1
|
Chopra N, Melrose J, Gu Z, Diwan AD. Biomimetic Proteoglycans for Intervertebral Disc (IVD) Regeneration. Biomimetics (Basel) 2024; 9:722. [PMID: 39727726 DOI: 10.3390/biomimetics9120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties. Furthermore, biomimetic proteoglycans (PGs) represent an established polymer that strengthens osteoarthritis cartilage and improves its biomechanical properties, actively promoting biological repair processes. Biomimetic PGs have superior water imbibing properties compared to native aggrecan and are more resistant to proteolytic degradation, increasing their biological half-life in cartilaginous tissues. Methods have also now been developed to chemically edit the structure of biomimetic proteoglycans, allowing for the incorporation of bioactive peptide modules and equipping biomimetic proteoglycans as delivery vehicles for drugs and growth factors, further improving their biotherapeutic credentials. This article aims to provide a comprehensive overview of prospective orthobiological strategies that leverage engineered proteoglycans, paving the way for novel therapeutic interventions in IVD degeneration and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Zi Gu
- NanoBiotechnology Research Group, School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish D Diwan
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
- Discipline of Orthopaedic Surgery, Royal Adelaide Hospital and University of Adelaide, Adelaide, ADL 5005, Australia
| |
Collapse
|
2
|
Imon RR, Aktar S, Morshed N, Nur SM, Mahtarin R, Rahman FA, Talukder MEK, Alam R, Karpiński TM, Ahammad F, Zamzami MA, Tan SC. Biological and clinical significance of the glypican-3 gene in human lung adenocarcinoma: An in silico analysis. Medicine (Baltimore) 2023; 102:e35347. [PMID: 37960765 PMCID: PMC10637541 DOI: 10.1097/md.0000000000035347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 11/15/2023] Open
Abstract
Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.
Collapse
Affiliation(s)
- Raihan Rahman Imon
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sharmin Aktar
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Niaz Morshed
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Pharmacy, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Suza Mohammad Nur
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rumana Mahtarin
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farazi Abinash Rahman
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego, Poland
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
4
|
Glypican-3 Differentiates Intraductal Carcinoma and Paget's Disease from Other Types of Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010086. [PMID: 36676710 PMCID: PMC9862536 DOI: 10.3390/medicina59010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Background and Objectives: breast cancer remains the most common health burden affecting females worldwide. Despite developments in breast cancer diagnostic approaches and treatment strategies, the clinical management of metastatic breast cancer remains challenging. Thus, there is a need to identify new biomarkers and novel drug targets for breast cancer diagnosis and therapy. Recently, aberrant glypican-3 (GPC3) expression in cancers has gained considerable interest in cancer research. The studies, however, have yielded contradictory results about GPC3 expression in breast cancer. Therefore, the current study aims to analyse GPC3 expression across a large panel of different breast cancer subtypes. Materials and Methods: GPC3 expression was immunohistochemically evaluated in 230 breast cancer patients along with eight normal tissues and its associations to clinical and demographic characteristics, as well as immunohistochemical biomarkers for breast cancer. Moreover, a public database consisting of breast cancer patients' survival data and GPC3 gene expression information was used to assess the prognostic value of GPC3 in the survival of breast cancer patients. Results: GPC3 expression was only characterised in 7.5% of different histological breast cancer subtypes. None of the normal breast tissues displayed GPC3 expression. Interestingly, all cases of Paget's disease, as well as 42.9% of intraductal and 16.7% of mucinous carcinomas were found to have GPC3 expression, where it was able to significantly discriminate Paget's disease and intraductal carcinoma from other breast cancer subtypes. Importantly, GPC3 expression was found more often in tumours that tested positive for the expression of hormone receptors and human epidermal growth factor receptor 2 (HER2), indicating more favourable histological subtypes of breast cancer. Consequently, longer relapse-free survival (RFS) was significantly correlated with higher GPC3 mRNA expression. Conclusions: Our study proposes that GPC3 is a promising breast cancer subtype-specific biomarker. Moreover, GPC3 may have the potential to be a molecular target for the development of new therapeutics for specific subtypes of breast cancer.
Collapse
|
5
|
Chattopadhyay S, Dey A, Singh PK, Sarkar R. DRDA-Net: Dense residual dual-shuffle attention network for breast cancer classification using histopathological images. Comput Biol Med 2022; 145:105437. [PMID: 35339096 DOI: 10.1016/j.compbiomed.2022.105437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/24/2022] [Accepted: 03/20/2022] [Indexed: 01/19/2023]
Abstract
Breast cancer is caused by the uncontrolled growth and division of cells in the breast, whereby a mass of tissue called a tumor is created. Early detection of breast cancer can save many lives. Hence, many researchers worldwide have invested considerable effort in developing robust computer-aided tools for the classification of breast cancer using histopathological images. For this purpose, in this study we designed a dual-shuffle attention-guided deep learning model, called the dense residual dual-shuffle attention network (DRDA-Net). Inspired by the bottleneck unit of the ShuffleNet architecture, in our proposed model we incorporate a channel attention mechanism, which enhances the model's ability to learn the complex patterns of images. Moreover, the model's densely connected blocks address both the overfitting and the vanishing gradient problem, although the model is trained on a substantially small dataset. We have evaluated our proposed model on the publicly available BreaKHis dataset and achieved classification accuracies of 95.72%, 94.41%, 97.43% and 98.1% on four different magnification levels i.e., 40x, 1000x, 200x, 400x respectively which proves the supremacy of the proposed model. The relevant code of the proposed DRDA-Net model can be foundt at: https://github.com/SohamChattopadhyayEE/DRDA-Net.
Collapse
Affiliation(s)
- Soham Chattopadhyay
- Department of Electrical Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, West Bengal, India.
| | - Arijit Dey
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, 700064, West Bengal, India.
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata, 700106, West Bengal, India.
| | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
6
|
Duckworth BC, Qin RZ, Groom JR. Spatial determinates of effector and memory CD8 + T cell fates. Immunol Rev 2021; 306:76-92. [PMID: 34882817 DOI: 10.1111/imr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
The lymph node plays a critical role in mounting an adaptive immune response to infection, clearance of foreign pathogens, and cancer immunosurveillance. Within this complex structure, intranodal migration is vital for CD8+ T cell activation and differentiation. Combining tissue clearing and volumetric light sheet fluorescent microscopy of intact lymph nodes has allowed us to explore the spatial regulation of T cell fates. This has determined that short-lived effector (TSLEC ) are imprinted in peripheral lymph node interfollicular regions, due to CXCR3 migration. In contrast, stem-like memory cell (TSCM ) differentiation is determined in the T cell paracortex. Here, we detail the inflammatory and chemokine regulators of spatially restricted T cell differentiation, with a focus on how to promote TSCM . We propose a default pathway for TSCM differentiation due to CCR7-directed segregation of precursors away from the inflammatory effector niche. Although volumetric imaging has revealed the consequences of intranodal migration, we still lack knowledge of how this is orchestrated within a complex chemokine environment. Toward this goal, we highlight the potential of combining microfluidic chambers with pre-determined complexity and subcellular resolution microscopy.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Raymond Z Qin
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
7
|
Wang L, Chen J, Chai Y, Han W, Shen J, Li N, Lu J, Du Y, Liu Z, Yu Y, Dong J, Ou L. Targeting regulation of the tumour microenvironment induces apoptosis of breast cancer cells by an affinity hemoperfusion adsorbent. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:325-334. [PMID: 33754901 DOI: 10.1080/21691401.2021.1902337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/28/2021] [Indexed: 10/25/2022]
Abstract
The cytokine network of tumour microenvironment (TME) plays an important role in cancer growth and progression. The current work aims to provide a new strategy for cancer therapy based on the targeted regulation of cytokines in the TME. Here, heparin-coupled polyvinyl alcohol (PVA-H) microspheres have been developed as an adsorbent for selectively remove tumour-induced immunosuppressive cytokines, such as vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), but not tumour necrosis factor-alpha (TNF-α) which has an immune-stimulating effect and can inhibit tumour growth. The proliferation and apoptosis of breast cancer cells after perfusion were tested by cell viability assays, flow cytometry analysis and mRNA microarray assays. Results showed that the PVA-H microspheres efficiently absorbed the majority of VEGF (74.39%) and TGF-β (86.39%), but much less TNF-α (4.16%). The regulation of the cytokines had remarkable anti-proliferative and pro-apoptotic effects on breast cancer cells, which was further confirmed from the change of mRNA expression levels. Thus, targeting regulatory pathways within the TME by an affinity adsorbent that selectively depletes immunosuppressive cytokines is potentially a new and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jian Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yamin Chai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenyan Han
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Shen
- Department of Nuclear Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Nan Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinyan Lu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yameng Yu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingzhe Dong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Jot K, Urs AB, Kumar P. Does Loss of Immunohistochemical Expression of Glypican 3 in Oral Squamous Cell Carcinoma Play a Role in the Wnt/β-catenin Signaling Pathway? Appl Immunohistochem Mol Morphol 2021; 29:693-699. [PMID: 34091531 DOI: 10.1097/pai.0000000000000955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
Glypican 3 (GPC3) is a cell membrane protein and plays a dual role, as a tumor suppressor and oncogene, depending on its structure. It is known to regulate the Wnt/β-catenin signaling pathway and affect cell growth and proliferation. β-catenin plays a major oncogenic role in progression of oral squamous cell carcinoma (OSCC); thus, this study aimed to explore the relationship between β-catenin and GPC3 in OSCC. Immunoexpression of GPC3 and β-catenin was evaluated semiquantitatively in tumor tissue (n=80) and normal oral mucosa tissue (n=20). For GPC3, the percentage of stained cells and the staining intensity were assessed. For β-catenin, the percentage of stained cells, localization, and intensity of staining were assessed at the tumor-invasive front. The Pearson correlation was used to determine the correlation between the GPC3 and β-catenin immunoreactivity. Significantly decreased expression of GPC3 (P=0.008) and a highly significant difference in the case of localization of β-catenin (P=0.0001) were observed in OSCC when compared with normal oral mucosa. Cytoplasmic expression with a shift of β-catenin expression to the nucleus was seen in OSCC in comparison with primarily membranous and membranous and cytoplasmic staining in normal mucosa. A significant difference was observed with respect to localization of stain, with β-catenin staining moving to the nuclear compartment with an increase in the tumor grade (P=0.011). No correlation was observed between β-catenin and GPC3 expression in OSCC cases. It is concluded that loss of expression of GPC3 in OSCC compared with normal oral mucosa indicates that it plays the role of a tumor suppressor gene in OSCC and its expression is therefore silenced in OSCC.
Collapse
Affiliation(s)
- Kiran Jot
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, Delhi, India
| | | | | |
Collapse
|
9
|
Alshammari FOFO, Al-Saraireh YM, Youssef AMM, Al-Sarayra YM, Alrawashdeh HM. Glypican-1 Overexpression in Different Types of Breast Cancers. Onco Targets Ther 2021; 14:4309-4318. [PMID: 34366675 PMCID: PMC8334627 DOI: 10.2147/ott.s315200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Treatment of metastatic breast cancer patients is challenging and remains a major underlying cause of female mortality. Understanding molecular alterations in tumor development is critical to identify novel biomarkers and targets for cancer diagnosis and therapy. One of the aberrant cancer expressions gaining recent research interest is glypican-1. Several studies reported strong glypican-1 expression in various types of human cancers. However, none of these investigated glypican-1 expression in a large cohort of breast cancer histopathological subtypes. Patients and Methods Immunohistochemistry was used to assess glypican-1 expression in 220 breast cancer patients and its relation to demographic and clinical features, as well as important prognostic immunohistochemical markers for breast cancer. Results Intense glypican-1 expression was recognized in all breast cancer histopathological subtypes. Normal, healthy breast tissue displayed a heterogeneous low expression (20%). Importantly, a strong differential in glypican-1 expression was determined between normal and malignant breast tissues. Moreover, there was a significantly high rate of glypican-1 expression in advanced grades of breast cancer patients and larger tumor sizes. Unfortunately, the glypican-1 expression demonstrated no obvious relationship with the expression of various biomarkers in breast cancer. Conclusion This study may establish glypican-1 as a promising new therapeutic target for the development of therapy in breast cancer.
Collapse
Affiliation(s)
- Fatemah O F O Alshammari
- Department of Medical Lab technology, Faculty of health sciences, The Public Authority for Applied Education and Training, Kuwait, Kuwait
| | - Yousef M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-karak, Jordan
| | - Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-karak, Jordan
| | | | | |
Collapse
|
10
|
Ning J, Jiang S, Li X, Wang Y, Deng X, Zhang Z, He L, Wang D, Jiang Y. GPC3 affects the prognosis of lung adenocarcinoma and lung squamous cell carcinoma. BMC Pulm Med 2021; 21:199. [PMID: 34112123 PMCID: PMC8194200 DOI: 10.1186/s12890-021-01549-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
Background Glypican 3 (GPC3) is a heparin sulphate proteoglycan whose expression is associated with several malignancies. However, its expression in non-small-cell lung carcinoma (NSCLC) is limited and ambiguous. This study aimed to comprehensively evaluate the expression of GPC3 in NSCLC and develop a risk-score model for predicting the prognosis of NSCLC. Methods The gene expression profiles of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were downloaded from the UCSC Xena database. Using the limma package, the differentially expressed genes (DEGs) between different comparison groups were analysed and the differential expression of GPC3 was calculated. A functional enrichment analysis was conducted for GPC3-associated genes using the DAVID tool. For the GPC3-associated genes shared by the four comparison groups, a protein–protein interaction network was built using the Cytoscape software. After conducting a survival analysis and a Cox regression analysis, the genes found to be significantly correlated with prognosis were selected to construct a risk-score model. Besides, the gene and protein levels of GPC3 were examined by quantitative reverse transcriptase-PCR (qRT-PCR) and immunohistochemistry (IHC) in LUSC tissues and paracancer tissues. Results The differential expression of GPC3 was significant (adjusted P < 0.05) in the NSCLC vs. normal, LUAD vs. normal, LUSC versus normal, and LUAD versus. LUSC comparison groups. GPC3 directly interacted with SERPINA1, MFI2, and FOXM1. Moreover, GPC3 expression was significantly correlated with pathologic N, pathologic T, gender, and tumour stage in LUAD samples. Finally, the risk-score model (involving MFI2, FOXM1, and GPC3) for LUAD and that (involving SERPINA1 and FOXM1) for LUSC were established separately. The qRT-PCR result showed that GPC3 expression was much higher in the LUSC tissues than that in the normal group. The IHC results further showed that GPC3 is highly expressed in LUSC tissues, but low in paracancer tissues. Conclusion The three-gene risk-score model for LUAD and the two-gene risk-score model for LUSC might be valuable in improving the prognosis of these carcinomas.
