1
|
Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S, Jiang S, Liu Q, Cui X. The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma. Front Microbiol 2024; 15:1469016. [PMID: 39309526 PMCID: PMC11412822 DOI: 10.3389/fmicb.2024.1469016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The integration of Hepatitis B Virus (HBV) is now known to be closely associated with the occurrence of liver cancer and can impact the functionality of liver cells through multiple dimensions. However, despite the detailed understanding of the characteristics of HBV integration and the mechanisms involved, the subsequent effects on cellular function are still poorly understood in current research. This study first systematically discusses the relationship between HBV integration and the occurrence of liver cancer, and then analyzes the status of the viral genome produced by HBV replication, highlighting the close relationship and structure between double-stranded linear (DSL)-HBV DNA and the occurrence of viral integration. The integration of DSL-HBV DNA leads to a certain preference for HBV integration itself. Additionally, exploration of HBV integration hotspots reveals obvious hotspot areas of HBV integration on the human genome. Virus integration in these hotspot areas is often associated with the occurrence and development of liver cancer, and it has been determined that HBV integration can promote the occurrence of cancer by inducing genome instability and other aspects. Furthermore, a comprehensive study of viral integration explored the mechanisms of viral integration and the internal integration mode, discovering that HBV integration may form extrachromosomal DNA (ecDNA), which exists outside the chromosome and can integrate into the chromosome under certain conditions. The prospect of HBV integration as a biomarker was also probed, with the expectation that combining HBV integration research with CRISPR technology will vigorously promote the progress of HBV integration research in the future. In summary, exploring the characteristics and mechanisms in HBV integration holds significant importance for an in-depth comprehension of viral integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Suhao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yani Jin
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xiao Mu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenzhen Guo
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Jining First People's Hospital, Shandong First Medical University, Jining, China
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaofang Cui
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
2
|
Gu Z, Jiang Q, Abulaiti A, Chen X, Li M, Gao N, Guan G, Zhang T, Yang D, Xi J, Yu G, Liu S, Zhu Z, Gao Z, Zhao J, Huang H, Chen X, Lu F. Hepatitis B virus enhancer 1 activates preS1 and preS2 promoters of integrated HBV DNA impairing HBsAg secretion. JHEP Rep 2024; 6:101144. [PMID: 39253701 PMCID: PMC11381774 DOI: 10.1016/j.jhepr.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 09/11/2024] Open
Abstract
Background & Aims The expression of HBsAg from integrated HBV DNA limits the achievement of functional cure for chronic hepatitis B. Thus, characterising the unique expression and secretion of HBsAg derived from integrated HBV DNA is of clinical significance. Methods A total of 563 treatment-naive patients and 62 functionally cured patients were enrolled, and HBsAg and HBcAg immunohistochemistry of their liver biopsy tissues was conducted followed by semi-quantitative analysis. Then, based on stratified analysis of HBeAg-positive and -negative patients, long-read RNA sequencing analysis, as well as an in vitro HBV integration model, we explored the HBsAg secretion characteristics of integrated HBV DNA and underlying mechanisms. Results In contrast to the significantly lower serum HBsAg levels, no significant decrease of intrahepatic HBsAg protein was observed in HBeAg-negative patients, as compared with HBeAg-positive patients. The results of long-read RNA sequencing of liver tissues from patients with chronic HBV infection and in vitro studies using integrated HBV DNA mimicking dslDNA plasmid revealed that, the lower HBsAg secretion efficiency seen in HBeAg-negative patients might be attributed to an increased proportion of preS1 mRNA derived from integrated HBV DNA instead of covalently closed circular DNA. The latter resulted in an increased L-HBsAg proportion and impaired HBsAg secretion. Enhancer 1 (EnhI) in integrated HBV DNA could retarget preS1 (SP1) and preS2 (SP2) promoters to disrupt their transcriptional activity balance. Conclusions The secretion of HBsAg originating from integrated HBV DNA was impaired. Mechanistically, functional deficiency of core promoter leads to retargeting of EnhI and thus uneven activation of the SP1 over the SP2 promoter, resulting in an increase in the proportion of L-HBsAg. Impact and implications Integrated hepatitis B virus (HBV) DNA can serve as an important reservoir for HBV surface antigen (HBsAg) expression, and this limits the achievement of a functional cure. This study revealed that secretion efficiency is lower for HBsAg derived from integrated HBV DNA than HBsAg derived from covalently closed circular DNA, as determined by the unique sequence features of integrated HBV DNA. This study can broaden our understanding of the role of HBV integration and shed new light on antiviral strategies to facilitate a functional cure. We believe our results are of great general interest to a broad audience, including patients and patient organisations, the medical community, academia, the life science industry and the public.
Collapse
Affiliation(s)
- Zhiqiang Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qianqian Jiang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Abudurexiti Abulaiti
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaojie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Mingwei Li
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Danli Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingyuan Xi
- Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guangxin Yu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhijun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hongxin Huang
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
3
|
Wu X, Ni Z, Song T, Lv W, Chen Y, Huang D, Xie Y, Huang W, Niu Y. C-Terminal Truncated HBx Facilitates Oncogenesis by Modulating Cell Cycle and Glucose Metabolism in FXR-Deficient Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24065174. [PMID: 36982249 PMCID: PMC10048952 DOI: 10.3390/ijms24065174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor known to play protective roles in anti-hepatocarcinogenesis and regulation of the basal metabolism of glucose, lipids, and bile acids. FXR expression is low or absent in HBV-associated hepatocarcinogenesis. Full-length HBx and HBx C-terminal truncation are frequently found in clinical HCC samples and play distinct roles in hepatocarcinogenesis by interacting with FXR or FXR signaling. However, the impact of C-terminal truncated HBx on the progression of hepatocarcinogenesis in the absence of FXR is unclear. In this study, we found that one known FXR binding protein, a C-terminal truncated X protein (HBx C40) enhanced obviously and promoted tumor cell proliferation and migration by altering cell cycle distribution and inducing apoptosis in the absence of FXR. HBx C40 enhanced the growth of FXR-deficient tumors in vivo. In addition, RNA-sequencing analysis showed that HBx C40 overexpression could affect energy metabolism. Overexpressed HSPB8 aggravated the metabolic reprogramming induced by down-regulating glucose metabolism-associated hexokinase 2 genes in HBx C40-induced hepatocarcinogenesis. Overall, our study suggests that C-terminal truncated HBx C40 synergizes with FXR deficiency by altering cell cycle distribution as well as disturbing glucose metabolism to promote HCC development.
