1
|
Martinez-Jaramillo E, Jamali F, Abdalbari FH, Abdulkarim B, Jean-Claude BJ, Telleria CM, Sabri S. Pro-Oxidant Auranofin and Glutathione-Depleting Combination Unveils Synergistic Lethality in Glioblastoma Cells with Aberrant Epidermal Growth Factor Receptor Expression. Cancers (Basel) 2024; 16:2319. [PMID: 39001381 PMCID: PMC11240359 DOI: 10.3390/cancers16132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type (EGFRwt) gene amplification and/or EGFRvIII activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant systems to withstand the excessive production of reactive oxygen species (ROS). The impact of EGFRwt or EGFRvIII overexpression on the response to a Trx/GSH co-targeting strategy is unknown. In this study, we investigated Trx/GSH co-targeting in the context of EGFR overexpression in GBM. Auranofin is a thioredoxin reductase (TrxR) inhibitor, FDA-approved for rheumatoid arthritis. L-buthionine-sulfoximine (L-BSO) inhibits GSH synthesis by targeting the glutamate-cysteine ligase catalytic (GCLC) enzyme subunit. We analyzed the mechanisms of cytotoxicity of auranofin and the interaction between auranofin and L-BSO in U87MG, U87/EGFRwt, and U87/EGFRvIII GBM isogenic GBM cell lines. ROS-dependent effects were assessed using the antioxidant N-acetylsteine. We show that auranofin decreased TrxR1 activity and increased ROS. Auranofin decreased cell vitality and colony formation and increased protein polyubiquitination through ROS-dependent mechanisms, suggesting the role of ROS in auranofin-induced cytotoxicity in the three cell lines. ROS-dependent PARP-1 cleavage was associated with EGFRvIII downregulation in U87/EGFRvIII cells. Remarkably, the auranofin and L-BSO combination induced the significant depletion of intracellular GSH and synergistic cytotoxicity regardless of EGFR overexpression. Nevertheless, molecular mechanisms associated with cytotoxicity were modulated to a different extent among the three cell lines. U87/EGFRvIII exhibited the most prominent ROS increase, P-AKT(Ser-473), and AKT decrease along with drastic EGFRvIII downregulation. U87/EGFRwt and U87/EGFRvIII displayed lower basal intracellular GSH levels and synergistic ROS-dependent DNA damage compared to U87MG cells. Our study provides evidence for ROS-dependent synergistic cytotoxicity of auranofin and L-BSO combination in GBM in vitro. Unraveling the sensitivity of EGFR-overexpressing cells to auranofin alone, and synergistic auranofin and L-BSO combination, supports the rationale to repurpose this promising pro-oxidant treatment strategy in GBM.
Collapse
Affiliation(s)
- Elvis Martinez-Jaramillo
- Experimental Pathology Unit, McGill University, Montréal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Fatemeh Jamali
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Farah H Abdalbari
- Experimental Pathology Unit, McGill University, Montréal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Bassam Abdulkarim
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department of Oncology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Bertrand J Jean-Claude
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H4A 3J1, Canada
- Cancer Drug Research Laboratory, Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, McGill University, Montréal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Siham Sabri
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Oopkaew L, Injongkol Y, Rimsueb N, Mahalapbutr P, Choowongkomon K, Hadsadee S, Rojanathanes R, Rungrotmongkol T. Targeted Therapy with Cisplatin-Loaded Calcium Citrate Nanoparticles Conjugated with Epidermal Growth Factor for Lung Cancer Treatment. ACS OMEGA 2024; 9:25668-25677. [PMID: 38911765 PMCID: PMC11191089 DOI: 10.1021/acsomega.3c08969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with high incidence rates for new cases. Conventional cisplatin (CDDP) therapy has limitations due to severe side effects from nonspecific targeting. To address this challenge, nanomedicine offers targeted therapies. In this study, cisplatin-loaded calcium citrate nanoparticles conjugated with epidermal growth factor (CaCit@CDDP-EGF NPs) were synthesized. The resulting nanodrug had a size below 350 nm with a cation charge. Based on density functional theory (DFT), the CaCit@CDDP NP model containing two citrates substituted on two chlorides exhibited a favorable binding energy of -5.42 eV, and the calculated spectrum at 261 nm closely matched the experimental data. CaCit@CDDP-EGF NPs showed higher inhibition rates against EGFR-expressed and mutant carcinoma cells compared to those of cisplatin while displaying lower cytotoxicity to lung fibroblast cells. Integrating in vitro experiments with in silico studies, these nanoparticles hold promise as a novel nanomedicine for targeted therapy in clinical applications.
Collapse
Affiliation(s)
- Lipika Oopkaew
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Yuwanda Injongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Natchanon Rimsueb
- National
Nanotechnology Center NANOTEC, National
Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
- Center
of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Sarinya Hadsadee
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Rojrit Rojanathanes
- Center of
Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Chemistry, Faculty of Science, Chulalongkorn
University Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Cerda‐Troncoso C, Grünenwald F, Arias‐Muñoz E, Cavieres VA, Caceres‐Verschae A, Hernández S, Gaete‐Ramírez B, Álvarez‐Astudillo F, Acuña RA, Ostrowski M, Burgos PV, Varas‐Godoy M. Chemo-small extracellular vesicles released in cisplatin-resistance ovarian cancer cells are regulated by the lysosomal function. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e157. [PMID: 38947172 PMCID: PMC11212338 DOI: 10.1002/jex2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024]
Abstract
Chemoresistance is a common problem in ovarian cancer (OvCa) treatment, where resistant cells, in response to chemotherapy, secrete small extracellular vesicles (sEVs), known as chemo-sEVs, that transfer resistance to recipient cells. sEVs are formed as intraluminal vesicles (ILVs) within multivesicular endosomes (MVEs), whose trafficking is regulated by Ras-associated binding (RAB) GTPases that mediate sEVs secretion or lysosomal degradation. A decrease in lysosomal function can promote sEVs secretion, but the relationship between MVEs trafficking pathways and sEVs secretion in OvCa chemoresistance is unclear. Here, we show that A2780cis cisplatin (CCDP) resistant OvCa cells had an increased number of MVEs and ILVs structures, higher levels of Endosomal Sorting Complex Required for Transport (ESCRTs) machinery components, and RAB27A compared to A2780 CDDP-sensitive OvCa cells. CDDP promoted the secretion of chemo-sEVs in A2780cis cells, enriched in DNA damage response proteins. A2780cis cells exhibited poor lysosomal function with reduced levels of RAB7, essential in MVEs-Lysosomal trafficking. The silencing of RAB27A in A2780cis cells prevents the Chemo-EVs secretion, reduces its chemoresistance and restores lysosomal function and levels of RAB7, switching them into an A2780-like cellular phenotype. Enhancing lysosomal function with rapamycin reduced chemo-sEVs secretion. Our results suggest that adjusting the balance between secretory MVEs and lysosomal MVEs trafficking could be a promising strategy for overcoming CDDP chemoresistance in OvCa.
Collapse
Affiliation(s)
- Cristóbal Cerda‐Troncoso
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
| | - Felipe Grünenwald
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Eloísa Arias‐Muñoz
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Albano Caceres‐Verschae
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Sergio Hernández
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Belén Gaete‐Ramírez
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | | | - Rodrigo A. Acuña
- Centro de Medicina Regenerativa, Facultad de MedicinaClínica Alemana Universidad del DesarrolloSantiagoChile
| | - Matias Ostrowski
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Universidad de Buenos Aires (UBA)Buenos AiresArgentina
| | - Patricia V. Burgos
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
| | - Manuel Varas‐Godoy
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
- Advanced Center for Chronic DiseasesSantiagoChile
| |
Collapse
|
4
|
Bisaso KR, Mukonzo JK, Ette EI. A mechanistic assessment of the nature of pharmacodynamic drug-drug interaction in vivo and in vitro. In Silico Pharmacol 2023; 11:31. [PMID: 37899968 PMCID: PMC10611690 DOI: 10.1007/s40203-023-00168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Combination pharmacotherapy is becoming increasingly necessary because most diseases are pathophysiologically controlled at the subcellular level by target proteins in a combinatorial manner. We demonstrate the application of the stimulus-response mechanistic model in characterising the drug and physiological properties of pharmacodynamic drug-drug interactions (PDDI) using previously published in vitro and in vivo drug combination experiments. The in vitro experiment tested the effect of a combination of SCH66336 and 4-HPR on the survival of in squamous cell carcinoma cell lines, while the in vivo experiment tested the effect of a combination of cetuximab and cisplatin on tumour growth inhibition in female xenograft mice. The model adequately described both experiments, quantified both system and drug properties and predicted the nature of the PDDI mechanism. Strong baseline signals of 7.35 and 610 units existed in the in vitro and in vivo experiments respectively. An overall synergistic relationship (interaction index = 1.03E-8) was detected in the in vitro experiment. In the in vivo model, the overall interaction index was 70,139.45 implying an antagonistic interaction between the cisplatin and the cetuximab signals.
Collapse
Affiliation(s)
| | - Jackson K. Mukonzo
- Deparment of Pharmacology, Makerere University College of Health Sciences, Kampala, Uganda
| | | |
Collapse
|
5
|
Xi X, Lei F, Gao K, Li J, Liu R, Karpf AR, Bronich TK. Ligand-installed polymeric nanocarriers for combination chemotherapy of EGFR-positive ovarian cancer. J Control Release 2023; 360:872-887. [PMID: 37478915 DOI: 10.1016/j.jconrel.2023.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Combination chemotherapeutic drugs administered via a single nanocarrier for cancer treatment provides benefits in reducing dose-limiting toxicities, improving the pharmacokinetic properties of the cargo and achieving spatial-temporal synchronization of drug exposure for maximized synergistic therapeutic effects. In an attempt to develop such a multi-drug carrier, our work focuses on functional multimodal polypeptide-based polymeric nanogels (NGs). Diblock copolymers poly (ethylene glycol)-b-poly (glutamic acid) (PEG-b-PGlu) modified with phenylalanine (Phe) were successfully synthesized and characterized. Self-assembly behavior of the resulting polymers was utilized for the synthesis of NGs with hydrophobic domains in cross-linked polyion cores coated with inert PEG chains. The resulting NGs were small (ca. 70 nm in diameter) and were able to encapsulate the combination of drugs with different physicochemical properties such as cisplatin and neratinib. Drug combination-loaded NGs exerted a selective synergistic cytotoxicity towards EGFR overexpressing ovarian cancer cells. Moreover, we developed ligand-installed EGFR-targeted NGs and tested them as an EGFR-overexpressing tumor-specific delivery system. Both in vitro and in vivo, ligand-installed NGs displayed preferential associations with EGFR (+) tumor cells. Ligand-installed NGs carrying cisplatin and neratinib significantly improved the treatment response of ovarian cancer xenografts. We also confirmed the importance of simultaneous administration of the dual drug combination via a single NG system which provides more therapeutic benefit than individual drug-loaded NGs administered at equivalent doses. This work illustrates the potential of our carrier system to mediate efficient delivery of a drug combination to treat EGFR overexpressing cancers.
