1
|
Watanabe M, Nishikawaji Y, Kawakami H, Kosai KI. Adenovirus Biology, Recombinant Adenovirus, and Adenovirus Usage in Gene Therapy. Viruses 2021; 13:v13122502. [PMID: 34960772 PMCID: PMC8706629 DOI: 10.3390/v13122502] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is currently in the public spotlight. Several gene therapy products, including oncolytic virus (OV), which predominantly replicates in and kills cancer cells, and COVID-19 vaccines have recently been commercialized. Recombinant adenoviruses, including replication-defective adenoviral vector and conditionally replicating adenovirus (CRA; oncolytic adenovirus), have been extensively studied and used in clinical trials for cancer and vaccines. Here, we review the biology of wild-type adenoviruses, the methodological principle for constructing recombinant adenoviruses, therapeutic applications of recombinant adenoviruses, and new technologies in pluripotent stem cell (PSC)-based regenerative medicine. Moreover, this article describes the technology platform for efficient construction of diverse "CRAs that can specifically target tumors with multiple factors" (m-CRAs). This technology allows for modification of four parts in the adenoviral E1 region and the subsequent insertion of a therapeutic gene and promoter to enhance cancer-specific viral replication (i.e., safety) as well as therapeutic effects. The screening study using the m-CRA technology successfully identified survivin-responsive m-CRA (Surv.m-CRA) as among the best m-CRAs, and clinical trials of Surv.m-CRA are underway for patients with cancer. This article also describes new recombinant adenovirus-based technologies for solving issues in PSC-based regenerative medicine.
Collapse
Affiliation(s)
- Maki Watanabe
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yuya Nishikawaji
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hirotaka Kawakami
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Center for Clinical and Translational Research, Kagoshima University Hospital, Kagoshima 890-8544, Japan
| |
Collapse
|
2
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Akaike Y, Nakane Y, Chibazakura T. Analysis of E1A domains involved in the enhancement of CDK2 activity. Biochem Biophys Res Commun 2021; 548:98-103. [PMID: 33640611 DOI: 10.1016/j.bbrc.2021.02.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/28/2023]
Abstract
E1A is an adenoviral protein which is expressed at the early phase after viral infection and contains four conserved regions (CR1, CR2, CR3 and CR4). Our previous work suggests that E1A facilitates the formation of cyclin A-CDK2 complex and thereby enhances CDK2 activity. However, the molecular function of E1A in CDK2 activation has been unclear. Here, we studied the mechanism of enhancement of CDK2 activity by E1A, using the E1A variant forms which selectively contain CR domains. We isolated four E1A variant forms, i.e. 13S (containing CR1, CR2, CR3, CR4), 12S (CR1, CR2, CR4), 10S (CR2, CR4) and 9S (CR4), derived from HEK293 cells which express E1A. 13S promoted G2/M-phase arrest, upon CDK2 hyper-activation by co-expressing a stabilized cyclin A mutant, most strongly among those E1A variant forms. Concomitantly, the specific activity of the 13S-associated CDK2 was highest among them. 10S exhibited lower affinity for CDK2 than the 13S while the affinity for CDK2 was comparable between 13S and 12S. Nonetheless, 12S did not enhance the CDK2 specific activity. On the other hand, a mutation in CR2 domain, which is essential for binding to p107, suppressed both the binding and activation of CDK2. These results suggest that CR1 domain, in addition to CR2 domain via p107 interaction, is important for binding to CycA-CDK2 complex while CR3 domain facilitates CDK2 activation. Since the function of CR3 in cell cycle regulation has been relatively unknown, we propose the enhancement of CDK2 activity as a novel function of CR3 domain.
Collapse
Affiliation(s)
- Yasunori Akaike
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuki Nakane
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
4
|
EGFR overexpression increases radiotherapy response in HPV-positive head and neck cancer through inhibition of DNA damage repair and HPV E6 downregulation. Cancer Lett 2020; 498:80-97. [PMID: 33137407 DOI: 10.1016/j.canlet.2020.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023]
Abstract
High-risk Human Papillomavirus (HPV) infections have recently emerged as an independent risk factor in head and neck squamous cell carcinoma (HNSCC). There has been a marked increase in the incidence of HPV-induced HNSCC subtype, which demonstrates different genetics with better treatment outcome. Despite the favourable prognosis of HPV-HNSCC, the treatment modality, consisting of high dose radiotherapy (RT) in combination with chemotherapy (CT), remains similar to HPV-negative tumours, associated with toxic side effects. Epidermal growth factor receptor (EGFR) is overexpressed in over 80% of HNSCC and correlates with RT resistance. EGFR inhibitor Cetuximab is the only FDA approved targeted therapy for both HNSCC subtypes, however the response varies between HNSCC subtypes. In HPV-negative HNSCC, Cetuximab sensitises HNSCC to RT improving survival rates. To reduce adverse cytotoxicity of CT, Cetuximab has been approved for treatment de-escalation of HPV-positive HNSCC. The results of several recent clinical trials have concluded differing outcome to HPV-negative HNSCC. Here we investigated the role of EGFR in HPV-positive HNSCC response to RT. Remarkably, in HPV-positive HNSCC cell lines and in vivo tumour models, EGFR activation was strongly indicative of increased RT response. In response to RT, EGFR activation induced impairment of DNA damage repair and increased RT response. Furthermore, EGFR was found to downregulate HPV oncoproteinE6 expression and induced p53 activity in response to RT. Collectively, our data uncovers a novel role for EGFR in virally induced HNSCC and highlights the importance of using EGFR-targeted therapies in the context of the genetic makeup of cancer.