Collapse
Affiliation(s)
- Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zhengzhong Ni
- School of Public Health, Shantou University, Shantou 515063, China
| | - Tiantian Song
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenya Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yan Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yangmin Xie
- Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, China
| | - Weiyi Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Correspondence: or ; Tel.: +86-0754-88900432
| |
Collapse
|
4
|
CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification. Cell Res 2022; 32:969-981. [PMID: 36104507 PMCID: PMC9652286 DOI: 10.1038/s41422-022-00712-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023] Open
Abstract
The dynamic three-dimensional structures of chromatin and extrachromosomal DNA molecules regulate fundamental cellular processes and beyond. However, the visualization of specific DNA sequences in live cells, especially nonrepetitive sequences accounting for most of the genome, is still vastly challenging. Here, we introduce a robust CRISPR-mediated fluorescence in situ hybridization amplifier (CRISPR FISHer) system, which exploits engineered sgRNA and protein trimerization domain-mediated, phase separation-based exponential assembly of fluorescent proteins in the CRISPR-targeting locus, conferring enhancements in both local brightness and signal-to-background ratio and thus achieving single sgRNA-directed visualization of native nonrepetitive DNA loci in live cells. In one application, by labeling and tracking the broken ends of chromosomal fragments, CRISPR FISHer enables real-time visualization of the entire process of chromosome breakage, separation, and subsequent intra- or inter-chromosomal ends rejoining in a single live cell. Furthermore, CRISPR FISHer allows the movement of small extrachromosomal circular DNAs (eccDNAs) and invading DNAs to be recorded, revealing substantial differences in dynamic behaviors between chromosomal and extrachromosomal loci. With the potential to track any specified self or non-self DNA sequences, CRISPR FISHer dramatically broadens the scope of live-cell imaging in biological events and for biomedical diagnoses.
Collapse
|
5
|
Salpini R, D’Anna S, Benedetti L, Piermatteo L, Gill U, Svicher V, Kennedy PTF. Hepatitis B virus DNA integration as a novel biomarker of hepatitis B virus-mediated pathogenetic properties and a barrier to the current strategies for hepatitis B virus cure. Front Microbiol 2022; 13:972687. [PMID: 36118192 PMCID: PMC9478028 DOI: 10.3389/fmicb.2022.972687] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infection with Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality worldwide. HBV-DNA integration into the human genome is recognized as a frequent event occurring during the early phases of HBV infection and characterizing the entire course of HBV natural history. The development of refined molecular biology technologies sheds new light on the functional implications of HBV-DNA integration into the human genome, including its role in the progression of HBV-related pathogenesis and in triggering the establishment of pro-oncogenic mechanisms, promoting the development of hepatocellular carcinoma. The present review provides an updated and comprehensive overview of the current body of knowledge on HBV-DNA integration, focusing on the molecular mechanisms underlying HBV-DNA integration and its occurrence throughout the different phases characterizing the natural history of HBV infection. Furthermore, here we discuss the main clinical implications of HBV integration as a biomarker of HBV-related pathogenesis, particularly in reference to hepatocarcinogenesis, and how integration may act as a barrier to the achievement of HBV cure with current and novel antiviral therapies. Overall, a more refined insight into the mechanisms and functionality of HBV integration is paramount, since it can potentially inform the design of ad hoc diagnostic tools with the ability to reveal HBV integration events perturbating relevant intracellular pathways and for identifying novel therapeutic strategies targeting alterations directly related to HBV integration.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Livia Benedetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Upkar Gill
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
- *Correspondence: Valentina Svicher,
| | - Patrick T. F. Kennedy
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Patrick T. F. Kennedy,
| |
Collapse
|
6
|
Targeted Long-Read Sequencing Reveals Comprehensive Architecture, Burden and Transcriptional Signatures from HBV-Associated Integrations and Translocations in HCC Cell Lines. J Virol 2021; 95:e0029921. [PMID: 34287049 DOI: 10.1128/jvi.00299-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) can integrate into the chromosomes of infected hepatocytes, creating potentially oncogenic lesions that can lead to hepatocellular carcinoma (HCC). However, our current understanding of integrated HBV DNA architecture, burden and transcriptional activity is incomplete due to technical limitations. A combination of genomics approaches was used to describe HBV integrations and corresponding transcriptional signatures in three HCC cell lines: huH-1, PLC/PRF/5 and Hep3B. To generate high coverage long-read sequencing data, a custom panel of HBV-targeting biotinylated oligonucleotide probes was designed. Targeted long-read DNA sequencing captured entire HBV integration events within individual reads, revealing that integrations may include deletions and inversions of viral sequences. Surprisingly, all three HCC cell lines contain integrations that are associated with host chromosomal translocations. In addition, targeted long-read RNA sequencing allowed for the assignment of transcriptional activity to specific integrations and resolved the contribution of overlapping HBV transcripts. HBV transcripts chimeric with host sequences were resolved in their entirety and often included >1000bp of host sequence. This study provides the first comprehensive description of HBV integrations and associated transcriptional activity in three commonly utilized HCC-derived cell lines. The application of novel methods sheds new light on the complexity of these integrations, including HBV bidirectional transcription, nested transcripts, silent integrations and host genomic rearrangements. The observation of multiple HBV-associated chromosomal translocations gives rise to the hypothesis that HBV may be a driver of genetic instability and provides a potential new mechanism for HCC development. Importance HCC-derived cell lines have served as practical models to study HBV biology for decades. These cell lines harbor multiple HBV integrations and express only HBV surface antigen (HBsAg). To date, an accurate description of the integration burden, architecture and transcriptional profile of these cell lines has been limited due to technical constraints. We have developed a targeted long-read sequencing assay which reveals the entire architecture of integrations in these cell lines. In addition, we identified five chromosomal translocations with integrated HBV DNA at the inter-chromosomal junctions. Incorporation of long-read RNA-Seq data indicated that many integrations and translocations were transcriptionally silent. The observation of multiple HBV-associated translocations has strong implications regarding the potential mechanisms for the development of HBV-associated HCC.
Collapse
|
7
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
8
|
Lin SY, Zhang A, Lian J, Wang J, Chang TT, Lin YJ, Song W, Su YH. Recurrent HBV Integration Targets as Potential Drivers in Hepatocellular Carcinoma. Cells 2021; 10:cells10061294. [PMID: 34071075 PMCID: PMC8224658 DOI: 10.3390/cells10061294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma (HCC), frequently with HBV integrating into the host genome. HBV integration, found in 85% of HBV-associated HCC (HBV–HCC) tissue samples, has been suggested to be oncogenic. Here, we investigated the potential of HBV–HCC driver identification via the characterization of recurrently targeted genes (RTGs). A total of 18,596 HBV integration sites from our in-house study and others were analyzed. RTGs were identified by applying three criteria: at least two HCC subjects, reported by at least two studies, and the number of reporting studies. A total of 396 RTGs were identified. Among the 28 most frequent RTGs, defined as affected in at least 10 HCC patients, 23 (82%) were associated with carcinogenesis and 5 (18%) had no known function. Available breakpoint positions from the three most frequent RTGs, TERT, MLL4/KMT2B, and PLEKHG4B, were analyzed. Mutual exclusivity of TERT promoter mutation and HBV integration into TERT was observed. We present an RTG consensus through comprehensive analysis to enable the potential identification and discovery of HCC drivers for drug development and disease management.
