1
|
Martin AP, Miller A, Emad L, Rahmani M, Walker T, Mitchell C, Hagan MP, Park MA, Yacoub A, Fisher PB, Grant S, Dent P. Lapatinib resistance in HCT116 cells is mediated by elevated MCL-1 expression and decreased BAK activation and not by ERBB receptor kinase mutation. Mol Pharmacol 2008; 74:807-22. [PMID: 18544666 PMCID: PMC2574656 DOI: 10.1124/mol.108.047365] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have defined some of the mechanisms by which the kinase inhibitor lapatinib kills HCT116 cells. Lapatinib inhibited radiation-induced activation of ERBB1/2, extracellular signal-regulated kinases 1/2, and AKT, and radiosensitized HCT116 cells. Prolonged incubation of HCT116 cells with lapatinib caused cell killing followed by outgrowth of lapatinib-adapted cells. Adapted cells were resistant to serum starvation-induced cell killing and were cross-resistant to multiple therapeutic drugs. Lapatinib was competent to inhibit basal and epidermal growth factor (EGF)-stimulated ERBB1 phosphorylation in adapted cells. Coexpression of dominant-negative ERBB1 and dominant-negative ERBB2 inhibited basal and EGF-stimulated ERBB1 and ERBB2 phosphorylation in parental and adapted cells. However, in neither parental nor adapted cells did expression of dominant-negative ERBB1 and dominant-negative ERBB2 recapitulate the cell death-promoting effects of lapatinib. Adapted cells had increased expression of MCL-1, decreased expression of BAX, and decreased activation of BAX and BAK. Overexpression of BCL-XL protected parental cells from lapatinib toxicity. Knockdown of MCL-1 expression enhanced lapatinib toxicity in adapted cells that was reverted by knockdown of BAK expression. Inhibition of caspase function modestly reduced lapatinib toxicity in parental cells, whereas knockdown of apoptosis-inducing factor expression suppressed lapatinib toxicity. Thus, in HCT116 cells, lapatinib adaptation can be mediated by altered expression of pro- and antiapoptotic proteins that maintain mitochondrial function.
Collapse
Affiliation(s)
- Aditi Pandya Martin
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Anna Miller
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Luni Emad
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Mohammed Rahmani
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Teneille Walker
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Clint Mitchell
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Michael P. Hagan
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Margaret A. Park
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Adly Yacoub
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Paul B. Fisher
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Steven Grant
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Paul Dent
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| |
Collapse
|
2
|
da Silva Morais A, Saliez A, Leclercq I, Horsmans Y, Stärkel P. Inhibition of the Ras oncoprotein reduces proliferation of hepatocytes in vitro and in vivo in rats. Clin Sci (Lond) 2007; 114:73-83. [PMID: 17678500 DOI: 10.1042/cs20070152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ras oncoproteins are probably implicated in normal and malignant cell growth in various organs. Inhibition of Ras interferes with cell proliferation of non-hepatic cells in vitro and in vivo. A potential role for Ras in normal and malignant hepatocyte proliferation prompted us to evaluate the impact of Ras inhibition by FTS (S-farnesylthiosalicylic acid) on hepatocyte proliferation in vitro in the human hepatic tumour cell line HepG2 and in vivo after PH (partial hepatectomy) in rats. Rats were administered with FTS intraperitoneally (1, 8 and 16 h after PH) and killed 12, 24 and 48 h after PH. Cell proliferation, phosphorlyation of members of the MAPK (mitogen-activated protein kinase) pathway and levels and activity of cell cycle effectors (cyclin D, cyclin E, Cdk2 and Cdk4) were assessed in FTS-treated rats compared with controls. FTS significantly decreased overall cell count, PCNA (proliferating-cell nuclear antigen) expression and BrdU (bromodeoxyuridine) incorporation into HepG2 cells after 7 days of culture. FTS treatment significantly reduced BrdU incorporation and PCNA expression in hepatocytes after PH. Unlike control rats, cell-membrane expression of Ras was decreased in FTS-treated animals after PH, resulting in decreased Raf membrane recruitment and phosphorylation and in reduced phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2). The antiproliferative effect of FTS was linked to a decrease in expression and activity of the cyclin E/Cdk2 complex, without affecting cyclin D and Cdk4. Ras inhibition by FTS significantly decreased proliferation of HepG2 cells and normal hepatocytes after a strong and highly synchronized proliferation stimulus elicited by PH. The inhibitory effect was at least partially mediated by inhibition of Ras/Raf/MAPK signalling. It appears worthwhile to evaluate the impact of Ras inhibition on the development of hepatocarcinomas in vivo in adequate animal models.