Collapse
Affiliation(s)
- Xinyuan Xi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Fan Lei
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Keliang Gao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7363, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Hu CY, Su BH, Lee YC, Wang CT, Yang ML, Shen WT, Fu JT, Chen SY, Huang WY, Ou CH, Tsai YS, Kuo FC, Shiau AL, Shieh GS, Wu CL. Interruption of the long non-coding RNA HOTAIR signaling axis ameliorates chemotherapy-induced cachexia in bladder cancer. J Biomed Sci 2022; 29:104. [PMID: 36471329 PMCID: PMC9724340 DOI: 10.1186/s12929-022-00887-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cisplatin-based chemotherapy is the first line of treatment for bladder cancer. However, cisplatin induces muscle wasting associated with NF-κB and cancer cachexia. HOTAIR, an oncogenic long non-coding RNA (lncRNA), promotes cancer progression in different cancers. Crosstalk between HOTAIR and NF-κB is documented. Prothymosin α (ProT) plays important roles in cancer progression and inflammation. However, the potential link between HOTAIR, ProT, and cisplatin-induced cancer cachexia remains unexplored. Here, we investigated the contribution of HOTAIR in cisplatin-induced cancer cachexia and dissected the potential signaling cascade involving the epidermal growth factor receptor (EGFR), ProT, NF-κB, and HOTAIR. MATERIALS AND METHODS Expression of ProT and HOTAIR transcripts and their correlations in tumor tissues of bladder cancer patients and bladder cancer cell lines were determined by RT-qPCR. Next, levels of phospho-EGFR, EGFR, phospho-NF-κB, and NF-κB were examined by immunoblot analysis in human bladder cancer cells treated with cisplatin. Expression of HOTAIR in cisplatin-treated cells was also assessed by RT-qPCR. Pharmacological inhibitors and overexpression and knockdown approaches were exploited to decipher the signaling pathway. The murine C2C12 myoblasts were used as an in vitro muscle atrophy model. The syngeneic murine MBT-2 bladder tumor was used to investigate the role of mouse Hotair in cisplatin-induced cancer cachexia. RESULTS Expression of ProT and HOTAIR was higher in bladder tumors than in normal adjacent tissues. There were positive correlations between ProT and HOTAIR expression in clinical bladder tumors and bladder cancer cell lines. Cisplatin treatment increased EGFR and NF-κB activation and upregulated ProT and HOTAIR expression in bladder cancer cells. ProT overexpression increased, whereas ProT knockdown decreased, HOTAIR expression. Notably, cisplatin-induced HOTAIR upregulation was abrogated by EGFR inhibitors or ProT knockdown. ProT-induced HOTAIR overexpression was diminished by NF-κB inhibitors. HOTAIR overexpression enhanced, whereas its knockdown reduced, cell proliferation, cachexia-associated pro-inflammatory cytokine expression, and muscle atrophy. Cachexia-associated symptoms were ameliorated in mice bearing Hotair-knockdown bladder tumors undergoing cisplatin treatment. CONCLUSIONS We demonstrate for the first time a critical role for HOTAIR and identify the involvement of the EGFR-ProT-NF-κB-HOTAIR signaling axis in cisplatin-induced cachexia in bladder cancer and likely other cancers. Our findings also provide therapeutic targets for this disease.
Collapse
Affiliation(s)
- Che-Yuan Hu
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng Li Road, Tainan, 704302 Taiwan
| | - Bing-Hua Su
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Che Lee
- grid.413878.10000 0004 0572 9327Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chung-Teng Wang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701401 Taiwan
| | - Mei-Lin Yang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701401 Taiwan ,grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Wan-Ting Shen
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701401 Taiwan
| | - Jing-Ting Fu
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701401 Taiwan
| | - Shih-Yao Chen
- grid.411636.70000 0004 0634 2167Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Wei-Yun Huang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701401 Taiwan
| | - Chien-Hui Ou
- grid.64523.360000 0004 0532 3255Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng Li Road, Tainan, 704302 Taiwan
| | - Yuh-Shyan Tsai
- grid.64523.360000 0004 0532 3255Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng Li Road, Tainan, 704302 Taiwan
| | - Feng-Chih Kuo
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ai-Li Shiau
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701401 Taiwan ,grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Gia-Shing Shieh
- grid.64523.360000 0004 0532 3255Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng Li Road, Tainan, 704302 Taiwan ,grid.454740.6Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Chao-Liang Wu
- grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan ,grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701401 Taiwan
| |
Collapse
|
7
|
Xing J, Chen W, Chen K, Zhu S, Lin F, Qi Y, Zhang Y, Han S, Rao T, Ruan Y, Zhao S, Yu W, Cheng F. TFAP2C Knockdown Sensitizes Bladder Cancer Cells to Cisplatin Treatment via Regulation of EGFR and NF-κB. Cancers (Basel) 2022; 14:cancers14194809. [PMID: 36230734 PMCID: PMC9562889 DOI: 10.3390/cancers14194809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Bladder cancer (BCa) is considered one of the most common neoplasms of the urology system. Cisplatin-based chemotherapy has been the primary treatment for patients with advanced or metastatic BCa. Nevertheless, cisplatin resistance often limits the treatment of bladder cancer. We expect to find approaches to improve the therapeutic efficacy of cisplatin in bladder cancer. In recent years, many studies have shown that transcription factor AP-2 gamma (TFAP2C) acts as a key player in cancer development and and its expression level is closely related to the sensitivity of tumors to cisplatin. Our study investigated whether TFAP2C affects the sensitivity of BCa cells to cisplatin and the possible mechanisms. We found that TFAP2C expression was significantly upregulated in most BCa tissues compared to adjacent normal tissues. The present study confirmed that TFAP2C knockdown enhanced the anti-tumor effects of cisplatin by decreasing cisplatin-induced activation levels of epidermal growth factor receptor (EGFR) and nuclear factor kappaB (NF-κB). Specifically, this study provides a novel approach to improve the efficacy of cisplatin. Abstract Cisplatin is the first-line chemotherapy for advanced or metastatic bladder cancer. Nevertheless, approximately half of patients with BCa are insensitive to cisplatin therapy or develop cisplatin resistance during the treatment process. Therefore, it is especially crucial to investigate ways to enhance the sensitivity of tumor cells to cisplatin. Transcription factor AP-2 gamma (TFAP2C) is involved in cancer development and chemotherapy sensitivity. However, its relationship with chemotherapy has not been studied in BCa. In this study, we aimed to investigate the therapeutic potential of TFAP2C in human BCa. Results based on TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) data showed that TFAP2C expression was upregulated in BCa tissues and that its high expression was associated with poor prognosis. Meanwhile, we demonstrated the overexpression of TFAP2C in BCa clinical specimens. Subsequently, in vitro, we knocked down TFAP2C in BCa cells and found that TFAP2C knockdown further increased cell cycle arrest and apoptosis caused by cisplatin. In addition, the inhibitory effect of cisplatin on BCa cell migration and invasion was enhanced by TFAP2C knockdown. Our data indicated that cisplatin increased epidermal growth factor receptor (EGFR) and nuclear factor-kappaB (NF-κB) activation levels, but TFAP2C knockdown suppressed this effect. Finally, in vivo data further validated these findings. Our study showed that TFAP2C knockdown affected the activation levels of EGFR and NF-κB and enhanced the anti-tumor effects of cisplatin in vivo and in vitro. This provides a new direction to improve the efficacy of traditional cisplatin chemotherapy.
Collapse
Affiliation(s)
- Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shaoming Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yucheng Qi
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunlong Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| |
Collapse
|
8
|
Liu R, Zhang W, Gou P, Berthelet J, Nian Q, Chevreux G, Legros V, Moroy G, Bui LC, Wang L, Dupret JM, Deshayes F, Lima FR. Cisplatin causes covalent inhibition of protein-tyrosine phosphatase 1B (PTP1B) through reaction with its active site cysteine: Molecular, cellular and in vivo mice studies. Biomed Pharmacother 2022; 153:113372. [PMID: 35809481 DOI: 10.1016/j.biopha.2022.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a critical regulator of different signalling cascades such as the EGFR pathway. The biological importance of PTP1B is further evidenced by knockout mice studies and the identification of recurrent mutations/deletions in PTP1B linked to metabolic and oncogenic alterations. Cisplatin is among the most widely used anticancer drug. The biological effects of cisplatin are thought to arise primarily from DNA damaging events involving cisplatin-DNA adducts. However, increasing evidence indicate that the biological properties of cisplatin could also rely on the perturbation of other processes such as cell signalling through direct interaction with certain cysteine residues in proteins. Here, we provide molecular, cellular and in vivo evidence suggesting that PTP1B is a target of cisplatin. Mechanistic studies indicate that cisplatin inhibited PTP1B in an irreversible manner and binds covalently to the catalytic cysteine residue of the enzyme. Accordingly, experiments conducted in cells and mice exposed to cisplatin showed inhibition of endogenous PTP1B and concomitant increase in tyrosine phosphorylation of EGFR. These findings are consistent with previous studies showing tyrosine phosphorylation-dependent activation of the EGFR pathway by cisplatin and with recent studies suggesting PTP1B inhibition by cisplatin and other platinum complexes. Importantly, our work provides novel mechanistic evidence that PTP1B is a protein target of cisplatin and is inhibited by this drug at molecular, cellular and in vivo levels. In addition, our work may contribute to the understanding of the pathways undergoing modulation upon cisplatin administration beyond of the established genotoxic effect of cisplatin.
Collapse
Affiliation(s)
- Rongxing Liu
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Wenchao Zhang
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Panhong Gou
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Université Paris Cité, INSERM, Institut de RechercheSaint Louis, UMRS 1131, F-75010 Paris, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France; Université Paris Cité, CNRS, Centre Epigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Qing Nian
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France; Department of Blood Transfusion, Sichuan ProvincialPeople's Hospital, University of Electronic Science and Technology of China andChinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Gautier Moroy
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Linh-Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jean-Marie Dupret
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Frédérique Deshayes
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| |
Collapse
|
9
|
Luo Y, Xiang W, Liu Z, Yao L, Tang L, Tan W, Ye P, Deng J, Xiao J. Functional role of the SLC7A11-AS1/xCT axis in the development of gastric cancer cisplatin-resistance by a GSH-dependent mechanism. Free Radic Biol Med 2022; 184:53-65. [PMID: 35367340 DOI: 10.1016/j.freeradbiomed.2022.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023]
Abstract
Resistance to platinum-based chemotherapy is a major obstacle in gastric cancer (GC) treatment. Abundant long noncoding RNAs (lncRNAs) are reported to play important roles in tumorigenesis and drug resistance biology. Herein, we report that the SLC7A11-AS1 and xCT are involved in cisplatin resistance in GC. SLC7A11-AS1 was downregulated and xCT was upregulated in cisplatin-resistant GC tissues and cell lines. GC patients with low expression of SLC7A11-AS1 and high expression of xCT had a poor prognosis and relatively poor response to chemotherapy. Overexpression of SLC7A11-AS1 weakened GC growth, reduced intracellular GSH biosynthesis, enhanced intracellular reactive oxygen species (ROS) and conferred sensitivity to cisplatin to resistant GC cells in vitro and in vivo. Mechanistically, SLC7A11-AS1 directly suppressed xCT expression, while miR-33a-5p remarkably reduced SLC7A11-AS1 and xCT expression by directly targeting the SLC7A11-AS1 and xCT 3'UTRs. In addition, we found that low SLC7A11-AS1 expression activated the p38MAPK-JNK signaling pathway, and increased the expression of cisplatin export gene ATP7A and the GSH biosynthesis gene GCLM in GC.