Collapse
Affiliation(s)
- Selena Y. Lin
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Adam Zhang
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
| | - Jessica Lian
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
| | - Jeremy Wang
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Medical College, Tainan 704, Taiwan;
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Medical College, Tainan 704, Taiwan;
| | - Wei Song
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.W.); (W.S.)
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; (A.Z.); (J.L.)
- Correspondence: ; Tel.: +215-489-4907
| |
Collapse
|
9
|
Hirota M, Takahashi H, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, Eguchi H, Doki Y, Nakajima K. Surgical plume from tissue infected with human hepatitis B virus can contain viral substances. MINIM INVASIV THER 2021; 31:728-736. [PMID: 33853487 DOI: 10.1080/13645706.2021.1910848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Evidence on the biological danger associated with surgical plume is lacking. We examined whether surgical plume, generated by the energy devices ultrasonically activated scalpel (US) or electrocautery (EC) contains virus-related substances. MATERIAL AND METHODS Experiment 1, ex-vivo model: Tumor mass of a hepatocellular carcinoma line was prepared in a Nod/SCID mouse. Surgical plume generated on the mass by US or EC was collected and detection of HBs gene fragment and antigens (HBsAg or AFP) was conducted. Experiment 2, clinical specimen: Detection of HBV-DNA and HBsAg was conducted following the collection of surgical plume generated from clinically obtained liver specimens from six HBV-associated hepatocellular carcinoma patients. RESULTS Experiment 1: HBs gene fragment was detected in the solutions regardless of the device used. HBsAg was detected in US and EC solutions and AFP was also detected in a US solution. Experiment 2: HBV-DNA was detected in both devices, in all three cases whose preoperative serum HBV-DNA was positive. In the other serum-negative cases, HBV-DNA was not detected. While serum HBsAg was positive in five of six cases, it was not detected in any solution. CONCLUSIONS DNA fragments or antigens of virus can exist in the surgical plume generated by EC or US.
Collapse
Affiliation(s)
- Masashi Hirota
- Department of Next Generation Endoscopic Intervention, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Next Generation Endoscopic Intervention, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses 2021; 13:v13030368. [PMID: 33652619 PMCID: PMC7996909 DOI: 10.3390/v13030368] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.
Collapse
|
11
|
Veena MS, Raychaudhuri S, Basak SK, Venkatesan N, Kumar P, Biswas R, Chakrabarti R, Lu J, Su T, Gallagher-Jones M, Morselli M, Fu H, Pellegrini M, Goldstein T, Aladjem MI, Rettig MB, Wilczynski SP, Shin DS, Srivatsan ES. Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer. J Biol Chem 2020; 295:17169-17186. [PMID: 33028635 PMCID: PMC7863911 DOI: 10.1074/jbc.ra120.014048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.
Collapse
Affiliation(s)
- Mysore S Veena
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Santanu Raychaudhuri
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Saroj K Basak
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Natarajan Venkatesan
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Parameet Kumar
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rita Chakrabarti
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Trent Su
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, UCLA, Los Angeles, California, USA
| | | | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Theodore Goldstein
- Institute of Computational Sciences, University of California San Francisco, San Francisco, California, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew B Rettig
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sharon P Wilczynski
- Department of Pathology, City of Hope Medical Center, Duarte, California, USA
| | - Daniel Sanghoon Shin
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eri S Srivatsan
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
12
|
Gong Z, Jia H, Yu J, Liu Y, Ren J, Yang S, Hu B, Liu L, Lai PBS, Chen GG. Nuclear FOXP3 inhibits tumor growth and induced apoptosis in hepatocellular carcinoma by targeting c-Myc. Oncogenesis 2020; 9:97. [PMID: 33116119 PMCID: PMC7595121 DOI: 10.1038/s41389-020-00283-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
The status of FOXP3 and its isoforms in hepatocellular carcinoma (HCC) is unclear. We aimed to investigate the expression and function of FOXP3 and its isoforms in HCC. The study was performed on 84 HCC patients, HCC cell lines and a mouse tumor model. The levels of FOXP3 and its isoforms were determined by nested PCR, quantitative real-time PCR and immunohistochemistry (IHC) staining. The correlation between their levels and clinicopathologic characteristics was analyzed. The full length of FOXP3 (FOXP3) and exon 3-deleted FOXP3 (FOXP3Δ3) were found to be the major isoforms in HCC. The levels of FOXP3Δ3 mRNA and protein in HCC tumor samples were not significantly different from their adjacent normal tissues. The high expression of FOXP3 protein in HCC patients showed a good overall survival. The overexpression of FOXP3 significantly reduced tumor cell proliferation, migration and invasion. The immunofluorescence result indicated that FOXP3 needed to be translocated into the nucleus to exert its inhibitory function. The luciferase assay demonstrated that FOXP3 could be synergistic with Smad2/3/4 to inhibit the oncogene c-Myc. The co-immunoprecipitation results further revealed that FOXP3 could interact with Smad2/3/4. The chromatin immunoprecipitation (ChIP) assay showed that both FOXP3 and Smad2/3/4 bound the promoter of the c-Myc to inhibit it. The in vivo mouse tumor model study confirmed the inhibitory effect of FOXP3. Collectively, the expression of tumor FOXP3 can inhibit the growth of HCC via suppressing c-Myc directly or indirectly via interacting with Smad2/3/4. Therefore, FOXP3 is a tumor suppressor in HCC.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Jia
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jianqing Yu
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Liu
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524025, Guangdong, China
| | - Jianwei Ren
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 524000, Guangdong Province, China
| | - Paul B S Lai
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - George Gong Chen
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Abstract
Hepatitis B virus (HBV), which was discovered in 1965, is a threat to global public health. HBV infects human hepatocytes and leads to acute and chronic liver diseases, and there is no cure. In cells infected by HBV, viral DNA can be integrated into the cellular genome. HBV DNA integration is a complicated process during the HBV life cycle. Although HBV integration normally results in replication-incompetent transcripts, it can still act as a template for viral protein expression. Of note, it is a primary driver of hepatocellular carcinoma (HCC). Recently, with the development of detection methods and research models, the molecular biology and the pathogenicity of HBV DNA integration have been better revealed. Here, we review the advances in the research of HBV DNA integration, including molecular mechanisms, detection methods, research models, the effects on host and viral gene expression, the role of HBV integrations in the pathogenesis of HCC, and potential treatment strategies. Finally, we discuss possible future research prospects of HBV DNA integration.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Andrew Liu
- Laboratory of Molecular Cardiology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Charre C, Levrero M, Zoulim F, Scholtès C. Non-invasive biomarkers for chronic hepatitis B virus infection management. Antiviral Res 2019; 169:104553. [PMID: 31288041 DOI: 10.1016/j.antiviral.2019.104553] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health burden with over 250 million cases worldwide. This complex infection can lead to chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Complete recovery is seldom achieved due to the persistence in infected hepatocytes of covalently closed circular (ccc)DNA, which is not targeted by current antiviral therapies. Routine circulating biomarkers used for clinical monitoring of patients do not accurately reflect the cccDNA pool and transcriptional activity. New biomarkers, such as serum HB core-related Ag and circulating HBV RNAs, are under development. In this review, we discuss surrogate non-invasive biomarkers for evaluating intrahepatic cccDNA abundance and transcriptional activity. We also present their relevance for improving the classification of patients with regards to their natural history and for evaluating novel compounds to assess target engagement and to define new virological endpoints.
