1
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
2
|
Abstract
Perfectly orchestrated periodic gene expression during cell cycle progression is essential for maintaining genome integrity and ensuring that cell proliferation can be stopped by environmental signals. Genetic and proteomic studies during the past two decades revealed remarkable evolutionary conservation of the key mechanisms that control cell cycle-regulated gene expression, including multisubunit DNA-binding DREAM complexes. DREAM complexes containing a retinoblastoma family member, an E2F transcription factor and its dimerization partner, and five proteins related to products of Caenorhabditis elegans multivulva (Muv) class B genes lin-9, lin-37, lin-52, lin-53, and lin-54 (comprising the MuvB core) have been described in diverse organisms, from worms to humans. This review summarizes the current knowledge of the structure, function, and regulation of DREAM complexes in different organisms, as well as the role of DREAM in human disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hayley Walston
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA;
| | - Audra N Iness
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Larisa Litovchick
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA; .,Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.,Massey Cancer Center, Richmond, Virginia 23298, USA
| |
Collapse
|
3
|
MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017. [PMID: 28640249 PMCID: PMC5520903 DOI: 10.1038/cddis.2017.244] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Collapse
|
4
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
Affiliation(s)
- Subhashini Sadasivam
- Institute for Stem Cell Biology and Regenerative Medicine National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA 02215 USA Department of Medicine, Brigham and Women's Hospital, Boston MA 02115 USA Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
- Corresponding author James A. DeCaprio Dana-Farber Cancer Institute 450 Brookline Avenue Boston, MA 02215 Tel: 617-632-3825 Fax: 617-582-8601
| |
Collapse
|
5
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
|
6
|
Werwein E, Schmedt T, Hoffmann H, Usadel C, Obermann N, Singer JD, Klempnauer KH. B-Myb promotes S-phase independently of its sequence-specific DNA binding activity and interacts with polymerase delta-interacting protein 1 (Pdip1). Cell Cycle 2012; 11:4047-58. [PMID: 23032261 DOI: 10.4161/cc.22386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-Myb is a highly conserved member of the Myb transcription factor family, which plays an essential role in cell cycle progression by regulating the transcription of genes at the G 2/M-phase boundary. The role of B-Myb in other parts of the cell cycle is less well-understood. By employing siRNA-mediated silencing of B-Myb expression, we found that B-Myb is required for efficient entry into S-phase. Surprisingly, a B-Myb mutant that lacks sequence-specific DNA-binding activity and is unable to activate transcription of B-Myb target genes is able to rescue the S-phase defect observed after B-Myb knockdown. Moreover, we have identified polymerase delta-interacting protein 1 (Pdip1), a BTB domain protein known to bind to the DNA replication and repair factor PCNA as a novel B-Myb interaction partner. We have shown that Pdip1 is able to interact with B-Myb and PCNA simultaneously. In addition, we found that a fraction of endogenous B-Myb can be co-precipitated via PCNA, suggesting that B-Myb might be involved in processes related to DNA replication or repair. Taken together, our work suggests a novel role for B-Myb in S-phase that appears to be independent of its sequence-specific DNA-binding activity and its ability to stimulate the expression of bona fide B-Myb target genes.
Collapse
Affiliation(s)
- Eugen Werwein
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Chen T, Xue L, Niu J, Ma L, Li N, Cao X, Li Q, Wang M, Zhao W, Li G, Wang J, Tong T. The retinoblastoma protein selectively represses E2F1 targets via a TAAC DNA element during cellular senescence. J Biol Chem 2012; 287:37540-51. [PMID: 22955272 DOI: 10.1074/jbc.m111.260679] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma (Rb) protein mediates heterochromatin formation at the promoters of E2 transcription factor 1 (E2F1) target genes, such as proliferating cell nuclear antigen and cyclin A2 (CCNA2), and represses these genes during cellular senescence. However, the selectivity of Rb recruitment is still not well understood. Here, we demonstrate that a senescence-associated gene is a direct target of E2F1 and is also repressed by heterochromatin in senescent cells. In contrast, ARF and p27(KIP1), which are also E2F1 targets, are not repressed by Rb and heterochromatin formation. By comparing the promoter sequences of these genes, we found a novel TAAC element that is present in the cellular senescence-inhibited gene, proliferating cell nuclear antigen, and CCNA2 promoters but absent from the ARF and p27(KIP1) promoters. This TAAC element associates with Rb and is required for Rb recruitment. We further determined that TAAC element-mediated Rb association requires the E2F1 binding site, but not E2F1 protein. These results provide a novel molecular mechanism for the different expression patterns of E2F1 targets and afford new mechanistic insight regarding the selectivity of Rb-mediated heterochromatin formation and gene repression during cellular senescence.
