1
|
Sengupta P, Chatterjee S. Inosine 5'-diphosphate, a molecular decoy rescues Nucleoside diphosphate kinase from c-MYC G-Quadruplex unfolding. Biochim Biophys Acta Gen Subj 2020; 1864:129649. [PMID: 32492501 DOI: 10.1016/j.bbagen.2020.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The transcription-inhibitory G-Quadruplex(Pu27-GQ) at c-MYC promoter is challenging to target due to structural heterogeneity. Nucleoside diphosphate kinase (NM23-H2) specifically binds and unfolds Pu27-GQ to increase c-MYC transcription. Here, we used Inosine 5'-diphosphate (IDP) to disrupt NM23-H2-Pu27-GQ interactions and arrest c-MYC transcription without compromising NM23-H2-mediated kinase properties. METHODS Site-directed mutagenesis,31P-NMR and STD-NMR studies delineate the epitope of NM23-H2-IDP complex and characterize specific amino acids in NM23-H2 involved in Pu27-GQ and IDP interactions. Immunoprecipitations and phosphohistidine-immunoblots reveal how IDP blocks NM23-H2-Pu27 association to downregulate c-MYC transcription in MDAMB-231 cells exempting NM23-H2-mediated kinase properties. RESULTS NMR studies show that IDP binds to the Guanosine diphosphate-binding pocket of NM23-H2 (KD = 5.0 ± 0.276 μM). Arg88-driven hydrogen bonds to the terminal phosphate of IDP restricts P-O-P bond-rotation increasing its pKa (∆pKa = 0.85 ± 0.0025).9-inosinyl moiety of IDP is stacked over Phe60 phenyl ring driving trans-conformation of inosine and axial geometry of pyrophosphates. Chromatin immunoprecipitations revealed that these interactions rescue NM23-H2-driven Pu27-GQ unfolding, which triggers Nucleolin recruitment and lowers Sp1 occupancy at c-MYC promoter stabilizing Pu27-GQ. This silences c-MYC transcription that reduces c-MYC-Sp1 association amplifying Sp1 recruitment across P21 promoter stimulating P21 transcription and G2/M arrest. CONCLUSIONS IDP synergizes the effects of Pu27-GQ-interacting compounds to abrogate c-MYC transcription and induce apoptosis in MDAMB-231 cells by disrupting NM23-H2-Pu27-GQ interactions without affecting NM23-H2-mediated kinase properties. GENERAL SIGNIFICANCE Our study provides a pragmatic approach for developing NM23-H2-targeting regulators to rescue NM23-H2 binding at structurally ambiguous Pu27-GQ that synergizes the anti-tumorigenic effects of GQ-based therapeutics with minimized off-target effects.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
2
|
Hirano T, Watanabe R, Takase-Yoden S. Increased Expression ofc-mycIs Associated with Thymoma in Rats Infected with Murine Leukemia Virus A8. Microbiol Immunol 2013; 49:1069-74. [PMID: 16365532 DOI: 10.1111/j.1348-0421.2005.tb03704.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Infection of rats with Friend murine leukemia virus (Fr-MLV) clone A8 causes thymoma in all the animals within 7 weeks. The rapid induction of thymoma is associated with a unique enhancer structure in the U3 region of the A8-LTR. Our Southern blot analyses showed that the thymomas were oligo clonal. The A8-induced thymomas showed 3-to 11-fold overexpression of c-myc mRNA. These results suggest that provirus insertion into particular positions of the host genome is correlated with tumorigenesis after A8 infection and that up-regulation of c-myc plays an important role in the induction of thymoma.
Collapse
Affiliation(s)
- Tomoko Hirano
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | |
Collapse
|
3
|
Huston MW, Brugman MH, Horsman S, Stubbs A, van der Spek P, Wagemaker G. Comprehensive investigation of parameter choice in viral integration site analysis and its effects on the gene annotations produced. Hum Gene Ther 2012; 23:1209-19. [PMID: 22909036 DOI: 10.1089/hum.2011.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introducing therapeutic genes into hematopoietic stem cells using retroviral vector-mediated gene transfer is an effective treatment for monogenic diseases. The risks of therapeutic gene integration include aberrant expression of a neighboring gene, resulting in oncogenesis at low frequencies (10(-7)-10(-6)/transduced cell). Mechanisms governing insertional mutagenesis are the subject of intensive ongoing studies that produce large amounts of sequencing data representing genomic regions flanking viral integration sites (IS). Validating and analyzing these data require automated bioinformatics applications. The exact methods used vary between applications, based on the requirements and preferences of the designer. The parameters used to analyze sequence data are capable of shaping the resulting integration site annotations, but a comprehensive examination of these effects is lacking. Here we present a web-based tool for integration site analysis, called Methods for Analyzing ViRal Integration Collections (MAVRIC), and use its highly customizable interface to look at how IS annotations can vary based on the analysis parameters. We used the integration data of the previously published adenosine deaminase severe combined immunodeficiency (ADA-SCID) gene therapy trials for evaluation of MAVRIC. The output illustrates how MAVRIC allows for direct multiparameter comparison of integration patterns. Careful analysis of the SCID data and reanalyses using different parameters for trimming, alignment, and repeat masking revealed the degree of variation that can be expected to arise due to changes in these parameters. We observed mainly small differences in annotation, with the largest effects caused by masking repeat sequences and by changing the size of the window around the IS.