Collapse
Affiliation(s)
- Yajun Luo
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of Medicine, Chengdu, Sichuan, 610500, People's Republic of China; Department of Gastrointestinal Surgery, Sichuan Cancer Hospital and Institute, Chengdu, Sichuan, People's Republic of China
| | - Wanping Xiang
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of Medicine, Chengdu, Sichuan, 610500, People's Republic of China; The Department of Thoracic Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Zilin Liu
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of Medicine, Chengdu, Sichuan, 610500, People's Republic of China
| | - Lin Yao
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of Medicine, Chengdu, Sichuan, 610500, People's Republic of China
| | - Linghan Tang
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of Medicine, Chengdu, Sichuan, 610500, People's Republic of China
| | - Wang Tan
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of Medicine, Chengdu, Sichuan, 610500, People's Republic of China
| | - Pengcheng Ye
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Jingyu Deng
- The Department of of Gastric Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Jiangwei Xiao
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of Medicine, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
10
|
Plangger A, Rath B, Hochmair M, Funovics M, Neumayer C, Zeillinger R, Hamilton G. Synergistic cytotoxicity of the CDK4 inhibitor Fascaplysin in combination with EGFR inhibitor Afatinib against Non-small Cell Lung Cancer. Invest New Drugs 2022; 40:215-223. [PMID: 34596822 PMCID: PMC8993745 DOI: 10.1007/s10637-021-01181-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
In the absence of suitable molecular markers, non-small cell lung cancer (NSCLC) patients have to be treated with chemotherapy with poor results at advanced stages. Therefore, the activity of the anticancer marine drug fascaplysin was tested against primary NSCLC cell lines established from pleural effusions. Cytotoxicity of the drug or combinations were determined using MTT assays and changes in intracellular phosphorylation by Western blot arrays. Fascaplysin revealed high cytotoxicity against NSCLC cells and exhibit an activity pattern different of the standard drug cisplatin. Furthermore, fascaplysin synergizes with the EGFR tyrosine kinase inhibitor (TKI) afatinib to yield a twofold increased antitumor effect. Interaction with the Chk1/2 inhibitor AZD7762 confirm the differential effects of fascplysin and cisplatin. Protein phosphorylation assays showed hypophosphorylation of Akt1/2/3 and ERK1/2 as well as hyperphosphorylation of stress response mediators of H1299 NSCLC cells. In conclusion, fascaplysin shows high cytotoxicity against pleural primary NSCLC lines that could be further boosted when combined with the EGFR TKI afatinib.
Collapse
Affiliation(s)
- Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Vienna, Austria
| | - Martin Funovics
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy Medical, University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Cao T, Lu Y, Wang Q, Qin H, Li H, Guo H, Ge M, Glass SE, Singh B, Zhang W, Dong J, Du F, Qian A, Tian Y, Wang X, Li C, Wu K, Fan D, Nie Y, Coffey RJ, Zhao X. A CGA/EGFR/GATA2 positive feedback circuit confers chemoresistance in gastric cancer. J Clin Invest 2022; 132:154074. [PMID: 35289315 PMCID: PMC8920335 DOI: 10.1172/jci154074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
De novo and acquired resistance are major impediments to the efficacy of conventional and targeted cancer therapy. In unselected gastric cancer (GC) patients with advanced disease, trials combining chemotherapy and an anti-EGFR monoclonal antibody have been largely unsuccessful. In an effort to identify biomarkers of resistance so as to better select patients for such trials, we screened the secretome of chemotherapy-treated human GC cell lines. We found that levels of CGA, the α-subunit of glycoprotein hormones, were markedly increased in the conditioned media of chemoresistant GC cells, and CGA immunoreactivity was enhanced in GC tissues that progressed on chemotherapy. CGA levels in plasma increased in GC patients who received chemotherapy, and this increase was correlated with reduced responsiveness to chemotherapy and poor survival. Mechanistically, secreted CGA was found to bind to EGFR and activate EGFR signaling, thereby conferring a survival advantage to GC cells. N-glycosylation of CGA at Asn52 and Asn78 is required for its stability, secretion, and interaction with EGFR. GATA2 was found to activate CGA transcription, whose increase, in turn, induced the expression and phosphorylation of GATA2 in an EGFR-dependent manner, forming a positive feedback circuit that was initiated by GATA2 autoregulation upon sublethal exposure to chemotherapy. Based on this circuit, combination strategies involving anti-EGFR therapies or targeting CGA with microRNAs (miR-708-3p and miR-761) restored chemotherapy sensitivity. These findings identify a clinically actionable CGA/EGFR/GATA2 circuit and highlight CGA as a predictive biomarker and therapeutic target in chemoresistant GC.
Collapse
Affiliation(s)
- Tianyu Cao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qi Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hongwei Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hao Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Minghui Ge
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Sarah E Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wenyao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Feng Du
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Airong Qian
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Cunxi Li
- Beijing Institute of Human Reproduction and Genetics Medicine, Beijing, China.,Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Napolitano V, Russo D, Morra F, Merolla F, Varricchio S, Ilardi G, Di Crescenzo RM, Martino F, Mascolo M, Celetti A, Tamagnone L, Staibano S. Neuropilin-1 Expression Associates with Poor Prognosis in HNSCC and Elicits EGFR Activation upon CDDP-Induced Cytotoxic Stress. Cancers (Basel) 2021; 13:3822. [PMID: 34359721 PMCID: PMC8345038 DOI: 10.3390/cancers13153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes a group of aggressive malignancies characterized by the overexpression of the epidermal growth factor receptor (EGFR) in 90% of cases. Neuropilin-1 (NRP-1) acts as an EGFR co-receptor, enhancing, upon ligand stimulation, EGFR signaling in several cellular models. However, NRP-1 remains poorly characterized in HNSCC. By utilizing in vitro cellular models of HNSCC, we report that NRP-1 is involved in the regulation of EGFR signaling. In fact, NRP-1 can lead to cisplatin-induced EGFR phosphorylation, an escape mechanism activated by cancer cells upon cytotoxic stress. Furthermore, we evaluated Neuropilin-1 staining in tissue samples of an HNSCC case series (n = 218), unraveling a prognostic value for the Neuropilin-1 tissue expression. These data suggest a potential role for NRP-1 in HNSCC cancer progression, expanding the repertoire of signaling in which NRP-1 is involved and eliciting the need for further investigations on NRP-1 as a suitable target for HNSCC novel therapeutic approaches.
Collapse
Affiliation(s)
- Virginia Napolitano
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
| | - Daniela Russo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Morra
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Francesco Merolla
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Silvia Varricchio
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Gennaro Ilardi
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Rosa Maria Di Crescenzo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Martino
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Massimo Mascolo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Angela Celetti
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Luca Tamagnone
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
- Fondazione Policlinico “A. Gemelli”, IRCCS, 00168 Roma, Italy
| | - Stefania Staibano
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| |
Collapse
|
13
|
Polymorphisms in EGFR Gene Predict Clinical Outcome in Unresectable Non-Small Cell Lung Cancer Treated with Radiotherapy and Platinum-Based Chemoradiotherapy. Int J Mol Sci 2021; 22:ijms22115605. [PMID: 34070597 PMCID: PMC8197839 DOI: 10.3390/ijms22115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/29/2023] Open
Abstract
For non-small cell lung cancer (NSCLC), radiotherapy (RT) and platinum-based chemotherapy (CHT) are among the main treatment options. On the other hand, radioresistance and cytotoxic drug resistance are common causes of failure. The epidermal growth factor receptor (EGFR) plays an important role in radioresponse and therapy resistance. We hypothesized that single nucleotide polymorphisms (SNPs) in the EGFR gene might affect individual sensitivity to these treatments, and thus, therapy outcome and prognosis. The association between functional EGFR SNPs and overall (OS), locoregional recurrence-free (LFRS), and metastasis-free (MFS) survival was examined in 436 patients with unresectable NSCLC receiving RT and platinum-based CHTRT. In a multivariate analysis, the rs712830 CC homozygotes showed reduced OS in the whole group (p = 0.039) and in the curative treatment subset (p = 0.047). The rs712829 TT genotype was strongly associated with decreased LRFS (p = 0.006), and the T-C haplotype was a risk factor for locoregional recurrence in our patients (p = 0.003). The rs2227983 GG alone and in combination with rs712829 T was an indicator of unfavorable LRFS (p = 0.028 and 0.002, respectively). Moreover, significant independent effects of these SNPs on OS, LRFS, and MFS were observed. Our results demonstrate that inherited EGFR gene variants may predict clinical outcomes in NSCLC treated with DNA damage-inducing therapy.
Collapse
|
14
|
Rahnamay Farnood P, Danesh Pazhooh R, Asemi Z, Yousefi B. DNA damage response and repair in pancreatic cancer development and therapy. DNA Repair (Amst) 2021; 103:103116. [PMID: 33882393 DOI: 10.1016/j.dnarep.2021.103116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is among fatal malignancies, with a dismal prognosis and a low survival rate of 5-10%. In both sporadic and inherited PC, gene alterations, such as BRCA1/2, PALB2, and ATM, can occur frequently. Currently, surgery, chemo- and radio-therapy are the most common therapeutic strategies for treating this cancer. DNA damage response (DDR) establishes multiple pathways that eliminate DNA damage sites to maintain genomic integrity. Various types of cancers and age-related diseases are associated with DDR machinery defects. According to the severity of the damage, DDR pathways respond appropriately to lesions through repairing damage, arresting the cell cycle, or apoptosis. Recently, novel agents, particularly those targeting DDR pathways, are being utilized to improve the response of many cancers to chemotherapy and radiotherapy. In this paper, we briefly reviewed DDR processes and their components, including DDR sensors, DDR mediators, and DDR transducers in the progression, prognosis, and treatment of PC.
Collapse
Affiliation(s)
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Phatak V, von Grabowiecki Y, Janus J, Officer L, Behan C, Aschauer L, Pinon L, Mackay H, Zanivan S, Norman JC, Kelly M, Le Quesne J, Muller PAJ. Mutant p53 promotes RCP-dependent chemoresistance coinciding with increased delivery of P-glycoprotein to the plasma membrane. Cell Death Dis 2021; 12:207. [PMID: 33627632 PMCID: PMC7904762 DOI: 10.1038/s41419-021-03497-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/03/2023]
Abstract
TP53 is the most frequently mutated gene in cancers. Mutations lead to loss of p53 expression or expression of a mutant protein. Mutant p53 proteins commonly lose wild-type function, but can also acquire novel functions in promoting metastasis and chemoresistance. Previously, we uncovered a role for Rab-coupling protein (RCP) in mutant p53-dependent invasion. RCP promotes endosomal recycling and signalling of integrins and receptor tyrosine kinases. In a screen to identify novel RCP-interacting proteins, we discovered P-glycoprotein (P-gp). Thus, we hypothesised that mutant p53 could promote chemoresistance through RCP-dependent recycling of P-gp. The interaction between RCP and P-gp was verified endogenously and loss of RCP or mutant p53 rendered cells more sensitive to cisplatin and etoposide. In mutant p53 cells we detected an RCP-dependent delivery of P-gp to the plasma membrane upon drug treatment and decreased retention of P-gp substrates. A co-localisation of P-gp and RCP was seen in mutant p53 cells, but not in p53-null cells upon chemotherapeutic exposure. In conclusion, mutant p53 expression enhanced co-localisation of P-gp and RCP to allow for rapid delivery of P-gp to the plasma membrane and increased resistance to chemotherapeutics.
Collapse
Affiliation(s)
- Vinaya Phatak
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Avacta Life Sciences, Cambridge, UK
| | | | - Justyna Janus
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Leah Officer
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Caron Behan
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Lydia Aschauer
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lucia Pinon
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Hannah Mackay
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sara Zanivan
- Cancer Research UK, Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim C Norman
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Michael Kelly
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - John Le Quesne
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Patricia A J Muller
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Rose M, Maurer A, Wirtz J, Bleilevens A, Waldmann T, Wenz M, Eyll M, Geelvink M, Gereitzig M, Rüchel N, Denecke B, Eltze E, Herrmann E, Toma M, Horst D, Grimm T, Denzinger S, Ecke T, Vögeli TA, Knuechel R, Maurer J, Gaisa NT. EGFR activity addiction facilitates anti-ERBB based combination treatment of squamous bladder cancer. Oncogene 2020; 39:6856-6870. [PMID: 32978523 PMCID: PMC7605436 DOI: 10.1038/s41388-020-01465-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Recent findings suggested a benefit of anti-EGFR therapy for basal-like muscle-invasive bladder cancer (MIBC). However, the impact on bladder cancer with substantial squamous differentiation (Sq-BLCA) and especially pure squamous cell carcinoma (SCC) remains unknown. Therefore, we comprehensively characterized pure and mixed Sq-BLCA (n = 125) on genetic and protein expression level, and performed functional pathway and drug-response analyses with cell line models and isolated primary SCC (p-SCC) cells of the human urinary bladder. We identified abundant EGFR expression in 95% of Sq-BLCA without evidence for activating EGFR mutations. Both SCaBER and p-SCC cells were sensitive to EGFR tyrosine kinase inhibitors (TKIs: erlotinib and gefitinib). Combined treatment with anti-EGFR TKIs and varying chemotherapeutics led to a concentration-dependent synergism in SCC cells according to the Chou-Talalay method. In addition, the siRNA knockdown of EGFR impaired SCaBER viability suggesting a putative "Achilles heel" of Sq-BLCA. The observed effects seem Sq-BLCA-specific since non-basal urothelial cancer cells were characterized by poor TKI sensitivity associated with a short-term feedback response potentially attenuating anti-tumor activity. Hence, our findings give further insights into a crucial, Sq-BLCA-specific role of the ERBB signaling pathway proposing improved effectiveness of anti-EGFR based regimens in combination with chemotherapeutics in squamous bladder cancers with wild-type EGFR-overexpression.
