1
|
Zhang B, Cheng X, Zhan S, Jin X, Liu T. MIB1 upregulates IQGAP1 and promotes pancreatic cancer progression by inducing ST7 degradation. Mol Oncol 2021; 15:3062-3075. [PMID: 33793053 PMCID: PMC8564634 DOI: 10.1002/1878-0261.12955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
Despite recent progress in cancer treatment, the prognosis of patients with pancreatic cancer still remains poor. Pancreatic tumors are reported to display high molecular heterogeneity. Elucidating the molecular mechanisms underlying pancreatic cancer progression is essential for improving patient treatment and survival. The overexpression of E3 ubiquitin ligase mind bomb 1 (MIB1) was previously described in pancreatic cancer cells, where it enhanced tumor cell proliferation. However, the role of MIB1 in pancreatic cancer progression remains elusive. In the present study, we confirmed that MIB1 expression is elevated in pancreatic cancer tissues and that high levels of MIB associate with unfavorable prognosis. Overexpression of MIB1 enhanced proliferation and invasion of pancreatic cancer cells both in vitro and in vivo. We further investigated the molecular mechanisms downstream of MIB1 and observed for the first time that MIB1 targets suppressor of tumorigenicity 7 protein (ST7), previously described as suppressor of tumorigenicity, for proteasomal degradation. Furthermore, we found that ST7 suppressed tumor growth by downregulating IQ motif containing GTPase activating protein 1 (IQGAP1) in pancreatic tumor cells. Thus, these data show that MIB1 promotes pancreatic cancer progression by inducing ST7 degradation followed by downregulation of IQGAP1 in pancreatic cancer cells. In conclusion, our research shows that the MIB1/ST7/IQGAP1 axis is essential for pancreatic cancer progression, and MIB1 inhibition may serve as a novel therapeutic strategy in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sudong Zhan
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liu X, Cheng I, Plummer SJ, Suarez B, Casey G, Catalona WJ, Witte JS. Fine-mapping of prostate cancer aggressiveness loci on chromosome 7q22-35. Prostate 2011; 71:682-9. [PMID: 20945404 PMCID: PMC3027848 DOI: 10.1002/pros.21284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/31/2010] [Indexed: 01/10/2023]
Abstract
BACKGROUND Deciphering the genetic basis of prostate cancer aggressiveness could provide valuable information for the screening and treatment of this common but complex disease. We previously detected linkage between a broad region on chromosome 7q22-35 and Gleason score-a strong predictor of prostate cancer aggressiveness. To further clarify this finding and focus on the potentially causative gene, we undertook a fine-mapping study across the 7q22-35 region. METHODS Our study population encompassed 698 siblings diagnosed with prostate cancer. 3,072 single nucleotide polymorphisms (SNPs) spanning the chromosome 7q22-35 region were genotyped using the Illumina GoldenGate assay. The impact of SNPs on Gleason scores were evaluated using affected sibling pair linkage and family-based association tests. RESULTS We confirmed the previous linkage signal and narrowed the 7q22-35 prostate cancer aggressiveness locus to a 370 kb region. Centered under the linkage peak is the gene KLRG2 (killer cell lectin-like receptor subfamily G, member 2). Association tests indicated that the potentially functional non-synonymous SNP rs17160911 in KLRG2 was significantly associated with Gleason score (P = 0.0007). CONCLUSIONS These findings suggest that genetic variants in the gene KLRG2 may affect Gleason score at diagnosis and hence the aggressiveness of prostate cancer.
