1
|
Blaylock RL. Accelerated cancer aggressiveness by viral oncomodulation: New targets and newer natural treatments for cancer control and treatment. Surg Neurol Int 2019; 10:199. [PMID: 31768279 PMCID: PMC6826277 DOI: 10.25259/sni_361_2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
An infectious etiology for a number of cancers has been entertained for over 100 years and modern studies have confirmed that a number of viruses are linked to cancer induction. While a large number of viruses have been demonstrated in a number of types of cancers, most such findings have been dismissed in the past as opportunistic infections, especially with persistent viruses with high rates of infectivity of the world’s populations. More recent studies have clearly shown that while not definitely causing these cancers, these viruses appear capable of affecting the biology of these tumors in such a way as to make them more aggressive and more resistant to conventional treatments. The term oncomodulatory viruses has been used to describe this phenomenon. A number of recent studies have shown a growing number of ways these oncomodulatory viruses can alter the pathology of these tumors by affecting cell-signaling, cell metabolism, apoptosis mechanisms, cell-cell communication, inflammation, antitumor immunity suppression, and angiogenesis. We are also learning that much of the behavior of tumors depends on cancer stem cells and stromal cells within the tumor microenvironment, which participate in extensive, dynamic crosstalk known to affect tumor behavior. Cancer stem cells have been found to be particularly susceptible to infection by human cytomegalovirus. In a number of studies, it has been shown that while only a select number of cells are actually infected with the virus, numerous viral proteins are released into cancer and stromal cells in the microenvironment and these viral proteins are known to affect tumor behavior and aggressiveness.
Collapse
|
2
|
FGFR3-TACC3: A novel gene fusion in cervical cancer. Gynecol Oncol Rep 2015; 13:53-6. [PMID: 26425723 PMCID: PMC4563584 DOI: 10.1016/j.gore.2015.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer epitomizes the success of cancer prevention through the human papillomavirus (HPV) vaccine, but significant challenges remain in the treatment of advanced disease. We report the first three cases of cervical carcinoma harboring an FGFR3-TACC3 fusion, which serves as a novel therapeutic target. The fusion, identified by comprehensive genomic profiling, activates the FGFR pathway that has been implicated in HPV-driven carcinogenesis. One of the patients whose tumor contained the FGFR3-TACC3 fusion was treated with an investigational FGFR tyrosine kinase inhibitor. Concomitant molecular alterations involving the PI3K/AKT/mTOR and RAF/MEK pathways were also identified and suggest other treatment strategies that deserve investigation. This case series highlights the role of comprehensive genomic profiling in the identification of new therapeutic targets and in targeted therapy selection for patients with cervical cancer.
Collapse
|
3
|
Zhang E, Feng X, Liu F, Zhang P, Liang J, Tang X. Roles of PI3K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells. PLoS One 2014; 9:e103440. [PMID: 25058399 PMCID: PMC4110025 DOI: 10.1371/journal.pone.0103440] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/02/2014] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives Human papillomavirus (HPV)-16 infection may be related to non-smoking associated lung cancer. Our previous studies have found that HPV-16 oncoproteins promoted angiogenesis via enhancing hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) expression in non-small cell lung cancer (NSCLC) cells. In this study, we further investigated the roles of PI3K/Akt and c-Jun signaling pathways in it. Methods Human NSCLC cell lines, A549 and NCI-H460, were stably transfected with pEGFP-16 E6 or E7 plasmids. Western blotting was performed to analyze the expression of HIF-1α, p-Akt, p-P70S6K, p-P85S6K, p-mTOR, p-JNK, and p-c-Jun proteins. VEGF and IL-8 protein secretion and mRNA levels were determined by ELISA and Real-time PCR, respectively. The invitro angiogenesis was observed by human umbilical vein