1
|
Zweier-Renn LA, Riz I, Hawley TS, Hawley RG. The DN2 Myeloid-T (DN2mt) Progenitor is a Target Cell for Leukemic Transformation by the TLX1 Oncogene. JOURNAL OF BONE MARROW RESEARCH 2013; 1:105. [PMID: 25309961 PMCID: PMC4191823 DOI: 10.4172/2329-8820.1000105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Inappropriate activation of the TLX1 (T-cell leukemia homeobox 1) gene by chromosomal translocation is a recurrent event in human T-cell Acute Lymphoblastic Leukemia (T-ALL). Ectopic expression of TLX1 in murine bone marrow progenitor cells using a conventional retroviral vector efficiently yields immortalized cell lines and induces T-ALL-like tumors in mice after long latency. METHODS To eliminate a potential contribution of retroviral insertional mutagenesis to TLX1 immortalizing and transforming function, we incorporated the TLX1 gene into an insulated self-inactivating retroviral vector. RESULTS Retrovirally transduced TLX1-expressing murine bone marrow progenitor cells had a growth/survival advantage and readily gave rise to immortalized cell lines. Extensive characterization of 15 newly established cell lines failed to reveal a common retroviral integration site. This comprehensive analysis greatly extends our previous study involving a limited number of cell lines, providing additional support for the view that constitutive TLX1 expression is sufficient to initiate the series of events culminating in hematopoietic progenitor cell immortalization. When TLX1-immortalized cells were co-cultured on OP9-DL1 monolayers under conditions permissive for T-cell differentiation, a latent T-lineage potential was revealed. However, the cells were unable to transit the DN2 myeloid-T (DN2mt)-DN2 T-lineage determined (DN2t) commitment step. The differentiation block coincided with failure to upregulate the zinc finger transcription factor gene Bcl11b, the human ortholog of which was shown to be a direct transcriptional target of TLX1 downregulated in the TLX1+ T-ALL cell line ALL-SIL. Other studies have described the ability of TLX1 to promote bypass of mitotic checkpoint arrest, leading to aneuploidy. We likewise found that diploid TLX1-expressing DN2mt cells treated with the mitotic inhibitor paclitaxel bypassed the mitotic checkpoint and displayed chromosomal instability. This was associated with elevated expression of TLX1 transcriptional targets involved in DNA replication and mitosis, including Ccna2 (cyclin A2), Ccnb1 (cyclin B1), Ccnb2 (cyclin B2) and Top2a (topoisomerase IIα). Notably, enforced expression of BCL11B in ALL-SIL T-ALL cells conferred resistance to the topoisomerase IIα poison etoposide. CONCLUSION Taken together with previous findings, the data reinforce a mechanism of TLX1 oncogenic activity linked to chromosomal instability resulting from dysregulated expression of target genes involved in mitotic processes. We speculate that repression of BCL11B expression may provide part of the explanation for the observation that aneuploid DNA content in TLX1+ leukemic T cells does not necessarily portend an unfavorable prognosis. This TLX1 hematopoietic progenitor cell immortalization/T-cell differentiation assay should help further our understanding of the mechanisms of TLX1-mediated evolution to malignancy and has the potential to be a useful predictor of disease response to novel therapeutic agents in TLX1+ T-ALL.
Collapse
Affiliation(s)
- Lynnsey A Zweier-Renn
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Graduate Program in Biochemistry and Molecular Genetics, George Washington University, Washington, DC, USA
| | - Irene Riz
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Sino-US Joint Laboratory of Translational Medicine, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Abstract
The cAMP response element-binding protein (CREB) is a nuclear transcription factor that is critical for normal and neoplastic hematopoiesis. Previous studies have demonstrated that CREB is a proto-oncogene whose overexpression promotes cellular proliferation in hematopoietic cells. Transgenic mice that overexpress CREB in myeloid cells develop a myeloproliferative disease with splenomegaly and aberrant myelopoiesis. However, CREB overexpressing mice do not spontaneously develop acute myeloid leukemia. In this study, we used retroviral insertional mutagenesis to identify genes that accelerate leukemia in CREB transgenic mice. Our mutagenesis screen identified several integration sites, including oncogenes Gfi1, Myb, and Ras. The Sox4 transcription factor was identified by our screen as a gene that cooperates with CREB in myeloid leukemogenesis. We show that the transduction of CREB transgenic mouse bone marrow cells with a Sox4 retrovirus increases survival and self-renewal of cells in vitro. Furthermore, leukemic blasts from the majority of acute myeloid leukemia patients have higher CREB, phosphorylated CREB, and Sox 4 protein expression. Sox4 transduction of mouse bone marrow cells results in increased expression of CREB target genes. We also demonstrate that CREB is a direct target of Sox4 by chromatin immunoprecipitation assays. These results indicate that Sox4 and CREB cooperate and contribute to increased proliferation of hematopoietic progenitor cells.