Collapse
Affiliation(s)
- Tianda Chen
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wirt SE, Sage J. p107 in the public eye: an Rb understudy and more. Cell Div 2010; 5:9. [PMID: 20359370 PMCID: PMC2861648 DOI: 10.1186/1747-1028-5-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/02/2010] [Indexed: 11/25/2022] Open
Abstract
p107 and its related family members Rb and p130 are critical regulators of cellular proliferation and tumorigenesis. Due to the extent of functional overlap within the Rb family, it has been difficult to assess which functions are exclusive to individual members and which are shared. Like its family members, p107 can bind a variety of cellular proteins to affect the expression of many target genes during cell cycle progression. Unlike Rb and p130, p107 is most highly expressed during the G1 to S phase transition of the cell cycle in actively dividing cells and accumulating evidence suggests a role for p107 during DNA replication. The specific roles for p107 during differentiation and development are less clear, although emerging studies suggest that it can cooperate with other Rb family members to control differentiation in multiple cell lineages. As a tumor suppressor, p107 is not as potent as Rb, yet studies in knockout mice have revealed some tumor suppressor functions in mice, depending on the context. In this review, we identify the unique and overlapping functions of p107 during the cell cycle, differentiation, and tumorigenesis.
Collapse
Affiliation(s)
- Stacey E Wirt
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA.
| | | |
Collapse
|
9
|
Schwab R, Caccamo A, Bettuzzi S, Anderson J, Sala A. B-MYB is hypophosphorylated and resistant to degradation in neuroblastoma: implications for cell survival. Blood Cells Mol Dis 2007; 39:263-71. [PMID: 17588787 DOI: 10.1016/j.bcmd.2007.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 11/24/2022]
Abstract
B-MYB is an oncoprotein highly expressed and frequently amplified in human neoplasia. B-MYB is more expressed in neuroblastoma patients with adverse prognostic indicators, corroborating the hypothesis that it plays an important role in this pediatric malignancy. While attempting targeting strategies for therapeutic purposes, we found that the B-MYB protein was difficult to downregulate in neuroblastoma cells using siRNA approaches. This lead us to discover that the B-MYB protein half-life is increased in neuroblastoma compared to other normal or transformed human cell lines. The B-MYB protein is quickly destroyed and apoptosis is induced in Ewing sarcoma cells exposed to UV irradiation. In contrast, neuroblastoma cells are resistant to UV-induced apoptosis and B-MYB protein levels do not change in UV-treated cells. In further experiments, we show that the B-MYB protein extracted from neuroblastoma cells is hypophosphorylated. It was previously shown that B-MYB phosphorylation activates its transcriptional activity but also promotes its destruction. Overexpression of a non-phosphorylatable B-MYB mutant protects cells from UV-induced apoptosis, suggesting that its reduced phosphorylation, rather than causing its inactivation, facilitates B-MYB pro-survival activity. Thus, expression of stable, hypophosphorylated B-MYB in neuroblastoma may promote cell survival and induce aggressive tumour growth.