Collapse
MESH Headings
- Aged
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/pathology
- Cell Line, Tumor
- Cohort Studies
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride/pharmacology
- Erlotinib Hydrochloride/therapeutic use
- Female
- Gefitinib/pharmacology
- Gefitinib/therapeutic use
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Male
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- RNA, Small Interfering/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4/antagonists & inhibitors
- Receptor, ErbB-4/metabolism
- Signal Transduction/drug effects
- Urinary Bladder/pathology
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Angela Maurer
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Julia Wirtz
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | | | - Tanja Waldmann
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Maximilian Wenz
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Marie Eyll
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Mirja Geelvink
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | | | - Nadine Rüchel
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- IZKF Aachen, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Elke Eltze
- Institute of Pathology, Saarbrücken-Rastpfuhl, Saarbrücken, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Gustav Carus TU Dresden, Dresden, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Grimm
- Department of Urology, LMU Munich, Munich, Germany
| | - Stefan Denzinger
- Department of Urology, University of Regensburg, Regensburg, Germany
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | | | - Ruth Knuechel
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Jochen Maurer
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Fergany AAM, Tatarskiy VV. RNA Splicing: Basic Aspects Underlie Antitumor Targeting. Recent Pat Anticancer Drug Discov 2020; 15:293-305. [PMID: 32900350 DOI: 10.2174/1574892815666200908122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND RNA splicing, a fundamental step in gene expression, is aimed at intron removal and ordering of exons to form the protein's reading frame. OBJECTIVE This review is focused on the role of RNA splicing in cancer biology; the splicing abnormalities that lead to tumor progression emerge as targets for therapeutic intervention. METHODS We discuss the role of aberrant mRNA splicing in carcinogenesis and drug response. RESULTS AND CONCLUSION Pharmacological modulation of RNA splicing sets the stage for treatment approaches in situations where mRNA splicing is a clinically meaningful mechanism of the disease.
Collapse
Affiliation(s)
- Alzahraa A M Fergany
- Department of Occupational and Environmental Health, Graduate School of Pharmaceutical Science, Tokyo University of Science, Chiba, Japan
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
18
|
Iannelli F, Zotti AI, Roca MS, Grumetti L, Lombardi R, Moccia T, Vitagliano C, Milone MR, Ciardiello C, Bruzzese F, Leone A, Cavalcanti E, De Cecio R, Iachetta G, Valiante S, Ionna F, Caponigro F, Di Gennaro E, Budillon A. Valproic Acid Synergizes With Cisplatin and Cetuximab in vitro and in vivo in Head and Neck Cancer by Targeting the Mechanisms of Resistance. Front Cell Dev Biol 2020; 8:732. [PMID: 33015030 PMCID: PMC7461984 DOI: 10.3389/fcell.2020.00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index. In our study, we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different 3D-self-assembled spheroid models, suggesting the ability of the combined approach to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced DNA damage in combination treatment by reducing the mRNA expression of ERCC Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular concentration via upregulation at transcriptional level of CDDP influx channel copper transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export. Valproic acid also induced a dose-dependent downregulation of epidermal growth factor receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also in vivo in both heterotopic and orthotopic models, demonstrating that the combined treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall, the introduction of a safe and generic drug such as VPA into the conventional treatment for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants further clinical evaluation. A phase II clinical trial exploring the combination of VPA and CDDP/CX in R/M HNSCC patients is currently ongoing in our institute.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Andrea Ilaria Zotti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | | | | | - Franco Ionna
- Maxillo-facial & ENT Surgery Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesco Caponigro
- Head and Neck Medical Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
19
|
Poursheikhani A, Yousefi H, Tavakoli-Bazzaz J, Seyed H G. EGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells. IRANIAN BIOMEDICAL JOURNAL 2020; 24:370-8. [PMID: 32660222 PMCID: PMC7601546 DOI: 10.29252/ibj.24.6.365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: EOC is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of EGFR with resistance to cytotoxic chemotherapies, hormone therapy, and radiotherapy in the cancers. These studies have highlighted the role of EGFR as an attractive therapeutic target in cisplatin-resistant EOC cells. Methods: The human ovarian cell lines (SKOV3 and OVCAR3) were cultured according to ATCC recommendations. The MTT assay was used to determine the chemosensitivity of the cell lines in exposure to cisplatin and erlotinib. The qRT-PCR was applied to analyze the mRNA expression of the desired genes. Results: Erlotinib in combination with cisplatin reduced the cell proliferation in the chemoresistant EOC cells in comparison to monotherapy of the drugs (p < 0.05). Moreover, erlotinib/cisplatin combination synergistically decreased the expression of anti-apoptotic and also increased pro-apoptotic genes expression (p < 0.05). Cisplatin alone could increase the expression of MDR genes. The data suggested that EGFR and cisplatin drive chemoresistance in the EOC cells through MEKK signal transduction as well as through EGFR/MEKK pathways in the cells, respectively. Conclusion: Our findings propose that EGFR is an attractive therapeutic target in chemoresistant EOC to be exploited in translational oncology, and erlotinib/cisplatin combination treatment is a potential anti-cancer approach to overcome chemoresistance and inhibit the proliferation of the EOC cells.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Louisiana State University, School of Medicine, New Orleans, USA
| | - Javad Tavakoli-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghaffari Seyed H
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Baglo Y, Sorrin AJ, Liang BJ, Huang HC. Harnessing the Potential Synergistic Interplay Between Photosensitizer Dark Toxicity and Chemotherapy. Photochem Photobiol 2020; 96:636-645. [PMID: 31856423 DOI: 10.1111/php.13196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
The combination of photodynamic therapy and taxol- or platinum-based chemotherapy (photochemotherapy) is an effective and promising cancer treatment. While the mechanisms of action of photochemotherapy are actively studied, relatively little is known about the cytotoxicity and molecular alterations induced by the combination of chemotherapy and photosensitizers without light activation in cancer cells. This study investigates the interplay between the photosensitizer benzoporphyrin derivative (BPD) without light activation and cisplatin or paclitaxel in two glioblastoma lines, U87 and U251. The combination effect of BPD and cisplatin in U87 cells is slightly synergistic (combination index, CI = 0.93), showing 1.8- to 2.6-fold lower half-maximal inhibitory concentrations (IC50 ) compared to those of individual drugs. In contrast, combining BPD and paclitaxel is slightly antagonistic (CI = 1.14) in U87 cells. In U251 cells, the combinations of BPD and cisplatin or paclitaxel are both antagonistic (CI = 1.24 and 1.34, respectively). Western blotting was performed to investigate changes in the expression levels of YAP, TAZ, Bcl-2 and EGFR in U87 and U251 cells treated with BPD, cisplatin and paclitaxel, both as monotherapies and in combination. Our study provides insights into the molecular alterations in two glioma lines caused by each monotherapy and the combinations, in order to inform the design of effective treatments.
Collapse
Affiliation(s)
- Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Aaron J Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Mogilevsky M, Shimshon O, Kumar S, Mogilevsky A, Keshet E, Yavin E, Heyd F, Karni R. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res 2019; 46:11396-11404. [PMID: 30329087 PMCID: PMC6265459 DOI: 10.1093/nar/gky921] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/06/2018] [Indexed: 11/14/2022] Open
Abstract
The gene encoding the kinase Mnk2 (MKNK2) is alternatively spliced to produce two isoforms-Mnk2a and Mnk2b. We previously showed that Mnk2a is downregulated in several types of cancer and acts as a tumor suppressor by activation of the p38-MAPK stress pathway, inducing apoptosis. Moreover, Mnk2a overexpression suppressed Ras-induced transformation in culture and in vivo. In contrast, the Mnk2b isoform acts as a pro-oncogenic factor. In this study, we designed modified-RNA antisense oligonucleotides and screened for those that specifically induce a strong switch in alternative splicing of the MKNK2 gene (splice switching oligonucleotides or SSOs), elevating the tumor suppressive isoform Mnk2a at the expense of the pro-oncogenic isoform Mnk2b. Induction of Mnk2a by SSOs in glioblastoma cells activated the p38-MAPK pathway, inhibited the oncogenic properties of the cells, re-sensitized the cells to chemotherapy and inhibited glioblastoma development in vivo. Moreover, inhibition of p38-MAPK partially rescued glioblastoma cells suggesting that most of the anti-oncogenic activity of the SSO is mediated by activation of this pathway. These results suggest that manipulation of MKNK2 alternative splicing by SSOs is a novel approach to inhibit glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Odelia Shimshon
- Institute for Drug Research, The School of Pharmacy, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Saran Kumar
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Adi Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Eylon Yavin
- Institute for Drug Research, The School of Pharmacy, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| |
Collapse
|
22
|
Napolitano V, Tamagnone L. Neuropilins Controlling Cancer Therapy Responsiveness. Int J Mol Sci 2019; 20:ijms20082049. [PMID: 31027288 PMCID: PMC6515012 DOI: 10.3390/ijms20082049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Neuropilins (NRPs) are cell surface glycoproteins, acting as co-receptors for secreted Semaphorins (SEMAs) and for members of the vascular endothelial growth factor (VEGF) family; they have been initially implicated in axon guidance and angiogenesis regulation, and more recently in cancer progression. In addition, NRPs have been shown to control many other fundamental signaling pathways, especially mediated by tyrosine kinase receptors (RTKs) of growth factors, such as HGF (hepatocyte growth factor), PDGF (platelet derived growth factor) and EGF (epidermal growth factor). This enables NRPs to control a range of pivotal mechanisms in the cancer context, from tumor cell proliferation and metastatic dissemination, to tumor angiogenesis and immune escape. Moreover, cancer treatment failures due to resistance to innovative oncogene-targeted drugs is typically associated with the activity of alternative RTK-dependent pathways; and neuropilins’ capacity to control oncogenic signaling cascades supports the hypothesis that they could elicit such mechanisms in cancer cells, in order to escape cytotoxic stress and therapeutic attacks. Intriguingly, several studies have recently assayed the impact of NRPs inhibition in combination with diverse anti-cancer drugs. In this minireview, we will discuss the state-of-art about the relevance of NRPs as potential predictive biomarkers of drug response, and the rationale to target these proteins in combination with other anticancer therapies.
Collapse
Affiliation(s)
- Virginia Napolitano
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy.
| | - Luca Tamagnone
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, 10168 Rome, Italy.
