1
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
2
|
Juárez-Reyes A, Avelar-Rivas JA, Hernandez-Valdes JA, Hua B, Campos SE, González J, González A, Springer M, Mancera E, DeLuna A. Systematic profiling of subtelomeric silencing factors in budding yeast. G3 (BETHESDA, MD.) 2023; 13:jkad153. [PMID: 37431950 PMCID: PMC10542202 DOI: 10.1093/g3journal/jkad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Subtelomeric gene silencing is the negative transcriptional regulation of genes located close to telomeres. This phenomenon occurs in a variety of eukaryotes with salient physiological implications, such as cell adherence, virulence, immune-system escape, and ageing. The process has been widely studied in the budding yeast Saccharomyces cerevisiae, where genes involved in this process have been identified mostly on a gene-by-gene basis. Here, we introduce a quantitative approach to study gene silencing, that couples the classical URA3 reporter with GFP monitoring, amenable to high-throughput flow cytometry analysis. This dual silencing reporter was integrated into several subtelomeric loci in the genome, where it showed a gradual range of silencing effects. By crossing strains with this dual reporter at the COS12 and YFR057W subtelomeric query loci with gene-deletion mutants, we carried out a large-scale forward screen for potential silencing factors. The approach was replicable and allowed accurate detection of expression changes. Results of our comprehensive screen suggest that the main players influencing subtelomeric silencing were previously known, but additional potential factors underlying chromatin conformation are involved. We validate and report the novel silencing factor LGE1, a protein with unknown molecular function required for histone H2B ubiquitination. Our strategy can be readily combined with other reporters and gene perturbation collections, making it a versatile tool to study gene silencing at a genome-wide scale.
Collapse
Affiliation(s)
- Alejandro Juárez-Reyes
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - J Abraham Avelar-Rivas
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Jhonatan A Hernandez-Valdes
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
- Nouryon Chemicals Research Centre, Expert Capability Center Deventer, 7418AJ Deventer, Netherlands
| | - Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sergio E Campos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - James González
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Alicia González
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenio Mancera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Lister-Shimauchi EH, McCarthy B, Lippincott M, Ahmed S. Genetic and Epigenetic Inheritance at Telomeres. EPIGENOMES 2022; 6:9. [PMID: 35323213 PMCID: PMC8947350 DOI: 10.3390/epigenomes6010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Transgenerational inheritance can occur at telomeres in distinct contexts. Deficiency for telomerase or telomere-binding proteins in germ cells can result in shortened or lengthened chromosome termini that are transmitted to progeny. In human families, altered telomere lengths can result in stem cell dysfunction or tumor development. Genetic inheritance of altered telomeres as well as mutations that alter telomeres can result in progressive telomere length changes over multiple generations. Telomeres of yeast can modulate the epigenetic state of subtelomeric genes in a manner that is mitotically heritable, and the effects of telomeres on subtelomeric gene expression may be relevant to senescence or other human adult-onset disorders. Recently, two novel epigenetic states were shown to occur at C. elegans telomeres, where very low or high levels of telomeric protein foci can be inherited for multiple generations through a process that is regulated by histone methylation.Together, these observations illustrate that information relevant to telomere biology can be inherited via genetic and epigenetic mechanisms, although the broad impact of epigenetic inheritance to human biology remains unclear.
Collapse
Affiliation(s)
- Evan H. Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Benjamin McCarthy
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michael Lippincott
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
4
|
Lee KH, Kim DY, Kim W. Regulation of Gene Expression by Telomere Position Effect. Int J Mol Sci 2021; 22:ijms222312807. [PMID: 34884608 PMCID: PMC8657463 DOI: 10.3390/ijms222312807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Many diseases that involve malignant tumors in the elderly affect the quality of human life; therefore, the relationship between aging and pathogenesis in geriatric diseases must be under-stood to develop appropriate treatments for these diseases. Recent reports have shown that epigenetic regulation caused by changes in the local chromatin structure plays an essential role in aging. This review provides an overview of the roles of telomere shortening on genomic structural changes during an age-dependent shift in gene expression. Telomere shortening is one of the most prominent events that is involved in cellular aging and it affects global gene expression through genome rearrangement. This review provides novel insights into the roles of telomere shortening in disease-affected cells during pathogenesis and suggests novel therapeutic approaches.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-Y.K.); (W.K.)
| | - Wanil Kim
- Department of Biochemistry, Department of Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (D.-Y.K.); (W.K.)
| |
Collapse
|
5
|
Apte MS, Masuda H, Wheeler DL, Cooper JP. RNAi and Ino80 complex control rate limiting translocation step that moves rDNA to eroding telomeres. Nucleic Acids Res 2021; 49:8161-8176. [PMID: 34244792 PMCID: PMC8373062 DOI: 10.1093/nar/gkab586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
The discovery of HAATIrDNA, a telomerase-negative survival mode in which canonical telomeres are replaced with ribosomal DNA (rDNA) repeats that acquire chromosome end-protection capability, raised crucial questions as to how rDNA tracts 'jump' to eroding chromosome ends. Here, we show that HAATIrDNA formation is initiated and limited by a single translocation that juxtaposes rDNA from Chromosome (Chr) III onto subtelomeric elements (STE) on Chr I or II; this rare reaction requires RNAi and the Ino80 nucleosome remodeling complex (Ino80C), thus defining an unforeseen relationship between these two machineries. The unique STE-rDNA junction created by this initial translocation is efficiently copied to the remaining STE chromosome ends, independently of RNAi or Ino80C. Intriguingly, both RNAi and Ino80C machineries contain a component that plays dual roles in HAATI subtype choice. Dcr1 of the RNAi pathway and Iec1 of Ino80C both promote HAATIrDNA formation as part of their respective canonical machineries, but both also inhibit formation of the exceedingly rare HAATISTE (where STE sequences mobilize throughout the genome and assume chromosome end protection capacity) in non-canonical, pathway-independent manners. This work provides a glimpse into a previously unrecognized crosstalk between RNAi and Ino80C in controlling unusual translocation reactions that establish telomere-free linear chromosome ends.
Collapse
Affiliation(s)
- Manasi S Apte
- Laboratory of Biochemistry and Molecular Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Hirohisa Masuda
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Lee Wheeler
- Laboratory of Biochemistry and Molecular Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Lister-Shimauchi EH, Dinh M, Maddox P, Ahmed S. Gametes deficient for Pot1 telomere binding proteins alter levels of telomeric foci for multiple generations. Commun Biol 2021; 4:158. [PMID: 33542458 PMCID: PMC7862594 DOI: 10.1038/s42003-020-01624-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Deficiency for telomerase results in transgenerational shortening of telomeres. However, telomeres have no known role in transgenerational epigenetic inheritance. C. elegans Protection Of Telomeres 1 (Pot1) proteins form foci at the telomeres of germ cells that disappear at fertilization and gradually accumulate during development. We find that gametes from mutants deficient for Pot1 proteins alter levels of telomeric foci for multiple generations. Gametes from pot-2 mutants give rise to progeny with abundant POT-1::mCherry and mNeonGreen::POT-2 foci throughout development, which persists for six generations. In contrast, gametes from pot-1 mutants or pot-1; pot-2 double mutants induce diminished Pot1 foci for several generations. Deficiency for MET-2, SET-25, or SET-32 methyltransferases, which promote heterochromatin formation, results in gametes that induce diminished Pot1 foci for several generations. We propose that C. elegans POT-1 may interact with H3K9 methyltransferases during pot-2 mutant gametogenesis to induce a persistent form of transgenerational epigenetic inheritance that causes constitutively high levels of heterochromatic Pot1 foci.