Collapse
Affiliation(s)
- Caroline Charre
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, University Claude Bernard Lyon 1 (UCBL1), Lyon, France; Department of Virology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Massimo Levrero
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, University Claude Bernard Lyon 1 (UCBL1), Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Fabien Zoulim
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, University Claude Bernard Lyon 1 (UCBL1), Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Caroline Scholtès
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, University Claude Bernard Lyon 1 (UCBL1), Lyon, France; Department of Virology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
15
|
Tu T, Budzinska MA, Shackel NA, Urban S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 2017; 9:v9040075. [PMID: 28394272 PMCID: PMC5408681 DOI: 10.3390/v9040075] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies.
Collapse
Affiliation(s)
- Thomas Tu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | - Magdalena A Budzinska
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Nicholas A Shackel
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
- Liverpool Hospital, Gastroenterology, Sydney, NSW 2170, Australia.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Li X, Zhang J, Yang Z, Kang J, Jiang S, Zhang T, Chen T, Li M, Lv Q, Chen X, McCrae MA, Zhuang H, Lu F. The function of targeted host genes determines the oncogenicity of HBV integration in hepatocellular carcinoma. J Hepatol 2014; 60:975-84. [PMID: 24362074 DOI: 10.1016/j.jhep.2013.12.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Although hepatitis B virus (HBV) integration into the human genome has been considered as one of the major causative factors to hepatocarcinogenesis, the underlying mechanism(s) was still elusive. Here we investigate the essential difference(s) of HBV integration between HCC tumor and adjacent non-tumor tissues and explore the factor(s) that determine the oncogenicity of HBV integration. METHODS 1115 HBV integration sites were collected from four recent studies. Functional annotation analysis of integration targeted host genes (ITGs) was performed using DAVID based on Gene Ontology and KEGG pathway databases. Array-based expression profiles, real-time qPCR and western blot were used to detect the expression of recurrent integration targeted genes (RTGs). The biological consequences of the overexpression of UBXN8 in 8 HCC cell lines were studied in vitro. RESULTS HBV is prone to integrate in genic regions (exons, introns, and promoters) and gene-dense regions. Functional annotation analysis reveals that, compared to those in adjacent non-tumor tissues, ITGs in HCC tumor tissues were significantly enriched in functional terms related to negative regulation of cell death, transcription regulation, development and differentiation, and cancer related pathways. 32% of the 75 RTGs identified in this analysis expressed abnormally in HCC tissues. UBXN8, one of the RTGs, was identified as a new tumor suppressor candidate which functions in a TP53 dependent manner. CONCLUSIONS The oncogenicity of HBV integration was determined, to some extend by the function of HBV integration targeted host genes in HCC.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Jiangbo Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Ziwei Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Jingting Kang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Suzhen Jiang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, PR China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Tingting Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Meng Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Quanjun Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Henan, PR China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China.
| | | | - Hui Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China.
| |
Collapse
|
17
|
Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles. J Virol 2014; 88:5742-54. [PMID: 24623409 DOI: 10.1128/jvi.00430-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED A natural subviral agent of human hepatitis B virus (HBV), hepatitis delta virus (HDV), requires only the envelope proteins from HBV in order to maintain persistent infection. HBV surface antigens (HBsAgs) can be produced either by HBV replication or from integrated HBV DNA regardless of replication. The functional properties of the integrant-generated HBsAgs were examined using two human hepatocellular carcinoma-derived cell lines, Hep3B and PLC/PRF/5, that contain HBV integrants but do not produce HBV virions and have no signs of HBV replication. Both cell lines were able to support HDV replication and assembly/egress of HDV virions. Neither of the cell lines was able to produce substantial amounts of the pre-S1-containing HDV particles. HDV virions assembled in PLC/PRF/5 cells were able to infect primary human hepatocytes, while Hep3B-derived HDV appeared to be noninfectious. These results correlate with the findings that the entire open reading frame (ORF) for the large (L) envelope protein that is essential for infectivity is present on HBV RNAs from PLC/PRF/5 cells, while an L protein ORF that was truncated and fused to inverted precore sequences was found using RNAs from Hep3B cells. This study demonstrates for the first time that at least some of the HBV DNA sequence naturally integrated during infection can produce functional small and large envelope proteins capable of the formation of infectious HDV virions. Our data indicate that in vivo chronic HDV infection can persist in the absence of HBV replication (or when HBV replication is profoundly suppressed) if functional envelope proteins are supplied from HBV integrants. IMPORTANCE The study addresses the unique mechanism of HDV persistence in the absence of ongoing HBV replication, advances our understanding of HDV-HBV interactions, and supports the implementation of treatments directly targeting HDV for HDV/HBV-infected individuals.
Collapse
|
18
|
Shlomai A, de Jong YP, Rice CM. Virus associated malignancies: the role of viral hepatitis in hepatocellular carcinoma. Semin Cancer Biol 2014; 26:78-88. [PMID: 24457013 DOI: 10.1016/j.semcancer.2014.01.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/29/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading fatal cancer worldwide and its incidence continues to increase. Chronic viral hepatitis involving either hepatitis B virus (HBV) or hepatitis C virus (HCV) infection is the leading etiology for HCC, making HCC prevention a major goal of antiviral therapy. While recent clinical observations and translational research have enhanced our understanding of the molecular mechanisms driving the initiation and progression of HCC, much remains unknown. Current data indicates that HCC tumors are highly complex and heterogeneous resulting from the aberrant function of multiple molecular pathways. This complex biology is responsible, at least in part, for the absence of highly efficient target-directed therapies for this deadly cancer. Additionally, the direct or indirect effect of HBV and HCV infection on the development of HCC is still a contentious issue. Thus, the question remains whether viral hepatitis-associated HCC stems from virus-specific factors, and/or from a general mechanism involving inflammation and tissue regeneration. In this review we summarize general mechanisms implicated in HCC, emphasizing data generated by new technologies available today. We also highlight specific pathways by which HBV and HCV could be involved in HCC pathogenesis. However, improvements to current in vitro and in vivo systems for both viruses will be needed to rigorously define the temporal sequence and specific pathway dysregulations that drive the strong clinical link between chronic hepatitis virus infection and HCC.
Collapse
Affiliation(s)
- Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA.