Collapse
Affiliation(s)
- Alain da Silva Morais
- Department of Gastroenterology, Catholic University of Louvain, St Luc University Hospital, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
3
|
Zschemisch NH, Liedtke C, Dierssen U, Nevzorova YA, Wüstefeld T, Borlak J, Manns MP, Trautwein C. Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytes in vivo. Hepatology 2006; 44:164-73. [PMID: 16799991 DOI: 10.1002/hep.21224] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclin E1 controls G1/S phase transition of the eukaryotic cell cycle. We report the impact of alternative spliced cyclin E1 isoforms on cell cycle regulation in hepatocytes. We show that expression of new cyclin E1 mRNA variants IN3, Delta4, and Delta5 is associated with retarded proliferation in murine hepatocellular carcinoma. Additionally, we demonstrate that a new cyclin E1 isoform Delta3/8 lacking the central part of wild-type mRNA is expressed predominantly in nonproliferating murine hepatocytes. Following partial hepatectomy, Delta3/8 is downregulated when hepatocytes enter the cell cycle from quiescence. The Delta3/8 protein does not exhibit any cyclin box motif but binds cyclin-dependent kinase 2 without stimulating kinase activity. We demonstrate that Delta3/8 lacks any nuclear localization signal and is exclusively located in the cytoplasm. Overexpression of Delta3/8 in cultured cells leads to a delayed G0-G1 transition, indicating that this splice variant helps to maintain a quiescent state of hepatocytes. In conclusion, we identified an isoform of cyclin E1 involved in G0 maintenance and suggest an additional mechanism for cell cycle control.
Collapse
|
4
|
Lehmann TG, Luedde T, Schwabe RF, Bunzendahl H, Samulski RJ, Lemasters JJ, Brenner DA. Minimizing oxidative stress by gene delivery of superoxide dismutase accelerates regeneration after transplantation of reduced-size livers in the rat. Liver Transpl 2006; 12:550-9. [PMID: 16555330 DOI: 10.1002/lt.20632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transplantation of reduced-size livers may lead to a hypermetabolic state and increased production of oxygen radicals. Since oxygen radicals may cause liver injury and impair liver regeneration, we tested the hypothesis that overexpression of superoxide dismutase (SOD) in reduced-size livers (RSL) would accelerate regeneration and reduce injury in a rat model of transplantation of RSL. Donor rats were infected with adenoviruses either expressing SOD1 (Ad.SOD1) or beta-galactosidase (Ad.lacZ). Livers were harvested 72 hours later, reduced to 45% of weight, and transplanted. After transplantation, hepatic SOD activity, graft survival, histopathology, AST/ALT release, and bilirubin were examined. Regeneration was evaluated by BrdU-staining, graft weight, and expression of cyclin D1 and p21. In Ad.SOD1-treated livergrafts, SOD activity increased three-fold compared to controls. Survival was dramatically increased in recipients of Ad.SOD1-RSL (100% vs. 20% in Ad.lacZ-RSL), and peak levels of AST/ALT and bilirubin levels were reduced by 75% and 87.5%, respectively (P < 0.001). In histological sections, hepatocyte necrosis decreased from 24% after Ad.lacZ-treatment to 6% after Ad.SOD1-treatment (P <0.001). Regeneration was also accelerated after Ad.SOD1-treatment as demonstrated by an increase of BrdU-stained cells 24 hours after reperfusion and increased liver weight after 1 week. In conclusion, overexpression of SOD1 in RSL prevents primary non-function of reduced-size liver grafts and accelerates liver regeneration.