Collapse
Affiliation(s)
- Evan H Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Michael Dinh
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Lee JW, Ong EBB. Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Front Cell Dev Biol 2021; 8:619126. [PMID: 33511130 PMCID: PMC7835410 DOI: 10.3389/fcell.2020.619126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
8
|
Marr LT, Ocampo J, Clark DJ, Hayes JJ. Global histone protein surface accessibility in yeast indicates a uniformly loosely packed genome with canonical nucleosomes. Epigenetics Chromatin 2021; 14:5. [PMID: 33430969 PMCID: PMC7802155 DOI: 10.1186/s13072-020-00381-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Background The vast majority of methods available to characterize genome-wide chromatin structure exploit differences in DNA accessibility to nucleases or chemical crosslinking. We developed a novel method to gauge genome-wide accessibility of histone protein surfaces within nucleosomes by assessing reactivity of engineered cysteine residues with a thiol-specific reagent, biotin-maleimide (BM). Results Yeast nuclei were obtained from cells expressing the histone mutant H2B S116C, in which a cysteine resides near the center of the external flat protein surface of the nucleosome. BM modification revealed that nucleosomes are generally equivalently accessible throughout the S. cerevisiae genome, including heterochromatic regions, suggesting limited, higher-order chromatin structures in which this surface is obstructed by tight nucleosome packing. However, we find that nucleosomes within 500 bp of transcription start sites exhibit the greatest range of accessibility, which correlates with the density of chromatin remodelers. Interestingly, accessibility is not well correlated with RNA polymerase density and thus the level of gene expression. We also investigated the accessibility of cysteine mutations designed to detect exposure of histone surfaces internal to the nucleosome thought to be accessible in actively transcribed genes: H3 102, is at the H2A–H2B dimer/H3–H4 tetramer interface, and H3 A110C, resides at the H3–H3 interface. However, in contrast to the external surface site, we find that neither of these internal sites were found to be appreciably exposed. Conclusions Overall, our finding that nucleosomes surfaces within S. cerevisiae chromatin are equivalently accessible genome-wide is consistent with a globally uncompacted chromatin structure lacking substantial higher-order organization. However, we find modest differences in accessibility that correlate with chromatin remodelers but not transcription, suggesting chromatin poised for transcription is more accessible than actively transcribed or intergenic regions. In contrast, we find that two internal sites remain inaccessible, suggesting that such non-canonical nucleosome species generated during transcription are rapidly and efficiently converted to canonical nucleosome structure and thus not widely present in native chromatin.
Collapse
Affiliation(s)
- Luke T Marr
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Liu Q, Zhu X, Lindström M, Shi Y, Zheng J, Hao X, Gustafsson CM, Liu B. Yeast mismatch repair components are required for stable inheritance of gene silencing. PLoS Genet 2020; 16:e1008798. [PMID: 32469861 PMCID: PMC7286534 DOI: 10.1371/journal.pgen.1008798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/10/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Alterations in epigenetic silencing have been associated with ageing and tumour formation. Although substantial efforts have been made towards understanding the mechanisms of gene silencing, novel regulators in this process remain to be identified. To systematically search for components governing epigenetic silencing, we developed a genome-wide silencing screen for yeast (Saccharomyces cerevisiae) silent mating type locus HMR. Unexpectedly, the screen identified the mismatch repair (MMR) components Pms1, Mlh1, and Msh2 as being required for silencing at this locus. We further found that the identified genes were also required for proper silencing in telomeres. More intriguingly, the MMR mutants caused a redistribution of Sir2 deacetylase, from silent mating type loci and telomeres to rDNA regions. As a consequence, acetylation levels at histone positions H3K14, H3K56, and H4K16 were increased at silent mating type loci and telomeres but were decreased in rDNA regions. Moreover, knockdown of MMR components in human HEK293T cells increased subtelomeric DUX4 gene expression. Our work reveals that MMR components are required for stable inheritance of gene silencing patterns and establishes a link between the MMR machinery and the control of epigenetic silencing.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | - Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
- * E-mail: (XZ); (BL)
| | - Michelle Lindström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | - Yonghong Shi
- Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
| | - Ju Zheng
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | | | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- Center for Large-scale cell-based screening, Faculty of Science, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- * E-mail: (XZ); (BL)
| |
Collapse
|
10
|
Lodens S, Roelants SLKW, Luyten G, Geys R, Coussement P, De Maeseneire SL, Soetaert W. Unraveling the regulation of sophorolipid biosynthesis in Starmerella bombicola. FEMS Yeast Res 2020; 20:5824630. [DOI: 10.1093/femsyr/foaa021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTStarmerella bombicola very efficiently produces the secondary metabolites sophorolipids (SLs). Their biosynthesis is not-growth associated and highly upregulated in the stationary phase. Despite high industrial and academic interest, the underlying regulation of SL biosynthesis remains unknown. In this paper, potential regulation of SL biosynthesis through the telomere positioning effect (TPE) was investigated, as the SL gene cluster is located adjacent to a telomere. An additional copy of this gene cluster was introduced elsewhere in the genome to investigate if this results in a decoy of regulation. Indeed, for the new strain, the onset of SL production was shifted to the exponential phase. This result was confirmed by RT-qPCR analysis. The TPE effect was further investigated by developing and applying a suitable reporter system for this non-conventional yeast, enabling non-biased comparison of gene expression between the subtelomeric CYP52M1- and the URA3 locus. This was done with a constitutive endogenous promotor (pGAPD) and one of the endogenous promotors of the SL biosynthetic gene cluster (pCYP52M1). A clear positioning effect was observed for both promotors with significantly higher GFP expression levels at the URA3 locus. No clear GFP upregulation was observed in the stationary phase for any of the new strains.
Collapse
Affiliation(s)
- Sofie Lodens
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Goedele Luyten
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Coussement
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Abstract
Stress exposure can leave long-term footprints within the organism, like in telomeres (TLs), protective chromosome caps that shorten during cell replication and following exposure to stressors. Short TLs are considered to indicate lower fitness prospects, but why TLs shorten under stressful conditions is not understood. Glucocorticoid hormones (GCs) increase upon stress exposure and are thought to promote TL shortening by increasing oxidative damage. However, evidence that GCs are pro-oxidants and oxidative stress is causally linked to TL attrition is mixed . Based on new biochemical findings, we propose the metabolic telomere attrition hypothesis: during times of substantially increased energy demands, TLs are shortened as part of the transition into an organismal 'emergency state', which prioritizes immediate survival functions over processes with longer-term benefits. TL attrition during energy shortages could serve multiple roles including amplified signalling of cellular energy debt to re-direct critical resources to immediately important processes. This new view of TL shortening as a strategy to resolve major energetic trade-offs can improve our understanding of TL dynamics. We suggest that TLs are master regulators of cell homeostasis and propose future research avenues to understand the interactions between energy homeostasis, metabolic regulators and TL.