Collapse
Affiliation(s)
- Marshall W Huston
- Department of Hematology, Erasmus University Medical Center, GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
4
|
Lee MJ, Xu DY, Li H, Yu GR, Leem SH, Chu IS, Kim IH, Kim DG. Pro-oncogenic potential of NM23-H2 in hepatocellular carcinoma. Exp Mol Med 2012; 44:214-24. [PMID: 22192927 PMCID: PMC3317485 DOI: 10.3858/emm.2012.44.3.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NM23 is a family of structurally and functionally conserved proteins known as nucleoside diphosphate kinases (NDPK). There is abundant mRNA expression of NM23-H1, NM23-H2, or a read through transcript (NM23-LV) in the primary sites of hepatocellular carcinoma (HCC). Although the NM23-H1 protein is implicated as a metastasis suppressor, the role of NM23-H2 appears to be less understood. Thus, the aim of this study was to examine whether NM23-H2 is associated with hepatocarcinogenesis. The level of NM23-H2 expression in tumor tissues and the surrounding matrix appeared to be independent of etiology and tumor differentiation. Its subcellular localization was confined to mainly the cytoplasm and to a lesser extent in the nucleus. Ectopic expression of NM23-H2 in NIH3T3 fibroblasts and HLK3 hepatocytes showed a transformed morphology, enhanced focus formation, and allowed anchorage-independent growth. Finally, NIH3T3 fibroblasts and HLK3 hepatocytes stably expressing NM23-H2 produced tumors in athymic mice and showed c-Myc over-expression. In addition, NF-κB and cyclin D1 expression were also increased by NM23-H2. Lentiviral delivery of NM23-H2 shRNA inhibited tumor growth of xenotransplanted tumors produced from HLK3 cells stably expressing NM23-H2. Collectively, these results indicate that NM23-H2 may be pro-oncogenic in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Mi-Jin Lee
- Division of GI and Hepatology, The Research Institute of Clinical Medicine, Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li N, Wei C, Olena AF, Patton JG. Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development. Development 2011; 138:1817-26. [PMID: 21447552 DOI: 10.1242/dev.056697] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
microRNAs (miRNAs) are a family of 21-23 nucleotide endogenous non-coding RNAs that post-transcriptionally regulate gene expression in a sequence-specific manner. Typically, miRNAs downregulate target genes by recognizing and recruiting protein complexes to 3'UTRs, followed by translation repression or mRNA degradation. miR-92 is a well-studied oncogene in mammalian systems. Here, using zebrafish as a model system, we uncovered a novel tissue-inductive role for miR-92 during early vertebrate development. Overexpression resulted in reduced endoderm formation during gastrulation with consequent cardia and viscera bifida. By contrast, depletion of miR-92 increased endoderm formation, which led to abnormal Kupffer's vesicle development and left-right patterning defects. Using target prediction algorithms and reporter constructs, we show that gata5 is a target of miR-92. Alteration of gata5 levels reciprocally mirrored the effects of gain and loss of function of miR-92. Moreover, genetic epistasis experiments showed that miR-92-mediated defects could be substantially suppressed by modulating gata5 levels. We propose that miR-92 is a critical regulator of endoderm formation and left-right asymmetry during early zebrafish development and provide the first evidence for a regulatory function for gata5 in the formation of Kupffer's vesicle and left-right patterning.
Collapse
Affiliation(s)
- Nan Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
6
|
Kustikova O, Brugman M, Baum C. The genomic risk of somatic gene therapy. Semin Cancer Biol 2010; 20:269-78. [DOI: 10.1016/j.semcancer.2010.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 01/08/2023]
|
7
|
Chakraborty J, Okonta H, Bagalb H, Lee SJ, Fink B, Changanamkandat R, Duggan J. Retroviral gene insertion in breast milk mediated lymphomagenesis. Virology 2008; 377:100-9. [PMID: 18501945 DOI: 10.1016/j.virol.2008.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/27/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
We have demonstrated breast milk transmitted MoMuLV-ts1 retrovirus infection and subsequent lymphoma development in offspring of uninfected mothers suckled by infected surrogate mothers. Additionally, we have shown that the lymphoma development occurs as a result of viral gene integration into host genome. A total of 146 pups from Balb/C mice were divided into 5 groups; one control and 4 experimental. All offspring suckled from surrogate infected or control mothers, except one group of infected pups left with their biological mothers. Thirteen of 91 infected pups developed lymphoma. Inverse-PCR, DNA cloning, and quantitative real-time PCR (qRT-PCR) were used to study the virus integration sites (VIS) and alterations in gene expression. VIS were randomly distributed throughout the genome. The majority of insertion sites were found in chromosomes 10, 12 and 13. A total of 209 proviral genomic insertion sites were located with 52 intragenic and 157 intergenic sites. We have identified 29 target genes. Four genes including Tacc3, Aurka, Gfi1 and Ahi1 showed the maximum upregulation of mRNA expression. These four genes can be considered as candidate genes based on their association with cancer. Upregulation of these genes may be involved in this type of lymphoma development. This model provides an important opportunity to gain insight into the relationship of viral gene insertion into host genome and development of lymphoma via natural transmission route such as breast milk.
Collapse
Affiliation(s)
- Joana Chakraborty
- Department of Physiology and Pharmacology, College of Medicine, Health Science Campus, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fujino Y, Ohno K, Tsujimoto H. Molecular pathogenesis of feline leukemia virus-induced malignancies: Insertional mutagenesis. Vet Immunol Immunopathol 2008; 123:138-43. [DOI: 10.1016/j.vetimm.2008.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Touw IP, Erkeland SJ. Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia. Mol Ther 2008; 15:13-9. [PMID: 17164770 DOI: 10.1038/sj.mt.6300040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Retroviral insertion mutagenesis has recently received much attention because of its adverse effects in the application of retroviral vector-based gene therapy, resulting in leukemia in certain patients. At the same time, retroviral mutagenesis in mice is being considered a powerful forward genetic strategy to identify disease genes involved in cancer. The publication of the mouse genome sequence and the development of high-throughput genomic approaches have given a further boost to this rapidly evolving field. The increasing numbers of new potential oncogenes identified in retroviral screens have given a valuable basis for a better understanding of cancer related pathways in mice. Important challenges that now lie ahead of us are (i) to determine the relevance and causal relationship of these genes with various types of human cancer (ii) to develop strategies to identify tumor suppressor genes on a large scale, (iii) to place the disease genes into regulatory networks to better understand their role in the complex pathogenesis of cancer, and (iv) to determine their value for diagnosis refinement and therapeutic target intervention in human disease. In this review, we will give a brief update of the current state-of-the-art and thoughts concerning these issues. We will specifically focus on the value of employing retroviral insertion mutagenesis in mice and gene expression profiling in man in the context of acute myeloid leukemia.
Collapse
Affiliation(s)
- Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
10
|
de Ridder J, Kool J, Uren A, Bot J, Wessels L, Reinders M. Co-occurrence analysis of insertional mutagenesis data reveals cooperating oncogenes. ACTA ACUST UNITED AC 2007; 23:i133-41. [PMID: 17646289 DOI: 10.1093/bioinformatics/btm202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MOTIVATION Cancers are caused by an accumulation of multiple independent mutations that collectively deregulate cellular pathways, e.g. such as those regulating cell division and cell-death. The publicly available Retroviral Tagged Cancer Gene Database (RTCGD) contains the data of many insertional mutagenesis screens, in which the virally induced mutations result in tumor formation in mice. The insertion loci therefore indicate the location of putative cancer genes. Additionally, the presence of multiple independent insertions within one tumor hints towards a cooperation between the insertionally mutated genes. In this study we focus on the detection of statistically significant co-mutations. RESULTS We propose a two-dimensional Gaussian Kernel Convolution method (2DGKC), a computational technique that identifies the cooperating mutations in insertional mutagenesis data. We define the Common Co-occurrence of Insertions (CCI), signifying the co-mutations that are statistically significant across all different screens in the RTCGD. Significance estimates are made on multiple scales, and the results visualized in a scale space, thereby providing valuable extra information on the putative cooperation. The multidimensional analysis of the insertion data results in the discovery of 86 statistically significant co-mutations, indicating the presence of cooperating oncogenes that play a role in tumor development. Since oncogenes may cooperate with several members of a parallel pathway, we combined the co-occurrence data with gene family information to find significant cooperations between oncogenes and families of genes. We show, for instance, the interchangeable cooperation of Myc insertions with insertions in the Pim family. AVAILABILITY A list of the resulting CCIs is available at: http://ict.ewi.tudelft.nl/~jeroen/CCI/CCI_list.txt.