Collapse
Affiliation(s)
- Jing Ning
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Department of General Medicine (VIP Ward) and Department of Tumor Supportive and Palliative Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Shenyi Jiang
- Department of General Practice, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Yang Wang
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xuhong Deng
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhiqiang Zhang
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China
| | - Lijie He
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China
| | - Daqing Wang
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China.
| | - Youhong Jiang
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
11
|
Grillo PK, Győrffy B, Götte M. Prognostic impact of the glypican family of heparan sulfate proteoglycans on the survival of breast cancer patients. J Cancer Res Clin Oncol 2021; 147:1937-1955. [PMID: 33742285 PMCID: PMC8164625 DOI: 10.1007/s00432-021-03597-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Purpose Dysregulated expression of proteoglycans influences the outcome and progression of numerous cancers. Several studies have investigated the role of individual glypicans in cancer, however, the impact of the whole glypican family of heparan sulfate proteoglycans on prognosis of a large patient cohort of breast cancer patients has not yet been investigated. In the present study, our aim was to investigate the prognostic power of the glypicans in breast cancer patients. Methods We used a public database including both gene expression data and survival information for 3951 breast cancer patients to determine the prognostic value of glypicans on relapse-free survival using Cox regression analysis. Moreover, we performed quantitative Real-Time PCR to determine glypican gene expression levels in seven representative breast cancer cell lines. Results We found that high GPC3 levels were associated with a better prognosis in overall breast cancer patients. When stratified by hormone receptor status, we found that in worse prognosis subtypes low GPC1 levels correlate with a longer relapse-free survival, and in more favorable subtypes low GPC6 was associated with longer survival. Conclusion Our study concludes that glypicans could act as subtype-specific biomarkers for the prognosis of breast cancer patients and sparks hope for future research on glypicans possibly eventually providing targets for the treatment of the disease. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03597-4.
Collapse
Affiliation(s)
- Paulina Karin Grillo
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany.
| |
Collapse
|
12
|
Rodakowska E, Walczak-Drzewiecka A, Borowiec M, Gorzkiewicz M, Grzesik J, Ratajewski M, Rozanski M, Dastych J, Ginalski K, Rychlewski L. Recombinant immunotoxin targeting GPC3 is cytotoxic to H446 small cell lung cancer cells. Oncol Lett 2021; 21:222. [PMID: 33613711 PMCID: PMC7859473 DOI: 10.3892/ol.2021.12483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glypican-3 (GPC3) is a cell membrane glycoprotein that regulates cell growth and proliferation. Aberrant expression or distribution of GPC3 underlies developmental abnormalities and the development of solid tumours. The strongest evidence for the participation of GPC3 in carcinogenesis stems from studies on hepatocellular carcinoma and lung squamous cell carcinoma. To the best of our knowledge, the role of the GPC3 protein and its potential therapeutic application have never been studied in small cell lung carcinoma (SCLC), despite the known involvement of associated pathways and the high mortality caused by this disease. Therefore, the aim of the present study was to examine GPC3 targeting for SCLC immunotherapy. An immunotoxin carrying an anti-GPC3 antibody (hGC33) and Pseudomonas aeruginosa exotoxin A 38 (PE38) was generated. This hGC33-PE38 protein was overexpressed in E. coli and purified. ADP-ribosylation activity was tested in vitro against eukaryotic translation elongation factor 2. Cell internalisation ability was confirmed by confocal microscopy. Cytotoxicity was analysed by treating liver cancer (HepG2, SNU-398 and SNU-449) and lung cancer (NCI-H510A, NCI-H446, A549 and SK-MES1) cell lines with hGC33-PE38 and estimating viable cells number. A BrdU assay was employed to verify anti-proliferative activity of hGC33-PE38 on treated cells. Fluorescence-activated cell sorting was used for the detection of cell membrane-bound GPC3. The hGC33-PE38 immunotoxin displayed enzymatic activity comparable to native PE38. The protein was efficiently internalised by GPC3-positive cells. Moreover, hGC33-PE38 was cytotoxic to HepG2 cells but had no effect on known GPC3-negative cell lines. The H446 cells were sensitive to hGC33-PE38 (IC50, 70.6±4.6 ng/ml), whereas H510A cells were resistant. Cell surface-bound GPC3 was abundant on the membranes of H446 cells, but absent on H510A. Altogether, the present findings suggested that GPC3 could be considered as a potential therapeutic target for SCLC immunotherapy.
Collapse
Affiliation(s)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Michal Rozanski
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | | |
Collapse
|
13
|
Shih TC, Wang L, Wang HC, Wan YJY. Glypican-3: A molecular marker for the detection and treatment of hepatocellular carcinoma ☆. LIVER RESEARCH 2020; 4:168-172. [PMID: 33384879 PMCID: PMC7771890 DOI: 10.1016/j.livres.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a fairly poor prognosis (5-year survival of less than 50%). Using sorafenib, the only food and drug administration (FDA)-approved drug, HCC cannot be effectively treated; it can only be controlled at most for a couple of months. There is a great need to develop efficacious treatment against this debilitating disease. Glypican-3 (GPC3), a member of the glypican family that attaches to the cell surface by a glycosylphosphatidylinositol anchor, is overexpressed in HCC cases and is elevated in the serum of a large proportion of patients with HCC. GPC3 expression contributes to HCC growth and metastasis. Furthermore, several different types of antibodies targeting GPC3 have been developed. The aim of this review is to summarize the current literatures on the GPC3 expression in human HCC, molecular mechanisms of GPC3 regulation and antibodies targeting GPC3.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Hsiao-Chi Wang
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
14
|
Barkovskaya A, Buffone A, Žídek M, Weaver VM. Proteoglycans as Mediators of Cancer Tissue Mechanics. Front Cell Dev Biol 2020; 8:569377. [PMID: 33330449 PMCID: PMC7734320 DOI: 10.3389/fcell.2020.569377] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a diverse group of molecules which are characterized by a central protein backbone that is decorated with a variety of linear sulfated glycosaminoglycan side chains. Proteoglycans contribute significantly to the biochemical and mechanical properties of the interstitial extracellular matrix where they modulate cellular behavior by engaging transmembrane receptors. Proteoglycans also comprise a major component of the cellular glycocalyx to influence transmembrane receptor structure/function and mechanosignaling. Through their ability to initiate biochemical and mechanosignaling in cells, proteoglycans elicit profound effects on proliferation, adhesion and migration. Pathologies including cancer and cardiovascular disease are characterized by perturbed expression of proteoglycans where they compromise cell and tissue behavior by stiffening the extracellular matrix and increasing the bulkiness of the glycocalyx. Increasing evidence indicates that a bulky glycocalyx and proteoglycan-enriched extracellular matrix promote malignant transformation, increase cancer aggression and alter anti-tumor therapy response. In this review, we focus on the contribution of proteoglycans to mechanobiology in the context of normal and transformed tissues. We discuss the significance of proteoglycans for therapy response, and the current experimental strategies that target proteoglycans to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Anna Barkovskaya
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alexander Buffone
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin Žídek
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Valerie M. Weaver
- Center for Bioengineering & Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
16
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
17
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Development of Glypican-3 Targeting Immunotoxins for the Treatment of Liver Cancer: An Update. Biomolecules 2020; 10:biom10060934. [PMID: 32575752 PMCID: PMC7356171 DOI: 10.3390/biom10060934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for most liver cancers and represents one of the deadliest cancers in the world. Despite the global demand for liver cancer treatments, there remain few options available. The U.S. Food and Drug Administration (FDA) recently approved Lumoxiti, a CD22-targeting immunotoxin, as a treatment for patients with hairy cell leukemia. This approval helps to demonstrate the potential role that immunotoxins can play in the cancer therapeutics pipeline. However, concerns have been raised about the use of immunotoxins, including their high immunogenicity and short half-life, in particular for treating solid tumors such as liver cancer. This review provides an overview of recent efforts to develop a glypican-3 (GPC3) targeting immunotoxin for treating HCC, including strategies to deimmunize immunotoxins by removing B- or T-cell epitopes on the bacterial toxin and to improve the serum half-life of immunotoxins by incorporating an albumin binding domain.