Collapse
Affiliation(s)
- Stefania Casagrande
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany
| | - Michaela Hau
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany.,2 Department of Biology, University of Konstanz , D-78457 Konstanz , Germany
| |
Collapse
|
12
|
Jørgensen SW, Liberti SE, Larsen NB, Lisby M, Mankouri HW, Hickson ID. Esc2 promotes telomere stability in response to DNA replication stress. Nucleic Acids Res 2019; 47:4597-4611. [PMID: 30838410 PMCID: PMC6511870 DOI: 10.1093/nar/gkz158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 01/27/2023] Open
Abstract
Telomeric regions of the genome are inherently difficult-to-replicate due to their propensity to generate DNA secondary structures and form nucleoprotein complexes that can impede DNA replication fork progression. Precisely how cells respond to DNA replication stalling within a telomere remains poorly characterized, largely due to the methodological difficulties in analysing defined stalling events in molecular detail. Here, we utilized a site-specific DNA replication barrier mediated by the ‘Tus/Ter’ system to define the consequences of DNA replication perturbation within a single telomeric locus. Through molecular genetic analysis of this defined fork-stalling event, coupled with the use of a genome-wide genetic screen, we identified an important role for the SUMO-like domain protein, Esc2, in limiting genome rearrangements at a telomere. Moreover, we showed that these rearrangements are driven by the combined action of the Mph1 helicase and the homologous recombination machinery. Our findings demonstrate that chromosomal context influences cellular responses to a stalled replication fork and reveal protective factors that are required at telomeric loci to limit DNA replication stress-induced chromosomal instability.
Collapse
Affiliation(s)
- Signe W Jørgensen
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Sascha E Liberti
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Nicolai B Larsen
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Michael Lisby
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Department of Biology, University of Copenhagen, Ole Maaløes Vej, 2200 Copenhagen N, Denmark
| | - Hocine W Mankouri
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| |
Collapse
|
13
|
Reis H, Schwebs M, Dietz S, Janzen CJ, Butter F. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes. Nucleic Acids Res 2019; 46:2820-2833. [PMID: 29385523 PMCID: PMC5888660 DOI: 10.1093/nar/gky028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/25/2018] [Indexed: 11/14/2022] Open
Abstract
During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation.
Collapse
Affiliation(s)
- Helena Reis
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Sabrina Dietz
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz 55128, Germany
| |
Collapse
|
14
|
Jamil MA, Sharma A, Nuesgen N, Pezeshkpoor B, Heimbach A, Pavlova A, Oldenburg J, El-Maarri O. F8 Inversions at Xq28 Causing Hemophilia A Are Associated With Specific Methylation Changes: Implication for Molecular Epigenetic Diagnosis. Front Genet 2019; 10:508. [PMID: 31191618 PMCID: PMC6548806 DOI: 10.3389/fgene.2019.00508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/09/2019] [Indexed: 12/27/2022] Open
Abstract
Diverse DNA structural variations (SVs) in human cancers and several other diseases are well documented. For genomic inversions in particular, the disease causing mechanism may not be clear, especially if the inversion border does not cross a coding sequence. Understanding about the molecular processes of these inverted genomic sequences, in a mainly epigenetic context, may provide additional information regarding sequence-specific regulation of gene expression in human diseases. Herein, we study one such inversion hotspot at Xq28, which leads to the disruption of F8 gene and results in hemophilia A phenotype. To determine the epigenetic consequence of this rearrangement, we evaluated DNA methylation levels of 12 CpG rich regions with the coverage of 550 kb by using bisulfite-pyrosequencing and next-generation sequencing (NGS)-based bisulfite re-sequencing enrichment assay. Our results show that this inversion prone area harbors widespread methylation changes at the studied regions. However, only 5/12 regions showed significant methylation changes, specifically in case of intron 1 inversion (two regions), intron 22 inversion (two regions) and one common region in both inversions. Interestingly, these aberrant methylated regions were found to be overlapping with the inversion proximities. In addition, two CpG sites reached 100% sensitivity and specificity to discriminate wild type from intron 22 and intron 1 inversion samples. While we found age to be an influencing factor on methylation levels at some regions, covariate analysis still confirms the differential methylation induced by inversion, regardless of age. The hemophilia A methylation inversion "HAMI" assay provides an advantage over conventional PCR-based methods, which may not detect novel rare genomic rearrangements. Taken together, we showed that genomic inversions in the F8 (Xq28) region are associated with detectable changes in methylation levels and can be used as an epigenetic diagnostic marker.
Collapse
Affiliation(s)
- Muhammad Ahmer Jamil
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Amit Sharma
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Nicole Nuesgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, School of Medicine, University of Bonn - University Hospital Bonn, Bonn, Germany
| | - Anne Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Juárez-Reyes A, Castaño I. Chromatin architecture and virulence-related gene expression in eukaryotic microbial pathogens. Curr Genet 2018; 65:435-443. [PMID: 30443783 DOI: 10.1007/s00294-018-0903-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022]
Abstract
A fundamental question in biology is to understand how appropriate transcriptional regulation and dense packaging of the genetic material within the eukaryotic nucleus are achieved. The exquisite gene expression control and other metabolic processes of DNA require a highly complex, multilayered, three-dimensional architecture of the chromatin and its specific compartmentalization within the nucleus. Some of these architectural and sub-nuclear positioning mechanisms have been extensively co-opted by eukaryotic pathogens to keep fine expression control and expansion of virulence-related gene families in Plasmodium falciparum, Trypanosoma brucei and Candida glabrata. For example non-linear interactions between distant cis-acting regions and the formation of chromatin loops are required for appropriate regulation of the expression of virulence-related multi-gene families encoding cell surface proteins. These gene families are located near the chromosome ends and tethered to the nuclear periphery. Consequently, only one or very few genes of the family are expressed at a time. These genes are involved in antigenic variation in parasites and the generation of subpopulations of cells with diverse antigenic proteins at the surface in some pathogenic fungi, making them highly efficient pathogens.
Collapse
Affiliation(s)
- Alejandro Juárez-Reyes
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, Mexico
| | - Irene Castaño
- División de Biología Molecular, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
16
|
Song S, Johnson FB. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres. Genes (Basel) 2018; 9:genes9040201. [PMID: 29642537 PMCID: PMC5924543 DOI: 10.3390/genes9040201] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres.