Collapse
Affiliation(s)
- Thorsten G Lehmann
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Porse BT, Pedersen TA, Hasemann MS, Schuster MB, Kirstetter P, Luedde T, Damgaard I, Kurz E, Schjerling CK, Nerlov C. The proline-histidine-rich CDK2/CDK4 interaction region of C/EBPalpha is dispensable for C/EBPalpha-mediated growth regulation in vivo. Mol Cell Biol 2006; 26:1028-37. [PMID: 16428455 PMCID: PMC1347024 DOI: 10.1128/mcb.26.3.1028-1037.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The C/EBPalpha transcription factor regulates growth and differentiation of several tissues during embryonic development. Several hypotheses as to how C/EBPalpha inhibits cellular growth in vivo have been derived, mainly from studies of tissue culture cells. In fetal liver it has been proposed that a short, centrally located, 15-amino-acid proline-histidine-rich region (PHR) of C/EBPalpha is responsible for the growth-inhibitory function of the protein through its ability to interact with CDK2 and CDK4, thereby inhibiting their activities. Homozygous Cebpa(DeltaPHR/DeltaPHR) (DeltaPHR) mice, carrying a modified cebpa allele lacking amino acids 180 to 194, were born at the Mendelian ratio, reached adulthood, and displayed no apparent adverse phenotypes. When fetal livers from the DeltaPHR mice were analyzed for their expression of cell cycle markers, bromodeoxyuridine incorporation, cyclin-dependent kinase 2 kinase activity, and global gene expression, we failed to detect any cell cycle or developmental differences between the DeltaPHR mice and their control littermates. These in vivo data demonstrate that any C/EBPalpha-mediated growth repression via the PHR as well as the basic region is dispensable for proper embryonic development of, and cell cycle control in, the liver. Surprisingly, control experiments performed in C/EBPalpha null fetal livers yielded similar results.
Collapse
Affiliation(s)
- Bo Torben Porse
- Section for Gene Therapy Research, Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Khan GA, Bhattacharya G, Mailander PC, Meza JL, Hansen LA, Chakravarti D. Harvey-ras gene expression and epidermal cell proliferation in dibenzo[a,l]pyrene-treated early preneoplastic SENCAR mouse skin. J Invest Dermatol 2005; 125:567-74. [PMID: 16117800 DOI: 10.1111/j.0022-202x.2005.23845.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Topical application of dibenzo[a,l]pyrene (DB[a,l]P) to the dorsal skin of SENCAR mice induces codon 61 (CAA Gln to CTA Leu) mutations in the Harvey (H)-ras gene within 12 h after treatment. Between days 1 and 3, the frequency of these mutations increases rapidly, suggesting that skin cells carrying the codon 61 mutations proliferate in this period. We have investigated DB[a,l]P-treated mouse skin (12 h-7 d) for further evidence of H-ras expression and epidermal cell proliferation. Two waves of cell proliferation were observed: the first wave (1-2 d) correlated with the clonal proliferation of codon 61-mutated cells, and the second wave (3-7 d) correlated with DB[a,l]P-induced hyperplasia. DB[a,l]P-induced early preneoplastic cell proliferation correlated with H-ras and specific G1 cyclin expression. Total H-ras protein and cyclin D1 were found to increase during DB[a,l]P-induced hyperplasia, but the levels of guanosine triphosphate-bound (active) H-ras protein and cyclin E were increased during the putative clonal proliferation of codon 61-mutated cells. These results suggest that DB[a,l]P-induced oncogenically mutated cells proliferate in early preneoplastic skin. As this proliferation occurs in the absence of any promoting treatment, we propose that this phenomenon is a tumor initiation event.
Collapse
Affiliation(s)
- Gausal A Khan
- Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
7
|
Minella AC, Welcker M, Clurman BE. Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci U S A 2005; 102:9649-54. [PMID: 15980150 PMCID: PMC1172263 DOI: 10.1073/pnas.0503677102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Indexed: 12/19/2022] Open
Abstract
The Skp1-Cullin1 F-box protein-Fbw7 ubiquitin ligase regulates phosphorylation-dependent cyclin E degradation, and disruption of this pathway is associated with genetic instability and tumorigenesis. Fbw7 is a human tumor suppressor that is targeted for mutation in primary cancers. However, mechanisms other than mutation of Fbw7 may also disrupt cyclin E proteolysis in cancers. We show that oncogenic Ha-Ras activity regulates cyclin E degradation by the Fbw7 pathway. Activated Ras impairs Fbw7-driven cyclin E degradation, and, conversely, inhibition of normal Ras activity decreases cyclin E abundance. Moreover, activation of the mitogen-activated protein kinase pathway is the essential Ras function that inhibits cyclin E turnover, and activated Ha-Ras expression inhibits both the binding of cyclin E to Fbw7 and cyclin E ubiquitination. Last, we found that oncogenic Ras activity potentiates cyclin E-induced genetic instability but only when cyclin E is susceptible to degradation by Fbw7. Thus, we conclude that Ras activity regulates Fbw7-mediated cyclin E proteolysis and suggest that impaired cyclin E proteolysis is a mechanism through which Ras mutations promote tumorigenesis.