Collapse
|
5
|
Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers (Basel) 2019; 11:cancers11121975. [PMID: 31817939 PMCID: PMC6966515 DOI: 10.3390/cancers11121975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.
Collapse
|
6
|
Su CM, Chang TY, Hsu HP, Lai HH, Li JN, Lyu YJ, Kuo KT, Huang MT, Su JL, Chen PS. A novel application of E1A in combination therapy with EGFR-TKI treatment in breast cancer. Oncotarget 2018; 7:63924-63936. [PMID: 27590506 PMCID: PMC5325414 DOI: 10.18632/oncotarget.11737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/21/2016] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is commonly overexpressed in breast cancer and is associated with poor clinical outcomes; however, an increasing number of patients have shown a poor effective response to EGFR tyrosine kinase inhibitors (EGFR-TKI). Here, we found that AXL expression was positively correlated with poor progression in breast cancer patients. Suppression of AXL by an anti-tumor protein, E1A, enhanced EGFR-TKI (gefitinib, erlotinib and lapatinib) sensitization, resulting in significant inhibition of tumor growth in breast cancer cells. Additionally, AXL overexpression dramatically impaired E1A-mediated EGFR-TKI sensitization. These findings show that downregulation of AXL expression by E1A contributes to sensitization to EGFR-TKI in breast cancer, suggesting that combinatorial therapy of AXL inhibitors or E1A gene therapy with EGFR-TKI may be a potential therapeutic strategy for treatment of breast cancer patients.
Collapse
Affiliation(s)
- Chih-Ming Su
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan, ROC.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Ting-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan, ROC
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Hui-Huang Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jie-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Jhen Lyu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC.,Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan, ROC
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli Country, Taiwan, ROC.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan, ROC.,Department of Biotechnology, Asia University, Taichung, Taiwan, ROC
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
7
|
Cimas FJ, Callejas-Valera JL, García-Olmo DC, Hernández-Losa J, Melgar-Rojas P, Ruiz-Hidalgo MJ, Pascual-Serra R, Ortega-Muelas M, Roche O, Marcos P, Garcia-Gil E, Fernandez-Aroca DM, Ramón y Cajal S, Gutkind JS, Sanchez-Prieto R. E1a is an exogenous in vivo tumour suppressor. Cancer Lett 2017; 399:74-81. [DOI: 10.1016/j.canlet.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 12/17/2022]
|
8
|
Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas. Sci Rep 2016; 6:28953. [PMID: 27356624 PMCID: PMC4928055 DOI: 10.1038/srep28953] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Osteosarcoma is a rare disease diagnosed as malignant bone tumor. It is generally refractory to chemotherapy, which contributes to its poor prognosis. The reversal of chemoresistance is a major clinical challenge to improve the prognostic outcome of osteosarcoma patients. We developed a tumor-specific replication-competent oncolytic adenovirus, OBP-301 (telomelysin) and assessed its synergistic effects with chemotherapeutic agents (cisplatin and doxorubicin) using human osteosarcoma cell lines and a xenograft tumor model. The molecular mechanism underlying the chemosensitizing effect of OBP-301 was evaluated in aspects of apoptosis induction. OBP-301 inhibits anti-apoptotic myeloid cell leukemia 1 (MCL1) expression, which in turn leads to chemosensitization in human osteosarcoma cells. The siRNA-mediated knockdown of MCL1 expression sensitized human osteosarcoma cells to common chemotherapeutic agents. We also found that upregulation of microRNA-29 targeting MCL1 via virally induced transcriptional factor E2F-1 activation was critical for the enhancement of chemotherapy-induced apoptosis in osteosarcoma cells. Telomerase-specific oncolytic adenovirus synergistically suppressed the viability of human osteosarcoma cells in combination with chemotherapeutic agents. The combination treatment also significantly inhibited tumor growth, as compared to monotherapy, in an osteosarcoma xenograft tumor model. Our data suggest that replicative virus-mediated tumor-specific MCL1 ablation may be a promising strategy to attenuate chemoresistance in osteosarcoma patients.