Collapse
Affiliation(s)
- Jeroen de Ridder
- Information and Communication Theory Group, Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Sørensen AB, Lund AH, Kunder S, Quintanilla-Martinez L, Schmidt J, Wang B, Wabl M, Pedersen FS. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus. Retrovirology 2007; 4:46. [PMID: 17617899 PMCID: PMC1936429 DOI: 10.1186/1742-4690-4-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/06/2007] [Indexed: 01/25/2023] Open
Abstract
Background Mutations of an alternative splice donor site located within the gag region has previously been shown to broaden the pathogenic potential of the T-lymphomagenic gammaretrovirus Moloney murine leukemia virus, while the equivalent mutations in the erythroleukemia inducing Friend murine leukemia virus seem to have no influence on the disease-inducing potential of this virus. In the present study we investigate the splice pattern as well as the possible effects of mutating the alternative splice sites on the oncogenic properties of the B-lymphomagenic Akv murine leukemia virus. Results By exon-trapping procedures we have identified a novel gammaretroviral exon, resulting from usage of alternative splice acceptor (SA') and splice donor (SD') sites located in the capsid region of gag of the B-cell lymphomagenic Akv murine leukemia virus. To analyze possible effects in vivo of this novel exon, three different alternative splice site mutant viruses, mutated in either the SA', in the SD', or in both sites, respectively, were constructed and injected into newborn inbred NMRI mice. Most of the infected mice (about 90%) developed hematopoietic neoplasms within 250 days, and histological examination of the tumors showed that the introduced synonymous gag mutations have a significant influence on the phenotype of the induced tumors, changing the distribution of the different types as well as generating tumors of additional specificities such as de novo diffuse large B cell lymphoma (DLBCL) and histiocytic sarcoma. Interestingly, a broader spectrum of diagnoses was made from the two single splice-site mutants than from as well the wild-type as the double splice-site mutant. Both single- and double-spliced transcripts are produced in vivo using the SA' and/or the SD' sites, but the mechanisms underlying the observed effects on oncogenesis remain to be clarified. Likewise, analyses of provirus integration sites in tumor tissues, which identified 111 novel RISs (retroviral integration sites) and 35 novel CISs (common integration sites), did not clearly point to specific target genes or pathways to be associated with specific tumor diagnoses or individual viral mutants. Conclusion We present here the first example of a doubly spliced transcript within the group of gammaretroviruses, and we show that mutation of the alternative splice sites that define this novel RNA product change the oncogenic potential of Akv murine leukemia virus.
Collapse
Affiliation(s)
- Annette Balle Sørensen
- Department of Molecular Biology, University of Aarhus, Denmark
- The State and University Library, Universitetsparken, DK-8000 Aarhus C, Denmark
| | - Anders H Lund
- Department of Molecular Biology, University of Aarhus, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Sandra Kunder
- Institute of Pathology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Jörg Schmidt
- Department of Comparative Medicine GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Matthias Wabl
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
12
|
Huppi K, Volfovsky N, Mackiewicz M, Runfola T, Jones TL, Martin SE, Stephens R, Caplen NJ. MicroRNAs and genomic instability. Semin Cancer Biol 2006; 17:65-73. [PMID: 17113784 PMCID: PMC1839944 DOI: 10.1016/j.semcancer.2006.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/17/2006] [Indexed: 12/19/2022]
Abstract
A new species of non-coding RNA, microRNAs (miRNAs) has been identified that may regulate the expression of as many as one third to one half of all protein encoding genes. MicroRNAs are found throughout mammalian genomes, but an association between the location of these miRNAs and regions of genomic instability (or fragile sites) in humans has been suggested [1]. In this review we discuss the possible role of altered miRNA expression on human cancer and conduct an analysis correlating the physical location of murine miRNAs with sites of genetic alteration in mouse models of cancer.
Collapse
Affiliation(s)
- Konrad Huppi
- Gene Silencing Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
de Ridder J, Uren A, Kool J, Reinders M, Wessels L. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2006; 2:e166. [PMID: 17154714 PMCID: PMC1676030 DOI: 10.1371/journal.pcbi.0020166] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 10/24/2006] [Indexed: 01/09/2023] Open
Abstract
Retroviral insertional mutagenesis screens, which identify genes involved in tumor development in mice, have yielded a substantial number of retroviral integration sites, and this number is expected to grow substantially due to the introduction of high-throughput screening techniques. The data of various retroviral insertional mutagenesis screens are compiled in the publicly available Retroviral Tagged Cancer Gene Database (RTCGD). Integrally analyzing these screens for the presence of common insertion sites (CISs, i.e., regions in the genome that have been hit by viral insertions in multiple independent tumors significantly more than expected by chance) requires an approach that corrects for the increased probability of finding false CISs as the amount of available data increases. Moreover, significance estimates of CISs should be established taking into account both the noise, arising from the random nature of the insertion process, as well as the bias, stemming from preferential insertion sites present in the genome and the data retrieval methodology. We introduce a framework, the kernel convolution (KC) framework, to find CISs in a noisy and biased environment using a predefined significance level while controlling the family-wise error (FWE) (the probability of detecting false CISs). Where previous methods use one, two, or three predetermined fixed scales, our method is capable of operating at any biologically relevant scale. This creates the possibility to analyze the CISs in a scale space by varying the width of the CISs, providing new insights in the behavior of CISs across multiple scales. Our method also features the possibility of including models for background bias. Using simulated data, we evaluate the KC framework using three kernel functions, the Gaussian, triangular, and rectangular kernel function. We applied the Gaussian KC to the data from the combined set of screens in the RTCGD and found that 53% of the CISs do not reach the significance threshold in this combined setting. Still, with the FWE under control, application of our method resulted in the discovery of eight novel CISs, which each have a probability less than 5% of being false detections. A potent method for the identification of novel cancer genes is retroviral insertional mutagenesis. Mice infected with slow transforming retroviruses develop tumors because the virus inserts randomly in their genome and mutates cancer genes. The regions in the genome that are mutated in multiple independent tumors are likely to contain genes involved in tumorigenesis. As the size of these datasets increases, conventional methods to detect these so-called common insertion sites (CISs) no longer suffice, and an approach is required that can control the error independent of the dataset size. The authors introduce a framework that uses a technique called kernel density estimation to find the regions in the genome that show a significant increase in insertion density. This method is implemented over a range of scales, allowing the data to be evaluated at any relevant scale. The authors demonstrate that the framework is capable of compensating for the inherent biases in the data, such as preference for retroviruses to insert near transcriptional start sites. By better balancing the error, they are able to show that from the 361 published CISs, 150 can be identified that have a low probability of being a false detection. In addition, they discover eight novel CISs.