- Fondazione Policlinico Universitario Agostino Gemelli, 10168 Rome, Italy.
| |
Collapse
|
23
|
Longton E, Schmit K, Fransolet M, Clement F, Michiels C. Appropriate Sequence for Afatinib and Cisplatin Combination Improves Anticancer Activity in Head and Neck Squamous Cell Carcinoma. Front Oncol 2018; 8:432. [PMID: 30345256 PMCID: PMC6182255 DOI: 10.3389/fonc.2018.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Despite a better understanding in head and neck tumors pathogenesis as well as improvements in radiotherapy and surgery, locally advanced head and neck squamous cell carcinoma (HNSCC) remains of poor prognosis. One promising target is the epidermal growth factor receptor (EGFR), which is overexpressed in the majority of HNSCC and is associated to tumor progression and resistance to treatment. However, in several clinical trials, the combination of EGFR inhibitors with chemotherapy and/or radiotherapy generates moderate results. In this study, we investigated the anti-tumor activity of afatinib, an irreversible pan-EGFR inhibitor, combined to cisplatin in different schedules of exposure. For that, we used two human EGFR wild-type HNSCC cell lines and we evaluated the cytotoxicity of the two drugs combined in different sequences. The efficiency of each strategy was assessed by evaluating the effects on cell cycle distribution, DNA damage, cell death and downstream pathways of ErbB family receptors. We demonstrated that cisplatin treatment followed by afatinib exposure displayed more cytotoxic effects than the opposite timing or than simultaneous association. This higher anticancer activity is probably due to afatinib-induced cell cycle arrest, which prevents the repair of cisplatin-induced DNA damage and promotes cell death by various mechanisms including apoptosis. These data suggest the importance of an appropriate timing administration between an EGFR inhibitor and a conventional chemotherapy in order to obtain the best clinical benefit for patients with a head and neck cancer.
Collapse
Affiliation(s)
- Eleonore Longton
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - Kathleen Schmit
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - Maude Fransolet
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - François Clement
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - Carine Michiels
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
24
|
Hugo de Almeida V, Guimarães IDS, Almendra LR, Rondon AMR, Tilli TM, de Melo AC, Sternberg C, Monteiro RQ. Positive crosstalk between EGFR and the TF-PAR2 pathway mediates resistance to cisplatin and poor survival in cervical cancer. Oncotarget 2018; 9:30594-30609. [PMID: 30093972 PMCID: PMC6078136 DOI: 10.18632/oncotarget.25748] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023] Open
Abstract
Cisplatin-based chemoradiation is the standard treatment for cervical cancer, but chemosensitizing strategies are needed to improve patient survival. EGFR (Epidermal Growth Factor Receptor) is an oncogene overexpressed in cervical cancer that is involved in chemoresistance. Recent studies showed that EGFR upregulates multiple elements of the coagulation cascade, including tissue factor (TF) and the protease-activated receptors (PAR) 1 and 2. Moreover, many G protein-coupled receptors, including PARs, have been implicated in EGFR transactivation. However, the role of coagulation proteins in the progression of cervical cancer has been poorly investigated. Herein we employed cervical cancer cell lines and The Cancer Genome Atlas (TCGA) database to evaluate the role of EGFR, TF and PAR2 in chemoresistance. The SLIGKL-NH2 peptide (PAR2-AP) and coagulation factor VIIa (FVIIa) were used as PAR2 agonists, while cetuximab was used to inhibit EGFR. The more aggressive cell line CASKI showed higher expression levels of EGFR, TF and PAR2 than that of C33A. PAR2 transactivated EGFR, which further upregulated cyclooxygenase-2 (COX2) expression. PAR2-AP decreased cisplatin-induced apoptosis through an EGFR- and COX2-dependent mechanism. Furthermore, treatment of CASKI cells with EGF upregulated TF expression, while treatment with cetuximab decreased the TF protein levels. The RNA-seq data from 309 TCGA samples showed a strong positive correlation between EGFR and TF expression (P = 0.0003). In addition, the increased expression of EGFR, PAR2 or COX2 in cervical cancer patients was significantly correlated with poor overall survival. Taken together, our results suggest that EGFR and COX2 are effectors of the TF/FVIIa/PAR2 signaling pathway, promoting chemoresistance.
Collapse
Affiliation(s)
- Vitor Hugo de Almeida
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | | | - Lucas R Almendra
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Araci M R Rondon
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiana M Tilli
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Andréia C de Melo
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Cinthya Sternberg
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil.,Present address: Sociedade Brasileira de Oncologia Clínica (SBOC), Belo Horizonte, MG, Brazil
| | - Robson Q Monteiro
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
The EGFR Inhibitor Gefitinib Enhanced the Response of Human Oral Squamous Cell Carcinoma to Cisplatin In Vitro. Drugs R D 2018; 17:545-555. [PMID: 28828595 PMCID: PMC5694417 DOI: 10.1007/s40268-017-0204-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction The epidermal growth factor receptor (EGFR) is highly expressed in a variety of solid tumors including oral cavity squamous cell carcinoma (OSCC) and has been implicated in the resistance of these tumors to cisplatin. This study was performed to determine if the EGFR tyrosine kinase inhibitor gefitinib could enhance the cytotoxic effect of cisplatin on OSCC cells in vitro. Methods The expression of EGFR and the phosphorylation of its downstream signaling to ERK, and AKT pathway were detected by Western blotting. Cell proliferation and survival were determined by AlamarBlue and colony formation assay respectively. Cells apoptosis were determined by Western blotting for cleaved PARP protein and by flowcytometry of cells stained with Annexin V and PI. Results Cal27, OSC19, and SCC25 cells treated with gefitinib 1 μM demonstrated reduced phosphorylation of EGFR, AKT, and ERK proteins with very limited inhibition of proliferation. Cisplatin inhibited proliferation of the same cell lines in a dose-dependent manner. The concentration producing 50% inhibition (IC50) for cisplatin decreased in the presence of gefitinib 1 μM, and a combination of cisplatin 5 µM and gefitinib 1 µM caused synergistic growth inhibition and synergistic reduction in cell survival. The growth inhibitory effect of the combination was associated with reduced ERK and AKT activation, increased poly ADP ribose polymerase (PARP) cleavage, and increased apoptosis. Conclusion Thus, in OSCC cells in vitro, inhibition of EGFR activity with gefitinib enhances the apoptotic effect of cisplatin. This has potential implications for enhancement of cisplatin effectiveness in tumors that over-express the EGFR.
Collapse
|
26
|
Schmitt LI, Leo M, Kleinschnitz C, Hagenacker T. Oxaliplatin Modulates the Characteristics of Voltage-Gated Calcium Channels and Action Potentials in Small Dorsal Root Ganglion Neurons of Rats. Mol Neurobiol 2018; 55:8842-8855. [DOI: 10.1007/s12035-018-1029-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
27
|
Park CM, Kawasaki Y, Refaat A, Sakurai H. Mechanisms for DNA-damaging agent-induced inactivation of ErbB2 and ErbB3 via the ERK and p38 signaling pathways. Oncol Lett 2018; 15:1758-1762. [PMID: 29434871 DOI: 10.3892/ol.2017.7532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/23/2017] [Indexed: 11/06/2022] Open
Abstract
Cisplatin (CDDP) and doxorubicin (DOX) are chemotherapeutic drugs that trigger apoptosis by inducing DNA-damage. A previous study using breast cancer cells demonstrated the negative feedback modulation of the epidermal growth factor receptor (EGFR) and receptor tyrosine-protein kinase erbB-2 (ErbB2) via extracellular signal-regulated kinase (ERK)-mediated phosphorylation of conserved Thr-669 and Thr-677 residues, respectively, in the juxtamembrane domain. In addition, CDDP has been identified to cause negative feedback inhibition of activated EGFR in lung cancer cells. In the present study, the role of phosphorylation in the feedback control of the ErbB2/ErbB3 heterodimer in human breast and gastric cancer cells was investigated. Phosphorylation of ErbB2 at Thr-677 was induced by CDDP and DOX, which in turn reduced tyrosine autophosphorylation of ErbB2 and ErbB3. Treatment with trametinib, a mitogen-activated protein kinase inhibitor that blocks ERK-mediated Thr-677 phosphorylation, and substitution of Thr-677 to alanine, blocked the feedback inhibition of ErbB2 and ErbB3. In addition, these agents caused the degradation of ErbB proteins through the activation of p38 mitogen-activated protein kinase (p38) and ERK. These results demonstrate that chemotherapeutic agents trigger ERK- and p38-mediated post-translational downregulation of ErbB receptors.
Collapse
Affiliation(s)
- Chul Min Park
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuki Kawasaki
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Alaa Refaat
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
28
|
Caponigro F, Di Gennaro E, Ionna F, Longo F, Aversa C, Pavone E, Maglione MG, Di Marzo M, Muto P, Cavalcanti E, Petrillo A, Sandomenico F, Maiolino P, D'Aniello R, Botti G, De Cecio R, Losito NS, Scala S, Trotta A, Zotti AI, Bruzzese F, Daponte A, Calogero E, Montano M, Pontone M, De Feo G, Perri F, Budillon A. Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial. BMC Cancer 2016; 16:918. [PMID: 27884140 PMCID: PMC5123351 DOI: 10.1186/s12885-016-2957-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 11/20/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN) has a poor prognosis and the combination of cisplatin and cetuximab, with or without 5-fluorouracil, is the gold standard treatment in this stage. Thus, the concomitant use of novel compounds represents a critical strategy to improve treatment results. Histone deacetylase inhibitors (HDACi) enhance the activity of several anticancer drugs including cisplatin and anti-Epidermal Growth Factor Receptor (anti-EGFR) compounds. Preclinical studies in models have shown that vorinostat is able to down regulate Epidermal Growth Factor Receptor (EGFR) expression and to revert epithelial to mesenchimal transition (EMT). Due to its histone deacetylase (HDAC) inhibiting activity and its safe use as a chronic therapy for epileptic disorders, valproic acid (VPA) has been considered a good candidate for anticancer therapy. A reasonable option may be to employ the combination of cisplatin, cetuximab and VPA in recurrent/metastatic SCCHN taking advantage of the possible positive interaction between histone deacetylase inhibitors, cisplatin and/or anti-EGFR. METHOD/DESIGN V-CHANCE is a phase 2 clinical trial evaluating, in patients with recurrent/metastatic squamous cell carcinoma of the head and neck never treated with first-line chemotherapy, the concomitant standard administration of cisplatin (on day 1, every 3 weeks) and cetuximab (on day 1, weekly), in combination with oral VPA given daily from day -14 with a titration strategy in each patient (target serum level of 50-100 μg/ml). Primary end point is the objective response rate measured according to Response Evaluation Criteria in Solid Tumors (RECIST). Sample size, calculated according to Simon 2 stage minimax design will include 21 patients in the first stage with upper limit for rejection being 8 responses, and 39 patients in the second stage, with upper limit for rejection being 18 responses. Secondary endpoints are time to progression, duration of response, overall survival, safety. Objectives of the translational study are the evaluation on tumor samples of markers of treatment efficacy/resistance (i.e. γH2AX, p21/WAF, RAD51, XRCC1, EGFR, p-EGFR, Ki-67) and specific markers of VPA HDAC inhibitory activity (histones and proteins acetylation, Histone deacetylase isoforms) as well as valproate test, histones and proteins acetylation of peripheral blood mononuclear cell, tested on blood samples at baseline and at different time points during treatment. DISCUSSION Overall, this study could provide a less toxic and more effective first-line chemotherapy regimen in patients with recurrent/metastatic squamous cell carcinoma of the head and neck by demonstrating the feasibility and efficacy of cisplatin/cetuximab plus valproic acid. Moreover, correlative studies could help to identify responder patients, and will add insights in the mechanism of the synergistic interaction between these agents. EUDRACT NUMBER 2014-001523-69 TRIAL REGISTRATION: ClinicalTrials.gov number, NCT02624128.
Collapse
Affiliation(s)
- Francesco Caponigro
- Head and Neck Medical Oncology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy.