Collapse
|
9
|
Chang TY, Chen HA, Chiu CF, Chang YW, Kuo TC, Tseng PC, Wang W, Hung MC, Su JL. Dicer Elicits Paclitaxel Chemosensitization and Suppresses Cancer Stemness in Breast Cancer by Repressing AXL. Cancer Res 2016; 76:3916-28. [PMID: 27216190 DOI: 10.1158/0008-5472.can-15-2555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
Abstract
Paclitaxel is a standard-of-care chemotherapy for breast cancer, despite the increasing recognition of its poor effectiveness in the treatment of patients with advanced disease. Here, we report that adenovirus-type 5 E1A-mediated elevation of the miRNA-processing enzyme Dicer is sufficient to enhance paclitaxel sensitization and reduce cancer stem-like cell properties in this setting. Elevating Dicer expression increased levels of the AXL kinase targeting miRNA miR-494, thereby repressing AXL expression to increase paclitaxel sensitivity. We found that Dicer expression was regulated at the transcription level by E1A, through activation of an MAPK14/CEBPα pathway. Our findings define a mechanism of E1A-mediated chemosensitization for paclitaxel, which is based upon the suppression of breast cancer stem-like cells, with potential implications for the diagnosis and treatment of breast cancer patients. Cancer Res; 76(13); 3916-28. ©2016 AACR.
Collapse
Affiliation(s)
- Ting-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hsin-An Chen
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Feng Chiu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Wen Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tsang-Chih Kuo
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Tseng
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Weu Wang
- Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan. Department of Biotechnology, Asia University, Taichung, Taiwan. Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Bullenkamp J, Gäken J, Festy F, Chong EZ, Ng T, Tavassoli M. Apoptin interacts with and regulates the activity of protein kinase C beta in cancer cells. Apoptosis 2016; 20:831-42. [PMID: 25828882 DOI: 10.1007/s10495-015-1120-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apoptin, the VP3 protein from chicken anaemia virus (CAV), induces tumour cell-specific cell death and represents a potential future anti-cancer therapeutic. In tumour but not in normal cells, Apoptin is phosphorylated and translocates to the nucleus, enabling its cytotoxic activity. Recently, the β isozyme of protein kinase C (PKCβ) was shown to phosphorylate Apoptin in multiple myeloma cell lines. However, the exact mechanism and nature of interaction between PKCβ and Apoptin remain unclear. Here we investigated the physical and functional link between PKCβ and CAV-Apoptin as well as with the recently identified Apoptin homologue derived from human Gyrovirus (HGyV). In contrast to HCT116 colorectal cancer cells the normal colon mucosa cell lines expressed low levels of PKCβI and showed reduced Apoptin activation, as evident by cytoplasmic localisation, decreased phosphorylation and lack of cytotoxic activity. Co-immunoprecipitation and proximity ligation assay studies identified binding of both CAV- and HGyV-Apoptin to PKCβI in HCT116 cells. Using Apoptin deletion constructs the N-terminal domain of Apoptin was found to be required for interacting with PKCβI. FRET-based PKC activity reporter assays by fluorescence lifetime imaging microscopy showed that expression of Apoptin in cancer cells but not in normal cells triggers a significant increase in PKC activity. Collectively, the results demonstrate a novel cancer specific interplay between Apoptin and PKCβI. Direct interaction between the two proteins leads to Apoptin-induced activation of PKC and consequently activated PKCβI mediates phosphorylation of Apoptin to promote its tumour-specific nuclear translocation and cytotoxic function.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Department of Molecular Oncology, King's College London, Guy's Campus, Hodgkin Building, London, SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
11
|
Chen HA, Chang YW, Tseng CF, Chiu CF, Hong CC, Wang W, Wang MY, Hsiao M, Ma JT, Chen CH, Jiang SS, Wu CH, Hung MC, Huang MT, Su JL. E1A-mediated inhibition of HSPA5 suppresses cell migration and invasion in triple-negative breast cancer. Ann Surg Oncol 2014; 22:889-98. [PMID: 25212833 DOI: 10.1245/s10434-014-4061-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is defined by reduced expression of the estrogen receptor, progesterone receptor, and HER2. TNBC is an especially aggressive group of breast cancers with poor prognosis. There are currently no validated molecular targets to effectively treat this disease. Thus, it is necessary to identify effective molecular targets and therapeutic strategies for TNBC patients. METHODS The expression of HSPA5 in patients with breast cancer was examined by immunohistochemistry. The association of HSPA5 expression with tumor grade and metastatic events in TNBC patients was analyzed using the Oncomine database. The knockdown and overexpression of HSPA5 protein were performed to investigate the effects on E1A-suppressed cell migration/invasion of TNBC using in vitro transwell assays and tumor growth/experimental metastasis studies in animal models. RESULTS The expression of HSPA5 was positively correlated with high-grade tumors, metastatic events, and poor overall survival in breast cancer patients with TNBC. E1A-inhibited HSPA5 expression suppressed cell migration/invasive ability of TNBC cell lines. Moreover, E1A significantly abolished lung metastases from breast cancer cells by inhibiting HSPA5 expression in a xenograft tumor model. CONCLUSIONS The overexpression of HSPA5 is critical for high-risk metastasis of breast cancer and TNBC. The results of our study suggest that HSPA5 may be a crucial mediator of E1A-suppressed metastatic ability of breast cancer cells. Thus, E1A may be a potential target for diagnosis and individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Hsin-An Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model. Cancer Gene Ther 2014; 21:228-237. [PMID: 24874842 PMCID: PMC4353496 DOI: 10.1038/cgt.2014.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023]
Abstract
Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9, 10-dimethyl-1, 2-benzanthracene (DMBA). These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55K (which are defective in the expression of either E1B-19K alone or both E1B-19K and E1B-55K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intra-tumoral administration of HAdV5 E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers.