Collapse
Affiliation(s)
- Rebekka Schwab
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
10
|
Yu Y, Wang J, Yuan H, Qin F, Wang J, Zhang N, Li YY, Liu J, Lu H. Characterization of human dopamine responsive protein DRG-1 that binds to p75NTR-associated cell death executor NADE. Brain Res 2006; 1100:13-20. [PMID: 16777077 DOI: 10.1016/j.brainres.2006.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/01/2006] [Accepted: 05/03/2006] [Indexed: 11/17/2022]
Abstract
Expression of human dopamine responsive gene-1 (DRG-1) is up-regulated in response to treatment of dopamine in the rat astrocytes. However, its functions are not clear up to now. In the presented studies, DRG-1 was identified to be a conserved gene in the vertebrate and expressed abundantly in human testis, brain and skeletal muscle. DRG-1 was shown to interact with human p75NTR-associated cell death executor (NADE) in vivo and in vitro, and the interaction occurred in cytoplasm. The regions required for the interaction were subsequently mapped to the N-terminal of DRG-1 and the C-terminal of NADE. Furthermore, MTT assay showed that stable expression of DRG-1 in 293 cells could promote cell proliferation, and this promotion was suppressed by overexpression of NADE. In flow cytometry cell cycle analysis, overexpression of DRG-1 in 293 or PC12 cells increased the population of cells in the S phase with a concomitant decrease in G0/G1 population. These findings suggest that DRG-1 may contribute to the dopamine-induced cell growth, which is negatively regulated by NADE.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
García P, Frampton J. The transcription factor B-Myb is essential for S-phase progression and genomic stability in diploid and polyploid megakaryocytes. J Cell Sci 2006; 119:1483-93. [PMID: 16551698 DOI: 10.1242/jcs.02870] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cell-cycle-regulated Myb-family transcription factor B-Myb is crucial during S phase in many diploid cell types. We have examined the expression and function of B-Myb in megakaryocytic differentiation, during which cells progress from a diploid to a polyploid state. In contrast to terminal differentiation of most haematopoietic cells, during which B-myb is rapidly downregulated, differentiation of megakaryocytes is accompanied by continued B-myb RNA and protein expression. Overexpression of B-Myb in a megakaryoblastic cell line resulted in an increase in the number of cells entering S phase and, upon induction of differentiation, the fraction of cells actively endoreplicating increased. By contrast, reduction of B-Myb levels using short interfering (si)RNA resulted in a decline in S-phase progression during both normal and endoreplicative DNA synthesis. This effect correlated with aberrant localisation of initiation of DNA replication within the nucleus and an increased fraction of cells in mitosis. Chromosomal fragmentation and other aberrations, including shorter, thicker chromatids, end-to-end fusion, and loss of a chromatid, suggest that reduced B-Myb activity is also associated with structural chromosomal instability.
Collapse
Affiliation(s)
- Paloma García
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
12
|
Ahlbory D, Appl H, Lang D, Klempnauer KH. Disruption of B-myb in DT40 cells reveals novel function for B-Myb in the response to DNA-damage. Oncogene 2005; 24:7127-34. [PMID: 16170378 DOI: 10.1038/sj.onc.1208869] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
B-Myb is a highly conserved vertebrate member of the Myb transcription factor family, which is expressed in virtually all proliferating cells. A large body of evidence suggests that B-Myb plays an important role in cell cycle regulation; however, the exact nature of its function has not yet been clarified. We have used gene targeting in chicken DT40 cells, a cell line exhibiting very high rates of homologous recombination, to create cells expressing endogenous B-myb in a doxycyclin-dependent manner. We find that the cells proliferate well in the absence of B-Myb, suggesting that B-Myb is not essential for cell proliferation per se. However, cells lacking B-Myb are more sensitive to DNA-damage induced by UV-irradiation and alkylation. Our work provides the first direct evidence for a novel function of B-Myb in the response to DNA-damage. The cells described here should be a useful model to characterize this function in more detail.
Collapse
Affiliation(s)
- Dörthe Ahlbory
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, Münster D-48149, Germany
| | | | | | | |
Collapse
|
13
|
Sala A. B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 2005; 41:2479-84. [PMID: 16198555 DOI: 10.1016/j.ejca.2005.08.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
B-MYB belongs to the MYB family of transcription factors that include A-MYB and c-MYB. While A-MYB and c-MYB are tissue-specific, B-MYB is broadly expressed in rapidly dividing cells of developing or adult mammals. B-MYBs liaisons with important players of the cell cycle and transcription machinery, such as E2F and retinoblastoma proteins, suggest that its essential function in stem cell formation and mammalian development could be related to its ability to directly or indirectly impinge on gene expression. Besides its role in the cell cycle, B-MYB has been shown to promote cell survival by activating antiapoptotic genes such as ApoJ/clusterin and BCL2. Here, we discuss how B-MYB could be implicated in tumourigenesis by regulating gene expression.