Collapse
Affiliation(s)
- Jeroen de Ridder
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, The Netherlands
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anthony Uren
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jaap Kool
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel Reinders
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, The Netherlands
- * To whom correspondence should be addressed. E-mail: (MR); (LW)
| | - Lodewyk Wessels
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, The Netherlands
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail: (MR); (LW)
| |
Collapse
|
14
|
Martín-Hernández J, Balle Sørensen A, Pedersen FS. Non-identical patterns of proviral insertions around host transcription units in lymphomas induced by different strains of murine leukemia virus. Virology 2006; 353:193-9. [PMID: 16790256 DOI: 10.1016/j.virol.2006.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/15/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
In a small sample of 57 retrovirus integration sites (RISs) isolated from 23 end-stage lymphomas induced in NMRI mice by the B-lymphotropic Akv wt or an enhancer mutant hereof, Akv1-99, we identified 14 novel RISs and defined 9 novel CISs (common insertion sites). Moreover, when comparing with RISs from tumors induced by the T-lymphomagenic SL3-3, we observed that SL3-3 targets RefSeq promoter regions with a significantly higher frequency than Akv/Akv1-99 and in an orientation-dependent way. Altogether, our results strongly emphasize the importance of host genetic background and virus type for retroviral insertion mutagenesis screens and suggest that different types of MLV may favor specific genomic regions and orientations in order exert optimal effect on target gene expression during lymphoma induction and development.
Collapse
MESH Headings
- Animals
- Enhancer Elements, Genetic
- Leukemia Virus, Murine/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
- Mice
- Mice, Inbred Strains
- Mutagenesis, Insertional
- Proviruses/genetics
- Retroviridae/genetics
- Transcription, Genetic
- Virus Integration/genetics
Collapse
Affiliation(s)
- Javier Martín-Hernández
- Department of Molecular Biology, University of Aarhus, C.F. Moellers Alle, Build. 130, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
15
|
Wang GG, Pasillas MP, Kamps MP. Persistent transactivation by meis1 replaces hox function in myeloid leukemogenesis models: evidence for co-occupancy of meis1-pbx and hox-pbx complexes on promoters of leukemia-associated genes. Mol Cell Biol 2006; 26:3902-16. [PMID: 16648484 PMCID: PMC1488994 DOI: 10.1128/mcb.26.10.3902-3916.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homeobox transcription factors Meis1 and Hoxa9 promote hematopoietic progenitor self-renewal and cooperate to cause acute myeloid leukemia (AML). While Hoxa9 alone blocks the differentiation of nonleukemogenic myeloid cell-committed progenitors, coexpression with Meis1 is required for the production of AML-initiating progenitors, which also transcribe a group of hematopoietic stem cell genes, including Cd34 and Flt3 (defined as Meis1-related leukemic signature genes). Here, we use dominant trans-activating (Vp16 fusion) or trans-repressing (engrailed fusion) forms of Meis1 to define its biochemical functions that contribute to leukemogenesis. Surprisingly, Vp16-Meis1 (but not engrailed-Meis1) functioned as an autonomous oncoprotein that mimicked combined activities of Meis1 plus Hoxa9, immortalizing early progenitors, inducing low-level expression of Meis1-related signature genes, and causing leukemia without coexpression of exogenous or endogenous Hox genes. Vp16-Meis1-mediated transformation required the Meis1 function of binding to Pbx and DNA but not its C-terminal domain (CTD). The absence of endogenous Hox gene expression in Vp16-Meis1-immortalized progenitors allowed us to investigate how Hox alters gene expression and cell biology in early hematopoietic progenitors. Strikingly, expression of Hoxa9 or Hoxa7 stimulated both leukemic aggressiveness and transcription of Meis1-related signature genes in Vp16-Meis1 progenitors. Interestingly, while the Hoxa9 N-terminal domain (NTD) is essential for cooperative transformation with wild-type Meis1, it was dispensable in Vp16-Meis1 progenitors. The fact that a dominant transactivation domain fused to Meis1 replaces the essential functions of both the Meis1 CTD and Hoxa9 NTD suggests that Meis-Pbx and Hox-Pbx (or Hox-Pbx-Meis) complexes co-occupy cellular promoters that drive leukemogenesis and that Meis1 CTD and Hox NTD cooperate in gene activation. Chromatin immunoprecipitation confirmed co-occupancy of Hoxa9 and Meis1 on the Flt3 promoter.
Collapse
Affiliation(s)
- Gang G Wang
- Department of Pathology and Molecular Pathology Graduate Program, Leichtag 249B, University of California at San Diego School of Medicine, 9500 Gilman Dr., La Jolla, California 92093, USA.
| | | | | |
Collapse
|
16
|
Erkeland SJ, Verhaak RGW, Valk PJM, Delwel R, Löwenberg B, Touw IP. Significance of murine retroviral mutagenesis for identification of disease genes in human acute myeloid leukemia. Cancer Res 2006; 66:622-6. [PMID: 16423987 DOI: 10.1158/0008-5472.can-05-2908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retroviral insertion mutagenesis is considered a powerful tool to identify cancer genes in mice, but its significance for human cancer has remained elusive. Moreover, it has recently been debated whether common virus integrations are always a hallmark of tumor cells and contribute to the oncogenic process. Acute myeloid leukemia (AML) is a heterogeneous disease with a variable response to treatment. Recurrent cytogenetic defects and acquired mutations in regulatory genes are associated with AML subtypes and prognosis. Recently, gene expression profiling (GEP) has been applied to further risk stratify AML. Here, we show that mouse leukemia genes identified by retroviral insertion mutagenesis are more frequently differentially expressed in distinct subclasses of adult and pediatric AML than randomly selected genes or genes located more distantly from a virus integration site. The candidate proto-oncogenes showing discriminative expression in primary AML could be placed in regulatory networks mainly involved in signal transduction and transcriptional control. Our data support the validity of retroviral insertion mutagenesis in mice for human disease and indicate that combining these murine screens for potential proto-oncogenes with GEP in human AML may help to identify critical disease genes and novel pathogenetic networks in leukemia.
Collapse
Affiliation(s)
- Stefan J Erkeland
- Department of Hematology, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005; 24:7656-72. [PMID: 16299527 DOI: 10.1038/sj.onc.1209043] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retroviral insertion mutagenesis screens in mice are powerful tools for efficient identification of oncogenic mutations in an in vivo setting. Many oncogenes identified in these screens have also been shown to play a causal role in the development of human cancers. Sequencing and annotation of the mouse genome, along with recent improvements in insertion site cloning has greatly facilitated identification of oncogenic events in retrovirus-induced tumours. In this review, we discuss the features of retroviral insertion mutagenesis screens, covering the mechanisms by which retroviral insertions mutate cellular genes, the practical aspects of insertion site cloning, the identification and analysis of common insertion sites, and finally we address the potential for use of somatic insertional mutagens in the study of nonhaematopoietic and nonmammary tumour types.