Collapse
|
19
|
Singh U, Hur M, Dorman K, Wurtele ES. MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets. Nucleic Acids Res 2020; 48:e23. [PMID: 31956905 PMCID: PMC7039010 DOI: 10.1093/nar/gkz1209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The diverse and growing omics data in public domains provide researchers with tremendous opportunity to extract hidden, yet undiscovered, knowledge. However, the vast majority of archived data remain unused. Here, we present MetaOmGraph (MOG), a free, open-source, standalone software for exploratory analysis of massive datasets. Researchers, without coding, can interactively visualize and evaluate data in the context of its metadata, honing-in on groups of samples or genes based on attributes such as expression values, statistical associations, metadata terms and ontology annotations. Interaction with data is easy via interactive visualizations such as line charts, box plots, scatter plots, histograms and volcano plots. Statistical analyses include co-expression analysis, differential expression analysis and differential correlation analysis, with significance tests. Researchers can send data subsets to R for additional analyses. Multithreading and indexing enable efficient big data analysis. A researcher can create new MOG projects from any numerical data; or explore an existing MOG project. MOG projects, with history of explorations, can be saved and shared. We illustrate MOG by case studies of large curated datasets from human cancer RNA-Seq, where we identify novel putative biomarker genes in different tumors, and microarray and metabolomics data from Arabidopsis thaliana. MOG executable and code: http://metnetweb.gdcb.iastate.edu/ and https://github.com/urmi-21/MetaOmGraph/.
Collapse
Affiliation(s)
- Urminder Singh
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Karin Dorman
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
20
|
The Challenge of Modulating Heparan Sulfate Turnover by Multitarget Heparin Derivatives. Molecules 2020; 25:molecules25020390. [PMID: 31963505 PMCID: PMC7024324 DOI: 10.3390/molecules25020390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
This review comes as a part of the special issue "Emerging frontiers in GAGs and mimetics". Our interest is in the manipulation of heparan sulfate (HS) turnover by employing HS mimetics/heparin derivatives that exert pleiotropic effects and are interesting for interfering at multiple levels with pathways in which HS is implicated. Due to the important role of heparanase in HS post-biosynthetic modification and catabolism, we focus on the possibility to target heparanase, at both extracellular and intracellular levels, a strategy that can be applied to many conditions, from inflammation to cancer and neurodegeneration.
Collapse
|
21
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
22
|
Intratumoral reciprocal expression of monocarboxylate transporter 4 and glypican-3 in hepatocellular carcinomas. BMC Res Notes 2019; 12:741. [PMID: 31706332 PMCID: PMC6842510 DOI: 10.1186/s13104-019-4778-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Objective We previously reported the identification of monocarboxylate transporter 4 (MCT4) and glypican-3 (GPC3) as prognostic factors for hepatocellular carcinoma (HCC), which are now considered significant poor prognostic factors for the disease. This study aimed to clarify the detailed interaction of these two factors in HCC to improve our understanding of aggressive HCC phenotypes. A total of 225 Japanese patients with HCC from our previous study were subjected to immunohistochemical analyses. Results The number of MCT4-positive (MCT4+) HCC cases was 47 (21%), and most MCT4+ HCC showed high GPC3 expression (94%, 44/47 cases). In 44 MCT4+/GPC3+ HCC cases, intratumoral heterogeneity of GPC3 or MCT4 expression was further evaluated. We observed reciprocal (inverse), synergistic, mixed reciprocal and synergistic, or irrelevant interaction of MCT4 and GPC3 expression in 29 (66%), 5 (11%), 1 (2%), and 9 cases (21%), respectively. The cases exhibiting reciprocal expression of both markers tended to have cirrhosis without a history of neoadjuvant therapy. In summary, although MCT4+ HCC cases are mostly GPC3+, intratumoral expression patterns of MCT4 and GPC3 are frequently reciprocal each other, suggesting that dual targeting of MCT4 and GPC3 may achieve a better antitumor effect for MCT4+ HCC cases.
Collapse
|
23
|
Azizpour S, Ezati R, Saidijam M, Razavi AE, Jalilian FA, Mahdavinezhad A, Eslami H, Soltanian A, Mohammadpour H, Kamali F, Amini R. The Expression of Glypican-3 in Colorectal Cancer. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719050037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Brunetti J, Riolo G, Depau L, Mandarini E, Bernini A, Karousou E, Passi A, Pini A, Bracci L, Falciani C. Unraveling Heparan Sulfate Proteoglycan Binding Motif for Cancer Cell Selectivity. Front Oncol 2019; 9:843. [PMID: 31620357 PMCID: PMC6759624 DOI: 10.3389/fonc.2019.00843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Membrane heparan sulfate proteoglycans (HSPG) regulate cell proliferation, migration, and differentiation and are therefore considered key players in cancer cell development processes. Here, we used the NT4 peptide to investigate how the sulfation pattern of HSPG on cells drives binding specificity. NT4 is a branched peptide that binds the glycosaminoglycan (GAG) chains of HSPG. It has already been shown to inhibit growth factor-induced migration and invasiveness of cancer cells, implying antagonist binding of HSPG. The binding affinity of NT4 with recombinant HSPG showed that NT4 bound glypican-3 and -4 and, with lower affinity, syndecan-4. NT4 binding to the cancer cell membrane was inversely correlated with sulfatase expression. NT4 binding was higher in cell lines with lower expression of SULF-1 and SULF-2, which confirms the determinant role of sulfate groups for recognition by NT4. Using 8-mer and 9-mer heparan sulfate (HS) oligosaccharides with analog disaccharide composition and different sulfation sites, a possible recognition motif was identified that includes repeated 6-O-sulfates alternating with N- and/or 2-O-sulfates. Molecular modeling provided a fully descriptive picture of binding architecture, showing that sulfate groups on opposite sides of the oligosaccharide can interact with positive residues on two peptide sequences of the branched structure, thus favoring multivalent binding and explaining the high affinity and selectivity of NT4 for highly sulfated GAGs. NT4 and possibly newly selected branched peptides will be essential probes for reconstructing and unraveling binding sites for cancer-involved ligands on GAGs and will pave the way for new cancer detection and treatment options.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
25
|
Quach ND, Kaur SP, Eggert MW, Ingram L, Ghosh D, Sheth S, Nagy T, Dawson MR, Arnold RD, Cummings BS. Paradoxical Role of Glypican-1 in Prostate Cancer Cell and Tumor Growth. Sci Rep 2019; 9:11478. [PMID: 31391540 PMCID: PMC6685992 DOI: 10.1038/s41598-019-47874-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that glypican-1 (GPC-1) is a biomarker for prostate cancer, but there are few studies elucidating the role of GPC-1 in prostate cancer progression. We observed high expression of GPC-1 in more aggressive prostate cancer cell lines such as PC-3 and DU-145. While inhibition of GPC-1 expression in PC-3 cells decreased cell growth and migration in vitro, it surprisingly increased cell proliferation and migration in DU-145 cells, suggesting that the role of GPC-1 is cell type-dependent. Further, GPC-1 inhibition increased PC-3 tumor size in NCr nude mice xenografts. We hypothesized that the discrepancy between the in vitro and in vivo data is mediated by stromal cells in the tumor microenvironment. Thus, we tested the effect of tumor conditioned media (TCM) on gene expression in human mesenchymal stem cells and fibroblasts. Treatment of stromal cells with TCM from PC-3 cells transfected with GPC-1 shRNA increased the expression of migration markers, endocrine/paracrine biomolecules, and extracellular matrix components. Additionally, the decreased cell growth in GPC-1 knockdown PC-3 cells was rescued by coculturing with stromal cells. These data demonstrate the paradoxical role that GPC-1 plays in prostate cancer cell growth by interacting with stromal cells and through ECM remodeling and endocrine/paracrine signaling.