Collapse
Affiliation(s)
- Shufei Song
- Biochemistry and Molecular Biophysics Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Arras SDM, Chitty JL, Wizrah MSI, Erpf PE, Schulz BL, Tanurdzic M, Fraser JA. Sirtuins in the phylum Basidiomycota: A role in virulence in Cryptococcus neoformans. Sci Rep 2017; 7:46567. [PMID: 28429797 PMCID: PMC5399365 DOI: 10.1038/srep46567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Virulence of Cryptococcus neoformans is regulated by a range of transcription factors, and is also influenced by the acquisition of adaptive mutations during infection. Beyond the temporal regulation of virulence factor production by transcription factors and these permanent microevolutionary changes, heritable epigenetic modifications such as histone deacetylation may also play a role during infection. Here we describe the first comprehensive analysis of the sirtuin class of NAD+ dependent histone deacetylases in the phylum Basidiomycota, identifying five sirtuins encoded in the C. neoformans genome. Each sirtuin gene was deleted and a wide range of phenotypic tests performed to gain insight into the potential roles they play. Given the pleiotropic nature of sirtuins in other species, it was surprising that only two of the five deletion strains revealed mutant phenotypes in vitro. However, cryptic consequences of the loss of each sirtuin were identified through whole cell proteomics, and mouse infections revealed a role in virulence for SIR2, HST3 and HST4. The most intriguing phenotype was the repeated inability to complement mutant phenotypes through the reintroduction of the wild-type gene. These data support the model that regulation of sirtuin activity may be employed to enable a drastic alteration of the epigenetic landscape and virulence of C. neoformans.
Collapse
Affiliation(s)
- Samantha D M Arras
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jessica L Chitty
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maha S I Wizrah
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paige E Erpf
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, Queensland, Australia.,School of Chemistry &Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor IIIA. Nat Microbiol 2017; 2:17033. [PMID: 28288093 DOI: 10.1038/nmicrobiol.2017.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Telomere repeat-binding factors (TRFs) are essential components of the molecular machinery that regulates telomere function. TRFs are widely conserved across eukaryotes and bind duplex telomere repeats via a characteristic MYB-type domain. Here, we identified the telomere repeat-binding protein PfTRZ in the malaria parasite Plasmodium falciparum, a member of the Alveolate phylum for which TRFs have not been described so far. PfTRZ lacks an MYB domain and binds telomere repeats via a C2H2-type zinc finger domain instead. In vivo, PfTRZ binds with high specificity to the telomeric tract and to interstitial telomere repeats upstream of subtelomeric virulence genes. Conditional depletion experiments revealed that PfTRZ regulates telomere length homeostasis and is required for efficient cell cycle progression. Intriguingly, we found that PfTRZ also binds to and regulates the expression of 5S rDNA genes. Combined with detailed phylogenetic analyses, our findings identified PfTRZ as a remote functional homologue of the basic transcription factor TFIIIA, which acquired a new function in telomere maintenance early in the apicomplexan lineage. Our work sheds unexpected new light on the evolution of telomere repeat-binding proteins and paves the way for dissecting the presumably divergent mechanisms regulating telomere functionality in one of the most deadly human pathogens.
Collapse
|
19
|
Tokuda N, Sasai M. Heterogeneous Spatial Distribution of Transcriptional Activity in Budding Yeast Nuclei. Biophys J 2016; 112:491-504. [PMID: 28040197 PMCID: PMC5300786 DOI: 10.1016/j.bpj.2016.11.3201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023] Open
Abstract
Recent microscopic and simulation studies have shown that the genome structure fluctuates dynamically in the nuclei of budding yeast Saccharomyces cerevisiae. This genome-wide movement should lead to the fluctuations of individual genes in their territorial regions. This raises an intriguing question of whether the resulting distribution of genes is correlated to their transcriptional activity. An effective method for examining this correlation is to analyze how the spatial distribution of genes and their transcriptional activity are modified by mutation. In this study, we analyzed the modification observed in a budding yeast mutant in which genes necessary for anchoring telomeres to the nuclear envelope, yku70 and esc1, are silenced. Taddei et al. reported that 60 genes are clearly misregulated by this mutation, with 28 and 32 genes downregulated and upregulated, respectively. We calculated the probability density maps of the misregulated genes using a model of dynamical movement of the yeast genome in both wild-type (WT) and yku70 esc1 mutant and showed that the density of downregulated genes is larger near the nucleolus, whereas the density of upregulated genes is larger at the opposite side of the nucleus. By comparing these genes with those highly (top 200 of transcriptome) and lowly (bottom 200) expressed, we showed that the simulated distribution of 28 downregulated (12 out of 32 upregulated) genes has a distinctly larger overlap with the distribution of lowly (highly) expressed genes in the mutant than in the WT. The remaining 20 upregulated genes are localized near the nuclear envelope both in the WT and in the mutant. These results showed that the transcriptional level of genes is affected by their spatial distribution, thus highlighting the importance of the structural regulation in the yeast genome.
Collapse
Affiliation(s)
- Naoko Tokuda
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan; Department of Applied Physics, Nagoya University, Nagoya, Japan.
| |
Collapse
|
20
|
Behrouzi R, Lu C, Currie MA, Jih G, Iglesias N, Moazed D. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes. eLife 2016; 5. [PMID: 27835568 PMCID: PMC5106214 DOI: 10.7554/elife.17556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.
Collapse
Affiliation(s)
- Reza Behrouzi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Chenning Lu
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Mark A Currie
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Gloria Jih
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Nahid Iglesias
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
21
|
Wood AM, Laster K, Rice EL, Kosak ST. A beginning of the end: new insights into the functional organization of telomeres. Nucleus 2016; 6:172-8. [PMID: 25961132 PMCID: PMC4615733 DOI: 10.1080/19491034.2015.1048407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3′ overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.
Collapse
Affiliation(s)
- Ashley M Wood
- a Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University ; Chicago , IL , USA
| | | | | | | |
Collapse
|
22
|
Jacobi JL, Yang B, Li X, Menze AK, Laurentz SM, Janle EM, Ferruzzi MG, McCabe GP, Chapple C, Kirchmaier AL. Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin. PLoS One 2016; 11:e0149207. [PMID: 26882112 PMCID: PMC4755582 DOI: 10.1371/journal.pone.0149207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
The plant secondary metabolite and common food additive dihydrocoumarin (DHC) is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA), which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo.
Collapse
Affiliation(s)
- Jennifer L. Jacobi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Bo Yang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Xu Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Anna K. Menze
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, United States of America
| | - Sara M. Laurentz
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Elsa M. Janle
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, United States of America
| | - Mario G. Ferruzzi
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
| | - George P. McCabe
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Collapse
Affiliation(s)
- Hei-man Chow
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
24
|
Abstract
Silencing assays have proven to be powerful tools not only for understanding how epigenetic processes function and defining the structural components of silent chromatin, but also for a useful readout for characterizing the functions of proteins involved in chromatin biology that influence epigenetic processes directly or indirectly. This chapter describes a collection of assays for monitoring silencing in Saccharomyces cerevisiae, including qualitative and quantitative methods as well as protocols that provide either indirect or direct measurements of the transcriptional state of loci regulated by silent chromatin.
Collapse
|
25
|
Computel: computation of mean telomere length from whole-genome next-generation sequencing data. PLoS One 2015; 10:e0125201. [PMID: 25923330 PMCID: PMC4414351 DOI: 10.1371/journal.pone.0125201] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
Telomeres are the ends of eukaryotic chromosomes, consisting of consecutive short repeats that protect chromosome ends from degradation. Telomeres shorten with each cell division, leading to replicative cell senescence. Deregulation of telomere length homeostasis is associated with the development of various age-related diseases and cancers. A number of experimental techniques exist for telomere length measurement; however, until recently, the absence of tools for extracting telomere lengths from high-throughput sequencing data has significantly obscured the association of telomere length with molecular processes in normal and diseased conditions. We have developed Computel, a program in R for computing mean telomere length from whole-genome next-generation sequencing data. Computel is open source, and is freely available at https://github.com/lilit-nersisyan/computel. It utilizes a short-read alignment-based approach and integrates various popular tools for sequencing data analysis. We validated it with synthetic and experimental data, and compared its performance with the previously available software. The results have shown that Computel outperforms existing software in accuracy, independence of results from sequencing conditions, stability against inherent sequencing errors, and better ability to distinguish pure telomeric sequences from interstitial telomeric repeats. By providing a highly reliable methodology for determining telomere lengths from whole-genome sequencing data, Computel should help to elucidate the role of telomeres in cellular health and disease.