Collapse
|
3
|
Liao J, Humphrey SE, Poston S, Taparowsky EJ. Batf promotes growth arrest and terminal differentiation of mouse myeloid leukemia cells. Mol Cancer Res 2011; 9:350-63. [PMID: 21296860 DOI: 10.1158/1541-7786.mcr-10-0375] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Batf is a basic leucine zipper transcription factor belonging to the activator protein-1 superfamily. Batf expression is regulated following stimulation of both lymphoid and myeloid cells. When treated with leukemia inhibitory factor, mouse M1 myeloid leukemia cells commit to a macrophage differentiation program that is dependent on Stat3 and involves the induction of Batf gene transcription via the binding of Stat3 to the Batf promoter. RNA interference was employed to block Batf induction in this system and the cells failed to growth arrest or to terminally differentiate. Restoring Batf expression not only reversed the differentiation-defective phenotype but also caused the cells to display signs of spontaneous differentiation in the absence of stimulation. Efforts to define genetic targets of the Batf transcription factor in M1 cells led to the identification of c-myb, a proto-oncogene known to promote blood cell proliferation and to inhibit the differentiation of M1 cells. These results provide strong evidence that Batf mediates the differentiation-inducing effects of Stat3 signaling in M1 cells and suggest that Batf may play a similar role in other blood cell lineages where alterations to the Jak-Stat pathway are hallmarks of disrupted development and disease.
Collapse
Affiliation(s)
- Juan Liao
- Department of Biological Sciences, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | | | |
Collapse
|
4
|
Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood 2010; 115:3098-108. [PMID: 20190193 DOI: 10.1182/blood-2009-07-233858] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA hypermethylation of the p15INK4b tumor suppressor gene is commonly observed in acute myeloid leukemia (AML). Repressive histone modifications and their associated binding proteins have been implicated in the regulation of DNA methylation and the transcriptional repression of genes with DNA methylation. We have used high-density chromatin immunoprecipitation-on-chip to determine the histone modifications that normally regulate p15INK4b expression in AML cells and how these marks are altered in cells that have p15INK4b DNA methylation. In AML patient blasts without p15INK4b DNA methylation, a bivalent pattern of active (H3K4me3) and repressive (H3K27me3) modifications exist at the p15INK4b promoter. AML patient blasts with p15INK4b DNA methylation lose H3K4me3 at p15INK4b and become exclusively marked by H3K27me3. H3K27me3, as well as EZH2, extends throughout p14ARF and p16INK4a, indicating that polycomb repression of p15INK4b is a common feature in all AML blasts irrespective of the DNA methylation status of the gene. Reactivation of p15INK4b expression in AML cell lines and patient blasts using 5-aza-2'-deoxycytidine (decitabine) and trichostatin A increased H3K4me3 and maintained H3K27me3 enrichment at p15INK4b. These data indicate that AML cells with p15INK4b DNA methylation have an altered histone methylation pattern compared with unmethylated samples and that these changes are reversible by epigenetic drugs.
Collapse
|
5
|
Rosu-Myles M, Wolff L. p15Ink4b: Dual function in myelopoiesis and inactivation in myeloid disease. Blood Cells Mol Dis 2008; 40:406-9. [DOI: 10.1016/j.bcmd.2007.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
|
6
|
Rosu-Myles M, Taylor BJ, Wolff L. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors. Exp Hematol 2007; 35:394-406. [PMID: 17309820 DOI: 10.1016/j.exphem.2006.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. METHODS We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. RESULTS BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. CONCLUSIONS This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.
Collapse
Affiliation(s)
- Michael Rosu-Myles
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4263, USA
| | | | | |
Collapse
|
7
|
Markus J, Garin MT, Bies J, Galili N, Raza A, Thirman MJ, Le Beau MM, Rowley JD, Liu PP, Wolff L. Methylation-independent silencing of the tumor suppressor INK4b (p15) by CBFbeta-SMMHC in acute myelogenous leukemia with inv(16). Cancer Res 2007; 67:992-1000. [PMID: 17283131 DOI: 10.1158/0008-5472.can-06-2964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene INK4b (p15) is silenced by CpG island hypermethylation in most acute myelogenous leukemias (AML), and this epigenetic phenomenon can be reversed by treatment with hypomethylating agents. Thus far, it was not investigated whether INK4b is hypermethylated in all cytogenetic subtypes of AML. A comparison of levels of INK4b methylation in AML with the three most common cytogenetic alterations, inv(16), t(8;21), and t(15;17), revealed a strikingly low level of methylation in all leukemias with inv(16) compared with the other types. Surprisingly, the expression level of INK4b in inv(16)+ AML samples was low and comparable with that of the other subtypes. An investigation into an alternative mechanism of INK4b silencing determined that the loss of INK4b expression was caused by inv(16)-encoded core binding factor beta-smooth muscle myosin heavy chain (CBFbeta-SMMHC). The silencing was manifested in an inability to activate the normal expression of INK4b RNA as shown in vitamin D3-treated U937 cells expressing CBFbeta-SMMHC. CBFbeta-SMMHC was shown to displace RUNX1 from a newly determined CBF site in the promoter of INK4b. Importantly, this study (a) establishes that the gene encoding the tumor suppressor p15(INK4b) is a target of CBFbeta-SMMHC, a finding relevant to the leukemogenesis process, and (b) indicates that, in patients with inv(16)-containing AML, reexpression from the INK4b locus in the leukemia would not be predicted to occur using hypomethylating drugs.