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Franco Ionna
- Head and neck Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Francesco Longo
- Head and neck Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Corrado Aversa
- Head and neck Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Ettore Pavone
- Head and neck Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Maria Grazia Maglione
- Head and neck Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Massimiliano Di Marzo
- Melanoma and soft tissue Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Ernesta Cavalcanti
- Clinical Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Antonella Petrillo
- Radiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Fabio Sandomenico
- Radiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Roberta D'Aniello
- Pharmacy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Nunzia Simona Losito
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Stefania Scala
- Functional Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Annamaria Trotta
- Functional Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Andrea Ilaria Zotti
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Antonio Daponte
- Head and Neck Medical Oncology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Ester Calogero
- Head and Neck Medical Oncology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Massimo Montano
- Head and Neck Medical Oncology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Monica Pontone
- Head and Neck Medical Oncology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Gianfranco De Feo
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy
| | - Francesco Perri
- Head and Neck Medical Oncology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy.,Present Address: Medical Oncology Unit, POC SS Annunziata, Taranto, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale," IRCCS, Naples, Italy.
| |
Collapse
|
29
|
Leo M, Schmitt LI, Erkel M, Melnikova M, Thomale J, Hagenacker T. Cisplatin-induced neuropathic pain is mediated by upregulation of N-type voltage-gated calcium channels in dorsal root ganglion neurons. Exp Neurol 2016; 288:62-74. [PMID: 27823926 DOI: 10.1016/j.expneurol.2016.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/04/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
Cisplatin is important in the treatment of various types of cancer. Although it is highly effective, it also has severe side effects, with neurotoxicity in dorsal root ganglion (DRG) neurons being one of the most common. The key mechanisms of neurotoxicity are still controversially discussed; however, disturbances of the calcium homeostasis in DRG neurons have been suggested to mediate cisplatin neurotoxicity. By using the whole-cell patch-clamp technique, immunostaining and behavioral experiments with Sprague-Dawley rats, we examined the influence of short- and long-term exposure to cisplatin on voltage-gated calcium channel (VGCC) currents (ICa(V)) in small DRG neurons. In vitro exposure to cisplatin reduced ICa(V) in a concentration-dependent manner (0.01-50μM; 13.8-77.3%; IC50 5.07μM). Subtype-specific measurements of VGCCs showed differential effects on ICa(V). While the ICa(V) of P/Q-, L- and T-type VGCCs were reduced, ICa(V) of N-type VGCCs were increased by 30.3% during depolarization to 0mV. Exposure of DRG neurons to cisplatin (0.5 or 5μM) for 24-48h in vitro significantly increased a CaMK II-mediated ICa(V) current density. Immunostaining and western blot analysis revealed an increase of N-type VGCC protein level in DRG neurons 24h after cisplatin exposure. Cisplatin-mediated activation of caspase-3 was prevented by inhibition of N-type VGCCs using Ɯ-conotoxin MVIIA. Behavioral experiments showed that Ɯ-conotoxin MVIIA treatment prevented neuropathic syndromes in vivo by inhibiting upregulation of the N-type protein level. Here we show evidence for the first time for a crucial role of N-type VGCC in the genesis of cisplatin-induced polyneuropathy.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Linda-Isabell Schmitt
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Martin Erkel
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Margarita Melnikova
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| |
Collapse
|
30
|
Silencing of fused toes homolog enhances cisplatin sensitivity in cervical cancer cells by inhibiting epidermal growth factor receptor-mediated repair of DNA damage. Cancer Chemother Pharmacol 2016; 78:753-62. [DOI: 10.1007/s00280-016-3110-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
31
|
Wang WJ, Li CF, Chu YY, Wang YH, Hour TC, Yen CJ, Chang WC, Wang JM. Inhibition of the EGFR/STAT3/CEBPD Axis Reverses Cisplatin Cross-resistance with Paclitaxel in the Urothelial Carcinoma of the Urinary Bladder. Clin Cancer Res 2016; 23:503-513. [DOI: 10.1158/1078-0432.ccr-15-1169] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/28/2016] [Accepted: 07/02/2016] [Indexed: 11/16/2022]
|
32
|
Strippoli A, Rossi S, Martini M, Basso M, D'Argento E, Schinzari G, Barile R, Cassano A, Barone C. ERCC1 expression affects outcome in metastatic pancreatic carcinoma treated with FOLFIRINOX: A single institution analysis. Oncotarget 2016; 7:35159-68. [PMID: 27147577 PMCID: PMC5085217 DOI: 10.18632/oncotarget.9063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/10/2016] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION No clinically useful predictive factor has been yet identified for treatment of metastatic pancreatic cancer (mPC). It is noteworthy that FOLFIRINOX, despite its high toxicity, is effective only in some patients. We retrospectively analyzed expression of excision repair cross-complementing group-1 (ERCC1) - involved in the repair of platinum induced damage - in patients affected by mPC treated with FOLFIRINOX in order to evaluate its predictive role. RESULTS FOLFIRINOX resulted more effective in patients with normal ERCC1 levels than in those with ERCC1 hyper-expression. Median progression free survival (PFS) was 11 vs. 4 months (HR 0.26; 95% CI 0.14-0.50; p<.0001), median overall survival (OS) 16 vs. 8 months (HR 0.23; 95% CI 0.12-0.46; p<.0001) and disease control rate (DCR) 93% vs. 50% (p=0.00006). The advantage was confirmed at univariate and multivariate analysis. PATIENTS AND METHODS 71 patients with histologically proven mPC and treated with FOLFIRINOX as first-line therapy were considered eligible. mRNA ERCC1 expression was determined using RT-PCR analysis. DISCUSSION ERCC1 might be an effective predictor of response to FOLFIRINOX in mPC. Patients overexpressing ERCC1 should be excluded by this often toxic therapy and referred to an alternative treatment.
Collapse
Affiliation(s)
- Antonia Strippoli
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Sabrina Rossi
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Maurizio Martini
- Department of Pathology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Michele Basso
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Ettore D'Argento
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Giovanni Schinzari
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Rosalba Barile
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Alessandra Cassano
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Carlo Barone
- Department of Medical Oncology, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
33
|
Goss GD, Spaans JN. Epidermal Growth Factor Receptor Inhibition in the Management of Squamous Cell Carcinoma of the Lung. Oncologist 2016; 21:205-13. [PMID: 26768483 PMCID: PMC4746081 DOI: 10.1634/theoncologist.2015-0209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Molecular therapies targeting epidermal growth factor receptor (EGFR) have had a profound impact on the management of advanced non-small cell lung cancer (NSCLC). EGFR inhibition with EGFR tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR monoclonal antibodies (mAbs) in squamous NSCLC (sqNSCLC) remains controversial in patients whose tumors are not known to harbor EGFR mutations. Recent meta-analyses of EGFR-inhibition randomized trials that are adequately powered for histological subgroup analysis and anti-EGFR trials limited to patients with squamous histology afford the opportunity to revisit EGFR treatment in sqNSCLC. In unselected patients with sqNSCLC who are not eligible for chemotherapy, EGFR-TKI therapy is a valid treatment option over placebo or best supportive care, with improved progression-free survival noted in randomized controlled trials in both the first- and second-line setting and improved overall survival (OS) in the second-line setting. In patients eligible for chemotherapy, first-line combination regimens with anti-EGFR mAbs have been shown to improve OS over chemotherapy alone in patients with squamous histology in meta-analysis and more recently in the SQUIRE sqNSCLC trial (chemotherapy with and without necitumumab). In sqNSCLC patients who respond to induction chemotherapy, maintenance therapy with erlotinib delays disease progression and may improve the survival of patients with stable disease. In the second-line setting, survival outcomes are comparable between chemotherapy and EGFR-TKIs in meta-analysis, with the latter being more tolerable as a second-line therapy. Newer-generation EGFR-TKI therapies may further benefit patients with sqNSCLC who have failed first-line chemotherapy, given the positive trial results from LUX-Lung 8 (afatinib vs. erlotinib). EGFR is a valid therapeutic target in unselected/EGFR wild-type patients with squamous cell carcinoma of the lung. With the recent approval of immune checkpoint inhibitors in the second-line management of advanced sqNSCLC and their adoption as a new standard of care, there exists an opportunity for novel combination therapies to increase therapeutic efficacy and durable tumor control. As more targeted agents are approved, combination regimens that include an anti-EGFR agent should be evaluated, and the optimal sequencing of targeted therapies should be defined. IMPLICATIONS FOR PRACTICE Anti-epidermal growth factor receptor (EGFR) therapies remain controversial in unselected/wild-type EGFR squamous non-small cell lung cancer (NSCLC). Recent meta-analyses and squamous-only NSCLC EGFR-inhibition trials have overcome the power limitations of early trials and can now inform the management of squamous NSCLC with anti-EGFR therapies. With the approval of immunotherapeutics in the second-line management of squamous NSCLC, there exists an opportunity for novel combination therapies to improve efficacy and durable tumor control. The optimal timing and sequencing of available second-line targeted therapies, however, have yet to be defined. This review analyzes randomized clinical trials of EGFR inhibition in NSCLC and meta-analyses of these trials, with a focus on patients with squamous histology.
Collapse
Affiliation(s)
- Glenwood D Goss
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
34
|
Müller CB, De Bastiani MA, Becker M, França FS, Branco MA, Castro MAA, Klamt F. Potential crosstalk between cofilin-1 and EGFR pathways in cisplatin resistance of non-small-cell lung cancer. Oncotarget 2016; 6:3531-9. [PMID: 25784483 PMCID: PMC4414134 DOI: 10.18632/oncotarget.3471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
Current challenge in oncology is to establish the concept of personalized medicine in clinical practice. In this context, non-small-cell lung cancer (NSCLC) presents clinical, histological and molecular heterogeneity, being one of the most genomically diverse of all cancers. Recent advances added Epidermal Growth Factor Receptor (EGFR) as a predictive biomarker for patients with advanced NSCLC. In tumors with activating EGFR mutations, tyrosine kinase inhibitors (TKI) are indicated as first-line treatment, although restricted to a very small target population. In this context, cofilin-1 (a cytosolic protein involved with actin dynamics) has been widely studied as a biomarker of an aggressive phenotype in tumors, and overexpression of cofilin-1 is associated with cisplatin resistance and poor prognosis in NSCLC. Here, we gather information about the predictive potential of cofilin-1 and reviewed the crosstalk between cofilin-1/EGFR pathways. We aimed to highlight new perspectives of how these interactions might affect cisplatin resistance in NSCLC. We propose that cofilin-1 quantification in clinical samples in combination with presence/absence of EGFR mutation could be used to select patients that would benefit from TKI's treatment. This information is of paramount importance and could result in a possibility of guiding more effective treatments to NSCLC patients.
Collapse
Affiliation(s)
- Carolina Beatriz Müller
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Marco Antônio De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Matheus Becker
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Fernanda Stapenhorst França
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Mariane Araujo Branco
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | | | - Fabio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| |
Collapse
|
35
|
Kim KK, Han A, Yano N, Ribeiro JR, Lokich E, Singh RK, Moore RG. Tetrathiomolybdate mediates cisplatin-induced p38 signaling and EGFR degradation and enhances response to cisplatin therapy in gynecologic cancers. Sci Rep 2015; 5:15911. [PMID: 26568478 PMCID: PMC4644948 DOI: 10.1038/srep15911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Cisplatin and its analogs are among the most widely used chemotherapeutic agents against various types of cancer. It is known that cisplatin can activate epidermal growth factor receptor (EGFR), which may provide a survival benefit in cancers. Tetrathiomolybdate (TM) is a potent anti-cancer and anti-angiogenic agent and has been investigated in a number of clinical trials for cancer. In this study, we explore the therapeutic potential of TM on cisplatin-mediated EGFR regulation. Our study shows that TM is not cytotoxic, but exerts an anti-proliferative effect in ECC-1 cells. However, TM treatment prior to cisplatin markedly improves cisplatin-induced cytotoxicity. TM suppressed cisplatin-induced activation of EGFR while potentiating activation of p38; the activation of p38 signaling appeared to promote cisplatin-induced EGFR degradation. These results are in contrast to what we saw when cells were co-treated with cisplatin plus an EGFR tyrosine kinase inhibitor, where receptor activation was inhibited but receptor degradation was also blocked. Our current study is in agreement with previous findings that TM may have a therapeutic benefit by inhibiting EGFR activation. We furthermore provide evidence that TM may provide an additional benefit by potentiating p38 activation following cisplatin treatment, which may in turn promote receptor degradation by cisplatin.