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA; Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
19
|
Zainabadi K, Jain AV, Donovan FX, Elashoff D, Rao NP, Murty VV, Chandrasekharappa SC, Srivatsan ES. One in four individuals of African-American ancestry harbors a 5.5kb deletion at chromosome 11q13.1. Genomics 2014; 103:276-87. [PMID: 24412158 DOI: 10.1016/j.ygeno.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/11/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023]
Abstract
Cloning and sequencing of 5.5 kb deletion at chromosome 11q13.1 from the HeLa cells, tumorigenic hybrids and two fibroblast cell lines have revealed homologous recombination between AluSx and AluY resulting in the deletion of intervening sequences. Long-range PCR of the 5.5 kb sequence in 494 normal lymphocyte samples showed heterozygous deletion in 28.3% of African-American ancestry samples but only in 4.8% of Caucasian samples (p<0.0001). This observation is strengthened by the copy number variation (CNV) data of the HapMap samples which showed that this deletion occurs in 27% of YRI (Yoruba--West African) population but none in non-African populations. The HapMap analysis further identified strong linkage disequilibrium between 5 single nucleotide polymorphisms and the 5.5 kb deletion in people of African ancestry. Computational analysis of 175 kb sequence surrounding the deletion site revealed enhanced flexibility, low thermodynamic stability, high repetitiveness, and stable stem-loop/hairpin secondary structures that are hallmarks of common fragile sites.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Division of General Surgery, Department of Surgery, VAGLAHS West Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
| | - Anuja V Jain
- Division of General Surgery, Department of Surgery, VAGLAHS West Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
| | - Frank X Donovan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Elashoff
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
| | - Nagesh P Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
| | - Vundavalli V Murty
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Settara C Chandrasekharappa
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eri S Srivatsan
- Division of General Surgery, Department of Surgery, VAGLAHS West Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA.
| |
Collapse
|
20
|
Ding D, Lou X, Hua D, Yu W, Li L, Wang J, Gao F, Zhao N, Ren G, Li L, Lin B. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach. PLoS Genet 2012; 8:e1003065. [PMID: 23236287 PMCID: PMC3516541 DOI: 10.1371/journal.pgen.1003065] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 09/20/2012] [Indexed: 02/07/2023] Open
Abstract
Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV)–related hepatocellular carcinomas (HCCs). Here we devised a massive anchored parallel sequencing (MAPS) method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV–related HCC tissues (cancer and adjacent tissues), we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs) with precise HBV–Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1) containing IPR003961 (Fibronectin, type III domain), 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1) containing IPR013032 (EGF-like region, conserved site), and three genes (PDE7A, PDE4B, PDE11A) containing IPR002073 (3′, 5′-cyclic-nucleotide phosphodiesterase). Enriched pathways include hsa04512 (ECM-receptor interaction), hsa04510 (Focal adhesion), and hsa04012 (ErbB signaling pathway). Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1) and telomerase reverse transcriptase (TERT1), two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5), phosphatase and actin regulator 4 (PHACTR4), and RNA binding protein fox-1 homolog (C. elegans) 1 (RBFOX1). Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list. This global survey of HBV integration events, together with recently published whole-genome sequencing analyses, furthered our understanding of the HBV–related HCC. Integration of the hepatitis B virus (HBV) into the human liver cells was found in most of the related hepatocellular carcinomas (HCCs). Here, taking the recent advances in high-throughput sequencing, we devised an efficient and cost-effective method that we named massive anchored parallel sequencing (MAPS) method, to conduct a global survey of HBV integration events in 40 pairs of HBV–related HCC tissues (cancer and adjacent tissues). We identified 286 unique integration sites (UISs) with precise HBV–Human DNA junctions. We identified a higher number of HBV integration events in cancer adjacent tissues than in HCC tissues, suggesting a clonal expansion process during HCC development. We also found that fibronectin and its related genes (fibronectin type III-like fold domain containing genes) were frequently targeted by HBV. Fibronectin is a protein produced abundantly by the liver cells and also serves as a linker in the extracellular matrix. Our findings might suggest a role for the disruption of fibronectin and associated cellular matrix in HBV related liver cancers. We also identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list. This study would add significantly to our understanding of HCC development.
Collapse
Affiliation(s)
- Dong Ding
- Hangzhou Proprium Biotech, Hangzhou, China
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Xiaoyan Lou
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Dasong Hua
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Wei Yu
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Lisha Li
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Jun Wang
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Feng Gao
- Department of General Surgery, The Second Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Na Zhao
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Guoping Ren
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (Lanjuan Li); (Biaoyang Lin)
| | - Biaoyang Lin
- Systems Biology Division and Proprium Research Center, Zhejiang–California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
- Department of Urology, University of Washington, Seattle, Washington, United States of America
- Swedish Medical Center, Seattle, Washington, United States of America
- * E-mail: (Lanjuan Li); (Biaoyang Lin)
| |
Collapse
|
21
|
Bok J, Kim KJ, Park MH, Cho SH, Lee HJ, Lee EJ, Park C, Lee JY. Identification and extensive analysis of inverted-duplicated HBV integration in a human hepatocellular carcinoma cell line. BMB Rep 2012; 45:365-70. [PMID: 22732223 DOI: 10.5483/bmbrep.2012.45.6.279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) DNA is often integrated into hepatocellular carcinoma (HCC). Although the relationship between HBV integration and HCC development has been widely studied, the role of HBV integration in HCC development is still not completely understood. In the present study, we constructed a pooled BAC library of 9 established cell lines derived from HCC patients with HBV infections. By amplifying viral genes and superpooling of BAC clones, we identified 2 clones harboring integrated HBV DNA. Screening of host-virus junctions by repeated sequencing revealed an HBV DNA integration site on chromosome 11q13 in the SNU-886 cell line. The structure and rearrangement of integrated HBV DNA were extensively analyzed. An inverted duplicated structure, with fusion of at least 2 HBV DNA molecules in opposite orientations, was identified in the region. The gene expression of cancer-related genes increased near the viral integration site in HCC cell line SNU-886.
Collapse
Affiliation(s)
- Jeong Bok
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do 363-951, Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Na DC, Lee JE, Yoo JE, Oh BK, Choi GH, Park YN. Invasion and EMT-associated genes are up-regulated in B viral hepatocellular carcinoma with high expression of CD133-human and cell culture study. Exp Mol Pathol 2010; 90:66-73. [PMID: 20969862 DOI: 10.1016/j.yexmp.2010.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/13/2010] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinomas (HCCs) with expression of stem/progenitor cell markers including CD133 have been reported to have more aggressive biological behavior, and epithelial-mesenchymal transition (EMT), closely related invasion, has been suggested to generate cancer stem cells. To elucidate biological characteristics of HCCs expressing CD133, we evaluated migration assay and the mRNA expression levels of CD133, invasion-associated genes [urokinase plasminogen activator receptor (uPAR), villin 2 (VIL2), and MMP1 and MMP2], and EMT regulators (Snail, Slug, Twist, E-cadherin, and N-cadherin) by real-time PCR in HCC cell lines including HepG2, Hep3B, Huh7, PLC/RFP/6, SNU423, SNU449, and SNU475. Same genes and pathological features were also investigated in 49 samples of hepatitis B virus-related human HCCs. In all HCC cell lines studied, CD133-positive cells showed higher cell migration activity and up-regulated invasion- and EMT-associated genes with increased N-cadherin and decreased E-cadherin expressions compared to CD133-negative cells. The human HCCs were divided into the CD133-high group (top 40%) and the CD133-low group (bottom 40%) according to the level of CD133 mRNA. The CD133-high group showed relatively frequent vascular invasion and significantly higher expression of invasion-associated genes [uPAR (p=0.002), MMP1 (p=0.01), and MMP2 (p=0.003)] and EMT regulators [Snail (p=0.002) and Twist (p=0.0003)] compared to the CD133-low group. In conclusion, our results suggest that there is a subtype of HCC with high expression of CD133, which might have more invasive characteristics by up-regulation of invasion-associated genes and EMT-associated genes.