Collapse
Affiliation(s)
- Alex C Minella
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
8
|
Stärkel P, De Saeger C, Sempoux C, Legrand E, Leclercq I, Horsmans Y. Blunted DNA synthesis and delayed S-phase entry following inhibition of Cdk2 activity in the regenerating rat liver. J Transl Med 2005; 85:562-71. [PMID: 15696186 DOI: 10.1038/labinvest.3700245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activation of the cyclin E/Cdk2 complex may play an important role in mid-G1/S-phase progression in proliferating mammalian cells. We evaluated the effect of targeted inhibition of Cdk2 activity by CYC202 (R-roscovitine) on hepatocytes proliferation in vivo after 70% partial hepatectomy (PH) in rats. In controls, Cdk2 activity and DNA synthesis peaked 24 h after PH. CYC202 abrogated Cdk2 activity, prevented BrdU incorporation and PCNA expression and increased mortality 24 h after PH. Cyclin E and Cdk2 protein expression and complex formation was not affected by CYC202 nor was cyclin D1, Cdk4 and c-ras mRNA expression. Two consecutive injections 8 and 20 h after PH were required to elicit the inhibitory effect of CYC202, which was lost when either the injection at 8 h or at 20 h was withheld. Cdk2 activity and cell progression resumed 48 h after PH in surviving animals suggesting that CYC202 induced a reversible inhibition of the cell cycle. Our results confirm an important role for Cdk2 in hepatocytes proliferation in the regenerating liver. We demonstrate that molecular events, including Cdk2 activation, occurring within the 8th and 24th hour after PH (G1/S-phase transition) are crucial in determining whether or not DNA synthesis and hepatocytes proliferation proceed normally after PH.
Collapse
Affiliation(s)
- Peter Stärkel
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
9
|
Luedde T, Assmus U, Wüstefeld T, Meyer zu Vilsendorf A, Roskams T, Schmidt-Supprian M, Rajewsky K, Brenner DA, Manns MP, Pasparakis M, Trautwein C. Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 2005; 115:849-59. [PMID: 15776110 PMCID: PMC1064982 DOI: 10.1172/jci23493] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 01/25/2005] [Indexed: 12/29/2022] Open
Abstract
The inhibitor of NF-kappaB (I-kappaB) kinase (IKK) complex consists of 3 subunits, IKK1, IKK2, and NF-kappaB essential modulator (NEMO), and is involved in the activation of NF-kappaB by various stimuli. IKK2 or NEMO constitutive knockout mice die during embryogenesis as a result of massive hepatic apoptosis. Therefore, we examined the role of IKK2 in TNF-induced apoptosis and ischemia/reperfusion (I/R) injury in the liver by using conditional knockout mice. Hepatocyte-specific ablation of IKK2 did not lead to impaired activation of NF-kappaB or increased apoptosis after TNF-alpha stimulation whereas conditional NEMO knockout resulted in complete block of NF-kappaB activation and massive hepatocyte apoptosis. In a model of partial hepatic I/R injury, mice lacking IKK2 in hepatocytes displayed significantly reduced liver necrosis and inflammation than wild-type mice. AS602868, a novel chemical inhibitor of IKK2, protected mice from liver injury due to I/R without sensitizing them toward TNF-induced apoptosis and could therefore emerge as a new pharmacological therapy for liver resection, hemorrhagic shock, or transplantation surgery.