Collapse
|
13
|
Valero ML, Cimas FJ, Arias L, Melgar-Rojas P, García E, Callejas-Valera JL, García-Cano J, Serrano-Oviedo L, Ángel de la Cruz-Morcillo M, Sánchez-Pérez I, Sánchez-Prieto R. E1a promotes c-Myc-dependent replicative stress: implications in glioblastoma radiosensitization. Cell Cycle 2013; 13:52-61. [PMID: 24196438 PMCID: PMC3925735 DOI: 10.4161/cc.26754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/27/2022] Open
Abstract
The E1a gene from adenovirus is known to be a potent inducer of chemo/radiosensitivity in a wide range of tumors. However, the molecular bases of its radiosensitizer properties are still poorly understood. In an attempt to study this effect, U87MG cells, derived from a radio-resistant tumor as glioblastoma, where infected with lentivirus carrying E1a gene developing an acute sensitivity to ionizing radiation. The induction of radiosensitivity correlated with a marked G 2/M phase accumulation and a potent apoptotic response. Our findings demonstrate that c-Myc plays a pivotal role in E1a-associated radiosensitivity through the induction of a replicative stress situation, as our data support by genetic approaches, based in interference and overexpression in U87MG cells. In fact, we present evidence showing that Chk1 is a novel transcriptional target of E1a gene through the effect exerted by this adenoviral protein onto c-Myc. Moreover, c-Myc upregulation also explains the marked phosphorylation of H2AX associated to E1a expression in the absence of DNA damage. Indeed, all these observations were applicable to other experimental models, such as T98G, LN-405 and A172, rendering the same pattern in terms of radiosensitivity, cell cycle distribution, upregulation of Chk1, c-Myc, and phosphorylation pattern of H2AX. In summary, our data propose a novel mechanism to explain how E1a mediates radiosensitivity through the signaling axis E1a→c-Myc→ replicative stress situation. This novel mechanism of E1a-mediated radiosensitivity could be the key to open new possibilities in the current therapy of glioblastoma.
Collapse
Affiliation(s)
- María Llanos Valero
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Francisco Jose Cimas
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Laura Arias
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Pedro Melgar-Rojas
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Elena García
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Juan Luis Callejas-Valera
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Jesús García-Cano
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Leticia Serrano-Oviedo
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Miguel Ángel de la Cruz-Morcillo
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| | - Isabel Sánchez-Pérez
- Department of Biochemistry; School of Medicine;Biomedical Research Institute of Madrid CSIC/UAM; Madrid, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular; Centro Regional de Investigaciones Biomédicas; Universidad de Castilla-La Mancha/PCyTA/ Unidad de Biomédicina UCLM-CSIC; Albacete, Spain
| |
Collapse
|
14
|
Yano S, Tazawa H, Hashimoto Y, Shirakawa Y, Kuroda S, Nishizaki M, Kishimoto H, Uno F, Nagasaka T, Urata Y, Kagawa S, Hoffman RM, Fujiwara T. A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem-like cells in S/G2/M phases. Clin Cancer Res 2013; 19:6495-505. [PMID: 24081978 DOI: 10.1158/1078-0432.ccr-13-0742] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Because chemoradiotherapy selectively targets proliferating cancer cells, quiescent cancer stem-like cells are resistant. Mobilization of the cell cycle in quiescent leukemia stem cells sensitizes them to cell death signals. However, it is unclear that mobilization of the cell cycle can eliminate quiescent cancer stem-like cells in solid cancers. Thus, we explored the use of a genetically-engineered telomerase-specific oncolytic adenovirus, OBP-301, to mobilize the cell cycle and kill quiescent cancer stem-like cells. EXPERIMENTAL DESIGN We established CD133(+) cancer stem-like cells from human gastric cancer MKN45 and MKN7 cells. We investigated the efficacy of OBP-301 against quiescent cancer stem-like cells. We visualized the treatment dynamics of OBP-301 killing of quiescent cancer stem-like cells in dormant tumor spheres and xenografts using a fluorescent ubiquitination cell-cycle indicator (FUCCI). RESULTS CD133(+) gastric cancer cells had stemness properties. OBP-301 efficiently killed CD133(+) cancer stem-like cells resistant to chemoradiotherapy. OBP-301 induced cell-cycle mobilization from G0-G1 to S/G2/M phases and subsequent cell death in quiescent CD133(+) cancer stem-like cells by mobilizing cell-cycle-related proteins. FUCCI enabled visualization of quiescent CD133(+) cancer stem-like cells and proliferating CD133(-) non-cancer stem-like cells. Three-dimensional visualization of the cell-cycle behavior in tumor spheres showed that CD133(+) cancer stem-like cells maintained stemness by remaining in G0-G1 phase. We showed that OBP-301 mobilized quiescent cancer stem-like cells in tumor spheres and xenografts into S/G2/M phases where they lost viability and cancer stem-like cell properties and became chemosensitive. CONCLUSION Oncolytic adenoviral infection is an effective mechanism of cancer cell killing in solid cancer and can be a new therapeutic paradigm to eliminate quiescent cancer stem-like cells.