endothelial cells (HUVECs) tube formation assay. Co-immunoprecipitation was performed to analyze the interaction between c-Jun and HIF-1α. Results HPV-16 E6 and E7 oncoproteins promoted the activation of Akt, P70S6K, P85S6K, mTOR, JNK, and c-Jun. LY294002, a PI3K inhibitor, inhibited HPV-16 oncoprotein-induced activation of Akt, P70S6K, and P85S6K, expression of HIF-1α, VEGF, and IL-8, and invitro angiogenesis. c-Jun knockdown by specific siRNA abolished HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and invitro angiogenesis. Additionally, HPV-16 oncoproteins promoted HIF-1α protein stability via blocking proteasome degradation pathway, but c-Jun knockdown abrogated this effect. Furthermore, HPV-16 oncoproteins increased the quantity of c-Jun binding to HIF-1α. Conclusions PI3K/Akt signaling pathway and c-Jun are involved in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and invitro angiogenesis. Moreover, HPV-16 oncoproteins promoted HIF-1α protein stability possibly through enhancing the interaction between c-Jun and HIF-1α, thus making a contribution to angiogenesis in NSCLC cells.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/virology
- Cell Line, Tumor
- Chromones/pharmacology
- Genes, jun/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit
- In Vitro Techniques
- Interleukin-8/metabolism
- Lung Neoplasms/blood supply
- Lung Neoplasms/metabolism
- Lung Neoplasms/virology
- MAP Kinase Signaling System/drug effects
- Morpholines/pharmacology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/virology
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Papillomavirus E7 Proteins/genetics
- Papillomavirus E7 Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Vascular Endothelial Growth Factor A
Collapse
Affiliation(s)
- Erying Zhang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Xiaowei Feng
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Fei Liu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Jie Liang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Zhanjiang, Guangdong, China
- * E-mail:
| |
Collapse
|
4
|
Schulze D, Plohmann P, Höbel S, Aigner A. Anti-tumor effects of fibroblast growth factor-binding protein (FGF-BP) knockdown in colon carcinoma. Mol Cancer 2011; 10:144. [PMID: 22111880 PMCID: PMC3281803 DOI: 10.1186/1476-4598-10-144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/23/2011] [Indexed: 01/18/2023] Open
Abstract
Background Fibroblast growth factors FGF-1 and FGF-2 are often upregulated in tumors, but tightly bound to heparan sulphate proteoglycans of the extracellular matrix (ECM). One mechanism of their bioactivation relies on the FGF-binding protein (FGF-BP) which, upon reversible binding to FGF-1 or -2, leads to their release from the ECM. FGF-BP increases tumorigenicity and is highly expressed in tumors like colon carcinoma. In this paper, we analyse cellular and molecular consequences of RNAi-mediated FGF-BP knockdown in colon carcinoma, and explore the therapeutic effects of the nanoparticle-mediated delivery of small interfering RNAs (siRNAs) for FGF-BP targeting. Results Employing stable RNAi cells, we establish a dose-dependence of cell proliferation on FGF-BP expression levels. Decreased proliferation is mirrored by alterations in cell cycle distribution and upregulation of p21, which is relevant for mediating FGF-BP effects. While inhibition of proliferation is mainly associated with reduced Akt and increased GSK3β activation, antibody array-based analyses also reveal other alterations in MAPK signalling. Additionally, we demonstrate induction of apoptosis, mediated through caspase-3/7 activation, and alterations in redox status upon FGF-BP knockdown. These effects are based on the upregulation of Bad, Bax and HIF-1α, and the downregulation of catalase. In a therapeutic FGF-BP knockdown approach based on RNAi, we employ polymer-based nanoparticles for the in vivo delivery of siRNAs into established wildtype colon carcinoma xenografts. We show that the systemic treatment of mice leads to the inhibition of tumor growth based on FGF-BP knockdown. Conclusions FGF-BP is integrated in a complex network of cytoprotective effects, and represents a promising therapeutic target for RNAi-based knockdown approaches.