Collapse
Affiliation(s)
- Tom Luedde
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Carón RW, Yacoub A, Li M, Zhu X, Mitchell C, Hong Y, Hawkins W, Sasazuki T, Shirasawa S, Kozikowski AP, Dennis PA, Hagan MP, Grant S, Dent P. Activated forms of H-RAS and K-RAS differentially regulate membrane association of PI3K, PDK-1, and AKT and the effect of therapeutic kinase inhibitors on cell survival. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.257.4.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The abilities of mutated active RAS proteins to modulate cell survival following exposure to ionizing radiation and small molecule kinase inhibitors were examined. Homologous recombination in HCT116 cells to delete the single allele of K-RAS D13 resulted in a cell line that exhibited an ∼75% reduction in basal extracellular signal-regulated kinase 1/2, AKT, and c-jun-NH2-kinase 1/2 activity. Transfection of cells lacking K-RAS D13 with H-RAS V12 restored extracellular signal-regulated kinase 1/2 and AKT activity to basal levels but did not restore c-jun-NH2-kinase 1/2 phosphorylation. In cells expressing H-RAS V12, radiation caused prolonged intense activation of AKT. Inhibition of H-RAS V12 function, blockade of phosphatidylinositol 3-kinase (PI3K) function using small interfering RNA/small-molecule inhibitors, or expression of dominant-negative AKT abolished radiation-induced AKT activation, and radiosensitized these cells. Inhibition of PI3K function did not significantly radiosensitize parental HCT116 cells. Inhibitors of the AKT PH domain including perifosine, SH-(5, 23-25) and ml-(14-16) reduced the plating efficiency of H-RAS V12 cells in a dose-dependent fashion. Inhibition of AKT function using perifosine enhanced radiosensitivity in H-RAS V12 cells, whereas the SH and ml series of AKT PH domain inhibitors failed to promote radiation toxicity. In HCT116 H-RAS V12 cells, PI3K, PDK-1, and AKT were membrane associated, whereas in parental cells expressing K-RAS D13, only PDK-1 was membrane bound. In H-RAS V12 cells, membrane associated PDK-1 was phosphorylated at Y373/376, which was abolished by the Src family kinase inhibitor PP2. Inhibition of PDK-1 function using the PH domain inhibitor OSU-03012 or using PP2 reduced the plating efficiency of H-RAS V12 cells and profoundly increased radiosensitivity. OSU-03012 and PP2 did not radiosensitize and had modest inhibitory effects on plating efficiency in parental cells. A small interfering RNA generated against PDK1 also radiosensitized HCT116 cells expressing H-RAS V12. Collectively, our data argue that molecular inhibition of AKT and PDK-1 signaling enhances the radiosensitivity of HCT116 cells expressing H-RAS V12 but not K-RAS D13. Small-molecule inhibitory agents that blocked stimulated and/or basal PDK-1 and AKT function profoundly reduced HCT116 cell survival but had variable effects at enhancing tumor cell radiosensitivity.
Collapse
Affiliation(s)
- Rubén W. Carón
- 1Radiation Oncology and Departments of
- 6Instituto de Medicina y Biología Experimental de Cuyo-CONICET, Mendoza, Argentina
| | | | - Min Li
- 5Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and
| | | | | | | | | | - Takehiko Sasazuki
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan
| | - Senji Shirasawa
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan
| | - Alan P. Kozikowski
- 5Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and
| | | | | | - Steven Grant
- 2Hematology/Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- 1Radiation Oncology and Departments of
| |
Collapse
|
11
|
Carón RW, Yacoub A, Zhu X, Mitchell C, Han SI, Sasazuki T, Shirasawa S, Hagan MP, Grant S, Dent P. H-RAS V12–induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.243.4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways following exposure to ionizing radiation is unknown. Loss of K-RAS D13 expression in HCT116 colorectal carcinoma cells blunted basal extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and c-Jun NH2-terminal kinase 1/2 activity. Deletion of the allele to express K-RAS D13 also enhanced expression of ERBB1, ERBB3, and heregulin but nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells but did not restore or alter basal c-jun NH2-terminal kinase 1/2 activity. In parental cells, radiation caused stronger ERK1/2 pathway activation compared with that of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which correlated with constitutive translocation of Raf-1 into the plasma membrane of parental cells. Inhibition of mitogen-activated protein kinase/ERK1/2, but not PI3K, radiosensitized parental cells. In H-RAS V12 cells, radiation caused stronger PI3K/AKT pathway activation compared with that of the ERK1/2 pathway, which correlated with H-RAS V12–dependent translocation of PI3K into the plasma membrane. Inhibition of PI3K, but not mitogen-activated protein kinase/ERK1/2, radiosensitized H-RAS V12 cells. Radiation-induced activation of the PI3K/AKT pathway in H-RAS V12 cells 2 to 24 hours after exposure was dependent on heregulin-stimulated ERBB3 association with membrane-localized PI3K. Neutralization of heregulin function abolished radiation-induced AKT activation and reverted the radiosensitivity of H-RAS V12 cells to those levels found in cells lacking expression of any active RAS protein. These findings show that H-RAS V12 and K-RAS D13 differentially regulate radiation-induced signaling pathway function. In HCT116 cells expressing H-RAS V12, PI3K-dependent radioresistance is mediated by both H-RAS-dependent translocation of PI3K into the plasma membrane and heregulin-induced activation of membrane-localized PI3K via ERBB3.