Collapse
|
26
|
Robin JD, Ludlow AT, Batten K, Magdinier F, Stadler G, Wagner KR, Shay JW, Wright WE. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev 2015; 28:2464-76. [PMID: 25403178 PMCID: PMC4233240 DOI: 10.1101/gad.251041.114] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While global chromatin conformation studies are emerging, very little is known about the chromatin conformation of human telomeres. Most studies have focused on the role of telomeres as a tumor suppressor mechanism. Here we describe how telomere length regulates gene expression long before telomeres become short enough to produce a DNA damage response (senescence). We directly mapped the interactions adjacent to specific telomere ends using a Hi-C (chromosome capture followed by high-throughput sequencing) technique modified to enrich for specific genomic regions. We demonstrate that chromosome looping brings the telomere close to genes up to 10 Mb away from the telomere when telomeres are long and that the same loci become separated when telomeres are short. Furthermore, expression array analysis reveals that many loci, including noncoding RNAs, may be regulated by telomere length. We report three genes (ISG15 [interferon-stimulated gene 15 kd], DSP [Desmoplakin], and C1S [complement component 1s subcomplement]) located at three different subtelomeric ends (1p, 6p, and 12p) whose expressions are altered with telomere length. Additionally, we confirmed by in situ analysis (3D-FISH [three-dimensional fluorescence in situ hybridization]) that chromosomal looping occurs between the loci of those genes and their respective telomere ends. We term this process TPE-OLD for "telomere position effect over long distances." Our results suggest a potential novel mechanism for how telomere shortening could contribute to aging and disease initiation/progression in human cells long before the induction of a critical DNA damage response.
Collapse
Affiliation(s)
- Jérôme D Robin
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Guido Stadler
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kathyrin R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; Department of Neurology, Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
27
|
Abstract
The primary purpose of telomeres is to protect chromosome ends from erosion during cell division cycles. In this perspective, Misteli discusses new insight gained from a study by Robin et al. in this issue of Genes & Development demonstrating a novel role for telomeres in gene silencing via formation of long-range chromatin interactions. The primary purpose of telomeres is to protect chromosome ends from erosion during cell division cycles. New observations suggest an additional function for telomeres, namely in gene silencing via formation of long-range chromatin interactions.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Uziel O, Yosef N, Sharan R, Ruppin E, Kupiec M, Kushnir M, Beery E, Cohen-Diker T, Nordenberg J, Lahav M. The effects of telomere shortening on cancer cells: a network model of proteomic and microRNA analysis. Genomics 2014; 105:5-16. [PMID: 25451739 DOI: 10.1016/j.ygeno.2014.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 10/08/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Previously, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slowed their migration, increased DNA damage and impaired DNA repair. The mechanism behind these effects is not fully characterized. Its clarification could facilitate novel therapeutics development and may obviate the time consuming process of telomere shortening achieved by telomerase inhibition. Here we aimed to decipher the microRNA and proteomic profiling of cancer cells with shortened telomeres and identify the key mediators in telomere shortening-induced damage to those cells. Of 870 identified proteins, 98 were differentially expressed in shortened-telomere cells. 47 microRNAs were differentially expressed in these cells; some are implicated in growth arrest or act as oncogene repressors. The obtained data was used for a network construction, which provided us with nodal candidates that may mediate the shortened-telomere dependent features. These proteins' expression was experimentally validated, supporting their potential central role in this system.
Collapse
Affiliation(s)
- O Uziel
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel.
| | - N Yosef
- School of Computer Science, Tel Aviv University, Israel
| | - R Sharan
- School of Computer Science, Tel Aviv University, Israel
| | - E Ruppin
- School of Computer Science, Tel Aviv University, Israel
| | - M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Israel
| | | | - E Beery
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - T Cohen-Diker
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - J Nordenberg
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - M Lahav
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
29
|
Cornish AJ, Markowetz F. SANTA: quantifying the functional content of molecular networks. PLoS Comput Biol 2014; 10:e1003808. [PMID: 25210953 PMCID: PMC4161294 DOI: 10.1371/journal.pcbi.1003808] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022] Open
Abstract
Linking networks of molecular interactions to cellular functions and phenotypes is a key goal in systems biology. Here, we adapt concepts of spatial statistics to assess the functional content of molecular networks. Based on the guilt-by-association principle, our approach (called SANTA) quantifies the strength of association between a gene set and a network, and functionally annotates molecular networks like other enrichment methods annotate lists of genes. As a general association measure, SANTA can (i) functionally annotate experimentally derived networks using a collection of curated gene sets and (ii) annotate experimentally derived gene sets using a collection of curated networks, as well as (iii) prioritize genes for follow-up analyses. We exemplify the efficacy of SANTA in several case studies using the S. cerevisiae genetic interaction network and genome-wide RNAi screens in cancer cell lines. Our theory, simulations, and applications show that SANTA provides a principled statistical way to quantify the association between molecular networks and cellular functions and phenotypes. SANTA is available from http://bioconductor.org/packages/release/bioc/html/SANTA.html.
Collapse
Affiliation(s)
- Alex J. Cornish
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| |
Collapse
|
30
|
Kaboli S, Yamakawa T, Sunada K, Takagaki T, Sasano Y, Sugiyama M, Kaneko Y, Harashima S. Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network. Nucleic Acids Res 2014; 42:9838-53. [PMID: 25104020 PMCID: PMC4150759 DOI: 10.1093/nar/gku576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.
Collapse
Affiliation(s)
- Saeed Kaboli
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Takuya Yamakawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Keisuke Sunada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tao Takagaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yu Sasano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Minetaka Sugiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshinobu Kaneko
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Satoshi Harashima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Telomere-mediated chromosomal truncation in Aspergillus oryzae. J Biosci Bioeng 2014; 119:43-6. [PMID: 25034635 DOI: 10.1016/j.jbiosc.2014.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/13/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
We truncated the short arm of chromosome 3 to delete the aflatoxin biosynthesis gene homolog cluster using telomeric repeats in Aspergillus oryzae. The predicted deletion was confirmed by Southern blot analyses. This telomere-mediated chromosomal truncation method enables the development of an artificial chromosome in A. oryzae.