Collapse
Affiliation(s)
- Kyu Kwang Kim
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Departments of Obstetrics and Gynecology, Women and Infants Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| | - Alex Han
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Departments of Obstetrics and Gynecology, Women and Infants Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| | - Naohiro Yano
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Departments of Obstetrics and Gynecology, Women and Infants Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| | - Jennifer R Ribeiro
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Departments of Obstetrics and Gynecology, Women and Infants Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| | - Elizabeth Lokich
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Departments of Obstetrics and Gynecology, Women and Infants Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| | - Rakesh K Singh
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Departments of Obstetrics and Gynecology, Women and Infants Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| | - Richard G Moore
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Departments of Obstetrics and Gynecology, Women and Infants Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
36
|
Raghunathan K, Ahsan A, Ray D, Nyati MK, Veatch SL. Membrane Transition Temperature Determines Cisplatin Response. PLoS One 2015; 10:e0140925. [PMID: 26484687 PMCID: PMC4618528 DOI: 10.1371/journal.pone.0140925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Cisplatin is a classical chemotherapeutic agent used in treating several forms of cancer including head and neck. However, cells develop resistance to the drug in some patients through a range of mechanisms, some of which are poorly understood. Using isolated plasma membrane vesicles as a model system, we present evidence suggesting that cisplatin induced resistance may be due to certain changes in the bio-physical properties of plasma membranes. Giant plasma membrane vesicles (GPMVs) isolated from cortical cytoskeleton exhibit a miscibility transition between a single liquid phase at high temperature and two distinct coexisting liquid phases at low temperature. The temperature at which this transition occurs is hypothesized to reflect the magnitude of membrane heterogeneity at physiological temperature. We find that addition of cisplatin to vesicles isolated from cisplatin-sensitive cells result in a lowering of this miscibility transition temperature, whereas in cisplatin-resistant cells such treatment does not affect the transition temperature. To explore if this is a cause or consequence of cisplatin resistance, we tested if addition of cisplatin in combination with agents that modulate GPMV transition temperatures can affect cisplatin sensitivity. We found that cells become more sensitive to cisplatin when isopropanol, an agent that lowers GPMV transition temperature, was combined with cisplatin. Conversely, cells became resistant to cisplatin when added in combination with menthol that raises GPMV transition temperatures. These data suggest that changes in plasma membrane heterogeneity augments or suppresses signaling events initiated in the plasma membranes that can determine response to cisplatin. We postulate that desired perturbations of membrane heterogeneity could provide an effective therapeutic strategy to overcome cisplatin resistance for certain patients.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mukesh K. Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
37
|
Cuneo KC, Nyati MK, Ray D, Lawrence TS. EGFR targeted therapies and radiation: Optimizing efficacy by appropriate drug scheduling and patient selection. Pharmacol Ther 2015; 154:67-77. [PMID: 26205191 PMCID: PMC4570853 DOI: 10.1016/j.pharmthera.2015.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection.
Collapse
Affiliation(s)
- Kyle C Cuneo
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States; Ann Arbor Veterans Affairs Hospital, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Mukesh K Nyati
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Dipankar Ray
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Theodore S Lawrence
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
Granados ML, Hudson LG, Samudio-Ruiz SL. Contributions of the Epidermal Growth Factor Receptor to Acquisition of Platinum Resistance in Ovarian Cancer Cells. PLoS One 2015; 10:e0136893. [PMID: 26351843 PMCID: PMC4564275 DOI: 10.1371/journal.pone.0136893] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/09/2015] [Indexed: 01/12/2023] Open
Abstract
Acquisition of platinum resistance following first line platinum/taxane therapy is commonly observed in ovarian cancer patients and prevents clinical effectiveness. There are few options to prevent platinum resistance; however, demethylating agents have been shown to resensitize patients to platinum therapy thereby demonstrating that DNA methylation is a critical contributor to the development of platinum resistance. We previously reported the Epidermal Growth Factor Receptor (EGFR) is a novel regulator of DNA methyltransferase (DNMT) activity and DNA methylation. Others have shown that EGFR activation is linked to cisplatin treatment and platinum resistance. We hypothesized that cisplatin induced activation of the EGFR mediates changes in DNA methylation associated with the development of platinum resistance. To investigate this, we evaluated EGFR signaling and DNMT activity after acute cisplatin exposure. We also developed an in vitro model of platinum resistance to examine the effects of EGFR inhibition on acquisition of cisplatin resistance. Acute cisplatin treatment activates the EGFR and downstream signaling pathways, and induces an EGFR mediated increase in DNMT activity. Cisplatin resistant cells also showed increased DNMT activity and global methylation. EGFR inhibition during repeated cisplatin treatments generated cells that were more sensitive to cisplatin and did not develop increases in DNA methylation or DNMT activity compared to controls. These findings suggest that activation of EGFR during platinum treatment contributes to the development of platinum resistance. Furthermore, EGFR inhibition may be an effective strategy at attenuating the development of platinum resistance thereby enhancing the effectiveness of chemotherapeutic treatment in ovarian cancer.
Collapse
Affiliation(s)
- Michaela L. Granados
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Sabrina L. Samudio-Ruiz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
39
|
Schmitt NC, Trivedi S, Ferris RL. STAT1 Activation Is Enhanced by Cisplatin and Variably Affected by EGFR Inhibition in HNSCC Cells. Mol Cancer Ther 2015; 14:2103-11. [PMID: 26141950 DOI: 10.1158/1535-7163.mct-15-0305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
Cisplatin is a cytotoxic chemotherapeutic drug frequently used to treat many solid tumors, including head and neck squamous cell carcinoma (HNSCC). EGF receptor (EGFR) inhibitors have also shown efficacy as alternatives to cisplatin in some situations. However, large clinical trials have shown no added survival benefit from the use of these two drugs in combination. Possible explanations for this include overlapping downstream signaling cascades. Using in vitro studies, we tested the hypothesis that cisplatin and EGFR inhibitors rely on the activation of the tumor suppressor STAT1, characterized by its phosphorylation at serine (S727) or tyrosine (Y701) residues. Cisplatin consistently increased the levels of p-S727-STAT1, and STAT1 siRNA knockdown attenuated cisplatin-induced cell death. EGFR stimulation also activated p-S727-STAT1 and p-Y701-STAT1 in a subset of cell lines, whereas EGFR inhibitors alone decreased levels of p-S727-STAT1 and p-Y701-STAT1 in these cells. Contrary to our hypothesis, EGFR inhibitors added to cisplatin treatment caused variable effects among cell lines, with attenuation of p-S727-STAT1 and enhancement of cisplatin-induced cell death in some cells and minimal effect in other cells. Using HNSCC tumor specimens from a clinical trial of adjuvant cisplatin plus the anti-EGFR antibody panitumumab, higher intratumoral p-S727-STAT1 appeared to correlate with worse survival. Together, these results suggest that cisplatin-induced cell death is associated with STAT1 phosphorylation, and the addition of anti-EGFR therapy to cisplatin has variable effects on STAT1 and cell death in HNSCC.
Collapse
Affiliation(s)
- Nicole C Schmitt
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
40
|
Aichler M, Motschmann M, Jütting U, Luber B, Becker K, Ott K, Lordick F, Langer R, Feith M, Siewert JR, Walch A. Epidermal growth factor receptor (EGFR) is an independent adverse prognostic factor in esophageal adenocarcinoma patients treated with cisplatin-based neoadjuvant chemotherapy. Oncotarget 2015; 5:6620-32. [PMID: 25216514 PMCID: PMC4196151 DOI: 10.18632/oncotarget.2268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neoadjuvant platin-based therapy is accepted as a standard therapy for advanced esophageal adenocarcinoma (EAC). Patients who respond have a better survival prognosis, but still a significant number of responder patients die from tumor recurrence. Molecular markers for prognosis in neoadjuvantly treated EAC patients have not been identified yet. We investigated the epidermal growth factor receptor (EGFR) in prognosis and chemotherapy resistance in these patients. Two EAC patient cohorts, either treated by neoadjuvant cisplatin-based chemotherapy followed by surgery (n=86) or by surgical resection (n=46) were analyzed for EGFR protein expression and gene copy number. Data were correlated with clinical and histopathological response, disease-free and overall survival. In case of EGFR overexpression, the prognosis for neoadjuvant chemotherapy responders was poor as in non-responders. Responders had a significantly better disease-free survival than non-responders only if EGFR expression level (p=0.0152) or copy number (p=0.0050) was low. Comparing neoadjuvantly treated patients and primary resection patients, tumors of non-responder patients more frequently exhibited EGFR overexpression, providing evidence that EGFR is a factor for indicating chemotherapy resistance. EGFR overexpression and gene copy number are independent adverse prognostic factors for neoadjuvant chemotherapy-treated EAC patients, particularly for responders. Furthermore, EGFR overexpression is involved in resistance to cisplatin-based neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Michaela Aichler
- Research Unit Analytical Pathology- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstraße 1, Neuherberg, Germany
| | - Martin Motschmann
- Research Unit Analytical Pathology- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstraße 1, Neuherberg, Germany
| | - Uta Jütting
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstraße 1, Neuherberg, Germany
| | - Birgit Luber
- Institute of Pathology, Technische Universität München, Trogerstraße 18, München, Germany
| | - Karen Becker
- Institute of Pathology, Technische Universität München, Trogerstraße 18, München, Germany
| | - Katja Ott
- Department of Surgery, University Hospital of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, Germany
| | - Florian Lordick
- University Cancer Center Leipzig, University Clinic Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Rupert Langer
- Institute of Pathology, Technische Universität München, Trogerstraße 18, München, Germany
| | - Marcus Feith
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, München, Germany
| | - Jörg Rüdiger Siewert
- Directorate, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstraße 1, Neuherberg, Germany
| |
Collapse
|
41
|
Gargalionis AN, Karamouzis MV, Adamopoulos C, Papavassiliou AG. Protein trafficking in colorectal carcinogenesis--targeting and bypassing resistance to currently applied treatments. Carcinogenesis 2015; 36:607-615. [DOI: 10.1093/carcin/bgv052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
42
|
Wada Y, Iyoda M, Matsumoto K, Shindo-Hirai Y, Kuno Y, Yamamoto Y, Suzuki T, Saito T, Iseri K, Shibata T. Epidermal growth factor receptor inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats. PLoS One 2014; 9:e111728. [PMID: 25390346 PMCID: PMC4229108 DOI: 10.1371/journal.pone.0111728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The effects of blocking the epidermal growth factor receptor (EGFR) in acute kidney injury (AKI) are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP)-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP-nephrotoxicity (CP-N). In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2). Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.
Collapse
Affiliation(s)
- Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Shindo-Hirai
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamamoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Komaki R, Paulus R, Blumenschein GR, Curran WJ, Robert F, Thariat J, Werner-Wasik M, Choy H, Hirsch FR, Ang KK. EGFR expression and survival in patients given cetuximab and chemoradiation for stage III non-small cell lung cancer: a secondary analysis of RTOG 0324. Radiother Oncol 2014; 112:30-6. [PMID: 25042878 PMCID: PMC4169722 DOI: 10.1016/j.radonc.2014.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 11/15/2022]
Abstract
PURPOSE We investigated whether expression of epidermal growth factor receptor (EGFR) was associated with survival and disease control in this secondary analysis of a phase II trial of cetuximab+chemoradiation for stage III non-small cell lung cancer. METHODS Patients received cetuximab weekly before and during radiation (63 Gy/35 fractions/7 weeks) with weekly carboplatin + paclitaxel. We analyzed EGFR expression by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) in pretreatment biopsy specimens and compared findings with overall and progression-free survival (OS, PFS) and time to progression (TTP). RESULTS Specimens for IHC and FISH were collected from 51 and 45 of 87 evaluable patients. Pretreatment characteristics did not differ for patients with (n = 51) or without (n= 36) EGFR IHC data, or with (n = 45) or without (n = 42) FISH data. However, patients without IHC data had worse OS (HR = 1.63, P = 0.05), worse PFS (HR = 1.88, P = 0.008), and worse TTP [HR = 1.99, P = 0.01] than those with IHC data. EGFR protein expression was not related to pretreatment characteristics or OS; FISH-positive disease was associated with better performance status but not with OS, PFS, or TTP. CONCLUSIONS Surprisingly, outcomes differed not by EGFR expression but by the availability of samples for analysis, underscoring the importance of obtaining biopsy samples in such trials.