Collapse
Affiliation(s)
- Rubén W. Carón
- 1Radiation Oncology and Departments of
- 4Instituto de Medicina y Biología Experimental de Cuyo-CONICET, Mendoza, Argentina
| | | | | | | | | | - Takehiko Sasazuki
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan; and
| | - Senji Shirasawa
- 3Department of Pathology, International Medical Center of Japan, Tokyo, Japan; and
| | | | - Steven Grant
- 2Hematology/Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- 1Radiation Oncology and Departments of
| |
Collapse
|
12
|
Laurent S, Stärkel P, Leclercq IA, Lambotte L, Maiter D, Horsmans Y. Molecular events associated with accelerated proliferative response in rat livers when partial hepatectomy is preceded by a sham operation. Eur J Clin Invest 2005; 35:140-7. [PMID: 15667586 DOI: 10.1111/j.1365-2362.2005.01449.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND When a sham operation is performed 6 h before partial hepatectomy (PH), the regenerative response is accelerated suggesting that sham operation itself contributes to cellular events leading to proliferation. MATERIALS AND METHODS In order to examine the mechanisms implicated in this acceleration, we compared the activation of several factors associated with the progression through the cell cycle at various times after PH and after PH preceded by sham operation (S6 h + PH). The effect of a single sham (S) and two combined sham operations (S6 h + S) was also examined. Nonoperated rats were used as controls (C). RESULTS The early factors NF-kappaB and Stat3 were activated after S6 h + PH and S6 h + S. C-jun expression was increased 0.5 h and 2 h after PH and 6 h after sham. There was no further increase in S6 h + PH and S6 h + S. In contrast, c-myc expression returned to baseline levels after S6 h and a new increase was observed 2 h after S6 h + PH but not after S6 h + S. P53 mRNA was significantly expressed 6 h after S6 h + PH, but at a level similar than that observed 6 and 12 h after PH alone. An earlier increase in c-Ha-ras mRNA and cyclin E protein was found in S6 h + PH, in comparison with PH alone. CONCLUSIONS The first divergent response between the two combined models involved c-myc expression. However, major differences related to the accelerated liver regenerative response observed after S6 h + PH were found at late time points associating an earlier expression of c-Ha-ras and nuclear cyclin E.
Collapse
Affiliation(s)
- S Laurent
- Department of Gastroenterology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Luedde T, Duderstadt M, Streetz KL, Tacke F, Kubicka S, Manns MP, Trautwein C. C/EBP beta isoforms LIP and LAP modulate progression of the cell cycle in the regenerating mouse liver. Hepatology 2004; 40:356-65. [PMID: 15368440 DOI: 10.1002/hep.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The CCAAT enhancer-binding protein (C/EBP) beta gene can produce several N-terminally truncated isoforms. Liver-enriched activator protein (LAP) is a transcriptional activator in many systems, whereas liver-enriched inhibitory protein (LIP) is regarded as a functional LAP antagonist. In this study, we examined the impact of these two proteins on cell cycle progression in the regenerating liver. Adenoviral overexpression of LAP, in addition to its role as a transactivator of liver-specific genes, led to a delayed S-phase entry of hepatocytes after partial hepatectomy (PH) in vivo. This delay was accompanied by decreased expression of cyclin A and E as well as proliferating cell nuclear antigen and decreased cyclin-dependent kinase 2 activity at the G1/S boundary. This observation is not explained by increased p21(CIP1/Waf1) expression or lack of phosphorylation of external LAP, but LAP overexpression triggered a decreased C/EBP-alpha/C/EBP-alpha-30 ratio and a reduced basal c-jun level in the liver. In contrast, adenoviral overexpression of LIP resulted in a stronger and earlier induction of cyclin A and E after PH, but did not change the timing and extent of cyclin-dependent kinase 2 activity or the amount of hepatocytes that entered S phase in this model. In the LIP expressing group, both C/EBP-alpha isoforms and c-jun were more strongly induced after PH. In conclusion, the LAP/LIP ratio is an important modulator of cell cycle progression during liver regeneration. In the context of previous studies, our results demonstrate that LAP, through a dose-dependent effect, withholds a dual activating and inhibiting role on hepatocyte proliferation in vivo.