Collapse
Affiliation(s)
- Xin Liu
- Mary Ann and J. Milburn Smith Child Health Research Program, Department of Pediatrics, Northwestern University Feinberg School of Medicine and Children's Memorial Hospital and Children's Memorial Research Center, Chicago, IL, USA
| | - Iona Cheng
- Epidemiology Program, Cancer Research Center of Hawai`i, University of Hawai`i, Honolulu, HI 96813, USA
| | - Sarah J Plummer
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brian Suarez
- Department of Genetics, Washington University, 660 South Euclid, St. Louis, Missouri 63110, USA
| | - Graham Casey
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John S. Witte
- Departments of Epidemiology & Biostatistics and Urology, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158-9001, USA
| |
Collapse
|
3
|
Appearance of epithelial and stromal genomic instability in background colorectal mucosa of sporadic colorectal cancer patients: relation to age and gender. J Gastroenterol 2009; 44:1036-45. [PMID: 19590931 DOI: 10.1007/s00535-009-0103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 06/16/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND We have previously demonstrated that not only epithelial but also stromal genetic instability possibly contributes to colorectal tumorigenesis. To assess the increasing risk of carcinogenesis in the colorectum with aging, we examined genomic instability in both epithelia and stroma in the background noncancerous mucosa of patients with colorectal carcinomas. METHODS In 213 noncancerous colorectal mucosa samples from colorectal cancer cases and 51 normal mucosa specimens of diverticulosis cases, epithelial and stromal genomic instability was analyzed with National Cancer Institute standard microsatellite markers, chromosome 17 (Chr.17) markers and tumor suppressor gene-related markers, using a combination of laser-capture microdissection and GeneScan approaches. Results were compared with immunohistochemically demonstrated expression of FHIT, Rb, WT1, hMLH1 and hMSH2. RESULTS Genomic instability (MSI and LOH) in both epithelia and stroma appeared after around 40 years of age and remained relatively constant thereafter at relatively low frequencies (4.8-30.4%). The Epithelial LOH tended to show a stepwise increase in people in their 40s and 50s along with aging, especially in males. Overall frequencies of both epithelial MSI and LOH in left-side colon and LOH in right-side colon were significantly higher in males than in females. Epithelial hMLH1 expression in MSI (-) cases tended to be reduced with aging. CONCLUSIONS Genomic instability of both MSI and LOH in noncancerous colonic mucosa, and more particularly epithelial and stromal LOH, appears relatively early in adults, suggesting age-related changes which increase the risk of cancer development, particularly in males.
Collapse
|
4
|
Lin X, Finkelstein SD, Zhu B, Ujevich BJ, Silverman JF. Loss of heterozygosities in Barrett esophagus, dysplasia, and adenocarcinoma detected by esophageal brushing cytology and gastroesophageal biopsy. Cancer 2009; 117:57-66. [PMID: 19347831 DOI: 10.1002/cncy.20010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Esophageal brushing cytology (EBC) and gastroesophageal biopsy (GEB) are complementary procedures for the evaluation of gastroesophageal lesions that help guide surveillance and treatment. METHODS The authors investigated loss of heterozygosity (LOH) of 17 microsatellite repeat markers near tumor suppressor genes in gastroesophageal lesions on 34 concomitant EBCs and GEBs. RESULTS The results indicated that there was progressive accumulation of LOHs toward malignant transformation. EBC samples a greater area than GEB, and more LOHs are detected by EBC than GEB. The combination of cytomorphology and detection of LOHs can improve diagnostic accuracy and is a more useful methodology with which to evaluate gastroesophageal lesions than either EBC or GEB alone. The authors also found that LOHs at 1p36, 9p21, and 17p13 may play an important role in Barrett esophagus (BE), LOHs at 10q23, 17p13, and 17q12 in low-grade dysplasia (LGD), LOHs at 5q23 and 17q21 in high-grade dysplasia (HGD), and LOHs at 5q23 and 21q22 in adenocarcinoma. CONCLUSIONS Detection of LOHs targeting tumor suppressor genes can be useful in evaluating gastroesophageal lesions, studying oncogenesis of gastroesophageal adenocarcinoma, and, in combination with EBC and GEB, determining surveillance for BE and LGD and/or treatment for HGD and adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoqi Lin
- Department of Pathology, Northwestern University, 251 East Huron Street, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
5
|
Yagishita H, Yoshida T, Ishiguro K, Numata Y, Okayasu I. Epithelial and stromal genetic instability linked to tumor suppressor genes in ulcerative colitis-associated tumorigenesis. Scand J Gastroenterol 2008; 43:559-66. [PMID: 18415748 DOI: 10.1080/00365520701817419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We have previously documented not only epithelial but also stromal genetic instability in ulcerative colitis (UC)-associated lesions, including adenocarcinomas, using microsatellite markers close to the p53 gene on chromosome 17 (Chr.17). However, about half of the UC-associated tumors do not have p53 gene alterations. The purpose of this study was to detect early genetic instability (loss of heterozygosity (LOH) and microsatellite instability (MSI)) of both epithelial and stromal cells in UC-associated tumorigenesis, using different microsatellite markers from the p53 gene. MATERIAL AND METHODS The laser-captured microdissection-PCR-GeneScan method was applied to investigate genetic instability in both the epithelial and stromal elements of early UC-associated lesions (regenerative mucosa and dysplasia) and carcinomas using multiple microsatellite markers, chiefly close to tumor suppressor genes (TSGs: p16(INK4A), Rb, Smad4 and fragile histidine triad (FHIT)). Furthermore, expression of their gene products was analyzed by immunohistochemistry. RESULTS In epithelium, although LOH for Chr.17 markers increased along with histological progression, the frequencies of LOH or MSI for TSG markers were found to be almost constantly increased in both stromal and epithelial components of all lesion types. In contrast, genetic instability of National Cancer Institute (NCI)-recommended standard markers was not found to be significantly correlated with UC-associated tumorigenesis. Immunohistochemically, epithelial p16(INK4A) expression tended to be decreased in LOH-positive lesions (p = 0.0780) and Smad4 expression was significantly decreased (p < 0.05). CONCLUSIONS These results suggest that genetic instability in the stroma, especially regarding TSG markers, may play an important role in early-phase, UC-associated tumorigenesis. In addition, decreased expression of TSG due to genetic alteration might contribute to tumorigenesis.
