studied by microarray-based comparative expression profiling, resulting in identification of a considerable number of GC-regulated candidate genes. Their possible function in the death response is, however, still undefined. One model predicts direct regulation of the apoptotic machinery, e.g., components of the "Bcl-2 rheostat", while a complementary hypothesis suggests deleterious GC effects on essential cellular functions, such as metabolism, production of and/or response to oxygen radicals, general transcription/translation, pH and volume control, etc. These regulatory effects may entail cell death, particularly if maintained for sufficient time through GR autoinduction. The latter form of cell death may occur even in the absence of functional apoptotic machinery (e.g., when caspases are blocked), but in this case appears to entail a more necrotic morphology. Taken together, GC may induce different types of cell death through distinct molecular pathways, depending on the cellular context. GC resistance might frequently result from defective GR expression, perhaps the most efficient means to target multiple antileukemic pathways.
Collapse
Affiliation(s)
- Christian Ploner
- Division of Molecular Pathophysiology, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Glucocorticoids and the immune response. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Wu W, Pew T, Zou M, Pang D, Conzen SD. Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 2004; 280:4117-24. [PMID: 15590693 DOI: 10.1074/jbc.m411200200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor (GR) activation has recently been shown to inhibit apoptosis in breast epithelial cells. We have previously described a group of genes that is rapidly up-regulated in these cells following dexamethasone (Dex) treatment. In an effort to dissect the mechanisms of GR-mediated breast epithelial cell survival, we now examine the molecular events downstream of GR activation. Here we show that GR activation leads to both the rapid induction of MAPK phosphatase-1 (MKP-1) mRNA and its sustained expression. Induction of the MKP-1 protein in the MCF10A-Myc and MDA-MB-231 breast epithelial cell lines was also seen. Paclitaxel treatment resulted in MAPK activation and apoptosis of MDA-MB-231 breast cancer cells, and both processes were inhibited by Dex pretreatment. Furthermore, induction of MKP-1 correlated with the inhibition of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) activity, whereas p38 activity was minimally affected. Blocking Dex-induced MKP-1 induction using small interfering RNA increased ERK1/2 and JNK phosphorylation and decreased cell survival. ERK1/2 and JNK inactivation was associated with Ets-like transcription factor-1 (ELK-1) dephosphorylation. To explore the gene expression changes that occur downstream of ELK-1 dephosphorylation, we used a combination of temporal gene expression data and promoter element analyses. This approach revealed a previously unrecognized transcriptional target of ELK-1, the human tissue plasminogen activator (tPA). We verified the predicted ELK-1--> tPA transcriptional regulatory relationship using a luciferase reporter assay. We conclude that GR-mediated MAPK inactivation contributes to cell survival and that the potential transcriptional targets of this inhibition can be identified from large scale gene array analysis.
Collapse
MESH Headings
- Amino Acid Motifs
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Blotting, Northern
- Blotting, Western
- Breast/metabolism
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/physiology
- Cell Line, Tumor
- Cell Survival
- DNA-Binding Proteins/biosynthesis
- Down-Regulation
- Dual Specificity Phosphatase 1
- Enzyme Activation
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Immediate-Early Proteins/metabolism
- Immediate-Early Proteins/physiology
- JNK Mitogen-Activated Protein Kinases/biosynthesis
- JNK Mitogen-Activated Protein Kinases/metabolism
- Luciferases/metabolism
- MAP Kinase Kinase 4
- MAP Kinase Signaling System
- Mitogen-Activated Protein Kinase 1/biosynthesis
- Mitogen-Activated Protein Kinase 3/biosynthesis
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Oligonucleotide Array Sequence Analysis
- Paclitaxel/pharmacology
- Phosphoprotein Phosphatases/metabolism
- Phosphoprotein Phosphatases/physiology
- Phosphorylation
- Protein Binding
- Protein Phosphatase 1
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Proto-Oncogene Proteins/biosynthesis