Collapse
Affiliation(s)
- A G Uren
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
18
|
Landais S, Quantin R, Rassart E. Radiation leukemia virus common integration at the Kis2 locus: simultaneous overexpression of a novel noncoding RNA and of the proximal Phf6 gene. J Virol 2005; 79:11443-56. [PMID: 16103195 PMCID: PMC1193593 DOI: 10.1128/jvi.79.17.11443-11456.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral tagging has been used extensively and successfully to identify genes implicated in cancer pathways. In order to find oncogenes implicated in T-cell leukemia, we used the highly leukemogenic radiation leukemia retrovirus VL3 (RadLV/VL3). We applied the inverted PCR technique to isolate and analyze sequences flanking proviral integrations in RadLV/VL3-induced T lymphomas. We found retroviral integrations in c-myc and Pim1 as already reported but we also identified for the first time Notch1 as a RadLV common integration site. More interestingly, we found a new RadLV common integration site that is situated on mouse chromosome X (XA4 region, bp 45091000). This site has also been reported as an SL3-3 and Moloney murine leukemia virus integration site, which strengthens its implication in murine leukemia virus-induced T lymphomas. This locus, named Kis2 (Kaplan Integration Site 2), was found rearranged in 11% of the tumors analyzed. In this article, we report not only the alteration of the Kis2 gene located nearby in response to RadLV integration but also the induction of the expression of Phf6, situated about 250 kbp from the integration site. The Kis2 gene encodes five different alternatively spliced noncoding RNAs and the Phf6 gene codes for a 365-amino-acid protein which contains two plant homology domain fingers, recently implicated in the Börjeson-Forssman-Lehmann syndrome in humans. With the recent release of the mouse genome sequence, high-throughput retroviral tagging emerges as a powerful tool in the quest for oncogenes. It also allows the analysis of large DNA regions surrounding the integration locus.
Collapse
Affiliation(s)
- Séverine Landais
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
19
|
Rasmussen MH, Sørensen AB, Morris DW, Dutra JC, Engelhard EK, Wang CL, Schmidt J, Pedersen FS. Tumor model-specific proviral insertional mutagenesis of the Fos/Jdp2/Batf locus. Virology 2005; 337:353-64. [PMID: 15913695 DOI: 10.1016/j.virol.2005.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/05/2005] [Accepted: 04/22/2005] [Indexed: 11/29/2022]
Abstract
Retroviral activation of the AP-1/ATF super family member Jdp2 was recently reported to be a common event in M-MLV-induced T cell lymphoma in p27-null C57x129 mice as compared to wild type-inoculated mice but has not been found important in other models. On the basis of retroviral tag retrieval from 1190 individual Akv- and SL3-3-induced lymphomas, we here report that insertional mutagenesis into the 250-kb Fos/Jdp2/Batf locus is associated with SL3-3 MLV-induced T but not Akv-induced B cell lymphomas of NMRI and SWR mice. Integration pattern and clonality analyses suggest that Jdp2 participates in SL3-3-induced tumorigenesis distinctly as compared to the M-MLV setting. Northern blot analysis showed Jdp2 to be alternatively spliced in various normal tissues as well as MLV-induced lymphomas. Interestingly, in some tumors, proviral insertion seems to activate different mRNA sub-species. Whereas elevated mRNA levels of the Fos gene could not be correlated with provirus presence, in one case, Northern blot analysis as well as quantitative real-time PCR indicated proviral activation of the AP-1 super family member Batf, a gene not previously reported to be a target of insertional mutagenesis. A novel integration cluster between Jdp2 and Batf apparently did not influence the expression level of either gene, underscoring the importance of addressing expression effects to identify target genes of insertion. Altogether, such distinct insertion patterns point to different mechanism of activation of specific proto-oncogenes and are consequently of importance for the understanding of proviral activation mechanisms as well as the specific role of individual oncogenes in tumor development.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Basic-Leucine Zipper Transcription Factors
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- Disease Models, Animal
- Genes, fos
- Leukemia Virus, Murine/genetics
- Lymphoma, B-Cell/genetics
- Mice
- Mice, Inbred Strains
- Mutagenesis, Insertional
- Polymerase Chain Reaction
- Proviruses/genetics
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Repressor Proteins/genetics
- Retroviridae/genetics
- Thymus Gland/virology
- Transcription Factors/genetics
- Tumor Cells, Cultured
- Virus Latency
Collapse
Affiliation(s)
- M H Rasmussen
- Department of Molecular Biology, University of Aarhus, C. F. Mollers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lowther W, Wiley K, Smith GH, Callahan R. A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. J Virol 2005; 79:10093-6. [PMID: 16014973 PMCID: PMC1181551 DOI: 10.1128/jvi.79.15.10093-10096.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel common integration site for the mouse mammary tumor virus (MMTV) was identified (designated Int7) in five independently arising mouse mammary tumors. The insertion sites all cluster within a 1-kb region that is 2 to 3 kb 5' of the transcription initiation site of a gene, 2610028F08RIK, whose gene product contains furin-like and thrombospondin-like sequences. Expression of Int7 is normally very low or silent during various stages of mammary gland development, but MMTV integration at this site results in the activation of high steady-state levels of expression of the gene. These five tumors were also found to have two or three additional viral insertions, which in each case occurred flanking a member of either the Wnt and/or FGF gene family. Reverse transcriptase PCR results demonstrated that each of the viral insertions led to elevated expression of the presumed target flanking genes.
Collapse
Affiliation(s)
- William Lowther
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
21
|
van den Akker E, Vankan-Berkhoudt Y, Valk PJM, Löwenberg B, Delwel R. The common viral insertion site Evi12 is located in the 5'-noncoding region of Gnn, a novel gene with enhanced expression in two subclasses of human acute myeloid leukemia. J Virol 2005; 79:5249-58. [PMID: 15827139 PMCID: PMC1082726 DOI: 10.1128/jvi.79.9.5249-5258.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leukemia and lymphoma disease locus Evi12 was mapped to the noncoding region of a novel gene, Gnn (named for Grp94 neighboring nucleotidase), that is located immediately upstream of the Grp94/Tra1 gene on mouse chromosome 10. The Gnn gene is conserved in mice and humans. Expression of fusion constructs between GFP and Gnn cDNA isoforms in HEK-293 cells showed that Gnn proteins are located mainly in the cytoplasm. Immunoblotting experiments demonstrated the presence of multiple Gnn protein isoforms in most organs, with the lowest levels of expression of the protein detected in bone marrow and spleen. The Evi12-containing leukemia cell line NFS107 showed high levels of expression of a approximately 150-kDa Gnn isoform (Gnn107) that was not observed in control cell lines. Overexpression may be due to the viral insertion in Evi12. The Gnn107 protein is probably encoded by a Gnn cDNA isoform that is expressed exclusively in NFS107 cells and that includes sequences of TU12B1-TY, a putative protein with homology to 5'-nucleotidase enzymes. Interestingly, using Affymetrix gene expression data of a cohort of 285 patients with acute myeloid leukemia (AML), we found that GNN/TU12B1-TY expression was specifically increased in two AML clusters. One cluster consisted of all AML patients with a t(8;21) translocation, and the second cluster consisted of AML patients with a normal karyotype carrying a FLT3 internal tandem duplication. These findings suggest that we identified a novel proto-oncogene that may be causally linked to certain types of human leukemia.