Collapse
Affiliation(s)
- Hiroko Yagishita
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
6
|
Ogawa T, Yoshida T, Tsuruta T, Saigenji K, Okayasu I. Genetic instability on chromosome 17 in the epithelium of non-polypoid colorectal carcinomas compared to polypoid lesions. Cancer Sci 2006; 97:1335-42. [PMID: 17032312 PMCID: PMC11160022 DOI: 10.1111/j.1349-7006.2006.00334.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Early colorectal carcinomas (submucosal invasive adenocarcinomas) can be classified into polypoid growth carcinoma (PG-Ca) and non-polypoid growth carcinoma (NPG-Ca) types, the latter transforming more rapidly to advanced carcinoma. Previously, we indicated that stromal genetic instability might contribute to tumorigenesis of both sporadic and ulcerative colitis-associated colorectal adenocarcinomas. In the present study, we analyzed genetic instability of both epithelial and surrounding stromal components in PG-Ca and NPG-Ca. In 99 colorectal submucosal invasive adenocarcinomas, epithelial and stromal genetic instability was analyzed with National Cancer Institute standard microsatellite markers, chromosome 17 (Chr.17) markers and tumor suppressor gene-related markers, using a combination of the laser-captured microdissection and GeneScan approaches. Immunohistochemical analysis was carried out for hMLH1, hMSH2, MGMT and p53. In addition, we investigated methylation of the hMLH1 and MGMT promoters. The frequencies of epithelial microsatellite instability (MSI) with Chr.17 markers were significantly higher in NPG-Ca (33.3%) compared to PG-Ca (10.4%), particularly with D17S579 and D17S796. For loss of heterozygosity, only D17S786 showed a significant difference. The frequencies of stromal MSI with all markers were 31.7% and 25.9% in NPG-Ca and PG-Ca, respectively, but D17S579 and TP53 showed higher MSI in NPG-Ca than PG-Ca. Immunohistochemically, p53 protein expression in PG-Ca was significantly higher in loss of heterozygosity-positive cases with altered Chr.17 markers overall, especially the D17S796 marker, compared to cases without genetic instability. These results suggest that epithelial and stromal MSI of Chr.17 markers contributes more to carcinogenesis in NPG-Ca, whereas stromal genetic instability might be necessary for the development of both types of colorectal carcinoma.