Collapse
Affiliation(s)
- Shuya Yano
- Authors' Affiliations: Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Center for innovative clinical medicine, Okayama University Hospital, Okayama; Oncolys BioPharma, Inc., Tokyo, Japan; Department of Surgery, University of California San Diego; and AntiCancer, Inc., San Diego, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Taebunpakul P, Sayan BS, Flinterman M, Klanrit P, Gäken J, Odell EW, Melino G, Tavassoli M. Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and ΔNp73 isoforms through ubiquitin ligase PIR2. Apoptosis 2012; 17:762-76. [PMID: 22484480 DOI: 10.1007/s10495-012-0720-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptin, a protein derived from the chicken anaemia virus, induces cell death in various cancer cells but shows little or no cytotoxicity in normal cells. The mechanism of apoptin-induced cell death is currently unknown but it appears to induce apoptosis independent of p53 status. Here we show that p73, a p53 family member, is important in apoptin-induced apoptosis. In p53 deficient and/or mutated cells, apoptin induced the expression of TAp73 leading to the induction of apoptosis. Knockdown of p73 using siRNA resulted in a significant reduction in apoptin-induced cytotoxicity. The p53 and p73 pro-apoptotic target PUMA plays an important role in apoptin-induced cell death as knockdown of PUMA significantly reduced cell sensitivity to apoptin. Importantly, apoptin expression resulted in a marked increase in TAp73 protein stability. Investigation into the mechanisms of TAp73 stability showed that apoptin induced the expression of the ring finger domain ubiquitin ligase PIR2 which is involved in the degradation of the anti-apoptotic ∆Np73 isoform. Collectively, our results suggest a novel mechanism of apoptin-induced apoptosis through increased TAp73 stability and induction of PIR2 resulting in the degradation of ∆Np73 and activation of pro-apoptotic targets such as PUMA causing cancer cell death.
Collapse
Affiliation(s)
- P Taebunpakul
- Head and Neck Oncology Group, King's College London Dental Institute, Floor 28 Tower Wing, Guy's Hospital Campus, London, SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Apoptosis-inducing activity and tumor-specificity of antitumor agents against oral squamous cell carcinoma. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2010.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Down-regulation of multiple cell survival proteins in head and neck cancer cells by an apoptogenic mutant of adenovirus type 5. Virology 2009; 392:62-72. [PMID: 19631957 DOI: 10.1016/j.virol.2009.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/11/2009] [Accepted: 06/29/2009] [Indexed: 11/21/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are one of the leading causes of cancer deaths world wide. Up-regulation of the epidermal growth factor receptor (EGFR) and BCL-2 family anti-apoptosis proteins in these cancers is linked to aggressive tumor growth, metastasis and chemoresistance. Infection of two HNSCC cell lines, SCC25 and CAL27 by an Ad5 mutant (lp11w) defective in coding for the viral anti-apoptosis protein, E1B-19K efficiently induced apoptotic cell death. In cells infected with lp11w there was a dramatic down-regulation of EGFR by apoptosis-dependent and -independent mechanisms. The levels of the anti-apoptotic proteins BCL-2, BCL-xL and MCL-1 were also down-regulated in lp11w-infected cells compared to uninfected or Ad5-RM infected cells. Infection with lp11w also enhanced sensitivity of the HNSCC cells to the chemotherapeutic drug cisplatin. Our results suggest that adenoviral vectors defective in E1B-19K would be valuable for efficient down-regulation of cell survival proteins and EGFR in epithelial cancers and could be exploited as oncolytic agents to treat HNSCCs.
Collapse
|
18
|
Klanrit P, Taebunpakul P, Flinterman MB, Odell EW, Riaz MA, Melino G, Salomoni P, Mymryk JS, Gäken J, Farzaneh F, Tavassoli M. PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene 2009; 28:3499-512. [PMID: 19597475 DOI: 10.1038/onc.2009.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase is commonly overexpressed in human cancers; however, the cellular mechanisms regulating EGFR expression remain unclear. p53, p63 and p73 are transcription factors regulating many cellular targets involved in controlling the cell cycle and apoptosis. p53 activates EGFR expression, whereas TAp63 represses EGFR transcription. The involvement of p73 in the regulation of EGFR has not been reported. Here, a strong correlation between EGFR overexpression and increased levels of the oncogenic DeltaNp73 isoform in head and neck squamous cell carcinoma (HNSCC) cell lines was observed. Ectopic expression of TAp73, particularly TAp73beta, resulted in suppression of the EGFR promoter, significant downregulation of EGFR protein and efficient induction of cell death in all six EGFR-overexpressing HNSCC cell lines. EGFR overexpression from a heterologous LTR promoter protected lung cancer cells from TAp73beta-induced EGFR suppression and apoptosis. Expression of TAp73beta efficiently induced promyelocytic leukaemia (PML) protein expression and PML knockdown by shRNA attenuated the downregulation of EGFR and induction of apoptosis by p73 in HNSCC cells. Furthermore, PML was found to be important for E1A-induced suppression of EGFR and subsequent killing of HNSCC cells. Our data therefore suggest a novel pathway involving PML and p73 in the regulation of EGFR expression.