Collapse
Affiliation(s)
- Deuk Chae Na
- Department of Pathology, Center for Chronic Metabolic Disease, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-752, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Cho EY, Kim HC, Choi CS, Shin SR, Park C, So HS, Kim HJ, Park R, Cho JH, Moon HB. Nucleotide changes related to hepatocellular carcinoma in the enhancer 1/x-promoter of hepatitis B virus subgenotype C2 in cirrhotic patients. Cancer Sci 2010; 101:1905-12. [PMID: 20550526 PMCID: PMC11159504 DOI: 10.1111/j.1349-7006.2010.01612.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is widely known to develop more frequently in cirrhotic patients with a high expression of Hepatitis B virus X protein (HBx), which is controlled by the enhancer 1 (Enh1)/X-promoter. To examine the effect of the mutations in the Enh1/X-promoter region in hepatitis B virus (HBV) genomes on the development of HCC, we investigated the differences in HBV isolated from cirrhotic patients with or without HCC along with the promoter activities of certain specific mutations within the Enh1/X-promoter. We examined 160 hepatitis B surface antigen (HBsAg)-positive cirrhotic patients (80 HCC patients, 80 non-HCC patients) by evaluating the biochemical, virological, and molecular characteristics. We evaluated the functional differences in certain specific mutations within the Enh1/X-promoter. The isolated sequences included all of the subgenotypes C2. The sites that showed higher mutation rates in the HCC group were G1053A and G1229A, which were found to be independent risk factors through multiple logistic analysis (P < 0.05). Their promoter activities were elevated 2.38- and 4.68-fold, respectively, over that of the wild type in the HepG2 cells. Similarly, both the mRNA and protein levels of HBx in these two mutants were much higher than that in wild type-transfected HepG2 cells. Mutated nucleotides of the Enh1/X-promoter, especially G1053A and G1229A mutations in the HBV subgenotype C2 of patients with cirrhosis, can be risk factors for hepatocarcinogenesis, and this might be due to an increase in the HBx levels through the transactivation of the Enh1/X-promoter.
Collapse
Affiliation(s)
- Eun-Young Cho
- Departments of Internal Medicine, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Marozin S, Altomonte J, Stadler F, Thasler WE, Schmid RM, Ebert O. Inhibition of the IFN-β Response in Hepatocellular Carcinoma by Alternative Spliced Isoform of IFN Regulatory Factor-3. Mol Ther 2008; 16:1789-1797. [DOI: 10.1038/mt.2008.201] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/19/2008] [Indexed: 12/21/2022] Open
|
25
|
Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 2006; 252:157-70. [PMID: 17188425 DOI: 10.1016/j.canlet.2006.11.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/08/2006] [Accepted: 11/13/2006] [Indexed: 12/31/2022]
Abstract
Chronic liver disease associated with long term hepatitis B virus (HBV) infection contributes importantly to the development of hepatocellular carcinoma (HCC). A salient feature of these chronic infections is the integration of subgenomic HBV DNA fragments into many different locations within the host DNA, suggesting that integration is random. Although this may promote genetic instability during liver regeneration which accompanies a bout of chronic liver disease, the actual role of integrated HBV DNA in hepatocarcinogenesis is uncertain. Importantly, most integration events retain the HBV open reading frame encoding the HBx antigen (HBxAg), which is the virus contribution to HCC. In addition, many integration events reported in the literature occur near or within fragile sites or other cancer associated regions of the human genome that are prone to instability in tumor development and progression. Genetic instability associated with integration potentially alters the expression of oncogenes, tumor suppressor genes, and microRNAs (miRNAs) that may contribute importantly to tumorigenesis. If so, then selected integration events may alter pathways that are rate limiting in hepatocarcinogenesis, thereby providing targets with diagnostic/prognostic potential and for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
26
|
Chronic hepatitis B infection and liver cancer. Biomed Imaging Interv J 2006; 2:e7. [PMID: 21614253 PMCID: PMC3097640 DOI: 10.2349/biij.2.3.e7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/16/2005] [Accepted: 01/11/2006] [Indexed: 01/06/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the most well recognised human carcinogens. Since its discovery about 40 years ago, HBV has been studied extensively. This article summarises the evidence derived from various studies including epidemiological, animal model, histopathology studies and molecular genetics studies leading to the establishment of HBV as the main aetiological agent for hepatocellular carcinoma (HCC). The reduction in the incidence of childhood HCC due to mass hepatitis B vaccination in Taiwan is a dramatic demonstration of the critical aetiological role of hepatitis B in HCC. Thus it is essential for interventionalists to understand the epidemiological and pathogenesis of HCC to ensure optimal patient care.
Collapse
|
27
|
Chan DW, Ng IOL. Knock-down of hepatitis B virus X protein reduces the tumorigenicity of hepatocellular carcinoma cells. J Pathol 2006; 208:372-80. [PMID: 16353167 DOI: 10.1002/path.1901] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) in Southeast Asia and Hong Kong. Among the four proteins that are encoded by the HBV genome, HBV X (HBx) is the most potentially oncogenic factor. It is known that HBx plays an important role in hepatocarcinogenesis, but the exact functions and molecular mechanisms of HBx in HCC are not well understood. In this study, we constructed expression vectors for small hairpin RNAs (shRNA) against HBx and investigated their regulatory effects in PLC/PRF/5 HCC cells, which constitutively produce HBx. Our data show that this tool of RNA interference (RNAi) could successfully reduce the HBx mRNA and protein levels by 50-95%. RNAi targeting HBx in PLC/PRF/5 cells demonstrated significant reduction in cell proliferation, cell growth, anchorage-independent growth in soft agar, and tumour development in nude mice. In addition, depletion of HBx expression increased cell sensitivity to TNFalpha-mediated and serum-free-induced apoptosis, and reduced the expression levels of C-myc and Bcl-X(L). These findings suggest that HBx plays an important role in tumorigenicity and anti-apoptotic mechanisms in HCC.