Collapse
Affiliation(s)
- Daniel Schulze
- Institute of Pharmacology, Faculty of Medicine, Philipps-University Marburg, Germany
| | | | | | | |
Collapse
|
5
|
Li G, He L, Zhang E, Shi J, Zhang Q, Le AD, Zhou K, Tang X. Overexpression of human papillomavirus (HPV) type 16 oncoproteins promotes angiogenesis via enhancing HIF-1α and VEGF expression in non-small cell lung cancer cells. Cancer Lett 2011; 311:160-70. [PMID: 21868151 DOI: 10.1016/j.canlet.2011.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
Abstract
HPV-16 infection may play an important role in the development of non-small cell lung cancer (NSCLC) among never-smokers. Due to the critical role of angiogenesis in NSCLC development, we describe here the effect of HPV-16 oncoproteins on angiogenesis in NSCLC and the underlying mechanisms. We found that overexpression of HPV-16 E6 and E7 oncoproteins in NSCLC cells significantly promoted angiogenesis both in vitro and in vivo, and correspondingly, an enhanced expression of HIF-1α and VEGF, important pro-angiogenic factors in tumor angiogenesis. Meanwhile, overexpression of HPV-16 oncoproteins also led to HIF-1α-dependent increases in the secretion of several other pro-angiogenic factors, including IL-8. Our findings suggest that HPV-16 oncoproteins contribute to the development of NSCLC possibly by promoting HIF-1α/VEGF-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Gang Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Stromal issues in cervical cancer: a review of the role and function of basement membrane, stroma, immune response and angiogenesis in cervical cancer development. Eur J Cancer Prev 2010; 19:204-15. [PMID: 20101182 DOI: 10.1097/cej.0b013e32833720de] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The carcinogenesis of cervical carcinoma implies an intricate interplay of neoplastic, human papillomavirus infected epithelial cells and stromal tissue, in which different factors have distinct but interacting influence. Persistent infection with an oncogenic human papillomavirus type may lead to epithelial dysplasia with progressive severity. To access the adjacent stromal tissue, tumour cells have to breach the basement membrane. The stroma partly controls tumour growth, invasion and angiogenesis. Last but not least there is considerable influence of the immune response. In this review we describe the importance of various stromal factors in carcinogenesis of cervical cancer.
Collapse
|
7
|
McLaughlin-Drubin ME, Münger K. Oncogenic activities of human papillomaviruses. Virus Res 2009; 143:195-208. [PMID: 19540281 DOI: 10.1016/j.virusres.2009.06.008] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/26/2009] [Accepted: 06/02/2009] [Indexed: 12/16/2022]
Abstract
Infectious etiologies for certain human cancers have long been suggested by epidemiological studies and studies with experimental animals. Important support for this concept came from the discovery by Harald zur Hausen's group that human cervical carcinoma almost universally contains certain "high-risk" human papillomavirus (HPV) types. Over the years, much has been learned about the carcinogenic activities of high-risk HPVs. These studies have revealed that two viral proteins, E6 and E7, that are consistently expressed in HPV-associated carcinomas, are necessary for induction and maintenance of the transformed phenotype. Hence, HPV-associated tumors are unique amongst human solid tumors in that they are universally caused by exposure to the same, molecularly defined oncogenic agents, and the molecular signal transduction pathways subverted by these viral transforming agents are frequently disrupted in other, non-virus-associated human cancers.