Collapse
Affiliation(s)
- Nhat D Quach
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.,Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Sukhneeraj Pal Kaur
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Matthew W Eggert
- Department of Drug Discovery & Development, Auburn University, Auburn, AL, USA
| | - Lishann Ingram
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Sheela Sheth
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA.,Center for Biomedical Engineering, Brown University, Providence, RI, USA.,School of Engineering, Brown University, Providence, RI, USA
| | - Robert D Arnold
- Department of Drug Discovery & Development, Auburn University, Auburn, AL, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA. .,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
26
|
Wang D, Gao Y, Zhang Y, Wang L, Chen G. Glypican-3 promotes cell proliferation and tumorigenesis through up-regulation of β-catenin expression in lung squamous cell carcinoma. Biosci Rep 2019; 39:BSR20181147. [PMID: 31160489 PMCID: PMC6591568 DOI: 10.1042/bsr20181147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/09/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
As a cell surface proteoglycan anchored by glycosyl-phosphatidylinositol, Glypican-3 (GPC3) is reported to be highly expressed in hepatocellular carcinoma (HCC) and to promote cell proliferation and tumorigenesis through activating Wnt/β-catenin signalling. GPC3 is also overexpressed in lung squamous cell carcinoma (SCC), but its effects and mechanisms in the progression of lung SCC remain unknown. The present study aims to explore the role and molecular mechanism of GPC3 in the occurrence and development of lung SCC. Immunohistochemistry, Western blot (WB) and real-time PCR (RT-PCR) assays were used to determine the expression patterns of GPC3 in lung SCC tissues and cells. MTT, flow cytometry and in vivo xenotransplantation assays were used to evaluate the influence of GPC3 on the growth, apoptosis and tumorigenesis of lung SCC cells. The results showed that GPC3 expression levels in lung SCC tissues and cells were significantly elevated, and the high expression of GPC3 significantly promoted cell growth and tumorigenesis and repressed cell apoptosis, as well as increased β-catenin expression. Moreover, knockdown of β-catenin obviously weakened GPC3 role in the promotion of cell proliferation and tumorigenesis, as well as the inhibition of cell apoptosis. In conclusion, the present study demonstrates that up-regulation of GPC3 accelerates the progression of lung SCC in a β-catenin-dependent manner. Our study provides a theoretical basis for GPC3/β-catenin as a novel diagnostic marker and therapeutic target for lung SCC.
Collapse
Affiliation(s)
- Dongchang Wang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Yan Gao
- Department of General Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Zhang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Lifei Wang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Gang Chen
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
27
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
28
|
Motawi TMK, Sadik NAH, Sabry D, Shahin NN, Fahim SA. rs2267531, a promoter SNP within glypican-3 gene in the X chromosome, is associated with hepatocellular carcinoma in Egyptians. Sci Rep 2019; 9:6868. [PMID: 31053802 PMCID: PMC6499880 DOI: 10.1038/s41598-019-43376-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern in Egypt owing to the high prevalence of hepatitis C virus (HCV) infection. HCC incidence is characterized by obvious male predominance, yet the molecular mechanisms behind this gender bias are still unidentified. Functional variations in X-linked genes have more impact on males than females. Glypican-3 (GPC3) gene, located in the Xq26 region, has lately emerged as being potentially implicated in hepatocellular carcinogenesis. The current study was designed to examine the association of -784 G/C single nucleotide polymorphism (SNP) in GPC3 promoter region (rs2267531) with HCC susceptibility in male and female Egyptian HCV patients. Our results revealed a significant association between GPC3 and HCC risk in both males and females, evidenced by higher C allele and CC/C genotype frequencies in HCC patients when compared to controls. However, no such association was found when comparing HCV patients to controls. Moreover, GPC3 gene and protein expression levels were significantly higher in CC/C than in GG/G genotype carriers in males and females. The CC/C genotype exhibited a significant shorter overall survival than GG/G genotype in HCC patients. In conclusion, GPC3 rs2267531 on the X chromosome is significantly associated with HCC, but not with HCV infection, in the Egyptian population.
Collapse
Affiliation(s)
| | | | - Dina Sabry
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nancy Nabil Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally Atef Fahim
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt.
| |
Collapse
|
29
|
Weissferdt A, Kalhor N, Rodriguez Canales J, Fujimoto J, Wistuba II, Moran CA. Primary Mediastinal Yolk Sac Tumors: An Immunohistochemical Analysis of 14 Cases. Appl Immunohistochem Mol Morphol 2019; 27:125-133. [DOI: 10.1097/pai.0000000000000442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Wang B, Xian J, Zang J, Xiao L, Li Y, Sha M, Shen M. Long non-coding RNA FENDRR inhibits proliferation and invasion of hepatocellular carcinoma by down-regulating glypican-3 expression. Biochem Biophys Res Commun 2018; 509:143-147. [PMID: 30573358 DOI: 10.1016/j.bbrc.2018.12.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Long non-coding RNA FENDRR is implicated in progression of several cancers, but its exact role and mechanism in hepatocellular carcinoma (HCC) are largely unknown. In this study, we investigated the expression and biological roles of FENDRR in HCC tissues and cell lines. We found that the expression levels of FENDRR were significantly down-regulated in HCC tissues and cells. FENDRR overexpression could inhibit the growth of HCC cells in vitro and in vivo. Moreover, up-regulation of FENDRR suppressed the migration and invasion of HCC cells. Mechanistically, we demonstrated that FENDRR interacted directly with Glypican-3 (GPC3) promoter and methylated GPC3 promoter, which led to down-regulation of GPC3 expression. Ectopic expression of GPC3 ablated the inhibitory effects of FENDRR on HCC cell proliferation, migration and invasion. Taken together, we provided the first evidence for the inhibitory activity of FENDRR in HCC, which is causally linked to targeting GPC3 at the epigenetic level. Restoration of FENDRR may be a potential approach to prevent HCC progression and metastasis.
Collapse
Affiliation(s)
- Bian Wang
- Department of Liver Disease, Taizhou people's Hospital affiliated of Nantong University of medicine, Taizhou, China
| | - Jianchun Xian
- Department of Liver Disease, Taizhou people's Hospital affiliated of Nantong University of medicine, Taizhou, China
| | - Jinfeng Zang
- Department of Hepatobiliary Surgery, Taizhou people's Hospital affiliated of Nantong University of medicine, Taizhou, China
| | - Li Xiao
- Department of Liver Disease, Taizhou people's Hospital affiliated of Nantong University of medicine, Taizhou, China
| | - Yang Li
- Department of Liver Disease, Taizhou people's Hospital affiliated of Nantong University of medicine, Taizhou, China
| | - Min Sha
- Central Laboratory of Medical Transformation Center, Taizhou people's Hospital affiliated of Nantong University of medicine, Taizhou, China.
| | - Meilong Shen
- Department of Liver Disease, Taizhou people's Hospital affiliated of Nantong University of medicine, Taizhou, China
| |
Collapse
|
31
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
32
|
Andisheh-Tadbir A, Ashraf MJ, Gudarzi A, Zare R. Evaluation of Glypican-3 expression in benign and malignant salivary gland tumors. J Oral Biol Craniofac Res 2018; 9:63-66. [PMID: 30294537 DOI: 10.1016/j.jobcr.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/24/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Introduction Glypican-3 (GPC3) is involved in regulation of cell proliferation and morphogenesis. It is abundant in embryonic tissue, but limited in most adult tissues. GPC3 deletion or mutation can disturb the balance between cell apoptosis and proliferation, which may result in tumorigenesis. This study aimed to investigate the GPC3 expression in salivary gland tumors (SGTs) and the adjacent non-neoplastic tissues. Methods This study reviewed 50 samples of salivary tumors from the archive of Khalili Hospital, Shiraz, Iran, including 17 cases of pleomorphic adenoma (PA), 16 cases of mucoepidermoid carcinoma (MEC), and 17 cases of adenoid cystic carcinoma (ACC); as well as a control group of 23 cases of normal salivary gland tissues. GPC3 expression was investigated through immunohistochemistry. Results GPC3 expression was significantly higher in malignant tumors (MEC and ACC) than in PA, and higher in PA than in the normal salivary glands (P < 0.001). The expression intensity was moderate to strong in malignant tumors and weak to moderate in benign tumors. No strong positivity was observed in normal salivary gland tissues (P < 0.001). Nor was any association detected between the GPC3 expression and intensity with the clinicopathologic parameters. Conclusion Although GPC3 overexpression was observed at the protein level in SGTs, and its expression was not related with the clinicopathologic factors, the potential use of GPC3 for diagnostic, therapeutic, and prognostic purposes requires further investigations.