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Glucocorticoid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tissue Plasminogen Activator/metabolism
- Transcription Factors/biosynthesis
- Transcription, Genetic
- Transfection
- ets-Domain Protein Elk-1
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine and the Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Thompson EB, Webb MS, Miller AL, Fofanov Y, Johnson BH. Identification of genes leading to glucocorticoid-induced leukemic cell death. Lipids 2004; 39:821-5. [PMID: 15638253 DOI: 10.1007/s11745-004-1302-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glucocorticoidal steroids (GC) are capable of causing apoptotic death of many varieties of lymphoid cells; consequently, GC are used in therapy for many lymphoid malignancies. Gene transcription in the GC-treated cells is required for subsequent apoptosis, but only a few of the actual genes involved have been identified. We employed gene microarray analysis to find the network of genes involved in GC-evoked cell death, using three clones derived from the CEM lymphoid leukemia cell line. Clone C1-15 was resistant to GC-evoked apoptosis, although not necessarily to GC-induced gene transcription; the other two underwent apoptosis in the presence of GC. Clone C7-14 was subcloned from the apoptosis-sensitive parental C7 clone to establish karyotypic uniformity. The second sensitive clone, C1-6, was a spontaneous revertant from parental resistant clone C1. A period of > or = 24 h in the constant presence of receptor-occupying concentrations of synthetic GC dexamethasone (Dex) was necessary for apoptosis to begin. To identify the steps leading to this dramatic event, we identified the changes in gene expression in the 20-h period preceding the onset of overt apoptosis. Cells in the log phase of growth were treated with 10(-6) M Dex, and 2-20 h later, mRNA was prepared and analyzed using the Affymetrix HG_U95Av2 chip, containing probes for about 12,600 genes. Of these, approximately 6,000 were expressed above background. Comparisons of the basal and expressed genes in the three clones led to several conclusions: The Dex-sensitive clones shared the regulation of a limited set of genes. The apoptosis-resistant clone C1-15 showed Dex effects on a largely different set of genes. Promoter analysis of the regulated genes suggested that primary gene targets for GC often lack a classic GC response element.
Collapse
Affiliation(s)
- E B Thompson
- The University of Texas Medical Branch, Department of Human Biological Chemistry & Genetics, Galveston, Texas 77555-1068, USA.
| | | | | | | | | |
Collapse
|
29
|
Honoré B, Baandrup U, Vorum H. Heterogeneous nuclear ribonucleoproteins F and H/H' show differential expression in normal and selected cancer tissues. Exp Cell Res 2004; 294:199-209. [PMID: 14980514 DOI: 10.1016/j.yexcr.2003.11.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 10/24/2003] [Indexed: 12/12/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) F and H/H', containing the quasi-RNA recognition motif (qRRM) domains, are implicated in several steps of pre-mRNA processing and in cellular differentiation. We have compared a set of tissues and found striking differences in their levels of expression as well as in the nuclear versus the cytoplasmic distribution. Generally, hnRNP F is broadly expressed in many tissues with extremely strong expression in the prostate gland while hnRNP H/H' shows a more restricted degree of expression with low expression in some tissues, for example, liver, exocrine acini of the pancreas, thyroid gland and heart. At the cellular level, hnRNP F is, with few exceptions, predominantly expressed in the cytoplasm while hnRNP H/H' is more abundant in the nuclei. A quite pronounced heterogeneous expression pattern is seen in the proximal tubules of the kidney where hnRNP F is present at moderate cytoplasmic levels while hnRNP H/H' is undetectable, whereas both proteins are more evenly expressed in distal tubules and collecting ducts. Generally, tumor tissues reveal a broad expression of hnRNP F in the nuclei as well as in the cytoplasm while hnRNP H/H' is expressed at higher levels in the nuclei than in the cytoplasm. Up-regulation of hnRNP H/H' is found in a few tissues that normally express low cytoplasmic levels of hnRNP H/H', for example, adenocarcinoma of the pancreas, hepatocellular carcinoma and gastric carcinoma. hnRNP F is down-regulated in hepatocellular carcinoma and up-regulated in gastric carcinoma. The present study indicates the important potential role of this subset of hnRNPs on the gene expression in many tissues.