Collapse
Affiliation(s)
- Margaret E McLaughlin-Drubin
- Infectious Diseases Division, Channing Laboratories, 181 Longwood Avenue, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
8
|
Tang X, Zhang Q, Nishitani J, Brown J, Shi S, Le AD. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res 2007; 13:2568-76. [PMID: 17473185 DOI: 10.1158/1078-0432.ccr-06-2704] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV)-16 oncoproteins, E6 and E7, are associated with enhanced tumor angiogenesis in human cervical cancers. The purpose of this study was (a) to investigate whether expression of HPV-16 E6 and E7 oncoproteins induces hypoxia-inducible factor 1 alpha (HIF-1 alpha) and vascular endothelial growth factor expression in cervical cancer cells; and (b) to assess the effect of resveratrol on 16 E6- and E7-induced HIF-1 alpha and VEGF gene expression. EXPERIMENTAL DESIGN Human cervical cancer cell lines C-33A and HeLa were transiently cotransfected with pSG5-HPV-16 E6 or 16 E7 constructs along with HIF-1 alpha small interfering RNA (siRNA) or nonspecific siRNA. The expression of HIF-1 alpha/VEGF was measured using real-time PCR, Western blot analysis, or ELISA. The in vitro angiogenic activity induced by 16 E6- and E7-transfected cells was examined. The effect of resveratrol on oncoprotein-induced HIF-1 alpha/VEGF expression and in vitro angiogenesis was investigated. RESULTS HPV-16 E6- and E7-transfected cervical cancer cells express increased HIF-1 alpha protein and VEGF expression. These stimulatory effects were abrogated by cotransfection with either HIF-1 alpha siRNA or treatment with resveratrol. Blocking extracellular signal-regulated kinase 1/2 (ERK 1/2) and phosphoinositide-3-kinase by PD98059 and LY294002, respectively, abolished 16 E6- and E7-induced HIF-1 alpha and VEGF expression. Functionally, we showed that HPV-16 E6- and E7-transfected cervical cancer cells stimulated in vitro capillary or tubule formation, and these angiogenic effects could be abolished either by cotransfection with HIF-1 alpha siRNA or by treatment with resveratrol. CONCLUSION HPV-16 oncoproteins contribute to enhanced angiogenesis in cervical cancer cells via HIF-1 alpha-dependent VEGF expression. Resveratrol suppresses 16 E6- and E7-induced HIF-1 alpha-mediated angiogenic activity and, thus, is a promising chemotherapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Xudong Tang
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kawakami A, Hirayama K, Kawakami F, Kawakami H, Fujihara M, Ohtsuki K. Purification and biochemical characterization of a fibroblast growth factor-binding protein (FGF-BP) from the lactoferrin fraction of bovine milk. Biochim Biophys Acta Gen Subj 2006; 1760:421-31. [PMID: 16412577 DOI: 10.1016/j.bbagen.2005.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/31/2005] [Accepted: 11/15/2005] [Indexed: 02/07/2023]
Abstract
By means of gel filtration on a TSK-gel HPLC column in the presence of 8 M urea, a 37-kDa polypeptide (p37) was completely separated from lactoferrin (LF) in the heparin HII fraction of the partially purified LF fraction prepared from bovine milk. Purified p37 was identified as a fibroblast growth factor-binding protein (FGF-BP), since its N-terminal 14 amino acid residues (KKEGRNRRGSKASA) were 100% identical to the corresponding sequence of bovine FGF-BP. It was found, in vitro, that (i) p37 had a higher binding affinity with bFGF than bLF; (ii) p37 functioned as a phosphate acceptor for at least three protein kinases (PKA, CK1 and CK2); (iii) bLF stimulated about 3-fold the PKA-mediated phosphorylation of p37, but suppressed its phosphorylation by CK1; and (iv) galloyl pedunculagin was an effective inhibitor for the phosphorylation of p37 by PKA and CK1. Furthermore, the physiological correlation between p37 and bLF may be regulated through specific phosphorylation of p37 by PKA, since p37 fully phosphorylated by PKA did not bind to bLF in vitro. The sulfatide-induced conformational changes in p37 enabled the phosphorylation of p37 by CK1 and also reduced its ability to bind with bLF in vitro. From these results presented here, it is concluded that (i) p37 (FGF-BP) may be tightly associated with bLF in bovine milk; and (ii) the physiological correlation between p37 and bLF may be regulated by the PKA-mediated full phosphorylation of p37 or by the direct binding of sulfatide to p37 in vivo.