Collapse
Affiliation(s)
- Jan Markus
- Laboratory of Cellular Oncology, National Cancer Institute and National Human Genome Research Institute/NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part III): transcription factors. ACTA ACUST UNITED AC 2005; 5:327-38. [PMID: 16196502 DOI: 10.2165/00129785-200505050-00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third paper in a four-part serial review on potential therapeutic targeting of oncogenes. The previous parts described the involvement of oncogenes in different aspects of cancer growth and development, and considered the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes that we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part one discussed growth factors and tyrosine kinases and part two discussed intermediate signaling molecules. This portion of the review covers transcription factors and the various strategies being used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
9
|
Schmidt M, Bies J, Tamura T, Ozato K, Wolff L. The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 up-regulates expression of tumor suppressor p15(Ink4b) in murine myeloid cells. Blood 2004; 103:4142-9. [PMID: 14976051 DOI: 10.1182/blood-2003-01-0285] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CDKN2B (INK4B), which encodes the cyclin-dependent kinase inhibitor p15(INK4b), is up-regulated by many cytokines found in hematopoietic environments in vivo. In human acute myeloid leukemias (AMLs), it is inactivated with high frequency. To gain insight into the regulatory pathways leading to the normal activation of p15(Ink4b) expression, we examined interferon beta (IFNbeta)-induced transcription. Using reporter gene assays in murine myeloid cells M1, we determined that a 328-bp fragment, located 117 to 443 bp upstream of the translation initiation site, was sufficient to activate transcription. Both the interferon consensus sequence-binding protein/interferon regulatory factor 8 (ICSBP/IRF-8) and PU.1 were able to increase transcription from this region. It was determined that both ICSBP and PU.1 must bind to DNA to form a stable PU.1/ICSBP binding complex. Interestingly, introduction of the ICSBP into ICSBP-null Tot2 cells led to a significant increase in p15(Ink4b) RNA expression. This regulation of the Ink4b promoter is apparently myeloid specific because both ICSBP and PU.1 are myeloid commitment factors. Importantly, this provides a mechanism to explain in part the tumor suppressor activity of ICSBP, since ICSBP-deficient mice develop a chronic myelogenous leukemia (CML)-like disease and a high percentage of human AML and CML lack ICSBP transcripts.
Collapse
Affiliation(s)
- Martina Schmidt
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | | | | | | | | |
Collapse
|
10
|
Wolff L, Garin MT, Koller R, Bies J, Liao W, Malumbres M, Tessarollo L, Powell D, Perella C. Hypermethylation of the Ink4b locus in murine myeloid leukemia and increased susceptibility to leukemia in p15(Ink4b)-deficient mice. Oncogene 2004; 22:9265-74. [PMID: 14681685 DOI: 10.1038/sj.onc.1207092] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ink4b gene (Cdkn2b) encodes p15(Ink4b), a cyclin-dependent kinase inhibitor. It has been implicated in playing a role in the development of acute myeloid leukemia (AML) in man, since it is hypermethylated with high frequency. We provide evidence that the gene is a tumor suppressor for myeloid leukemia in mice. The evidence is twofold: (1) retrovirus-induced myeloid leukemias of the myelomonocytic phenotype were found to have hypermethylation of the 5' CpG island of the Ink4b gene, and this could be correlated with reduced mRNA expression, as demonstrated by TaqMan real-time PCR. p15(Ink4b) mRNA expression in a leukemia cell line, with hypermethylation at the locus, was induced following treatment with 5-aza-2'-deoxycytidine. (2) Targeted deletion of one allele in mice by removal of exon 2 increases their susceptibility to retrovirus-induced myeloid leukemia. Mice deficient in both alleles were not more susceptible to myeloid disease than those deficient in one allele, raising the possibility that there are opposing forces related to the development of myeloid leukemia in Ink4b null mice.