Collapse
Affiliation(s)
- Azadeh Andisheh-Tadbir
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Ashraf
- Department of Oral Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gudarzi
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Zare
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Kaseb AO, Hassan M, Lacin S, Abdel-Wahab R, Amin HM, Shalaby A, Wolff RA, Yao J, Rashid A, Vennapusa B, Feng J, Ohtomo T. Evaluating clinical and prognostic implications of Glypican-3 in hepatocellular carcinoma. Oncotarget 2018; 7:69916-69926. [PMID: 27655712 PMCID: PMC5342524 DOI: 10.18632/oncotarget.12066] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide. In patients with HCC, histopathogical differentiation is an important indicator of prognosis; however, because determination of HCC differentiation is difficult, the recently described immunohistochemical (IHC) marker glypican3 (GPC3) might assist in HCC prognostication.The goal of our study was to investigate GPC3's IHC staining pattern and define the relationship between its expression and patients' clinicopathologic features and overall survival. We retrieved clinical parameters from 101 pathologically diagnosed HCC patients' medical records and classified these patients into 4 clinical score categories (0–3) based on increasing GPC3 staining intensity and the percentage of stained tumor cells in their resection and biopsy specimens. Histopathological samples were well, moderately, and poorly differentiated in 33, 22, and 12 patients, respectively, and the GPC3 expression rate was 63%, 86%, and 92%,respectively. The median overall survival was 49.9 months (confidence interval (CI): 35.3–64.6 months) for clinical scores 0–1 and 30.7 months (CI: 19.4–41.9 months) for clinical scores 2–3. This difference was not statistically significant (P = .06) but showed a strong trend. In conclusion, a greater GPC3 expression is associated with a worse HCC prognosis and may be a promising prognostic marker.
Collapse
Affiliation(s)
- Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Manal Hassan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sahin Lacin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Medical Oncology, Hacettepe University, Medical Faculty, Ankara, Turkey
| | - Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Oncology, Assiut University Hospital, Assiut, Egypt
| | - Hesham M Amin
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahmed Shalaby
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Janine Feng
- Ventana Medical Systems, Inc., Tucson, Arizona, USA
| | | |
Collapse
|
34
|
Leung AWY, Backstrom I, Bally MB. Sulfonation, an underexploited area: from skeletal development to infectious diseases and cancer. Oncotarget 2018; 7:55811-55827. [PMID: 27322429 PMCID: PMC5342455 DOI: 10.18632/oncotarget.10046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Sulfonation is one of the most abundant cellular reactions modifying a wide range of xenobiotics as well as endogenous molecules which regulate important biological processes including blood clotting, formation of connective tissues, and functionality of secreted proteins, hormones, and signaling molecules. Sulfonation is ubiquitous in all tissues and widespread in nature (plants, animals, and microorganisms). Although sulfoconjugates were discovered over a century ago when, in 1875, Baumann isolated phenyl sulfate in the urine of a patient given phenol as an antiseptic, the significance of sulfonation and its roles in human diseases have been underappreciated until recent years. Here, we provide a current overview of the significance of sulfonation reactions in a variety of biological functions and medical conditions (with emphasis on cancer). We also discuss research areas that warrant further attention if we are to fully understand how deficiencies in sulfonation could impact human health which, in turn, could help define treatments to effect improvements in health.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Marcel B Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
35
|
Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells. Oncotarget 2018; 7:60133-60154. [PMID: 27507057 PMCID: PMC5312374 DOI: 10.18632/oncotarget.11107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 07/16/2016] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.
Collapse
|
36
|
Saad A, Liet B, Joucla G, Santarelli X, Charpentier J, Claverol S, Grosset CF, Trézéguet V. Role of Glycanation and Convertase Maturation of Soluble Glypican-3 in Inhibiting Proliferation of Hepatocellular Carcinoma Cells. Biochemistry 2018; 57:1201-1211. [PMID: 29345911 DOI: 10.1021/acs.biochem.7b01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glypican 3 (GPC3) is a complex heparan sulfate proteoglycan associated with the outer surface of the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. It is also N-glycosylated and processed by a furin-like convertase. GPC3 has numerous biological functions. Although GPC3 is undetectable in normal liver tissue, it is abnormally and highly overexpressed in hepatocellular carcinoma (HCC). Interestingly, proliferation of HCC cells such as HepG2 and HuH7 is inhibited when they express a soluble form of GPC3 after lentiviral transduction. To obtain more insight into the role of some of its post-translational modifications, we designed a mutant GPC3, sGPC3m, without its GPI anchor, convertase cleavage site, and glycosaminoglycan chains. The highly pure sGPC3m protein strongly inhibited HuH7 and HepG2 cell proliferation in vitro and induced a significant increase in their cell doubling time. It changed the morphology of HuH7 cells but not that of HepG2. It induced the enlargement of HuH7 cell nuclear area and the restructuration of adherent cell junctions. Unexpectedly, for both cell types, the levels of apoptosis, cell division, and β-catenin were not altered by sGPC3m, although growth inhibition was very efficient. Overall, our data show that glycanation and convertase maturation are not required for sGPC3m to inhibit HCC cell proliferation.
Collapse
Affiliation(s)
- Ahmad Saad
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Benjamin Liet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Gilles Joucla
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Xavier Santarelli
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | | | - Stéphane Claverol
- Univ. Bordeaux, Plateforme Protéome, CGFB , F-33076 Bordeaux, France
| | - Christophe F Grosset
- Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France.,Univ. Bordeaux, Inserm, GREF, U1053 , 33076 Bordeaux, France
| | - Véronique Trézéguet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France.,Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France
| |
Collapse
|
37
|
Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H, Alavian SM, Lankarani KB, Farrokh P, Randel Nyengaard J. Concomitant use of heat-shock protein 70, glutamine synthetase and glypican-3 is useful in diagnosis of HBV-related hepatocellular carcinoma with higher specificity and sensitivity. Eur J Histochem 2018; 62:2859. [PMID: 29569872 PMCID: PMC5806503 DOI: 10.4081/ejh.2018.2859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma is the third leading cause of cancer-related death worldwide and late diagnosis is the main cause of death in HCC patients. In this study expression patterns of HSP70, GPC3 and GS and their relationships with pathogenesis of HCC in Iranian patients were investigated. The expression of HSP70, GPC3 and GS were determined by immunohistochemistry and quantitative real-time PCR (q-PCR) methods, using 121 cases from patients with HBV alone, HCC without HBV, HBV+HCC and 30 normal tissues as control group. HSP70, GPC3 and GS were expressed in higher levels in HBV-related HCC samples compared to HBV alone group. The results showed that the labeling index of HSP70, GPC3 and GS are correlated with immunohistochemical and molecular expressions of HSP70, GPC3 and GS. The sensitivity and specificity for HCC diagnosis were 43.4% and 89.7% for HSP70, 64.3% and 90.4% for GPC3, and 60.7% and 94.3% for GS, respectively. The sensitivity and specificity of the panels with 3, 2 and 1 positive markers, regardless of which one, were 21.6% and 100%, 51.3% and 100% and 93.4% and 80.5% respectively. The current study demonstrated an association between HSP70, GPC3 and GS expressions and HBV-related HCC in our population. It was concluded that HSP70, GPC3 and GS expressions could be useful biomarkers for increasing the specificity and sensitivity of HCC diagnosis to acceptable level. Also, proper combinations of these 3 markers could improve diagnostic accuracy.