Collapse
Affiliation(s)
- Arturo Sala
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, WC1N 1EH London, UK.
| |
Collapse
|
14
|
Bartusel T, Schubert S, Klempnauer KH. Regulation of the cyclin D1 and cyclin A1 promoters by B-Myb is mediated by Sp1 binding sites. Gene 2005; 351:171-80. [PMID: 15922873 DOI: 10.1016/j.gene.2005.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/21/2005] [Accepted: 03/22/2005] [Indexed: 11/25/2022]
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors which plays an important role during the cell cycle. Previous work has shown that B-Myb is phosphorylated at several sites by cyclin A/Cdk2 in the early S-phase. These phosphorylations increase the transactivation potential of B-Myb by counteracting the repressive function of an inhibitory domain located at the carboxyl-terminus of B-Myb. As yet, only a few genes have been identified as B-Myb target genes. Previous work has suggested that the cyclin D1 gene might be regulated by B-Myb. Here, we have studied the effect of B-Myb on the promoter of the cyclin D1 gene. We show that B-Myb is a potent activator of the cyclin D1 promoter and that this activation is not mediated by Myb binding sites but rather by a group of Sp1 binding sites which have previously been shown to be crucial for cyclin D1 promoter activity. Our data show that the C-terminal domain of B-Myb is required for the activation of the cyclin D1 promoter and that this part of B-Myb interacts with Sp1. Finally, we have found that the promoter of the cyclin A1 gene is also activated by B-Myb by a Sp1 binding site-dependent mechanism. The effect of B-Myb on the promoters of the cyclin A1 and D1 genes is reminiscent of the mechanism that has been proposed for the autoregulation of the B-myb promoter by B-Myb, which also involves Sp1 binding sites. Taken together, our identification of two novel B-Myb responsive promoters whose activation by B-Myb does not involve Myb binding sites extends previous evidence for the existence of a distinct mechanism of transactivation by B-Myb which is dependent on Sp1 binding sites. The observation that this mechanism is not subject to the inhibitory effect of the C-terminal domain of B-Myb but rather requires this domain supports the notion that the Sp1 site-dependent mechanism is already active in the G1-phase prior to the phosphorylation of B-Myb by cyclin A/Cdk2.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Germany
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Joseph S Lipsick
- Department of Pathology and Department of Genetics, Program in Cancer Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
16
|
Santilli G, Schwab R, Watson R, Ebert C, Aronow BJ, Sala A. Temperature-dependent modification and activation of B-MYB: implications for cell survival. J Biol Chem 2004; 280:15628-34. [PMID: 15618219 DOI: 10.1074/jbc.m411747200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B-MYB is a ubiquitous transcription factor with an essential role in mouse development. Because cells with a disrupted B-MYB gene cannot be obtained, it is still unknown what is the critical function(s) exerted by B-MYB in mammalian cells. In this study we have observed that reducing B-MYB expression in primary human fibroblasts by using RNA interference results in a partial block of the cells in the G(2) phase of the cell cycle and cell death. Surprisingly, suppressing B-MYB transcriptional activity with a dominant-negative molecule is without effect, suggesting that its transactivating function is not essential. Only human or murine fibroblasts exposed to high temperature are sensitized to cell death in the presence of dominant-negative B-MYB. This correlates with temperature-dependent binding of endogenous B-MYB to transcriptional regulatory elements of the stress-related gene ApoJ/clusterin. We find that regulation of ApoJ/clusterin by B-MYB is a pro-survival response to thermal stress. Thus, B-MYB is regulated by temperature to activate genes required for cell survival.