Collapse
Affiliation(s)
- Linda Wolff
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Haviernik P, Schmidt M, Hu X, Wolff L. Consistent inactivation of p19(Arf) but not p15(Ink4b) in murine myeloid cells transformed in vivo by deregulated c-Myc. Oncogene 2003; 22:1600-10. [PMID: 12642863 DOI: 10.1038/sj.onc.1206268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase inhibitors p16(INK4a) and p15(INK4b), encoded by the CDKN2A and B loci, play an important role in negative regulation of the cell cycle. Furthermore, p19(ARF) also encoded by the CDKN2A locus, has been shown to regulate positively the p53 pathway leading to growth arrest and apoptosis. All three genes have been inactivated in human tumors. In myeloid cells, p15(INK4b) mRNA is upregulated during cytokine-induced differentiation and/or growth arrest, and hypermethylation of the p15(INK4b) gene promoter region is a common event in acute myeloid leukemia. In the present study, we examined murine monocyte/macrophage tumors with deregulated c-myc for evidence of Ink4 gene inactivation. p15(Ink4b) mRNA and protein were detected in the majority of leukemias, and p16(Ink4a) mRNA and protein were highly expressed in two of them. pRb was in a hypophosphorylated state in most of the neoplasms indicating that the Cdk inhibitors that were expressed in the cells were functional. The observed expression of p15(Ink4b) is inconsistent with their proliferation state, although it might be expected to be expressed owing to the maturity of the cells. These data suggest, therefore, that deregulated c-Myc bypasses the pRb restriction point and cell cycle arrest in these tumors. An examination of p19(Arf) exons revealed deletions of the gene in up to 94% of the tumors. Since this gene shares exon 2 with p16(Ink4a), it is often difficult to determine which gene is the relevant tumor suppressor. However, the loss of only the p19(Arf)-specific exon 1 beta was observed in a tumor that had normal p16(Ink4a) protein expression. In addition, the p19(Arf)-specific exon was deleted in another tumor that expressed a functional chimeric protein, p15Ex1-p16Ex2-3; it was demonstrated here that this fusion protein is capable of inducing G1 arrest. These data overall supports the hypothesis that the critical inactivation event in these hematopoietic neoplasms is elimination of p19(Arf), and not Ink4 function.
Collapse
Affiliation(s)
- Peter Haviernik
- Laboratory of Cellular Oncology, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
12
|
Yi HK, Nam SY, Kim JC, Kim JS, Lee DY, Hwang PH. Induction of apoptosis in K562 cells by dominant negative c-myb. Exp Hematol 2002; 30:1139-46. [PMID: 12384144 DOI: 10.1016/s0301-472x(02)00896-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The aberrant expression of c-myb in leukemic cells suggests that c-myb may play an important role in leukemogenesis. Therefore, disrupting c-myb function might provide a strategy for controlling leukemic cell growth. Use of dominant negative mutants as a strategy for inhibiting oncogene function has attracted considerable attention. The aim of this study was to induce apoptosis in K562 cells by dominant negative c-myb (DN-myb). MATERIALS AND METHODS We constructed a DN-myb plasmid containing the DNA-binding domain of c-myb and transfected the dominant negative mutant, like its wild-type (WT) counterpart, into K562 cells. Consequently, cell viability and induction of apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, nuclear condensation, DNA fragmentation, and Western hybridization analysis for expression of poly(ADP-ribose) polymerase. In addition, the effect of DN-myb on bcl-2 promoter activity and expression of bcl-2 and bcr-abl was studied. RESULTS We observed that DN-myb, cotransfected with WT c-myb and a chloramphenicol acetyltransferase reporter construct containing the bcl-2 promoter, bound competitively to the bcl-2 promoter and significantly decreased the activation of chloramphenicol acetyltransferase induced by WT c-myb. Moreover, the inactivation of transcription induced by DN-myb reduced not only the expression of bcl-2 but also the expression of bcr-abl. Further functional studies focused on the effect of DN-myb on the induction of apoptosis in K562 cells. Transfection of DN-myb into K562 cells caused a significant reduction in cell proliferation when cells were exposed to low concentrations of DNA-damaging agents (approximately 30% of control) and remarkably increased apoptosis. CONCLUSIONS Our data demonstrate that disruption of c-myb function by dominant negative c-myb is an effective strategy to induce apoptosis of leukemic cells. The results of these studies support the thesis that dominant negative c-myb gene therapy may be useful for treatment of leukemia patients.
Collapse
Affiliation(s)
- Ho Keun Yi
- Department of Pediatrics, Chonbuk National University Medical School, Jeonju, South Korea
| | | | | | | | | | | |
Collapse
|