Collapse
|
32
|
Ryu HY, Rhie BH, Ahn SH. Loss of the Set2 histone methyltransferase increases cellular lifespan in yeast cells. Biochem Biophys Res Commun 2014; 446:113-8. [DOI: 10.1016/j.bbrc.2014.02.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 11/29/2022]
|
33
|
Surace C, Berardinelli F, Masotti A, Roberti MC, Da Sacco L, D'Elia G, Sirleto P, Digilio MC, Cusmai R, Grotta S, Petrocchi S, Hachem ME, Pisaneschi E, Ciocca L, Russo S, Lepri FR, Sgura A, Angioni A. Telomere shortening and telomere position effect in mild ring 17 syndrome. Epigenetics Chromatin 2014; 7:1. [PMID: 24393457 PMCID: PMC3892072 DOI: 10.1186/1756-8935-7-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
Background Ring chromosome 17 syndrome is a rare disease that arises from the breakage and reunion of the short and long arms of chromosome 17. Usually this abnormality results in deletion of genetic material, which explains the clinical features of the syndrome. Moreover, similar phenotypic features have been observed in cases with complete or partial loss of the telomeric repeats and conservation of the euchromatic regions. We studied two different cases of ring 17 syndrome, firstly, to clarify, by analyzing gene expression analysis using real-time qPCR, the role of the telomere absence in relationship with the clinical symptoms, and secondly, to look for a new model of the mechanism of ring chromosome transmission in a rare case of familial mosaicism, through cytomolecular and quantitative fluorescence in-situ hybridization (Q-FISH) investigations. Results The results for the first case showed that the expression levels of genes selected, which were located close to the p and q ends of chromosome 17, were significantly downregulated in comparison with controls. Moreover, for the second case, we demonstrated that the telomeres were conserved, but were significantly shorter than those of age-matched controls; data from segregation analysis showed that the ring chromosome was transmitted only to the affected subjects of the family. Conclusions Subtelomeric gene regulation is responsible for the phenotypic aspects of ring 17 syndrome; telomere shortening influences the phenotypic spectrum of this disease and strongly contributes to the familial transmission of the mosaic ring. Together, these results provide new insights into the genotype-phenotype relationships in mild ring 17 syndrome.
Collapse
Affiliation(s)
- Cecilia Surace
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Andrea Masotti
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Roberti
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Letizia Da Sacco
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Gemma D'Elia
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Pietro Sirleto
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Raffaella Cusmai
- Neurology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Simona Grotta
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Stefano Petrocchi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - May El Hachem
- Dermatology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Laura Ciocca
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Serena Russo
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Francesca Romana Lepri
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Adriano Angioni
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
34
|
Varunan SM, Tripathi J, Bhattacharyya S, Suhane T, Bhattacharyya MK. Plasmodium falciparum origin recognition complex subunit 1 (PfOrc1) functionally complements Δsir3 mutant of Saccharomyces cerevisiae. Mol Biochem Parasitol 2013; 191:28-35. [PMID: 24018145 DOI: 10.1016/j.molbiopara.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
Telomere position effect efficiently controls silencing of subtelomeric var genes, which are involved in antigenic variation in human malaria parasite Plasmodium falciparum. Although, PfOrc1 has been found to be associated with PfSir2 in the silencing complex, its function in telomere silencing remained uncertain especially due to an apparent lack of BAH domain at its amino-terminal region. Here we report that PfOrc1 possesses a Sir3/Orc1 like silencing activity. Using yeast as a surrogate organism we have shown that PfOrc1 could complement yeast Sir3 activity during telomere silencing in a Sir2 dependent manner. By constructing a series of chimera between PfOrc1 and ScSir3 we have observed that the amino-terminal domain of PfOrc1 harbors silencing activity similar to that present in the amino-terminal domain of ScSir3. We further generated several amino-terminal deletion mutants to dissect out such silencing activity and found that the first seventy amino acids at the amino-terminal domain are dispensable for its activity. Thus our results strongly supports that PfOrc1 may have a role in telomere silencing in this parasite. This finding will help to decipher the mechanism of telomere position effect in P. falciparum.
Collapse
Affiliation(s)
- Shalu M Varunan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
35
|
Abstract
Cre/LoxP has broad utility for studying the function, development, and oncogenic transformation of pancreatic cells in mice. Here we provide an overview of the Cre driver lines that are available for such studies. We discuss how variegated expression, transgene silencing, and recombination in undesired cell types have conspired to limit the performance of these lines, sometimes leading to serious experimental concerns. We also discuss preferred strategies for achieving high-fidelity driver lines and remind investigators of the continuing need for caution when interpreting results obtained from any Cre/LoxP-based experiment performed in mice.
Collapse
Affiliation(s)
- Mark A Magnuson
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
36
|
Liu TB, Wang Y, Baker GM, Fahmy H, Jiang L, Xue C. The glucose sensor-like protein Hxs1 is a high-affinity glucose transporter and required for virulence in Cryptococcus neoformans. PLoS One 2013; 8:e64239. [PMID: 23691177 PMCID: PMC3653957 DOI: 10.1371/journal.pone.0064239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/08/2013] [Indexed: 01/14/2023] Open
Abstract
Cryptococcus is a major fungal pathogen that frequently causes systemic infection in patients with compromised immunity. Glucose, an important signal molecule and the preferred carbon source for Cryptococcus, plays a critical role in fungal development and virulence. Cryptococcus contains more than 50 genes sharing high sequence homology with hexose transporters in Saccharomyces cerevisiae. However, there is no report on their function in glucose sensing or transport. In this study, we investigated two hexose transporter-like proteins (Hxs1 and Hxs2) in Cryptococcus that share the highest sequence identity with the glucose sensors Snf3 and Rgt2 in S. cerevisiae. The expression of HXS1 is repressed by high glucose, while the HXS2 expression is not regulated by glucose. Functional studies showed that Hxs1 is required for fungal resistance to oxidative stress and fungal virulence. The hxs1Δ mutant exhibited a significant reduction in glucose uptake activity, indicating that Hxs1 is required for glucose uptake. Heterologous expression of Cryptococcus HXS1 rendered the S. cerevisiae mutant lacking all 20 hexose transporters a high glucose uptake activity, demonstrating that Hxs1 functions as a glucose transporter. Heterologous expression of HXS1 in the snf3Δ rgt2Δ double mutant did not complement its growth in YPD medium containing the respiration inhibitor antimycin A, suggesting that Hxs1 may not function as a glucose sensor. Taken together, our results demonstrate that Hxs1 is a high-affinity glucose transporter and required for fungal virulence.
Collapse
Affiliation(s)
- Tong-Bao Liu
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Yina Wang
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- Tianjing Medical University, Tianjing, China
| | - Gregory M. Baker
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Hany Fahmy
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chaoyang Xue
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| |
Collapse
|
37
|
Arbuckle JH, Pantry SN, Medveczky MM, Prichett J, Loomis KS, Ablashi D, Medveczky PG. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology 2013; 442:3-11. [PMID: 23648233 DOI: 10.1016/j.virol.2013.03.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/14/2013] [Accepted: 03/30/2013] [Indexed: 12/27/2022]
Abstract
Human herpesvirus 6B (HHV-6B) is the causative agent of roseola infantum. HHV-6A and 6B can reactivate in immunosuppressed individuals and are linked with severe inflammatory response, organ rejection and central nervous system diseases. About 0.85% of the US and UK population carries an integrated HHV-6 genome in all nucleated cells through germline transmission. We have previously reported that the HHV-6A genome integrated in telomeres of patients suffering from neurological dysfunction and also in telomeres of tissue culture cells. We now report that HHV-6B also integrates in telomeres during latency. Detailed mapping of the integrated viral genomes demonstrates that a single HHV-6 genome integrates and telomere repeats join the left end of the integrated viral genome. When HEK-293 cells carrying integrated HHV-6A were exposed to the histone deacetylase inhibitor Trichostatin A, circularization and/or formation of concatamers were detected and this assay could be used to distinguish between lytic replication and latency.