Collapse
Affiliation(s)
- Giorgia Santilli
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 2004; 119:181-93. [PMID: 15479636 DOI: 10.1016/j.cell.2004.09.034] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/12/2004] [Accepted: 09/23/2004] [Indexed: 01/05/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRb) regulates gene transcription by binding E2F transcription factors. pRb can recruit several repressor complexes to E2F bound promoters; however, native pRb repressor complexes have not been isolated. We have purified E2F/RBF repressor complexes from Drosophila embryo extracts and characterized their roles in E2F regulation. These complexes contain RBF, E2F, and Myb-interacting proteins that have previously been shown to control developmentally regulated patterns of DNA replication in follicle cells. The complexes localize to transcriptionally silent sites on polytene chromosomes and mediate stable repression of a specific set of E2F targets that have sex- and differentiation-specific expression patterns. Strikingly, seven of eight complex subunits are structurally and functionally related to C. elegans synMuv class B genes, which cooperate to control vulval differentiation in the worm. These results reveal an extensive evolutionary conservation of specific pRb repressor complexes that physically combine subunits with established roles in the regulation of transcription, DNA replication, and chromatin structure.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lewis PW, Beall EL, Fleischer TC, Georlette D, Link AJ, Botchan MR. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev 2004; 18:2929-40. [PMID: 15545624 PMCID: PMC534653 DOI: 10.1101/gad.1255204] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Drosophila Myb complex has roles in both activating and repressing developmentally regulated DNA replication. To further understand biochemically the functions of the Myb complex, we fractionated Drosophila embryo extracts relying upon affinity chromatography. We found that E2F2, DP, RBF1, RBF2, and the Drosophila homolog of LIN-52, a class B synthetic multivulva (synMuv) protein, copurify with the Myb complex components to form the Myb-MuvB complex. In addition, we found that the transcriptional repressor protein, lethal (3) malignant brain tumor protein, L(3)MBT, and the histone deacetylase, Rpd3, associated with the Myb-MuvB complex. Members of the Myb-MuvB complex were localized to promoters and were shown to corepress transcription of developmentally regulated genes. These and other data now link together the Myb and E2F2 complexes in higher-order assembly to specific chromosomal sites for the regulation of transcription.
Collapse
Affiliation(s)
- Peter W Lewis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | | | | | | | |
Collapse
|
19
|
Joaquin M, Watson RJ. The cell cycle-regulated B-Myb transcription factor overcomes cyclin-dependent kinase inhibitory activity of p57(KIP2) by interacting with its cyclin-binding domain. J Biol Chem 2003; 278:44255-64. [PMID: 12947099 DOI: 10.1074/jbc.m308953200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell cycle-regulated B-Myb transcription factor is required for early embryonic development and is implicated in regulating cell growth and differentiation. In addition to its transcriptional regulatory properties, recent data indicate that B-Myb can release active cyclin/Cdk2 activity from the retinoblastoma-related p107 protein by directly interacting with the p107 N terminus. As this p107 domain has homology to the cyclin-binding domains of the p21(Waf1/Cip1) family of cyclin-dependent kinase inhibitors (CKIs), we investigated in this study whether B-Myb could also interact with these CKIs. No in vivo interaction was found with either p21(Waf1/Cip1) or p27(KIP1), however, binding to p57(KIP2) was readily detectable in both in vivo and in vitro assays. The B-Myb-interacting region of p57(KIP2) mapped to the cyclin-binding domain. Consistent with this, B-Myb competed with cyclin A2 for binding to p57(KIP2), resulting in release of active cyclin/Cdk2 kinase. Moreover, B-Myb partially overcame the ability of p57(KIP2) to induce G1 arrest in Saos-2 cells. Despite similarities with previous p107 studies, the B-Myb domains required for interaction with p57(KIP2) were quite different from those implicated for p107. Thus, it is evident that B-Myb may promote cell proliferation by a non-transcriptional mechanism that involves release of active cyclin/Cdk2 from p57(KIP2) as well as p107.
Collapse
Affiliation(s)
- Manel Joaquin
- Ludwig Institute for Cancer Research and Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | | |
Collapse
|