Collapse
Affiliation(s)
- Bent Honoré
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
30
|
Kolbus A, Blázquez-Domingo M, Carotta S, Bakker W, Luedemann S, von Lindern M, Steinlein P, Beug H. Cooperative signaling between cytokine receptors and the glucocorticoid receptor in the expansion of erythroid progenitors: molecular analysis by expression profiling. Blood 2003; 102:3136-46. [PMID: 12869505 DOI: 10.1182/blood-2003-03-0923] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythroid progenitors undergo renewal (proliferation without apparent differentiation) in response to erythropoietin (Epo), stem cell factor (SCF), and glucocorticoids (dexamethasone) (Dex). SCF and Dex cooperate with Epo to promote proliferation and inhibit differentiation of erythroid progenitors, while Epo alone is required to protect erythroid cells from apoptosis during terminal red cell maturation. To examine the mechanism of the synergistic interactions of Epo, SCF, and Dex, we analyzed gene expression patterns using DNA chip-based large-scale comparative gene profiling using microarrays enriched in hematopoietic transcripts or containing randomly selected genes. Differentially regulated genes were validated by real-time reverse transcription-polymerase chain reaction (RT-PCR). The results reveal cooperative regulation of gene expression by glucocorticoids and Epo/SCF on a number of genes, such as CIS, BTG1, VDUP1, CXCR4, GILZ, and RIKEN29300106B05. While Epo and SCF never showed opposite effects on gene expression, Dex either enhanced or attenuated the effect of Epo and/or SCF. Several glucocorticoid receptor (GR)-target genes were regulated by Dex only in the presence of Epo and/or SCF, suggesting that the GR functions in the context of a larger transactivation complex to regulate these genes. The data also suggest that modulation of cytokine-induced signals by the GR is an important mechanism in erythroid progenitor renewal.
Collapse
Affiliation(s)
- Andrea Kolbus
- Research Institute of Molecular Pathology (IMP), Dr Bohr Gasse 7, 1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ausserlechner MJ, Obexer P, Böck G, Geley S, Kofler R. Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells. Cell Death Differ 2003; 11:165-74. [PMID: 14576768 DOI: 10.1038/sj.cdd.4401328] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoblastic leukemia cells. To investigate cell cycle effects of GC in the absence of obscuring apoptotic events, we used human CCRF-CEM leukemia cells protected from cell death by transgenic bcl-2. GC treatment arrested these cells in the G1 phase of the cell cycle due to repression of cyclin D3 and c-myc. Cyclin E and Cdk2 protein levels remained high, but the kinase complex was inactive due to increased levels of bound p27(Kip1). Conditional expression of cyclin D3 and/or c-myc was sufficient to prevent GC-induced G1 arrest and p27(Kip1) accumulation but, importantly, did not interfere with the induction of apoptosis. The combined data suggest that repression of both, c-myc and cyclin D3, is necessary to arrest human leukemia cells in the G1 phase of the cell division cycle, but that neither one is required for GC-induced apoptosis.
Collapse
Affiliation(s)
- M J Ausserlechner
- Institute of Pathophysiology, Division of Molecular Pathophysiology, University of Innsbruck, Medical School, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
32
|
Medh RD, Webb MS, Miller AL, Johnson BH, Fofanov Y, Li T, Wood TG, Luxon BA, Thompson EB. Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics 2003; 81:543-55. [PMID: 12782123 PMCID: PMC2777808 DOI: 10.1016/s0888-7543(03)00045-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three closely related clones of leukemic lymphoid CEM cells were compared for their gene expression responses to the glucocorticoid dexamethasone (Dex). All three contained receptors for Dex, but only two responded by undergoing apoptosis. After a time of exposure to Dex that ended late in the interval preceding onset of apoptosis, gene microarray analyses were carried out. The results indicate that the expression of a limited, distinctive set of genes was altered in the two apoptosis-prone clones, not in the resistant clone. That clone showed altered expression of different sets of genes, suggesting that a molecular switch converted patterns of gene expression between the two phenotypes: apoptosis-prone and apoptosis-resistant. The results are consistent with the hypothesis that altered expression of a distinctive network of genes after glucocorticoid administration ultimately triggers apoptosis of leukemic lymphoid cells. The altered genes identified provide new foci for study of their role in cell death.