Collapse
Affiliation(s)
- Eric van den Akker
- Department of Hematology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Bijl J, Sauvageau M, Thompson A, Sauvageau G. High incidence of proviral integrations in the Hoxa locus in a new model of E2a-PBX1-induced B-cell leukemia. Genes Dev 2005; 19:224-33. [PMID: 15655112 PMCID: PMC545883 DOI: 10.1101/gad.1268505] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Relevant mouse models of E2a-PBX1-induced pre-B cell leukemia are still elusive. We now report the generation of a pre-B leukemia model using E2a-PBX1 transgenic mice, which lack mature and precursor T-cells as a result of engineered loss of CD3epsilon expression (CD3epsilon(-/-)). Using insertional mutagenesis and inverse-PCR, we show that B-cell leukemia development in the E2a-PBX1 x CD3epsilon(-/-) compound transgenic animals is significantly accelerated when compared to control littermates, and document several known and novel integrations in these tumors. Of all common integration sites, a small region of 19 kb in the Hoxa gene locus, mostly between Hoxa6 and Hoxa10, represented 18% of all integrations in the E2a-PBX1 B-cell leukemia and was targeted in 86% of these leukemias compared to 17% in control tumors. Q-PCR assessment of expression levels for most Hoxa cluster genes in these tumors revealed an unprecedented impact of the proviral integrations on Hoxa gene expression, with tumors having one to seven different Hoxa genes overexpressed at levels up to 6600-fold above control values. Together our studies set the stage for modeling E2a-PBX1-induced B-cell leukemia and shed new light on the complexity pertaining to Hox gene regulation. In addition, our results show that the Hoxa gene cluster is preferentially targeted in E2a-PBX1-induced tumors, thus suggesting functional collaboration between these oncogenes in pre-B-cell tumors.
Collapse
Affiliation(s)
- Janet Bijl
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
23
|
Nielsen AA, Sørensen AB, Schmidt J, Pedersen FS. Analysis of wild-type and mutant SL3-3 murine leukemia virus insertions in the c-myc promoter during lymphomagenesis reveals target site hot spots, virus-dependent patterns, and frequent error-prone gap repair. J Virol 2005; 79:67-78. [PMID: 15596802 PMCID: PMC538719 DOI: 10.1128/jvi.79.1.67-78.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The murine leukemia retrovirus SL3-3 induces lymphomas in the T-cell compartment of the hematopoetic system when it is injected into newborn mice of susceptible strains. Previously, our laboratory reported on a deletion mutant of SL3-3 that induces T-cell tumors faster than the wild-type virus (S. Ethelberg, A. B. Sorensen, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:9796-9799, 1997). PCR analyses of proviral integrations in the promoter region of the c-myc proto-oncogene in lymphomas induced by wild-type SL3-3 [SL3-3(wt)] and the enhancer deletion mutant displayed a difference in targeting frequency into this locus. We here report on patterns of proviral insertions into the c-myc promoter region from SL3-3(wt), the faster variant, as well as other enhancer variants from a total of approximately 250 tumors. The analysis reveals (i) several integration site hot spots in the c-myc promoter region, (ii) differences in integration patterns between SL3-3(wt) and enhancer deletion mutant viruses, (iii) a correlation between tumor latency and the number of proviral insertions into the c-myc promoter, and (iv) a [5'-(A/C/G)TA(C/G/T)-3'] integration site consensus sequence. Unexpectedly, about 12% of the sequenced insertions were associated with point mutations in the direct repeat flanking the provirus. Based on these results, we propose a model for error-prone gap repair of host-provirus junctions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Consensus Sequence
- DNA Repair
- Enhancer Elements, Genetic
- Female
- Gene Deletion
- Genes, myc
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/pathology
- Leukemia, Experimental/virology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
- Male
- Mice
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-myc/genetics
- Proviruses/genetics
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
- Virus Integration/genetics
Collapse
|
24
|
Johnson C, Lobelle-Rich PA, Puetter A, Levy LS. Substitution of feline leukemia virus long terminal repeat sequences into murine leukemia virus alters the pattern of insertional activation and identifies new common insertion sites. J Virol 2005; 79:57-66. [PMID: 15596801 PMCID: PMC538733 DOI: 10.1128/jvi.79.1.57-66.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recombinant retrovirus, MoFe2-MuLV (MoFe2), was constructed by replacing the U3 region of Moloney murine leukemia virus (M-MuLV) with homologous sequences from the FeLV-945 LTR. NIH/Swiss mice neonatally inoculated with MoFe2 developed T-cell lymphomas of immature thymocyte surface phenotype. MoFe2 integrated infrequently (0 to 9%) near common insertion sites (CISs) previously identified for either parent virus. Using three different strategies, CISs in MoFe2-induced tumors were identified at six loci, none of which had been previously reported as CISs in tumors induced by either parent virus in wild-type animals. Two of the newly identified CISs had not previously been implicated in lymphoma in any retrovirus model. One of these, designated 3-19, encodes the p101 regulatory subunit of phosphoinositide-3-kinase-gamma. The other, designated Rw1, is predicted to encode a protein that functions in the immune response to virus infection. Thus, substitution of FeLV-945 U3 sequences into the M-MuLV long terminal repeat (LTR) did not alter the target tissue for M-MuLV transformation but significantly altered the pattern of CIS utilization in the induction of T-cell lymphoma. These observations support a growing body of evidence that the distinctive sequence and/or structure of the retroviral LTR determines its pattern of insertional activation. The findings also demonstrate the oligoclonal nature of retrovirus-induced lymphomas by demonstrating proviral insertions at CISs in subdominant populations in the tumor mass. Finally, the findings demonstrate the utility of novel recombinant retroviruses such as MoFe2 to contribute new genes potentially relevant to the induction of lymphoid malignancy.