Collapse
Affiliation(s)
- Tom Luedde
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Isayama F, Froh M, Yin M, Conzelmann LO, Milton RJ, McKim SE, Wheeler MD. TNF alpha-induced Ras activation due to ethanol promotes hepatocyte proliferation independently of liver injury in the mouse. Hepatology 2004; 39:721-31. [PMID: 14999690 DOI: 10.1002/hep.20137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor alpha (TNFalpha) has been shown to be both proapoptotic and mitogenic for hepatocytes and necessary for alcohol-induced liver injury. Ras, a known proto-oncogene, is very important in the regulation of cellular responses to TNFalpha. Therefore, the purpose of this study was to investigate the role of Ras in alcohol-induced pathogenesis. Male C57Bl/6 mice were fed ethanol or high-fat control diet via intragastric cannulation for 4 weeks. Ras activity was increased significantly after 4 weeks of ethanol and correlated with an increase in pathologic features. However, in mice deficient in the receptor-type 1 for TNFalpha (TNFR1(-/-)), ethanol-induced liver injury and the increase in Ras activity were significantly blunted compared with wild-type mice. Furthermore, it was demonstrated that H-, K-, and R-Ras isoforms were increased after ethanol exposure in wild-type mice. In TNFR1(-/-) mice, R-Ras activity remained elevated by ethanol, whereas H-Ras and K-Ras activity was blunted significantly under these conditions. Interestingly, hepatocellular proliferation, which was elevated approximately fivefold after 4 weeks of chronic ethanol in wild-type mice, was also blunted in TNFR1(-/-) mice given ethanol. Inhibition of Ras with adenovirus containing a dominant-negative Ras had no effect on ethanol-induced liver injury, but significantly blunted ethanol-induced hepatocyte proliferation by more than 50%. Overexpression of mitochondrial superoxide dismutase using recombinant adenovirus blunted lipid peroxidation and attenuated hepatic injury resulting from ethanol, but had no effect on Ras activation and hepatocyte proliferation caused by ethanol. In conclusion, these data support the hypotheses that hepatocellular oxidative stress leads to cell death and that TNFalpha-induced Ras activation is important in hepatic proliferation in response to ethanol-induced liver injury.
Collapse
Affiliation(s)
- Fuyumi Isayama
- Department of Pharmacology, Center for Alcohol Studies, CB #7178, 3013 Thurston-Bowles Building, University of North Carolina, Chapel Hill, NC 27599-7178, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Steiling H, Wüstefeld T, Bugnon P, Brauchle M, Fässler R, Teupser D, Thiery J, Gordon JI, Trautwein C, Werner S. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration. Oncogene 2003; 22:4380-8. [PMID: 12853974 DOI: 10.1038/sj.onc.1206499] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several growth factors have been suggested to play a crucial role in liver regeneration, but a functional proof is still missing. Since fibroblast growth factors are important for the initiation of mammalian liver development, we determined the roles of these mitogens in liver repair by targeted expression of a dominant-negative fibroblast growth factor receptor (FGFR) in hepatocytes of transgenic mice. The liver of young animals appeared histologically normal, and liver function was not obviously impaired. In aged transgenic mice, the frequency of fatty liver development was strongly increased compared to control animals. Following partial hepatectomy, transgenic mice showed markedly reduced hepatocyte proliferation because of an arrest in the late G(1) phase of the cell cycle. These data demonstrate a key role of FGFR signalling in repair after liver injury.
Collapse
Affiliation(s)
- Heike Steiling
- Institute of Cell Biology, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luedde T, Rodriguez ME, Tacke F, Xiong Y, Brenner DA, Trautwein C. p18(INK4c) collaborates with other CDK-inhibitory proteins in the regenerating liver. Hepatology 2003; 37:833-41. [PMID: 12668976 DOI: 10.1053/jhep.2003.50136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
p18(INK4c) belongs to the family of cyclin-dependent kinase inhibitory proteins that target the cyclin-dependent kinases and inhibit their catalytic activity. The role of p18(INK4c) for cell cycle progression in vivo is characterized poorly. Therefore, we studied the expression and physiologic relevance of p18 in quiescent and proliferating hepatocytes during liver regeneration. For our analysis we used single- (p18[INK4c], p27[KIP1], p21[CIP1/WAF1]), and double-mutant (p18/p21, p18/p27) mice. p18 expression was found in quiescent hepatocytes and a slight up-regulation was evident after partial hepatectomy (PH). p18 knockout animals showed normal cell cycle progression after PH. However, when p18/p21 and p18/p27 double-mutant mice were used, differences in cell cycle progression were evident compared with wild-type (wt) and single knockout animals. In p18/p21 knockout animals, the G1 phase was shortened as evidenced by an earlier onset of cyclin D and proliferating cell nuclear antigen (PCNA) expression and cyclin-dependent kinase (CDK) activation after PH. In contrast, in p18/p27 knockout animals, the G1 phase was unchanged, but the amount of proliferating hepatocytes (5-bromo-2'-deoxyuridine [BrdU] and PCNA positive) 48 hours after PH was elevated. In conclusion, our results suggest that p18 is involved in cell cycle progression after PH. Additionally we provide evidence that timing and strength of DNA synthesis in hepatocytes after PH is regulated tightly through the collaboration of different cell cycle inhibitors.