Collapse
Affiliation(s)
- Akio Kawakami
- Laboratory of Genetical Biochemistry and Signal Biology, Graduate School of Medical Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara 228-8555, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abuharbeid S, Czubayko F, Aigner A. The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 2005; 38:1463-8. [PMID: 16324873 DOI: 10.1016/j.biocel.2005.10.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 10/21/2005] [Accepted: 10/26/2005] [Indexed: 12/25/2022]
Abstract
Fibroblast growth factors (FGFs) are important regulators of cell migration, proliferation and differentiation, e.g., during embryogenesis and wound healing, and under several pathological conditions including tumor growth and tumor angiogenesis. Since heparin-binding FGFs are tightly bound to heparansulfate proteoglycans, and therefore, trapped in the extracellular matrix, their release through the action of an FGF-binding protein (FGF-BP) is one of the critical steps in FGF bioactivation. FGF-BP expression is highly tissue specific and strictly regulated through different promoter elements. Besides its role in embryogenesis and wound healing, FGF-BP is upregulated in several tumors and it is associated especially with early stages of tumor formation, where angiogenesis plays a critical role. Concomitantly, in several mouse tumor models, targeting of FGF-BP by ribozymes or RNA interference (RNAi) abolishes or reduces tumor growth and tumor angiogenesis. This indicates that FGF-BP can be rate-limiting for tumor growth and serves as an angiogenic switch molecule, and that it represents an increasingly promising target molecule in anti-tumor therapy.
Collapse
Affiliation(s)
- Shaker Abuharbeid
- Department of Pharmacology and Toxicology, Philipps-University School of Medicine, Marburg, Germany
| | | | | |
Collapse
|
11
|
Kurtz A, Aigner A, Cabal-Manzano RH, Butler RE, Hood DR, Sessions RB, Czubayko F, Wellstein A. Differential regulation of a fibroblast growth factor-binding protein during skin carcinogenesis and wound healing. Neoplasia 2005; 6:595-602. [PMID: 15548369 PMCID: PMC1531664 DOI: 10.1593/neo.04214] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The initiation of premalignant lesions is associated with subtle cellular and gene expression changes. Here we describe a severe combined immunodeficiency mouse xenograft model with human adult skin and compare chemical carcinogenesis and wound healing. We focus on a secreted binding protein for fibroblast growth factors (FGF-BP) that enhances the activity of locally stored FGFs and is expressed at high levels in human epithelial cancers. Carcinogen treatment of murine skin induced papilloma within 6 weeks, whereas the human skin grafts displayed no obvious macroscopic alterations. Microscopic studies of the human skin, however, showed p53-positive keratinocytes in the epidermis, increased angiogenesis in the dermis of the treated skin, enhanced proliferation of keratinocytes in the basal layer, and an increase of FGF-BP protein and mRNA expression. In contrast, after surgical wounding of human skin grafts or of mouse skin, FGF-BP expression was upregulated within a few hours and returned to control levels after 2 days with wound closure. Enhanced motility of cultured keratinocytes and dermal fibroblasts by FGF-BP supports a role in wound healing. We conclude that adult human skin xenografts can be used to identify early molecular events during malignant transformation as well as transient changes during wound healing.