Collapse
Affiliation(s)
- Chassidy Johnson
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
25
|
Laufs S, Nagy KZ, Giordano FA, Hotz-Wagenblatt A, Zeller WJ, Fruehauf S. Insertion of Retroviral Vectors in NOD/SCID Repopulating Human Peripheral Blood Progenitor Cells Occurs Preferentially in the Vicinity of Transcription Start Regions and in Introns. Mol Ther 2004; 10:874-81. [PMID: 15509505 DOI: 10.1016/j.ymthe.2004.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 08/02/2004] [Indexed: 11/24/2022] Open
Abstract
Reports on insertional "genotoxicity" in patients have created intense interest in characterizing retroviral vector integrations on the genomic level. The retroviral vector SF91m3 was used for transduction of human peripheral blood progenitor cells (PBPC). These PBPC were transplanted into nonobese diabetic/severe combined immunodeficient mice. A total of 186 retroviral vector integration sites were isolated by ligation-mediated PCR from chimeric mouse bone marrow of five PBPC donors, sequenced, and blasted against the human genome. Preferred integration near the transcription start regions, within CpG islands, and within Alu regions was observed. Detailed analysis of targeted RefSeq genes showed a favored integration within the first intron. Integrations were most common in genes coding for signaling proteins, transcription factors, and kinases. In all genes targeted independently multiple times the respective orientation of the provirus within the gene was identical, indicating integration hot spot regions and similar steric determinants for integration sites. Possible explanations for these findings could be nonrandom vector integration, clonal selection due to gene expression interference, or engraftment issues related to gene insertion in signaling and cell cycle genes. The low frequency of integrations in exons may be reassuring as to the safety of retroviral gene therapy with normal human PBPC.
Collapse
Affiliation(s)
- Stephanie Laufs
- Research Program Innovative Cancer Diagnostics and Therapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Joosten M, Blázquez-Domingo M, Lindeboom F, Boulmé F, Van Hoven-Beijen A, Habermann B, Löwenberg B, Beug H, Müllner EW, Delwel R, Von Lindern M. Translational control of putative protooncogene Nm23-M2 by cytokines via phosphoinositide 3-kinase signaling. J Biol Chem 2004; 279:38169-76. [PMID: 15247270 DOI: 10.1074/jbc.m401283200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expansion and differentiation of hematopoietic progenitors is regulated by cytokine and growth factor signaling. To examine how signal transduction controls the gene expression program required for progenitor expansion, we screened ATLAS filters with polysome-associated mRNA derived from erythroid progenitors stimulated with erythropoietin and/or stem cell factor. The putative proto-oncogene nucleoside diphosphate kinase B (ndpk-B or nm23-M2) was identified as an erythropoietin and stem cell factor target gene. Factor-induced expression of nm23-M2 was regulated specifically at the level of polysome association by a phosphoinositide 3-kinase-dependent mechanism. Identification of the transcription initiation site revealed that nm23-M2 mRNA starts with a terminal oligopyrimidine sequence, which is known to render mRNA translation dependent on mitogenic factors. Recently, the nm23-M2 locus was identified as a common leukemia retrovirus integration site, suggesting that it plays a role in leukemia development. The expression of Nm23 from a retroviral vector in the absence of its 5'-untranslated region caused constitutive polysome association of nm23-M2. Polysome-association and protein expression of endogenous nm23-M2 declined during differentiation of erythroid progenitors, suggesting a role for Nm23-M2 in progenitor expansion. Taken together, nm23-m2 exemplifies that cytokine-dependent control of translation initiation is an important mechanism of gene expression regulation.
Collapse
Affiliation(s)
- Marieke Joosten
- Department of Hematology, Erasmus Medical Center, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S, Flanegan J, Heilman S, Garrett L, Dutra A, Anderson S, Pihan GA, Wolff L, Liu PP. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U S A 2004; 101:4924-9. [PMID: 15044690 PMCID: PMC387350 DOI: 10.1073/pnas.0400930101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia subtype M4 with eosinophilia is associated with a chromosome 16 inversion that creates a fusion gene CBFB-MYH11. We have previously shown that CBFB-MYH11 is necessary but not sufficient for leukemogenesis. Here, we report the identification of genes that specifically cooperate with CBFB-MYH11 in leukemogenesis. Neonatal injection of Cbfb-MYH11 knock-in chimeric mice with retrovirus 4070A led to the development of acute myeloid leukemia in 2-5 months. Each leukemia sample contained one or a few viral insertions, suggesting that alteration of one gene could be sufficient to synergize with Cbfb-MYH11. The chromosomal position of 67 independent retroviral insertion sites (RISs) was determined, and 90% of the RISs mapped within 10 kb of a flanking gene. In total, 54 candidate genes were identified; six of them were common insertion sites (CISs). CIS genes included members of a zinc finger transcription factors family, Plag1 and Plagl2, with eight and two independent insertions, respectively. CIS genes also included Runx2, Myb, H2T24, and D6Mm5e. Comparison of the remaining 48 genes with single insertion sites with known leukemia-associated RISs indicated that 18 coincide with known RISs. To our knowledge, this retroviral genetic screen is the first to identify genes that cooperate with a fusion gene important for human myeloid leukemia.
Collapse
Affiliation(s)
- L H Castilla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Alberich Jordà M, Rayman N, Tas M, Verbakel SE, Battista N, van Lom K, Löwenberg B, Maccarrone M, Delwel R. The peripheral cannabinoid receptor Cb2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood 2004; 104:526-34. [PMID: 15039279 DOI: 10.1182/blood-2003-12-4357] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cb2, the gene encoding the peripheral cannabinoid receptor, is located in a common virus integration site and is overex-pressed in retrovirally induced murine myeloid leukemias. Here we show that this G protein-coupled receptor (GPCR) is also aberrantly expressed in a high percentage of human acute myeloid leukemias. We investigated the mechanism of transformation by Cb2 and demonstrate that aberrant expression of this receptor on hematopoietic precursor cells results in distinct effects depending on the ligand used. Cb2-expressing myeloid precursors migrate upon stimulation by the endocannabinoid 2-arachidonoylglycerol and are blocked in neutrophilic differentiation upon exposure to another ligand, CP55940. Both effects depend on the activation of G(alphai) proteins and require the mitogen-induced extracellular kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. Down-regulation of cyclic adenosine monophosphate (cAMP) levels upon G(alphai) activation is important for migration induction but is irrelevant for the maturation arrest. Moreover, the highly conserved G protein-interacting DRY motif, present in the second intracellular loop of GPCRs, is critical for migration but unimportant for the differentiation block. This suggests that the Cb2-mediated differentiation block requires interaction of G(alphai) proteins with other currently unknown motifs. This indicates a unique mechanism by which a transforming GPCR, in a ligand-dependent manner, causes 2 distinct oncogenic effects: altered migration and block of neutrophilic development.