Collapse
|
38
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
40
|
Overexpression of Glypican 3 Promotes Proliferation, Regulates Cell Cycle Progression, and Inhibits Apoptosis of Human Fetal Osteoblastic Cell Line 1.19. J Craniofac Surg 2017; 28:1481-1485. [PMID: 28796105 DOI: 10.1097/scs.0000000000003861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Craniosynostosis is a complex disease condition, which involves premature fusion of cranial vault sutures and lacks desirable treatment. Previous studies have demonstrated decreased proliferation rate of osteoblasts and downregulated expression of glypican 3 (GPC3) in syndromic craniosynostosis patients. In this study, quantitative and qualitative analysis were utilized to assess the effect of GPC3 in human fetal osteoblastic cell line, hFOB 1.19. Lentiviral transfection efficiency with green fluorescent protein images was obtained after 72 hours. Western Blot and quantitative real-time polymerase chain reaction analysis results indicated that GPC3 was overexpressed in hFOB 1.19 cells transfected with recombinant lentivirus LV-GPC3-GFP. Cell proliferation was assessed by CCK-8 assay and cell cycle progression and apoptosis were analyzed by flow cytometric assay. Results revealed that GPC3 promoted cell viability, induced cell cycle entry into S phase, and inhibited cell apoptosis. These findings provide novel ideas in understanding the pathogenesis of craniosynostosis. It also provides novel insights in the treatment of craniosynostosis by targeting GPC3.
Collapse
|
41
|
Treatment of hepatocellular carcinoma with a GPC3-targeted bispecific T cell engager. Oncotarget 2017; 8:52866-52876. [PMID: 28881778 PMCID: PMC5581077 DOI: 10.18632/oncotarget.17905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 12/23/2022] Open
Abstract
There are limited strategies for the treatment of hepatocellular carcinoma (HCC). In this study, we prepared a Bispecific T cell engager (BiTE) targeting Glypican 3 (GPC3) and CD3. The GPC3/CD3 BiTE was prepared by fusing the single-chain variable fragment (scFv) of the humanized anti-GPC3 antibody (9F2) with the scFv of the anti-CD3 antibody (OKT3). The in vitro and in vivo cytotoxic activities of the GPC3/CD3 BiTE were evaluated against various HCC cell lines. The GPC3/CD3 BiTE could efficiently mediate the T cell killing of GPC3-positive HCC in vitro, which was dependent on GPC3 expression on the surface of HCC cells. Moreover, our study indicates that, in the presence of the GPC3/CD3 BiTE, T cells could efficiently destroy GPC3-positive human HCC cells in vitro and in vivo. Additionally, our study further proved that GPC3 is not expressed in normal tissues. Thus, GPC3 may be a cancer-specific antigen. Collectively, these findings suggest that this anti-GPC3 BiTE might be a promising anti-tumor reagent for patients with GPC3-positive HCC.
Collapse
|
42
|
Montalbano M, Georgiadis J, Masterson AL, McGuire JT, Prajapati J, Shirafkan A, Rastellini C, Cicalese L. Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma (Review). Oncol Rep 2017; 37:1291-1300. [PMID: 28098909 DOI: 10.3892/or.2017.5387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Glypican-3 (GPC-3), a transmembrane heparan sulfate proteoglycan (HSPG), has recently been investigated as a player in tissue-dependent cellular signaling, specifically as a regulator of growth. Noteworthy, the regulatory protein has been implicated in both stimulatory and inhibitory pathways involving cell growth. Initially, GPC-3 was thought to act as a cell cycle regulator, as a loss-of-function mutation in the gene caused a hyper-proliferative state known as Simpson-Golabi-Behmel (SGB) overgrowth syndrome. Additionally, certain cancer types have displayed a downregulation of GPC-3 expression. More recently, the protein has been evaluated as a useful marker for hepatocellular carcinoma (HCC) due to its increased expression in the liver during times of growth. In contrast, the GPC-3 marker is not detectable in normal adult liver. Immunotherapy that targets GPC-3 and its affiliated proteins is under investigation as these new biomarkers may hold potential for the detection and treatment of HCC and other diseases in which GPC-3 may be overexpressed. Studies have reported that an overexpression of GPC-3 in HCC predicts a poorer prognosis. This prognostic value further pushes the question regarding GPC-3's role in the regulation and progression of HCC. This review will summarize the current knowledge regarding the clinical aspects of GPC-3, while also synthesizing the current literature with the aim to better understand this molecule's biological interactions at a molecular level, not only in the liver, but in the rest of the body as well. Due to the existing gap in the literature surrounding GPC-3, we believe further investigation of function, structure and domains, cellular localization, and other subfields is warranted to evaluate the protein as a whole, as well as its part in the study of HCC.
Collapse
Affiliation(s)
- Mauro Montalbano
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jeremias Georgiadis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashlyn L Masterson
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joshua T McGuire
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janika Prajapati
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ali Shirafkan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cristiana Rastellini
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luca Cicalese
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
43
|
Preda O, Nogales FF. Diagnostic Immunopathology of Germ Cell Tumors. PATHOLOGY AND BIOLOGY OF HUMAN GERM CELL TUMORS 2017:131-179. [DOI: 10.1007/978-3-662-53775-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Afratis NA, Karamanou K, Piperigkou Z, Vynios DH, Theocharis AD. The role of heparins and nano-heparins as therapeutic tool in breast cancer. Glycoconj J 2016; 34:299-307. [PMID: 27778131 DOI: 10.1007/s10719-016-9742-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023]
Abstract
Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.
Collapse
Affiliation(s)
- Nikos A Afratis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110, Patras, Greece.
| |
Collapse
|
45
|
Bharti B, Shukla S, Tripathi R, Mishra S, Kumar M, Pandey M, Mishra R. Level of PAX5 in differential diagnosis of non-Hodgkin's lymphoma. Indian J Med Res 2016; 143:S23-S31. [PMID: 27748274 PMCID: PMC5080925 DOI: 10.4103/0971-5916.191747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background & objectives: The PAX5, a paired box transcription factor and B-cell activator protein (BSAP), activates B-cell commitment genes and represses non-B-cell lineage genes. About 14 transcript variants of PAX5 have been observed in human. Any alteration in its expression pattern leads to lymphogenesis or associated diseases and carcinogenesis in non-lymphoid tissues. Its mechanisms of function in pathophysiology of non-Hodgkin's lymphoma (NHL) are unclear. This study was intended to explore influence of PAX5 in cascade of NHL pathogenesis and diagnosis. Methods: Samples of 65 patients were evaluated by immunohistochemical staining for cellular localization of PAX5, CD19, CD3, cABL, p53, Ras and Raf and by TUNEL assay, RNA-isolation and reverse transcriptase (RT)-PCR, Western blot analysis, and lactate dehydrogenase (LDH) specific staining. Results: B-cell type NHL patients were positive for PAX5, p53, Ras, CD19, Raf and CD3. All of them showed TUNEL-positive cells. The differential expression pattern of PAX5, CD19, p53, CD3, ZAP70, HIF1α, Ras, Raf and MAPK (mitogen-activated protein kinase) at the levels of transcripts and proteins was observed. The LDH assay showed modulation of LDH4 and LDH5 isoforms in the lymph nodes of NHL patients. Interpretation & conclusions: The histological observations suggested that the patients represent diverse cases of NHL like mature B-cell type, mature T-cell type and high grade diffuse B-cell type NHL. The findings indicate that patients with NHL may also be analyzed for status of PAX5, CD19 and ZAP70, and their transcriptional and post-translational variants for the differential diagnosis of NHL and therapy.