Collapse
Affiliation(s)
- Rheem D. Medh
- Department of Biology, California State University, Northridge, CA 91330-8303, USA
| | - M. Scott Webb
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Aaron L. Miller
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Betty H. Johnson
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Yuriy Fofanov
- Department of Computer Science, The University of Houston, Houston, TX 77204-3010, USA
| | - Tongbin Li
- Department of Computer Science, The University of Houston, Houston, TX 77204-3010, USA
| | - Thomas G. Wood
- Sealy Center for Molecular Science, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Bruce A. Luxon
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - E. Brad Thompson
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
- Corresponding author. Fax: +1-409-772-5159. (E.B. Thompson)
| |
Collapse
|
33
|
Webb MS, Miller AL, Johnson BH, Fofanov Y, Li T, Wood TG, Thompson EB. Gene networks in glucocorticoid-evoked apoptosis of leukemic cells. J Steroid Biochem Mol Biol 2003; 85:183-93. [PMID: 12943703 DOI: 10.1016/s0960-0760(03)00194-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To discover the genes responsible for the apoptosis evoked by glucocorticoids in leukemic lymphoid cells, we have begun gene array analysis on microchips. Three clones of CEM cells were compared: C7-14, C1-15 and C1-6. C7-14 and C1-15 are subclones from the original clones C7 (sensitive to apoptosis by glucocorticoids) and C1 (resistant). C1-6 is a spontaneous revertant to sensitivity from the C1 clone. Previously we presented data on the sets of genes whose expression is altered in these cell clones after 20 h exposure to dexamethasone (Dex). The two sensitive clones, which respond by undergoing apoptosis starting about 24h after Dex is added, both showed >2.5-fold induction of 39 genes and 2-fold reduction of expressed levels from 21 genes. C1-15, the resistant clone, showed alterations in a separate set of genes. In this paper, we present further analysis of the data on genes regulated in these cell clones after 20 h Dex and compare them with the genes regulated after 12h Dex. Some, but not all the genes found altered at 20 h are altered at 12h, consistent with our hypothesis that sequential gene regulation eventually provokes full apoptosis. We also compare the levels of basal gene expression in the three clones. At the basal level no single gene stands out, but small sets of genes differ >2-fold in basal expression between the two sensitive and the resistant clone. A number of the genes basally higher in the resistant clone are potentially anti-apoptotic. This is consistent with our hypothesis that the resistant cells have undergone a general shift in gene expression.
Collapse
Affiliation(s)
- M Scott Webb
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0645, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Chauhan S, Leach CH, Kunz S, Bloom JW, Miesfeld RL. Glucocorticoid regulation of human eosinophil gene expression. J Steroid Biochem Mol Biol 2003; 84:441-52. [PMID: 12732289 DOI: 10.1016/s0960-0760(03)00065-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular analysis of steroid-regulated gene expression in freshly isolated human eosinophils is difficult due to the inherent high rate of spontaneous apoptosis and elevated levels of endogenous ribonucleases. To circumvent these limitations, we determined if the human eosinophilic cell line EoL-1 could serve as an in vitro model of glucocorticoid signaling. We found by optimizing growth conditions in low serum-containing media that dexamethasone (Dex) treatment of EoL-1 cells induced an apoptotic pathway that was inhibited by interleukin-5 (IL-5). Moreover, gene expression profiling using RNA from untreated EoL-1 cells and from freshly isolated human eosinophils identified 380 commonly expressed genes, including the eosinophil markers granule major basic protein, prostaglandin-endoperoxide synthase 1 and arachidonate 15-lipoxygenase. Expression profiling was performed using EoL-1 cells that had been treated with dexamethasone for 0, 4, 12, 24 and 48h identifying 162 genes as differentially expressed. Two of the most highly upregulated genes based on expression profiling were the transcription factor Ets-2 and the MHC Class II genes (Q, R, and P). Expression of these genes in EoL-1 cells was shown to be dexamethasone-induced at the RNA and protein levels which is consistent with the known function of Ets-2 in controlling cell cycle progression and the role of MHC Class II antigens in mediating eosinophil functions.