Collapse
Affiliation(s)
- P Klanrit
- Head and Neck Oncology Group, King's College London Dental Institute, Guy's Hospital Campus, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Strath J, Georgopoulos LJ, Kellam P, Blair GE. Identification of genes differentially expressed as result of adenovirus type 5- and adenovirus type 12-transformation. BMC Genomics 2009; 10:67. [PMID: 19200380 PMCID: PMC2651901 DOI: 10.1186/1471-2164-10-67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 02/06/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cells transformed by human adenoviruses (Ad) exhibit differential capacities to induce tumours in immunocompetent rodents; for example, Ad12-transformed rodent cells are oncogenic whereas Ad5-transformed cells are not. The E1A gene determines oncogenic phenotype, is a transcriptional regulator and dysregulates host cell gene expression, a key factor in both cellular transformation and oncogenesis. To reveal differences in gene expression between cells transformed with oncogenic and non-oncogenic adenoviruses we have performed comparative analysis of transcript profiles with the aim of identifying candidate genes involved in the process of neoplastic transformation. RESULTS Analysis of microarray data revealed that a total of 232 genes were differentially expressed in Ad12 E1- or Ad5 E1-transformed BRK cells compared to untransformed baby rat kidney (BRK) cells. Gene information was available for 193 transcripts and using gene ontology (GO) classifications and literature searches it was possible to assign known or suggested functions to 166 of these identified genes. A subset of differentially-expressed genes from the microarray was further examined by real-time PCR and Western blotting using BRK cells immortalised by Ad12 E1A or Ad5 E1A in addition to Ad12 E1- or Ad5 E1-transformed BRK cells. Up-regulation of RelA and significant dysregulation of collagen type I mRNA transcripts and proteins were found in Ad-transformed cells. CONCLUSION These results suggest that a complex web of cellular pathways become altered in Ad-transformed cells and that Ad E1A is sufficient for the observed dysregulation. Further work will focus on investigating which splice variant of Ad E1A is responsible for the observed dysregulation at the pathway level, and the mechanisms of E1A-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Janet Strath
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
20
|
Klanrit P, Flinterman MB, Odell EW, Melino G, Killick R, Norris JS, Tavassoli M. Specific isoforms of p73 control the induction of cell death induced by the viral proteins, E1A or apoptin. Cell Cycle 2007; 7:205-15. [PMID: 18256531 DOI: 10.4161/cc.7.2.5361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A member of the p53 family, p73, has several isoforms and differentially regulates transcription of genes involved in the control of the cell cycle and apoptosis. We have previously shown efficient and p53-independent, tumor-specific cell death induced by the viral proteins E1A and Apoptin. Here, we demonstrate that the induction of apoptosis by these viral proteins involves activation of TAp73. Both E1A and Apoptin induced expression of endogenous TAp73 and the p53/p73 BH3-only pro-apoptotic target, PUMA, independently of the p53 function. Furthermore, exogenous expression of TAp73 isoforms, particularly TAp73beta, sensitized cells to killing by both E1A and Apoptin, while expression of DeltaNp73alpha blocked this activity. Besides, knockout of the p73 regulator, c-Abl, attenuated E1A-induced apoptosis. In accordance with the role of p73 in apoptosis induced by these viral proteins, overexpression of TAp73beta strongly induced apoptosis in p53-deficient cancer cells in vitro and in HNSCC xenografts. Using a doxycycline-inducible system, we provide evidence for target selectivity and significant differences in protein stability for specific p73 isoforms, suggesting a diverse and pivotal role for p73 in response to various genotoxic agents. Collectively, our data show that in the absence of the p53 function, viral proteins E1A and Apoptin utilize the p73 pathway to induce efficient tumor cell death.
Collapse
Affiliation(s)
- Poramaporn Klanrit
- Head and Neck Oncology Group, King's College London Dental Institute, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Flinterman MB, Mymryk JS, Klanrit P, Yousef AF, Lowe SW, Caldas C, Gäken J, Farzaneh F, Tavassoli M. p400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing. Oncogene 2007; 26:6863-74. [PMID: 17486071 PMCID: PMC4591001 DOI: 10.1038/sj.onc.1210497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently shown that E1A protein of human adenovirus downregulates epidermal growth factor receptor (EGFR) expression and induces apoptosis in head and neck (HNSCC) and lung cancer cells independently of their p53 status. E1A has five isoforms of which the major ones E1A12S and E1A13S regulate transcription of cellular genes by binding to transcriptional modulators such as pRB, CtBP, p300 and p400. In this study, we have identified E1A12S isoform to have the highest effect on EGFR suppression and induction of apoptosis in HNSCC cells. Similar to Ad5, E1A12S from human adenovirus types 2, 3, 9 and 12 suppressed EGFR, whereas E1A12S of adenovirus types 4 and 40 had no effect on EGFR expression. Using deletion mutants of E1A12S we have shown that interaction of E1A with p400, but not p300 or pRB, is required for EGFR suppression and apoptosis. Inhibition of p400 by short hairpin RNA confirmed that HNSCC cells with reduced p400 expression were less sensitive to E1A-induced suppression of EGFR and apoptosis. p300 function was shown to be dispensable, as cells expressing E1A mutants that are unable to bind p300, or p300 knockout cells, remained sensitive to E1A-induced apoptosis. In summary, this study identifies p400 as an important mediator of E1A-induced downregulation of EGFR and apoptosis.