Collapse
Affiliation(s)
- Brij Bharti
- Department of Zoology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sachin Shukla
- Department of Zoology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ratnakar Tripathi
- Department of Zoology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Suman Mishra
- Department of Zoology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mohan Kumar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Novel insights into Notum and glypicans regulation in colorectal cancer. Oncotarget 2016; 6:41237-57. [PMID: 26517809 PMCID: PMC4747403 DOI: 10.18632/oncotarget.5652] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/12/2015] [Indexed: 12/19/2022] Open
Abstract
The connection between colorectal cancer (CRC) and Wnt signaling pathway activation is well known, but full elucidation of the underlying regulation of the Wnt/β-catenin pathway and its biological functions in CRC pathogenesis is still needed. Here, the azoxymethane/dextran sulfate sodium salt (AOM/DSS) murine model has been used as an experimental platform able to mimic human sporadic CRC development with predictable timing. We performed genome-wide expression profiling of AOM/DSS-induced tumors and normal colon mucosa to identify potential novel CRC biomarkers. Remarkably, the enhanced expression of Notum, a conserved feedback antagonist of Wnt, was observed in tumors along with alterations in Glypican-1 and Glypican-3 levels. These findings were confirmed in a set of human CRC samples. Here, we provide the first demonstration of significant changes in Notum and glypicans gene expression during CRC development and present evidence to suggest them as potential new biomarkers of CRC pathogenesis.
Collapse
|
47
|
Expression of PAX8 Target Genes in Papillary Thyroid Carcinoma. PLoS One 2016; 11:e0156658. [PMID: 27249794 PMCID: PMC4889154 DOI: 10.1371/journal.pone.0156658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022] Open
Abstract
PAX8 is a thyroid-specific transcription factor whose expression is dysregulated in thyroid cancer. A recent study using a conditional knock-out mouse model identified 58 putative PAX8 target genes. In the present study, we evaluated the expression of 11 of these genes in normal and tumoral thyroid tissues from patients with papillary thyroid cancer (PTC). ATP1B1, GPC3, KCNIP3, and PRLR transcript levels in tumor tissues were significantly lower in PTCs than in NT, whereas LCN2, LGALS1 and SCD1 expression was upregulated in PTC compared with NT. Principal component analysis of the expression of the most markedly dysregulated PAX8 target genes was able to discriminate between PTC and NT. Immunohistochemistry was used to assess levels of proteins encoded by the two most dyregulated PAX8 target genes, LCN2 and GPC3. Interestingly, GPC3 was detectable in all of the NT samples but none of the PTC samples. Collectively, these findings point to significant PTC-associated dysregulation of several PAX8 target genes, supporting the notion that PAX8-regulated molecular cascades play important roles during thyroid tumorigenesis.
Collapse
|
48
|
Al-Sharaky DR, Younes SF. Sensitivity and Specificity of Galectin-3 and Glypican-3 in Follicular-Patterned and Other Thyroid Neoplasms. J Clin Diagn Res 2016; 10:EC06-10. [PMID: 27134876 DOI: 10.7860/jcdr/2016/18375.7430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Diagnosing follicular-patterned thyroid neoplasm can be quiet challenging in some cases, where an immunohistochemical profiling becomes mandatory. Galectin-3 may be a helpful tool for classical PTC diagnosis, but it cannot be considered as a diagnostic marker of malignancy. Glypican-3, in contrast, is not thoroughly studied in thyroid neoplasms. AIM Determine the sensitivity and specificity of galectin-3 and glypican-3 in diagnosing thyroid carcinoma and follicular-patterned thyroid carcinoma. MATERIALS AND METHODS A retrospective study was conducted on archival blocks diagnosed from pathology department between 2010 and 2012 including 17 cases of follicular adenoma, 16 cases of Classic Papillary Thyroid Carcinoma (PTC), 6 cases of Follicular Variant of Papillary Thyroid Carcinoma (FVPTC), 3 cases of follicular carcinoma, 5 cases of medullary carcinoma and 1 case of Hürthle cell carcinoma. The nearby non neoplastic (normal) thyroid follicles present in both adenoma and carcinoma cases were also evaluated. STUDY DESIGN Evaluation of both galectin-3 and glypican-3 expression using standard immunohistochemical techniques. STATISTICAL ANALYSIS USED Descriptive analysis of the variables and statistical significances were calculated by non-parametric chi-square test using the Statistical Package for the Social Sciences version 12.0 (SPSS). RESULTS Five (30%) and 4 (24%) out of the 17 studied follicular adenoma cases, were positively stained by galectin-3 and glypican-3 respectively, while 30 (97%) and 25 (81%) cases out of the studied 31 carcinoma cases were positively stained by galectin-3 and glypican-3 respectively. The sensitivity, specificity and diagnostic accuracy of galectin-3 vs. glypican-3 in discrimination between thyroid carcinoma and adenoma was 96.8%, 70.6%, and 87.5%vs. 81% 76.5% and 79% respectively. As for the discrimination between follicular-patterned thyroid carcinoma and follicular adenoma it was 90%, 71% and 78% vs. 90% 76.5% and 82%. CONCLUSION Glypican-3 is more specific while galectin-3 is more sensitive in diagnosing thyroid carcinoma while glypican-3 is more specific than galectin-3 in discriminating follicular-patterned neoplasm.
Collapse
Affiliation(s)
| | - Sheren Fouad Younes
- Lecturer, Department of Pathology, Faculty of Medicine, Menoufia University , Egypt
| |
Collapse
|
49
|
The extracellular matrix in breast cancer. Adv Drug Deliv Rev 2016; 97:41-55. [PMID: 26743193 DOI: 10.1016/j.addr.2015.12.017] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/31/2022]
Abstract
The extracellular matrix (ECM) is increasingly recognized as an important regulator in breast cancer. ECM in breast cancer development features numerous changes in composition and organization when compared to the mammary gland under homeostasis. Matrix proteins that are induced in breast cancer include fibrillar collagens, fibronectin, specific laminins and proteoglycans as well as matricellular proteins. Growing evidence suggests that many of these induced ECM proteins play a major functional role in breast cancer progression and metastasis. A number of the induced ECM proteins have moreover been shown to be essential components of metastatic niches, promoting stem/progenitor signaling pathways and metastatic growth. ECM remodeling enzymes are also markedly increased, leading to major changes in the matrix structure and biomechanical properties. Importantly, several ECM components and ECM remodeling enzymes are specifically induced in breast cancer or during tissue regeneration while healthy tissues under homeostasis express exceedingly low levels. This may indicate that ECM and ECM-associated functions may represent promising drug targets against breast cancer, providing important specificity that could be utilized when developing therapies.
Collapse
|
50
|
Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets 2016; 20:689-703. [PMID: 26667209 DOI: 10.1517/14728222.2016.1132702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling the transcriptional activities of several genes. A growing number of epigenetic changes have been reported in the regulation of key genes involved in cancer and aging. Drugs with epigenetic modulatory activities, mainly histone deacetylase and DNA methyltransferase inhibitors, have received wider attention in aging and cancer research. AREAS COVERED In this review, we summarize the major epigenetic alterations in cancer and aging, with special emphasis on possible therapeutic targets and interventions by dietary as well as bioactive phytochemicals. EXPERT OPINION Some epigenetic-targeting drugs have received FDA approval and many others are undergoing different phases of clinical trials for cancer therapy. In addition to the synthetic compounds, several bioactive phytochemicals and dietary interventions, such as caloric restriction, have been shown to possess epigenetic modulatory activities in multiple cancers. These epigenetic modulators have been shown to delay aging and minimize the risk of cancer both in preclinical as well as clinical models. Therefore, knowledge of bioactive phytochemicals along with dietary interventions can be utilized for cancer prevention and therapy both alone and with existing drugs to achieve optimum efficacy.
Collapse
Affiliation(s)
- Sajid Khan
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Samriddhi Shukla
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Sonam Sinha
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Syed Musthapa Meeran
- a Division of Endocrinology , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|