Collapse
|
29
|
Erkeland SJ, Valkhof M, Heijmans-Antonissen C, van Hoven-Beijen A, Delwel R, Hermans MHA, Touw IP. Large-scale identification of disease genes involved in acute myeloid leukemia. J Virol 2004; 78:1971-80. [PMID: 14747562 PMCID: PMC369447 DOI: 10.1128/jvi.78.4.1971-1980.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/27/2003] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases in which chromosomal aberrations, small insertions or deletions, or point mutations in certain genes have profound consequences for prognosis. However, the majority of AML patients present without currently known genetic defects. Retroviral insertion mutagenesis in mice has become a powerful tool for identifying new disease genes involved in the pathogenesis of leukemia and lymphoma. Here we have used the Graffi-1.4 strain of murine leukemia virus, which causes predominantly AML, in a screen to identify novel genes involved in the pathogenesis of this disease. We report 79 candidate disease genes in common integration sites (CISs) and 15 genes whose family members previously were found to be affected in other studies. The majority of the identified sequences (60%) were not found in lymphomas and monocytic leukemias in previous screens, suggesting a specific involvement in AML. Although most of the virus integrations occurred in or near the 5' or 3' ends of the genes, suggesting deregulation of gene expression as a consequence of virus integration, 18 CISs were located exclusively within the genes, conceivably causing gene disruption.
Collapse
Affiliation(s)
- Stefan J Erkeland
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Wei SJ, Trempus CS, Ali RC, Hansen LA, Tennant RW. 12-O-Tetradecanoylphorbol-13-acetate and UV Radiation-induced Nucleoside Diphosphate Protein Kinase B Mediates Neoplastic Transformation of Epidermal Cells. J Biol Chem 2004; 279:5993-6004. [PMID: 14623877 DOI: 10.1074/jbc.m310820200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The molecular changes associated with early skin carcinogenesis are largely unknown. We have previously identified 11 genes whose expression was up- or down-regulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse skin keratinocyte progenitor cells (Wei, S.-J., Trempus, C. S., Cannon, R. E., Bortner, C. D., and Tennant, R. W. (2003) J. Biol. Chem. 278, 1758-1768). Here, we show an induction of a nucleoside diphosphate protein kinase B (NDPK-B) gene in response to TPA or UV radiation (UVR). TPA or UVR significantly induced the expression of NDPK-B both in vivo hyperplastic mouse skin and in vitro mouse JB6 Cl 41-5a epidermal cells. Indeed, this gene was also up-regulated in TPA or UVR-mediated skin tumors including papillomas, spindle cell tumors, and squamous cell carcinomas, relative to adjacent normal skins. Functional studies by constitutive expression of nm23-M2/NDPK-B in TPA susceptible JB6 Cl 41-5a and TPA-resistant JB6 Cl 30-7b preneoplastic epidermal cell lines showed a remarkable gene dosage-dependent increase in foci-forming activity, as well as an enhancement in the efficiency of neoplastic transformation of these cells in soft agar but no effect on proliferation in monolayer cultures. Interestingly, stable transfection of the nm23-M2/NDPK-B del-RGD or G106A mutant gene in JB6 Cl 41-5a cells selectively abrogated NDPK-B-induced cellular transformation, implicating a possible Arg105-Gly106-Asp107 regulatory role in early skin carcinogenesis.
Collapse
Affiliation(s)
- Sung-Jen Wei
- National Center for Toxicogenomics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Recombinant viral vectors have allowed gene transfer to be developed as a promising approach to the treatment of genetic diseases. Recently, gene therapy of children with X-linked severe combined immune deficiency resulted in impressive levels of immune reconstitution--a triumph that was later overshadowed by the development of leukaemia in two patients. What were the causes of this cancer, and how can the therapeutic benefits of gene therapy be achieved while minimizing risk to the patient?
Collapse
Affiliation(s)
- Donald B Kohn
- Division of Research Immunology/BMT, Childrens Hospital Los Angeles, USC Keck School of Medicine, 4650 Sunset Boulevard, Los Angeles, California 90027, USA.
| | | | | |
Collapse
|
32
|
Brümmendorf TH, Orlic D, Fibbe WE, Sharkis S, Kanz L. Meeting summary: International Symposium and Workshop on Hematopoietic Stem Cells IV, University of Tübingen, Germany, September 19-21, 2002. Exp Hematol 2003; 31:475-82. [PMID: 12829022 DOI: 10.1016/s0301-472x(03)00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tim H Brümmendorf
- Department of Hematology, Oncology and Immunology, University Medical Center II, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
33
|
Jorda MA, Rayman N, Valk P, De Wee E, Delwel R. Identification, characterization, and function of a novel oncogene: the peripheral cannabinoid receptor Cb2. Ann N Y Acad Sci 2003; 996:10-6. [PMID: 12799277 DOI: 10.1111/j.1749-6632.2003.tb03227.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By means of retroviral insertional mutagenesis, we identified a novel common virus integration site (cVIS) (Evi11) in murine leukemias, and demonstrated that Cb2, encoding the peripheral cannabinoid receptor, is the potential proto-oncogene located in that region. Cb2 is a 7-transmembrane G protein-coupled receptor (GPCR), which is normally expressed on B lymphocytes. Using transwell assays we observed strong migration of Cb2-expressing cells upon stimulation with 2-arachidonoylglycerol (2-AG), a potent endocannabinoid. Overexpression of Cb2 receptor on murine myeloid precursor cells causes a block of neutrophilic differentiation, a major characteristic of myeloid leukemia. Intriguingly, we could not detect functional Cb2 receptors on normal murine bone marrow precursor cells. Furthermore, analysis of human acute myeloid leukemia (AML) samples revealed the presence of CB2 mRNA transcripts in several cases. Furthermore, migration could be induced by 2-AG when analyzed in one of the patient samples. Our data suggest that the initially identified cVIS, Evi11, encodes for a murine onco-protein and that human CB2 may be involved in certain cases of human AML as well.
Collapse
|
34
|
Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101:2099-114. [PMID: 12511419 DOI: 10.1182/blood-2002-07-2314] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent conceptual and technical improvements have resulted in clinically meaningful levels of gene transfer into repopulating hematopoietic stem cells. At the same time, evidence is accumulating that gene therapy may induce several kinds of unexpected side effects, based on preclinical and clinical data. To assess the therapeutic potential of genetic interventions in hematopoietic cells, it will be important to derive a classification of side effects, to obtain insights into their underlying mechanisms, and to use rigorous statistical approaches in comparing data. We here review side effects related to target cell manipulation; vector production; transgene insertion and expression; selection procedures for transgenic cells; and immune surveillance. We also address some inherent differences between hematopoiesis in the most commonly used animal model, the laboratory mouse, and in humans. It is our intention to emphasize the need for a critical and hypothesis-driven analysis of "transgene toxicology," in order to improve safety, efficiency, and prognosis for the yet small but expanding group of patients that could benefit from gene therapy.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|