Collapse
Affiliation(s)
- Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States.
| | | | - George R Blumenschein
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Walter J Curran
- Winship Cancer Institute of Emory University, Atlanta, United States
| | - Francisco Robert
- University of Alabama at Birmingham Comprehensive Cancer Center, United States
| | - Juliette Thariat
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States.
| | | | - Hak Choy
- The University of Texas Southwestern, Dallas, United States
| | - Fred R Hirsch
- University of Colorado Cancer Center, Aurora, United States
| | - Kie Kian Ang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| |
Collapse
|
44
|
Inhibition of EGFR-induced glucose metabolism sensitizes chondrosarcoma cells to cisplatin. Tumour Biol 2014; 35:7017-24. [DOI: 10.1007/s13277-014-1902-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
|
45
|
Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 2013; 24:26-34. [PMID: 24295852 PMCID: PMC3884125 DOI: 10.1016/j.tcb.2013.11.002] [Citation(s) in RCA: 575] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 11/15/2022]
Abstract
EGF receptor endocytic traffic can regulate signaling and cell survival. Signaling from activated EGFR occurs at the endosome as well as the cell surface. Endocytosis can have positive and negative effects on signaling and tumorigenesis. EGFR traffic promoted by antineoplastic therapy is important in tumor resistance.
The ligand-stimulated epidermal growth factor receptor (EGFR) has been extensively studied in the analysis of molecular mechanisms regulating endocytic traffic and the role of that traffic in signal transduction. Although such studies have largely focused on mitogenic signaling and dysregulated traffic in tumorigenesis, there is growing interest in the potential role of EGFR traffic in cell survival and the consequent response to cancer therapy. Here we review recent advances in our understanding of molecular mechanisms regulating ligand-stimulated EGFR activation, internalization, and post-endocytic sorting. The role of EGFR overexpression/mutation and new modulators of EGFR traffic in cancer and the response to cancer therapeutics are also discussed. Finally, we speculate on the relationship between EGFR traffic and cell survival.
Collapse
Affiliation(s)
- Alejandra Tomas
- University College London (UCL) Institute of Ophthalmology, London, UK
| | - Clare E Futter
- University College London (UCL) Institute of Ophthalmology, London, UK
| | - Emily R Eden
- University College London (UCL) Institute of Ophthalmology, London, UK.
| |
Collapse
|
46
|
Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, Phipps C, Kopparam J, Oh M, Basu S, Kohandel M, Sengupta S. Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy. Cancer Res 2013; 74:675-685. [PMID: 24121494 DOI: 10.1158/0008-5472.can-12-3783] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanomedicines that preferentially deploy cytotoxic agents to tumors and molecular targeted therapeutics that inhibit specific aberrant oncogenic drivers are emerging as the new paradigm for the management of cancer. While combination therapies are a mainstay of cancer chemotherapy, few studies have addressed the combination of nanomedicines and molecular targeted therapeutics. Furthermore, limited knowledge exists on the impact of sequencing of such therapeutics and nanomedicines on the antitumor outcome. Here, we engineered a supramolecular cis-platinum nanoparticle, which induced apoptosis in breast cancer cells but also elicited prosurvival signaling via an EGF receptor/phosphoinositide 3-kinase (PI3K) pathway. A combination of mathematical modeling and in vitro and in vivo validation using a pharmacologic inhibitor of PI3K, PI828, demonstrate that administration of PI828 following treatment with the supramolecular cis-platinum nanoparticle results in enhanced antitumor efficacy in breast cancer as compared with when the sequence is reversed or when the two treatments are administered simultaneously. This study addresses, for the first time, the impact of drug sequencing in the case of a combination of a nanomedicine and a targeted therapeutic. Furthermore, our results indicate that a rational combination of cis-platinum nanoparticles and a PI3K-targeted therapeutic can emerge as a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Ambarish Pandey
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Ashish Kulkarni
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Bhaskar Roy
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Aaron Goldman
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Sasmit Sarangi
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Poulomi Sengupta
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Colin Phipps
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jawahar Kopparam
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Michael Oh
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Sudipta Basu
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, ON, M5T 3J1, Canada
| | - Shiladitya Sengupta
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| |
Collapse
|
47
|
Yamaguchi H, Hsu JL, Chen CT, Wang YN, Hsu MC, Chang SS, Du Y, Ko HW, Herbst R, Hung MC. Caspase-independent cell death is involved in the negative effect of EGF receptor inhibitors on cisplatin in non-small cell lung cancer cells. Clin Cancer Res 2013; 19:845-54. [PMID: 23344263 DOI: 10.1158/1078-0432.ccr-12-2621] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Results of multiple clinical trials suggest that EGF receptor (EGFR) tyrosine kinase inhibitors (TKI) exhibit negative effects on platinum-based chemotherapy in patients with lung cancer with wild-type (WT) EGFR, but the underlying molecular mechanisms are still uncertain. Studies that identify the mechanism of how TKIs negatively affect patients with WT EGFR are important for future development of effective strategies to target lung cancer. Thus, we returned to in vitro study to investigate and determine a possible explanation for this phenomenon. EXPERIMENTAL DESIGN We investigated the effects of TKIs and cisplatin on caspase-independent cell death (CID) and the role of CID in the efficacy of each drug and the combination. Furthermore, we studied the mechanism by which EGFR signaling pathway is involved in CID. Finally, on the basis of the identified mechanism, we tested the combinational effects of cisplatin plus suberoylanilide hydroxamic acid (SAHA) or erastin on CID. RESULTS We found that gefitinib inhibited cisplatin-induced CID but not caspase-dependent apoptotic cell death. In WT EGFR cells, gefitinib not only inhibited CID but also failed to induce apoptosis, therefore compromising the efficacy of cisplatin. Inhibition of EGFR-ERK/AKT by gefitinib activates FOXO3a, which in turn reduces reactive oxygen species (ROS) and ROS-mediated CID. To overcome this, we showed that SAHA and erastin, the inducers of ROS-mediated CID, strongly enhanced the effect of cisplatin in WT EGFR cells. CONCLUSION TKI-mediated inhibition of CID plays an important role in the efficacy of chemotherapy. Moreover, FOXO3a is a key factor in the negative effects of TKI by eliminating cisplatin-induced ROS.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Basso M, Strippoli A, Orlandi A, Martini M, Calegari MA, Schinzari G, Di Salvatore M, Cenci T, Cassano A, Larocca LM, Barone C. KRAS mutational status affects oxaliplatin-based chemotherapy independently from basal mRNA ERCC-1 expression in metastatic colorectal cancer patients. Br J Cancer 2012; 108:115-20. [PMID: 23175150 PMCID: PMC3553525 DOI: 10.1038/bjc.2012.526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: In this study, we evaluated the possibility that KRAS mutational status might be predictive of oxaliplatin (OXA) efficacy. We also explored the role of excision repair cross complementing group-1 (ERCC-1). Methods: Ninety anti-epidermal growth factor receptor-naive advanced colorectal cancer patients were retrospectively analysed. In all patients KRAS mutational status was assessed. In 60 patients mRNA ERCC-1 expression was also investigated. Response rate (RR) and progression-free survival (PFS) after FOLFOX-6±bevacizumab were evaluated according to KRAS status and mRNA ERCC-1 expression. Results: Among 90 patients 47% wild-type (wt) and 53% mutated (mt) KRAS tumours were found. Response rate was 26% in the wt KRAS group, whereas it was 56% in the mt KRAS group; the difference is statistically significant in the total sample (P=0.008) and when only patients receiving FOLFOX-6±bevacizumab as first-line are considered (P=0.01). Progression-free survival was longer in mt than in wt KRAS patients over all patients (10 vs 8 months, respectively, P=0.001) and in those treated as first-line (10 vs 8 months, respectively, P=0.0069). Mt KRAS patients experienced a longer survival (24 vs 18 months; P=0.01). ERCC-1 mRNA expression was not found to correlate with FOLFOX activity in our analysis. Conclusion: Our results suggest that activating mutation of KRAS oncogene may predict response to OXA. Basal expression of ERCC-1 mRNA does not explain the high efficacy of FOLFOX-6 in mt KRAS patients.
Collapse
Affiliation(s)
- M Basso
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli n 8, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kodigepalli KM, Dutta PS, Bauckman KA, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett 2012. [PMID: 23178716 DOI: 10.1016/j.febslet.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SnoN/SkiL (TGFβ regulator) is dysregulated in ovarian cancer, a disease associated with acquired drug-resistance. Arsenic trioxide (As₂O₃, used in treating APL) induces SnoN to oppose the apoptotic response in ovarian cancer cells. We now report that As₂O₃ increases phosphorylation of EGFR/p66ShcA and EGFR degradation. As₂O₃ activates Src(Y416) whose activity (inhibited by PP2) modulates EGFR activation, its interaction with Shc/Grb2, and p-AKT. Inhibition of PI3K reduces SnoN and cell survival. Although EGFR or MAPK1 siRNA did not alter SnoN expression, As₂O₃-induced cleaved PARP was reduced together with increased XIAP. Collectively, As₂O₃ mediates an initial rise in pY-Src(416) to regulate the PI3K/AKT pathway which increases SnoN and cell survival; these early events may counter the cell death response associated with increased pY-EGFR/MAPK activation.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Avenue, ISA2015, Tampa, FL, United States
| | | | | | | |
Collapse
|
50
|
Wu Y, Sato F, Bhawal UK, Kawamoto T, Fujimoto K, Noshiro M, Seino H, Morohashi S, Kato Y, Kijima H. BHLH transcription factor DEC2 regulates pro-apoptotic factor Bim in human oral cancer HSC-3 cells. ACTA ACUST UNITED AC 2012; 33:75-82. [PMID: 22572381 DOI: 10.2220/biomedres.33.75] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DEC1 (BHLHE40/Stra13/Sharp2) and DEC2 (BHLHE41/Sharp1) are basic helix-loop-helix (bHLH) transcription factors that are involved in the regulation of apoptosis, cell proliferation, circadian rhythms and the response to hypoxia. We previously showed the functional effects of DEC1 and DEC2 on apoptosis in human breast cancer MCF-7 cells. However, the roles of DEC1 and DEC2 in oral cancer are poorly understood. We examined whether DEC1 and DEC2 are involved in the regulation of apoptosis in human oral cancer HSC-3 and CA9-22 cells. The expression of DEC2 was upregulated by cis-diamminedichloroplatinum (II) (cisplatin: CDDP) treatment in HSC-3 cells, whereas CDDP treatment had little effects on the expression of DEC2 in CA9-22 cells. We showed that DEC2 overexpression inhibits pro-apoptotic factor Bim and inhibits apoptosis induced by CDDP in HSC-3 cells, whereas it had little effects on apoptosis in CA9-22 cells. DEC1 overexpression had little effects on apoptosis induced by CDDP in these cells. We also found that CDDP upregulated the amounts of DEC2 in the nucleus in HSC-3 cells. These results suggest that DEC2 has anti-apoptotic effects on apoptosis induced by CDDP in HSC-3 cells.
Collapse
Affiliation(s)
- Yunyan Wu
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|