Collapse
Affiliation(s)
- Sanjay Chauhan
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
35
|
Tissing WJE, Meijerink JPP, den Boer ML, Pieters R. Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 2003; 17:17-25. [PMID: 12529655 DOI: 10.1038/sj.leu.2402733] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Accepted: 07/01/2002] [Indexed: 12/22/2022]
Abstract
Glucocorticoids (GC) are probably the most important drugs in the treatment of ALL. Despite the extensive use of GC for many years, little is known about the molecular mechanisms of sensitivity and resistance. This review summarizes the knowledge on GC cytotoxicity in leukemia. The relevance of polymorphisms, splice variants and the number and regulation of the GC receptor are discussed. The role of multidrug resistance proteins, glutathione and glutathione S-transferase is evaluated, as well as the influence of the different heat-shock chaperone (hsp 90 and 70) and co-chaperone proteins (BAG-1 and others) which form a complex together with the GC receptor. Finally, the transactivation and transrepression (via NF-kappa B and AP-1 binding) of a wide range of genes (like c-myc) which initiates the final apoptosis pathway are discussed and suggestions for future directions of research in ALL patients are given.
Collapse
Affiliation(s)
- W J E Tissing
- University Hospital Rotterdam/Sophia Children's Hospital, Department of Paediatric Oncology/Hematology, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Vedoy CG, Sogayar MC. Isolation and characterization of genes associated with the anti-tumor activity of glucocorticoids. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 106:57-69. [PMID: 12393265 DOI: 10.1016/s0169-328x(02)00410-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Treatment of ST1 rat glioma cells with glucocorticoid hormones leads to complete reversion of their transformed phenotype and loss of their tumorigenic potential. In order to study the molecular basis of the anti-tumor activity of these hormones, we isolated glucocorticoid-regulated cDNA sequences associated with ST1 cells' phenotypic reversion, using suppression subtractive hybridization (SSH). DNA sequencing of the subtracted cDNA pool, cloned into the pBluescript vector, revealed three widely expressed, well known negative growth regulators, namely, thrombospondin 1, cyclin G and tyrosine phosphatase CL100, as primary targets of glucocorticoid hormones. Additionally, a gene recently described in human brain, NRP/B (nuclear restricted protein in brain) that associates with p110Rb in induction of neuronal differentiation and a new truncated transcript of the tenascin-X gene family, are also shown to be up-regulated by glucocorticoids. The products of these genes are strong candidates to be important players in glucocorticoids anti-tumor activity.
Collapse
Affiliation(s)
- Cleber Giovane Vedoy
- Instituto de Qui;mica, Universidade de São Paulo, C.P. 26.077, 05513-970 SP, São Paulo, Brazil
| | | |
Collapse
|
37
|
Abstract
Recent advances in gene microarray technology have facilitated global analyses of gene expression profiles in normal and malignant immune cells. Great strides have been made in our understanding of molecular differences among various types of immune cells, the process of T and B cell activation, and the genomic changes that convert normal cells to malignant ones. Genomic analysis has become a crucial aspect of cancer classification, diagnosis, therapy, and prognosis. This technology has the potential to reveal the comprehensive transcriptional alterations that dictate fundamental biological processes such as signal transduction in response to specific stimuli, cell growth, differentiation, and apoptosis. While reaping the benefits of genomic analyses, it is important to realize its limitations with respect to accuracy of interpretation, reproducibility, and signal detection. It is crucial to optimize signals for individual probe-target pairs and to develop a uniform set of criteria for data analyses. The development of a public-access database of results from individual laboratories will pave the way for identifying discrepancies and advancing scientific breakthroughs.
Collapse
Affiliation(s)
- Rheem D Medh
- Department of Biology, California State University at Northridge, Northridge, California 91330, USA. rheem.medh.csun.edu
| |
Collapse
|