Collapse
Affiliation(s)
- Tom Luedde
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Wuestefeld T, Klein C, Streetz KL, Betz U, Lauber J, Buer J, Manns MP, Müller W, Trautwein C. Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration. J Biol Chem 2003; 278:11281-8. [PMID: 12509437 DOI: 10.1074/jbc.m208470200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
After tissue loss the liver has the unique capacity to restore its mass by hepatocyte proliferation. Interleukin-6 (IL6)-deficient mice show a lack in DNA synthesis after partial hepatectomy (PH). To define better the role of IL6 and its family members for liver regeneration after PH, we used conditional knockout mice for glycoprotein 130 (gp130), the common signal transducer of all IL6 family members. We show that gp130-dependent pathways control Stat3 activation after PH. By using gene array analysis, we demonstrate that c-jun, NF-kappa B, c-myc, and tumor necrosis factor receptor expression is gp130-dependent. However, in gp130-deleted mice only minor effects on cell cycle and on the maximum of DNA synthesis after PH were found compared with controls. As in conditional gp130 animals, the acute phase response was completely abolished, we considered that other means are essential to define the role of gp130-dependent pathways for liver regeneration. LPS stimulation in gp130-deleted and also IL6 -/- animals after PH leads to a significant reduction in survival and DNA synthesis, which was associated with decreased Bcl-xL expression and higher apoptosis in the liver. These results indicate that the phenotype concerning the reduction in DNA synthesis might be linked to the degree of infection after PH. Thus our results suggest that the role of gp130-dependent signaling is not a direct influence on cell cycle progression after partial hepatectomy but is to activate protective pathways important to enable hepatocyte proliferation.
Collapse
Affiliation(s)
- Torsten Wuestefeld
- Department of Gastroenterology, Hepatology, and Endocrinology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wheeler MD, Smutney OM, Check JF, Rusyn I, Schulte-Hermann R, Thurman RG. Impaired Ras membrane association and activation in PPARalpha knockout mice after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2003; 284:G302-12. [PMID: 12388208 DOI: 10.1152/ajpgi.00175.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver regeneration after partial hepatectomy (PH) involves several signaling mechanisms including activation of the small GTPases Ras and RhoA in response to mitogens leading to DNA synthesis and cell proliferation. Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates the expression of several key enzymes in isoprenoid synthesis, which are key events for membrane association of Ras and RhoA. Thus the role of PPARalpha in cell proliferation after PH was tested. After PH, an increase in PPARalpha DNA binding was observed in wild-type mice, correlating with an increase in the PPARalpha-regulated enzyme acyl-CoA oxidase. In addition, the PPARalpha-regulated genes farnesyl pyrophosphate synthase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase were significantly increased in wild-type mice. However, these increases were not observed in PPARalpha knockout (PPARalpha -/-) mice. The peak in DNA synthesis observed 42 h after PH was reduced by approximately 60% in PPARalpha -/- mice, despite increases in TNF-alpha and IL-1. Also, under these conditions, membrane association of Ras was high in wild-type mice after PH but was impaired in PPARalpha -/- mice. Accordingly, Ras was significantly elevated in the cytosol in PPARalpha -/- mice. This observation correlated with lower levels of active GTP-bound Ras after PH in PPARalpha -/- mice compared with wild-type mice. Similar observations were made for RhoA. Moreover, deletion of PPARalpha blunted the activation of cyclin-dependent kinase (cdk)2/cyclin E and cdk4/cyclin D complexes. Collectively, these results support the hypothesis that PPARalpha is necessary for cell cycle progression in regenerating mouse liver via mechanisms involving prenylation of small GTPases Ras and RhoA.
Collapse
Affiliation(s)
- Michael D Wheeler
- Laboratory of Hepatobiology and Toxicology, Department of Pharmacology, Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|