Collapse
Affiliation(s)
- MB Flinterman
- Head and Neck Oncology Group, King’s College London, London, UK
| | - JS Mymryk
- Departments of Oncology and Microbiology and Immunology, London Regional Cancer Center, University of Western Ontario, London, Ontario, Canada
| | - P Klanrit
- Head and Neck Oncology Group, King’s College London, London, UK
| | - AF Yousef
- Departments of Oncology and Microbiology and Immunology, London Regional Cancer Center, University of Western Ontario, London, Ontario, Canada
| | - SW Lowe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - C Caldas
- Department of Oncology, Cancer Genomics Program, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - J Gäken
- Department of Haematological and Molecular Medicine, King’s College London, London, UK
| | - F Farzaneh
- Department of Haematological and Molecular Medicine, King’s College London, London, UK
| | - M Tavassoli
- Head and Neck Oncology Group, King’s College London, London, UK
| |
Collapse
|
22
|
Yang ZR, Wang HF, Zhao J, Peng YY, Wang J, Guinn BA, Huang LQ. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 2007; 14:599-615. [PMID: 17479105 DOI: 10.1038/sj.cgt.7701054] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite setbacks in the past and apparent hurdles ahead, gene therapy is advancing toward reality. The past several years have witnessed this new field of biomedicine developing rapidly both in breadth and depth, especially for the treatment of cancer, thanks largely to the better understanding of molecular and genetic basis of oncogenesis and the development of new and improved vectors and technologies for gene delivery and targeting. This article is intended to provide a brief review of recent advances in cancer gene therapy using adenoviruses, both as vectors and as oncolytic agents, and some of the recent progress in the development of immunotoxins for use in cancer gene therapy.
Collapse
Affiliation(s)
- Z R Yang
- Center for Biotech & BioMedicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Itamochi H, Kigawa J, Kanamori Y, Oishi T, Bartholomeusz C, Nahta R, Esteva FJ, Sneige N, Terakawa N, Ueno NT. Adenovirus type 5 E1A gene therapy for ovarian clear cell carcinoma: a potential treatment strategy. Mol Cancer Ther 2007; 6:227-35. [PMID: 17218636 DOI: 10.1158/1535-7163.mct-05-0499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance of ovarian clear cell carcinoma (CCC) to platinum-based chemotherapy is associated with poor prognosis, and an effective treatment for advanced disease is urgently needed. HER2/neu is up-regulated more often in CCC than in other histologic types of epithelial ovarian cancer. The purpose of this study was to assess possible treatment for ovarian CCC with the anti-HER2 antibody trastuzumab or human adenovirus type 5 E1A. We treated 10 CCC cell lines with trastuzumab or E1A and assessed cell viability, proliferation, and colony formation and the expression of HER2 and wild-type p53 proteins and molecules downstream of those signaling pathways. HER2 protein was detected at various levels in all 10 cell lines by Western blotting and in 5 CCC cell lines by immunohistochemical staining; HER2 gene amplification was detected (by fluorescence in situ hybridization) in only one cell line (RMG-I). Trastuzumab did not inhibit proliferation in any of the four CCC cell lines tested (RMG-I, SKOV-2, OVTOKO, and OVSAYO). However, transfection with E1A (as compared with control vectors) reduced colony formation in all 10 CCC cell lines regardless of HER2 expression level. Infection of RMG-I and SMOV-2 cells with an adenoviral vector encoding E1A led to significant (P < 0.05) suppression of proliferation and enhancement of cell death; this effect required stabilization of p53 (but not p73) protein and was associated with the up-regulation of Bax and the cleavage of caspase-9. Other mechanisms, such as p53-independent apoptosis, may also be involved in E1A-mediated cell death in CCC. Finally, treatment with E1A prolonged survival in a CCC xenograft model (P < 0.001). E1A gene therapy, because of its ability to stabilize wild-type p53, is worth exploring as a treatment modality for women with ovarian CCC, which typically expresses wild-type p53.