Collapse
Affiliation(s)
- Andreas Kurtz
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Achim Aigner
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Rafael H Cabal-Manzano
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Robert E Butler
- Lombardi Cancer Center, Department of Otolaryngology/Head and Neck Surgery, Georgetown University, Washington, DC 20057, USA
| | - Dozier R Hood
- Lombardi Cancer Center, Department of Otolaryngology/Head and Neck Surgery, Georgetown University, Washington, DC 20057, USA
| | - Roy B Sessions
- Lombardi Cancer Center, Department of Otolaryngology/Head and Neck Surgery, Georgetown University, Washington, DC 20057, USA
| | - Frank Czubayko
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - Anton Wellstein
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
12
|
Cinatl J, Vogel JU, Kotchetkov R, Wilhelm Doerr H. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev 2004; 28:59-77. [PMID: 14975530 DOI: 10.1016/j.femsre.2003.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 07/29/2003] [Accepted: 07/31/2003] [Indexed: 01/06/2023] Open
Abstract
A high frequency of human cytomegalovirus (HCMV) genome and antigens in tumor samples of patients with different malignancies is now well documented, although the causative role for HCMV in the development of the neoplasias remains to be established. HCMV infection can modulate multiple cellular regulatory and signalling pathways in a manner similar to that of oncoproteins of small DNA tumor viruses such as human papilloma virus or adenoviruses. However, in contrast to these DNA tumor viruses, HCMV infection fails to transform susceptible normal human cells. There is now growing evidence that tumor cells with disrupted regulatory and signalling pathways enable HCMV to modulate their properties including stimulation of cell proliferation, survival, invasion, production of angiogenic factors, and immunogenic properties. In contrast to previously suggested "hit and run" transformation we suggest that persistence in tumor cells is essential for HCMV to fully express its oncomodulatory effects. These effects are observed particularly in persistent HCMV infection and are mediated mainly by activity of HCMV regulatory proteins. In persistently HCMV-infected tumor cell lines - a selection of novel, slowly growing virus variants with changes in coding sequences for virus regulatory proteins takes place. As a result, oncomodulatory effects of HCMV infection may lead to a shift to more malignant phenotype of tumor cells contributing to tumor progression.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Zentrum der Hygiene, Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
13
|
Aigner A, Renneberg H, Bojunga J, Apel J, Nelson PS, Czubayko F. Ribozyme-targeting of a secreted FGF-binding protein (FGF-BP) inhibits proliferation of prostate cancer cells in vitro and in vivo. Oncogene 2002; 21:5733-42. [PMID: 12173043 DOI: 10.1038/sj.onc.1205560] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2001] [Revised: 03/28/2002] [Accepted: 04/04/2002] [Indexed: 12/19/2022]
Abstract
Prostate cancer is one of the most common malignant tumors with increasing incidence rates in the aging male. Since locally advanced or metastatic prostate tumors are essentially incurable, identification of new target molecules and treatment strategies is of critical importance. Fibroblast growth factor-2 (FGF-2) acts as potent mitogen which is upregulated in prostate cancers modulating cancer cell proliferation and development of an invasive phenotype. Normally it is tightly bound to the extracellular matrix that quenches its biological activity. The FGF-binding proteins (FGF-BP, HBp17) is a secreted protein which is able to mobilize and activate FGF-2 from the extracellular matrix. Here we show that FGF-BP is highly expressed in prostate tumor cells. To study the functional role of FGF-BP, we use a ribozyme-targeting approach to selectively deplete FGF-BP in prostate cancer cells achieving a more than 50% reduction of FGF-BP mRNA and protein levels in two mass-transfected cell lines. FGF-BP depletion reduces proliferation of the cells in vitro without changes in cell cycle distribution or apoptosis. Using cDNA microarrays, Northern blotting and RT-PCR, we show a complex pattern of changes in the gene expression profiles upon FGF-BP depletion. Most strikingly, ribozyme-mediated reduction of FGF-BP levels completely abolishes the ability of the highly metastatic PC-3 prostate carcinoma cells to grow tumors in an athymic nude mouse in vivo model which is far beyond the effects of FGF-BP ribozyme targeting observed previously in cells from other tumors in the same model. Taken together, our study identifies FGF-BP as a potential rate-limiting factor for prostate cancer growth and, due to its restricted expression pattern in adults, a potentially attractive target for prostate cancer therapy.
Collapse
Affiliation(s)
- Achim Aigner
- Department of Pharmacology and Toxicology, Philipps-University School of Medicine, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|