Collapse
Affiliation(s)
- Jesse H Arbuckle
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Bire S, Rouleux-Bonnin F. Transgene Site-Specific Integration: Problems and Solutions. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Poschke H, Dees M, Chang M, Amberkar S, Kaderali L, Rothstein R, Luke B. Rif2 promotes a telomere fold-back structure through Rpd3L recruitment in budding yeast. PLoS Genet 2012; 8:e1002960. [PMID: 23028367 PMCID: PMC3447961 DOI: 10.1371/journal.pgen.1002960] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 01/05/2023] Open
Abstract
Using a genome-wide screening approach, we have established the genetic requirements for proper telomere structure in Saccharomyces cerevisiae. We uncovered 112 genes, many of which have not previously been implicated in telomere function, that are required to form a fold-back structure at chromosome ends. Among other biological processes, lysine deacetylation, through the Rpd3L, Rpd3S, and Hda1 complexes, emerged as being a critical regulator of telomere structure. The telomeric-bound protein, Rif2, was also found to promote a telomere fold-back through the recruitment of Rpd3L to telomeres. In the absence of Rpd3 function, telomeres have an increased susceptibility to nucleolytic degradation, telomere loss, and the initiation of premature senescence, suggesting that an Rpd3-mediated structure may have protective functions. Together these data reveal that multiple genetic pathways may directly or indirectly impinge on telomere structure, thus broadening the potential targets available to manipulate telomere function.
Collapse
Affiliation(s)
- Heiko Poschke
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Religa AA, Waters AP. Sirtuins of parasitic protozoa: in search of function(s). Mol Biochem Parasitol 2012; 185:71-88. [PMID: 22906508 PMCID: PMC3484402 DOI: 10.1016/j.molbiopara.2012.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
Abstract
The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies.
Collapse
Affiliation(s)
- Agnieszka A Religa
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | | |
Collapse
|
41
|
Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med 2012; 14:e13. [PMID: 22640744 DOI: 10.1017/erm.2012.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of gene expression, and more significantly gene cohorts, requires tight transcriptional coordination and is an essential feature of probably all cells. In higher eukaryotes, the mechanisms used involve controlled modifications to both local and global DNA environments, principally through changes in chromatin structure as well as cis-element-driven mechanisms. Although the mechanisms regulating chromatin in terms of transcriptional permissiveness and the relation to developmental programmes and responses to the environment are becoming better understood for animal and fungal cells, it is only just beginning to become clear how these processes operate in other taxa, including the trypanosomatids. Recent advances are now illuminating how African trypanosomes regulate higher-order chromatin structure, and, further, how these mechanisms impact on the expression of major surface antigens that are of fundamental importance to life-cycle progression. It is now apparent that several mechanisms are rather more similar between animal and fungal cells and trypanosomes than it originally appeared, but some aspects do involve gene products unique to trypanosomes. Therefore, both evolutionarily common and novel mechanisms cohabit in trypanosomes, offering both important biological insights and possible therapeutic opportunity.
Collapse
|
42
|
A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata. Genetics 2012; 190:1285-97. [PMID: 22234857 DOI: 10.1534/genetics.111.138099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Candida glabrata, an opportunistic fungal pathogen, adheres to mammalian epithelial cells; adherence is mediated primarily by the Epa1 adhesin. EPA1 is a member of a large gene family of ≈ 23 paralogues, which encode putative adhesins. In this study, we address how EPA1 transcription is regulated. Our data show that EPA1 expression is subject to two distinct negative regulatory mechanisms. EPA1 transcription is repressed by subtelomeric silencing: the Sir complex (Sir2-Sir4), Rap1, Rif1, yKu70, and yKu80 are required for full repression. Activation of EPA1 occurs immediately after dilution of stationary phase (SP) cells into fresh media; however, transcription is rapidly repressed again, limiting expression to lag phase, just as the cells exit stationary phase. This repression following lag phase requires a cis-acting regulatory negative element (NE) located in the EPA1 3'-intergenic region and is independent of telomere proximity. Bioinformatic analysis shows that there are 10 copies of the NE-like sequence in the C. glabrata genome associated with other EPA genes as well as non-EPA genes.
Collapse
|
43
|
A protosilencer of subtelomeric gene expression in Candida glabrata with unique properties. Genetics 2011; 190:101-11. [PMID: 22048024 DOI: 10.1534/genetics.111.135251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adherence to host cells is an important step in the pathogenicity of the opportunistic fungal pathogen Candida glabrata. This adherence is mediated by some members of the large family of cell wall proteins encoded by the EPA (Epithelial Adhesin) genes present in the C. glabrata genome. The majority of the EPA genes are localized close to different telomeres in C. glabrata, resulting in a negative regulation of transcription of these genes through chromatin-based subtelomeric silencing. In vitro, adherence to epithelial cells is mainly mediated by Epa1, the only member of the EPA family that is expressed in vitro. EPA1 forms a cluster with EPA2 and EPA3 at the subtelomeric region of telomere E(-R). EPA2 and EPA3 are subject to silencing that propagates from this telomere in a process that depends on the Sir2, -3, -4, and Rif1 proteins, but surprisingly not on the yKu70 and yKu80 proteins. Here we describe that the yKu70/yKu80-independent silencing of telomere E(-R) is due to the presence of a cis-acting protosilencer (Sil2126) located between EPA3 and the telomere. This element can silence a reporter gene when placed 31.9 kb away from this telomere, but not when it is removed from the telomere context, or when it is placed near other telomeres, or inverted with respect to the reporter. Importantly, we show that the cis-acting Sil2126 element is required for the yKu70/80-independent silencing of this telomere, underscoring the importance of cis-elements for repressive chromatin formation and spreading on some telomeres in C. glabrata.
Collapse
|
44
|
Abstract
In recent years, Hsp90 is found to interact with several telomeric proteins at various phases of cell cycle. The Hsp90 chaperone system controls assembly and disassembly of telomere structures and thus maintains the dynamic state of telomere. Here, for the first time we report that the activity of another telomeric protein Sir2p is modulated by Hsp82, the ortholog of Hsp90 from budding yeast (Saccharomyces cerevisiae). In a temperature sensitive Hsp90 deficient yeast strain (iG170Dhsp82), less abundant Sir2p is observed, resulting in de-repression of telomere silencing and a complete loss of mating type silencing. Intriguingly, over expression of Hsp90, either by exposing cells to heat shock or by introducing HSP82 overexpression plasmid also yields reduced level of Sir2p, with a consequential loss of telomere silencing. Thus, Hsp90 homeostasis maintains the cellular pool of Sir2p and thereby controls the reversible nature of telomere silencing. Interestingly, such regulation is independent of one of its major co-chaperones Sba1 (human ortholog of p23).