Collapse
Affiliation(s)
- Hiroaki Itamochi
- Department of Stem Cell Transplantation and Cellular Therapy, Unit 448, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shao R, Lee DF, Wen Y, Ding Y, Xia W, Ping B, Yagita H, Spohn B, Hung MC. E1A sensitizes cancer cells to TRAIL-induced apoptosis through enhancement of caspase activation. Mol Cancer Res 2005; 3:219-26. [PMID: 15831675 DOI: 10.1158/1541-7786.mcr-04-0084] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis of cancer cells. Sensitization of cancer cells to TRAIL, particularly TRAIL-resistant cancer cells, could improve the effectiveness of TRAIL as an anticancer agent. The adenovirus type 5 E1A that associates with anticancer activities including sensitization to apoptosis induced by tumor necrosis factor is currently being tested in clinical trials. In this study, we investigated the sensitivity to TRAIL in the E1A transfectants ip1-E1A2 and 231-E1A cells and the parental TRAIL-resistant human ovarian cancer SKOV3.ip1 and TRAIL-sensitive human breast cancer MDA-MB-231 cells. The results indicated that the percentage of TRAIL-induced apoptotic cells was significantly higher in the E1A transfectants of both cell lines than it was in the parental cell lines. To further investigate the cellular mechanism of this effect, we found that E1A enhances TRAIL-induced activation of caspase-8, caspase-9, and caspase-3. Inhibition of caspase-3 activity by a specific inhibitor, Z-DEVD-fmk, abolished TRAIL-induced apoptosis. In addition, E1A enhanced TRAIL expression in ip1-E1A2 cells, but not in 231-E1A cells, and the anti-TRAIL neutralizing antibody N2B2 blocked the E1A-mediated bystander effect in vitro. Taken together, these results suggest that E1A sensitizes both TRAIL-sensitive and TRAIL-resistant cancer cells to TRAIL-induced apoptosis, which occurs through the enhancement of caspase activation; activation of caspase-3 is required for TRAIL-induced apoptosis; and E1A-induced TRAIL expression is involved in the E1A-mediated bystander effect. Combination of E1A and TRAIL could be an effective treatment for cancer.
Collapse
Affiliation(s)
- Ruping Shao
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Flinterman M, Guelen L, Ezzati-Nik S, Killick R, Melino G, Tominaga K, Mymryk JS, Gäken J, Tavassoli M. E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem 2004; 280:5945-59. [PMID: 15572378 DOI: 10.1074/jbc.m406661200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
p73, a member of the p53 family of proteins, transcriptionally activates a number of genes involved in the control of cell cycle and apoptosis. Overexpression of p73 was detected in a large number of primary head and neck cancers, and in the established cell lines examined, these all contained inactivating p53 mutations. The significance of p73 overexpression in the pathogenesis of head and neck cancer is currently unclear. We have shown that the expression of adenovirus 5 E1A in a panel of head and neck cancer cell lines induces apoptosis independently of their p53 status. In this study we examined the role of p73 and its transcriptional targets in E1A-mediated induction of apoptosis. E1A expression resulted in significant activation of the TAp73 promoter but had no effect on the alternative, DeltaNp73 promoter. E1A also increased expression of endogenous TAp73 mRNA and protein. E1A mutants lacking the p300- and/or pRB-binding sites showed reduced ability to activate the TAp73 promoter. Additionally, mutations in the E2F1-binding sites in the TAp73 promoter impaired activation by E1A. Importantly, expression of the 13S isoform of E1A substantially induced the p53 apoptotic target Noxa in several p53-deficient cancer cell lines. Our results indicate that E1A activation of p73 and the p53 apoptotic target Noxa can occur in the absence of a functional p53. This activation is likely to play a key role in the mechanism of p53-independent apoptosis induced by E1A in some cancers and may provide an avenue for future cancer therapies.
Collapse
Affiliation(s)
- Marcella Flinterman
- Head and Neck Oncology Group, Guy's King's & St. Thomas's School of Dentistry, King's College London, SE5 9NU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guelen L, Paterson H, Gäken J, Meyers M, Farzaneh F, Tavassoli M. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene 2004; 23:1153-65. [PMID: 14691460 DOI: 10.1038/sj.onc.1207224] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptin has been described to induce apoptosis in various human cancer cell lines, but not in normal cells, thus making it an interesting candidate for the development of novel therapeutic strategies. Apoptin was generated and cloned into several mammalian expression vectors. Transfection or microinjection of apoptin cDNA resulted in its expression, initially in the cytoplasm with a filamentous pattern. Subsequently, apoptin entered the nucleus and efficiently induced apoptosis in several cancer cell lines. Nuclear localization was shown to be required for induction of apoptosis. Apoptin expression level was found to be an important determinant of the efficiency of induction of apoptosis. Surprisingly, expression of apoptin or GFP-apoptin cDNA induced apoptosis in some normal cells. When fused to the HIV-TAT protein transduction domain and delivered as a protein, TAT-apoptin was transduced efficiently (>90%) into normal and tumour cells. However, TAT-apoptin remained in the cytoplasm and did not kill normal 6689 and 1BR3 fibroblasts. In contrast TAT-apoptin migrated from the cytoplasm to the nucleus of Saos-2 and HSC-3 cancer cells resulting in apoptosis after 24 h. This study shows that apoptin is a powerful apoptosis-inducing protein with a potential for cancer therapy.
Collapse
Affiliation(s)
- Lars Guelen
- Head and Neck Oncology Group, Department of Oral Medicine and Pathology, The Rayne Institute, Guy's, King's and St Thomas' School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|