Collapse
Affiliation(s)
- David Wai Chan
- Department of Pathology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
28
|
Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol 2005; 42:760-77. [PMID: 15826727 DOI: 10.1016/j.jhep.2005.02.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ruben Bonilla Guerrero
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
29
|
Abstract
Previous studies of human hepatitis B virus (HBV) transcription revealed the requirement of two enhancer elements. Enhancer I (EnhI) is located upstream of the X promoter and is targeted by multiple activators, including basic leucine zipper proteins, and enhancer II (EnhII) is located upstream to the PreCore promoter and is targeted mainly by nuclear receptors (NRs). The mode of interplay between these enhancers and their unique contributions in regulating HBV transcription remained obscure. By using time course analysis we revealed that the HBV transcripts are categorized into early and late groups. Chang (CCL-13) cells are impaired in expression of the late transcripts. This could be corrected by overexpressing EnhII activators, such as hepatocyte nuclear factor 4 alpha, the retinoid X receptor alpha, and the peroxisome proliferator-activated receptor alpha, suggesting that in Chang cells EnhI but not EnhII is active. Replacing the 5'-end EnhI sequence with a synthetic Gal4 response (UAS) DNA fragment ceased the production of the early transcripts. Under this condition NR overexpression poorly activated EnhII. However, activation of the UAS by Gal4-p53 restored both the expression of the early transcripts and the EnhII response to NRs. Thus, a functional EnhI is required for activation of EnhII. We found a major difference between Gal4-p53 and Gal4-VP16 behavior. Gal4-p53 activated the early transcripts, while Gal4-VP16 inhibited the early transcripts but activated the late transcripts. These findings indicate that the composition of the EnhI binding proteins may play a role in early to late switching. Our data provides strong evidence for the role of EnhI in regulating global and temporal HBV gene expression.
Collapse
Affiliation(s)
- Gilad Doitsh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
30
|
Wang JH, Yun C, Kim S, Lee JH, Yoon G, Lee MO, Cho H. Reactive oxygen species modulates the intracellular level of HBx viral oncoprotein. Biochem Biophys Res Commun 2003; 310:32-9. [PMID: 14511644 DOI: 10.1016/j.bbrc.2003.08.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HBx (hepatitis B virus X) viral oncoprotein is a multifunctional protein of which the cellular level may be one of the important factors in determining HBV-mediated pathological progression of liver diseases, chronic hepatitis, and hepatocellular carcinoma. Our previous work revealed that adriamycin, a chemotherapeutic agent, caused a marked increase in the intracellular level of HBx by retarding its rapid degradation. In the present study, modulation of HBx expression was found to be confined to adriamycin but not to other chemotherapeutic agents, cisplatin and 5-fluorouracil. Interestingly, adriamycin caused a rapid increase of reactive oxygen species (ROS) and its accumulation continued until 24h. In contrast, two other agents had little effect on ROS generation, suggesting the possible involvement of ROS in the HBx regulation. In fact, direct addition of H(2)O(2) to the cells significantly increased the level of HBx protein in HBx-expressing ChangX-34 cells as well as in hepatitis B virus-related hepatoma cells, PLC/PRF/5 and HepG2.2.15 cells. Furthermore, antioxidants, N-acetyl-cysteine and pyrrolidinedithiocarbamate (PDTC), completely abolished the increase of HBx protein induced by adriamycin, indicating that adriamycin modulates the intracellular HBx level via ROS generation. Together, these findings provide a novel aspect of HBx regulation by cellular ROS level. Therefore, intracellular microenvironments generating ROS such as severe inflammation may aggravate the pathogenesis of liver disease by accumulating the HBx level.
Collapse
Affiliation(s)
- Jin-Hee Wang
- Department of Biochemistry, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, 5 Wonchon-dong, Paldal-gu, Suwon 442-741, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Kaplan DE, Reddy KR. Rising incidence of hepatocellular carcinoma: the role of hepatitis B and C; the impact on transplantation and outcomes. Clin Liver Dis 2003; 7:683-714. [PMID: 14509534 DOI: 10.1016/s1089-3261(03)00060-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma caused by hepatitis B and hepatitis C are global scourges but are likely to peak in incidence in the next 2 decades and then decline. Universal vaccination has been effective in stemming the incidence of chronic hepatitis B and early-onset HCC in regions of high endemicity where implemented, but preventive measures in HCV are not yet available. After the attrition of older affected generations, the incidence of HCC will likely decline rapidly. While no vaccine is currently available for hepatitis C, cases are projected to peak and decline because of a marked reduction in transmission as a result of behavioral modification and safeguarding of blood supplies. Until these epidemiologic projections come to pass, management of hepatocellular carcinoma will continue to become a progressively more frequently encountered clinical challenge. Therapy for chronic hepatitis may ameliorate but will not eliminate the development of tumors. The demand for orthotopic liver transplantation will continue to climb, and palliative therapies for non-resectable cases will require studies aimed at optimization of benefit. LDLT may remain an option for high-risk patients affording tumor-free survival for some otherwise terminal patients.
Collapse
Affiliation(s)
- David E Kaplan
- Division of Gastroenterology and Hepatology, University of Pennsylvania School of Medicine, 3 Raydin, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
32
|
Abstract
The longest hepatitis B virus transcript is a 3.9-kb mRNA whose function remained unclear. In this study, we wished to identify the translation products and physiological role of this viral transcript. This transcript initiates from the X promoter region ignoring the inefficient and noncanonical viral polyadenylation signal at the first round of transcription. However, an HBV mutant with canonical polyadenylation signal continues, though with lower efficiency, to program the synthesis of this long transcript, indicating that the deviated HBV polyadenylation signal is important but not essential to enable transcription of the 3.9-kb species. The 3.9-kb RNA contains two times the X open reading frame (ORF). The X ORF at the 5'-end is positioned upstream of the CORE gene. By generating an HBV DNA mutant in which the X and Core ORFs are fused, we demonstrated the production of a 40-kDa X-Core fusion protein that must be encoded by the 3.9-kb transcript. Mutagenesis studies revealed that the production of this protein depends on the 5' X ORF ATG, suggesting that the 3.9-kb RNA is active in translation of the X ORF. Based on these features, the 3.9-kb transcript was designated lxRNA for long X RNA. Unlike other HBV transcripts, lxRNA harbors two copies of PRE, the posttranscriptional regulatory element that controls the nuclear export of HBV mRNAs. Unexpectedly, despite the presence of PRE sequences, RNA fractionation analysis revealed that lxRNA barely accumulates in the cytoplasm, suggesting that nuclear export of lxRNA is poor. Collectively, our data suggest that two distinct HBV mRNA species encode pX and that the HBV transcripts are differentially regulated at the level of nuclear export.
Collapse
Affiliation(s)
- Gilad Doitsh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
33
|
Huang JM, Huang TH, Qiu HY, Fang XW, Zhuang TG, Liu HX, Wang YH, Deng LZ, Qiu JW. Effects of hepatitis B virus infection on human sperm chromosomes. World J Gastroenterol 2003; 9:736-40. [PMID: 12679922 PMCID: PMC4611440 DOI: 10.3748/wjg.v9.i4.736] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the level of sperm chromosome aberrations in male patients with hepatitis B, and to directly detect whether there are HBV DNA integrations in sperm chromosomes of hepatitis B patients.