Collapse
|
45
|
Function, replication and structure of the mammalian telomere. Cytotechnology 2011; 45:3-12. [PMID: 19003238 DOI: 10.1007/s10616-004-5120-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 09/21/2004] [Indexed: 10/25/2022] Open
Abstract
Telomeres are specialized structures at the ends of linear chromosomes that were originally defined functionally based on observations first by Muller (1938) and subsequently by McClintock (1941) that naturally occurring chromosome ends do not behave as double-stranded DNA breaks, in spite of the fact that they are the physical end of a linear, duplex DNA molecule. Double-stranded DNA breaks are highly unstable entities, being susceptible to nucleolytic attack and giving rise to chromosome rearrangements through end-to-end fusions and recombination events. In contrast, telomeres confer stability upon chromosome termini, as evidenced by the fact that chromosomes are extraordinarily stable through multiple cell divisions and even across evolutionary time. This protective function of telomeres is due to the formation of a nucleoprotein complex that sequesters the end of the DNA molecule, rendering it inaccessible to nucleases and recombinases as well as preventing the telomere from activating the DNA damage checkpoint pathways. The capacity of a functional end-protective complex to form is dependent upon maintenance of sufficient telomeric DNA. We have learned a great deal about telomere structure and how this specialized nucleoprotein complex confers stability on chromosome ends since the original observations that defined telomeres were made. This review summarizes our current understanding of mammalian telomere replication, structure and function.
Collapse
|
46
|
Abstract
Analysis of gene function often involves detailed studies of when a given gene is expressed or silenced. Transposon mutagenesis is a powerful tool to generate insertional mutations that provide with a selectable marker and a reporter gene that can be used to analyze the transcriptional activity of a specific locus in a variety of microorganisms to study gene regulation. Then the reporter gene expression can be easily measured under different conditions to gain insight into the regulation of the particular locus of interest. We have used transposon mutagenesis as a tool to generate insertional mutations with a modified Tn7 transposon containing the reporter gene URA3 (Tn7-URA3) to study subtelomeric silencing in the opportunistic fungal pathogen Candida glabrata. This method consists of two major steps: an in vitro Tn7-URA3 mutagenesis of a plasmid containing the desired subtelomeric region to be analyzed, followed by homologous recombination into the target region of the C. glabrata genome. As an alternative, a fusion PCR protocol can also be used in which the URA3 reporter gene can be "fused" together with the 5' and 3' regions of the desired insertion point by a two step PCR protocol. This fusion product can be introduced into the C. glabrata genome by homologous recombination after transformation in the same way as the Tn7-URA3 mutagenesis products. Once the URA3 reporter gene has been introduced in the desired locus in the C. glabrata genome, a simple plate growth assay is performed to assess the expression of the reporter gene.
Collapse
|
47
|
Rossmann MP, Luo W, Tsaponina O, Chabes A, Stillman B. A common telomeric gene silencing assay is affected by nucleotide metabolism. Mol Cell 2011; 42:127-36. [PMID: 21474074 DOI: 10.1016/j.molcel.2011.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/21/2010] [Accepted: 02/16/2011] [Indexed: 01/06/2023]
Abstract
Telomere-associated position-effect variegation (TPEV) in budding yeast has been used as a model for understanding epigenetic inheritance and gene silencing. A widely used assay to identify mutants with improper TPEV employs the URA3 gene at the telomere of chromosome VII-L that can be counterselected with 5-fluoroorotic acid (5-FOA). 5-FOA resistance has been inferred to represent lack of transcription of URA3 and therefore to represent heterochromatin-induced gene silencing. For two genes implicated in telomere silencing, POL30 and DOT1, we show that the URA3 telomere reporter assay does not reflect their role in heterochromatin formation. Rather, an imbalance in ribonucleotide reductase (RNR), which is induced by 5-FOA, and the specific promoter of URA3 fused to ADH4 at telomere VII-L are jointly responsible for the variegated phenotype. We conclude that metabolic changes caused by the drug employed and certain mutants being studied are incompatible with the use of certain prototrophic markers for TPEV.
Collapse
|
48
|
Abstract
Organismal aging and longevity are influenced by many complex interacting factors. Epigenetics has recently emerged as another possible determinant of aging. Here, we review some of the epigenetic pathways that contribute to cellular senescence and age-associated phenotypes. Strategies aimed to reverse age-linked epigenetic alterations may lead to the development of new therapeutic interventions to delay or alleviate some of the most debilitating age-associated diseases.
Collapse
Affiliation(s)
- Ursula Muñoz-Najar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA.
| | | |
Collapse
|
49
|
Subtelomeric silencing of the MTL3 locus of Candida glabrata requires yKu70, yKu80, and Rif1 proteins. EUKARYOTIC CELL 2010; 9:1602-11. [PMID: 20675581 DOI: 10.1128/ec.00129-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Candida glabrata is a haploid opportunistic fungal pathogen that is phylogenetically related to Saccharomyces cerevisiae. Even though C. glabrata has no known sexual cycle, it contains, like S. cerevisiae, three mating type-like loci (MTL) called MTL1, MTL2, and MTL3, as well as most of the genes required for mating, meiosis, and sporulation. MTL1 is localized at an internal position on chromosome B and is thought to be the locus corresponding to the MAT locus in S. cerevisiae. MTL2 and MTL3 are localized close to two telomeres on different chromosomes (29.4 kb from Chr E-L and 10.5 kb from Chr B-L, respectively). By using URA3 reporter gene insertions at the three MTL loci, we found that in contrast to the case for S. cerevisiae, only MTL3 is subject to transcriptional silencing while MTL2 is transcriptionally active, and this is in agreement with previously reported data. We found that the silencing of MTL3 is nucleated primarily at the left telomere of chromosome B and spreads over 12 kb to MTL3, rather than nucleating at flanking, closely positioned cis-acting silencers, like those flanking HMR and HML of S. cerevisiae. Interestingly, the silencing of MTL3 absolutely requires the yKu70, yKu80, and Rif1 proteins, in sharp contrast to the silencing of the HM loci of S. cerevisiae. In addition, we found that several cell type-specific genes are expressed in C. glabrata regardless of the presence, or even absence, of mating type information at any of the MTL loci.
Collapse
|
50
|
Palmer JM, Keller NP. Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 2010; 13:431-6. [PMID: 20627806 DOI: 10.1016/j.mib.2010.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Filamentous fungi produce a vast array of small molecules called secondary metabolites, which include toxins as well as antibiotics. Coregulated gene clusters are the hallmark of fungal secondary metabolism, and there is a growing body of evidence that suggests regulation is at least, in part, epigenetic. Chromatin-level control is involved in several silencing phenomena observed in fungi including mating type switching, telomere position effect (TPE), silencing of ribosomal DNA, regulation of genes involved in nutrient acquisition, and as presented here, secondary metabolite cluster expression. These phenomena are tied together by the underlying theme of chromosomal location, often near centromeres and telomeres, where facultative heterochromatin plays a role in transcription. Secondary metabolite gene clusters are often located subtelomerically and recently it has been shown that proteins involved in chromatin remodeling, such as LaeA, ClrD, CclA, and HepA mediate cluster regulation.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Plant Pathology Department, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|