Collapse
Affiliation(s)
- Taishi Ogawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|
7
|
Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, Xu Y, Olaru A, Berki AT, Li H, Schulmann K, Kan T, Hamilton JP, Paun B, Yu MM, Jin Z, Cheng Y, Ito T, Mantzur C, Greenwald BD, Meltzer SJ. Transcriptional profiling suggests that Barrett's metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene 2006; 25:3346-56. [PMID: 16449976 DOI: 10.1038/sj.onc.1209357] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To investigate the relationship between Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC), we determined gene expression profiles of discrete pathological stages of esophageal neoplasia using a sequence-verified human cDNA microarray. Fifty one RNAs, comprising 24 normal esophagi (NE), 18 BEs, and nine EACs were hybridized to cDNA microarrays. Five statistical analyses were used for the data analysis. Genes showing significantly different expression levels among the three sample groups were identified. Genes were grouped into functional categories based on the Gene Ontology Consortium. Surprisingly, the expression pattern of BE was significantly more similar to EAC than to NE, notwithstanding the known histopathologic differences between BE and EAC. The pattern of NE was clearly distinct from that of EAC. Thirty-six genes were the most differentially modulated, according to these microarray data, in BE-associated neoplastic progression. Twelve genes were significantly differentially expressed in cancer-associated BE's plus EAC (as a single combined tissue group) vs noncancer-associated BE's. These genes represent potential biomarkers to diagnose EAC at its early stages. Our results demonstrate that molecular events at the transcriptional level in BE are remarkably similar to BE's-associated adenocarcinoma of the esophagus. This finding alarmingly implies that BE is biologically closer to cancer than to normal esophagus, and that the cancer risk of BE is perhaps higher than we had imagined. These findings suggest that changes modulated at the molecular biologic level supervene earlier than histologic changes, and that BE is an early intermediate stage in the process of EAC.
Collapse
Affiliation(s)
- S Wang
- Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Koppert LB, Wijnhoven BPL, van Dekken H, Tilanus HW, Dinjens WNM. The molecular biology of esophageal adenocarcinoma. J Surg Oncol 2005; 92:169-90. [PMID: 16299787 DOI: 10.1002/jso.20359] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Barrett's esophagus is an acquired metaplastic change that occurs in the distal esophagus secondary to chronic gastroesophageal reflux. This premalignant condition forms the most important risk factor for developing esophageal adenocarcinoma, which is an extremely aggressive tumor with a 5-year survival rate of less than 25%. Carcinomas that arise in the setting of Barrett's esophagus are thought to develop as part of the metaplasia-dysplasia-carcinoma sequence. OBJECTIVE To review the current knowledge on the genomic alterations involved in the development of Barrett's esophagus and its progression to dysplasia and/or cancer. RESULTS Several changes in gene structure, gene expression, and protein structure are associated with the progression of Barrett's esophagus to adenocarcinoma. Accumulation of these changes seems to be essential, rather than the exact sequence of these changes. Multiple molecular pathways are involved and interact with each other. Alterations in tumor suppressor genes, amongst which p53 and p16, are early events in the metaplasia-dysplasia-adenocarcinoma sequence, followed by loss of cell cycle checkpoints. Ongoing genomic instability leads to cumulative genetic errors and thereby the generation of multiple clones of transformed cells. CONCLUSIONS Within the multistep process of esophageal adenocarcinogenesis, to date no single molecular marker came forward able to predict who will and who will not develop cancer in the setting of Barrett's esophagus. Instead, panels of markers need to be developed in the future allowing to indicate disease progression. Identification of crucial molecular pathways involved in esophageal adenocarcinogenesis would ultimately improve therapy and facilitate development of new treatment strategies.
Collapse
Affiliation(s)
- Linetta B Koppert
- Department of Surgery, Erasmus MC, University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24:9630-45. [PMID: 15485929 PMCID: PMC522266 DOI: 10.1128/mcb.24.21.9630-9645.2004] [Citation(s) in RCA: 472] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) have been implicated in transcriptional activation and repression, but their role in controlling cell growth and proliferation remains obscure. We have recently shown that PRMT5 can interact with flag-tagged BRG1- and hBRM-based hSWI/SNF chromatin remodelers and that both complexes can specifically methylate histones H3 and H4. Here we report that PRMT5 can be found in association with endogenous hSWI/SNF complexes, which can methylate H3 and H4 N-terminal tails, and show that H3 arginine 8 and H4 arginine 3 are preferred sites of methylation by recombinant and hSWI/SNF-associated PRMT5. To elucidate the role played by PRMT5 in gene regulation, we have established a PRMT5 antisense cell line and determined by microarray analysis that more genes are derepressed when PRMT5 levels are reduced. Among the affected genes, we show that suppressor of tumorigenicity 7 (ST7) and nonmetastatic 23 (NM23) are direct targets of PRMT5-containing BRG1 and hBRM complexes. Furthermore, we demonstrate that expression of ST7 and NM23 is reduced in a cell line that overexpresses PRMT5 and that this decrease in expression correlates with H3R8 methylation, H3K9 deacetylation, and increased transformation of NIH 3T3 cells. These findings suggest that the BRG1- and hBRM-associated PRMT5 regulates cell growth and proliferation by controlling expression of genes involved in tumor suppression.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|