METHODS: Sperm chromosomes of 14 tested subjects (5 healthy controls, 9 patients with HBV infection, including 1 with acute hepatitis B, 2 with chronic active hepatitis B, 4 with chronic persistent hepatitis B, 2 chronic HBsAg carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free golden hamster ova and human spermatozoa, and the frequencies of aberration spermatozoa were compared between subjects of HBV infection and controls. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes.
RESULTS: The total frequency of sperm chromosome aberrations in HBV infection group (14.8%, 33/223) was significantly higher than that in the control group (4.3%, 5/116). Moreover, the sperm chromosomes in HBV infection patients commonly presented stickiness, clumping, failure to staining, etc, which would affect the analysis of sperm chromosomes. Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis. In 9 (9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots, others presented 2 to 4 signals. There was significant difference of fluorescence intensity among the signal spots. The distribution of signal sites among chromosomes was random.
CONCLUSION: HBV infection can bring about mutagenic effects on sperm chromosomes. Integrations of viral DNA into sperm chromosomes which are multisites and nonspecific, can further increase the instability of sperm chromosomes. This study suggested that HBV infection can create extensively hereditary effects by alteration genetic constituent and/or induction chromosome aberrations, as well as the possibility of vertical transmission of HBV via the germ line to the next generation.
Collapse
Affiliation(s)
- Jian-Min Huang
- Department of Cell Biology and Medical Genetics, Shantou University Medical College, Shantou 515031, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hwang HJ, Kim GJ, Lee GB, Oh JT, Chun YH, Park SH. A comprehensive karyotypic analysis on Korean hepatocellular carcinoma cell lines by cross-species color banding and comparative genomic hybridization. CANCER GENETICS AND CYTOGENETICS 2003; 141:128-37. [PMID: 12606130 DOI: 10.1016/s0165-4608(02)00671-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromosomal aberrations were investigated in hepatitis B virus integrated into the hepatocellular carcinoma (HCC) cell lines SNU-368, SNU-449, SNU-398, SNU-182, and SNU-475 using Giemsa-banding, cross species color banding, and comparative genomic hybridization (CGH). The origins of the marker chromosomes were confirmed by fluorescence in situ hybridization with constructed chromosome painting probes. Each cell line had unique modal karyotypic characteristics and showed variable numbers of numerical and structural clonal cytogenetic aberrations. The gains were commonly detected on chromosome 1, and chromosome regions 6p, 7q, 8q, 10p, 17q, and 20; the losses were often found on 4q21 approximately qter, 13, 18q21 approximately qter, and Y. In particular, the breakpoints on 1p36, 1p13 approximately q21, 2p13 approximately q11, 6q10 approximately q11, 7q11, 7q22, 14q10, 16q10 approximately q13, 17q21, 18q21, and 19p11 approximately q11 were involved frequently at the multiple rearranged lesions. CGH analysis further confirmed the cytogenetic data, and the nonrandom rearrangements data suggested the candidate regions for the genes to be isolated which were related to HCC.
Collapse
Affiliation(s)
- Hye-Jin Hwang
- Institute of Human Genetics, Department of Anatomy, Brain Korea 21 Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
35
|
Clyne CD, Speed CJ, Zhou J, Simpson ER. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 2002; 277:20591-7. [PMID: 11927588 DOI: 10.1074/jbc.m201117200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Estrogen biosynthesis from C(19) steroids is catalyzed by aromatase cytochrome P450. Aromatase is expressed in breast adipose tissue through the use of a distal, cytokine-responsive promoter (promoter I.4). Breast tumors, however, secrete soluble factors that stimulate aromatase expression through an alternative proximal promoter, promoter II. In other estrogenic tissues such as ovaries, transcription from promoter II requires the presence of the Ftz-F1 homologue steroidogenic factor-1 (SF-1); adipose tissue, however, does not express SF-1. We have explored the hypothesis that in adipose tissue, an alternative Ftz-F1 family member, liver receptor homologue-1 (LRH-1), substitutes for SF-1 in driving transcription from promoter II. In transient transfection assays using 3T3-L1 preadipocytes, promoter II reporter constructs were modestly (2-3-fold) stimulated by either treatment with activators of protein kinases A or C (PKA/C) or by cotransfection with LRH-1. In combination, these treatments synergistically activated promoter II (>30-fold). Induction by LRH-1 (but not by PKA/C) required an AGGTCA motif at -130 base pairs, to which LRH-1 bound in gel shift assays. Activity of GAL4-LRH-1 fusion proteins was not altered by activators of PKA or PKC. Quantitative real-time PCR revealed that LRH-1 (but not SF-1) is expressed in the preadipocyte fraction of human adipose tissue at levels comparable with that of liver. Differentiation of cultured human preadipocytes into mature adipocytes was associated with a time-dependent induction of peroxisome proliferator-activated receptor-gamma (PPARgamma), and rapid loss of LRH-1 and aromatase expression. We conclude that LRH-1 is a preadipocyte-specific nuclear receptor that regulates expression of aromatase in adipose tissue. Alterations in LRH-1 expression and/or activity in adipose tissue could therefore have considerable effects on local estrogen production and breast cancer development.
Collapse
Affiliation(s)
- Colin D Clyne
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton VIC 3168, Australia.
| | | | | | | |
Collapse
|
36
|
Shamay M, Barak O, Doitsh G, Ben-Dor I, Shaul Y. Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem 2002; 277:9982-8. [PMID: 11788598 DOI: 10.1074/jbc.m111354200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) gene expression is mainly regulated at the transcription initiation level. The viral X protein (pX) is a transcription coactivator/mediator targeting TFIIB for the recruitment of RNA polymerase II. Here we report a novel pX nuclear target designated HBXAP (hepatitis B virus X-associated protein). HBXAP is a novel cellular nuclear protein containing a PHD (plant homology domain) finger, a domain shared by many proteins that play roles in chromatin remodeling, transcription coactivation, and oncogenesis. pX physically interacts with HBXAP in vitro and in vivo via the HBXAP region containing the PHD finger. At the functional level HBXAP increases HBV transcription in a pX-dependent manner suggesting a role for this interaction in the virus life cycle. Interestingly, HBXAP collaborates with pX in coactivating the transcriptional activator NF-kappaB. Coactivation of NF-kappaB was also observed in tumor necrosis factor alpha-treated cells suggesting that pX-HBXAP functional collaboration localized downstream to the NF-kappaB nuclear import. Collectively our data suggest that pX recruits and potentiates a novel putative transcription coactivator to regulate NF-kappaB. The implication of pX-HBXAP interaction in the development of hepatocellular carcinoma is discussed.
Collapse
Affiliation(s)
- Meir Shamay
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|