1
|
Inverse regulation of bridging integrator 1 and BCR-ABL1 in chronic myeloid leukemia. Tumour Biol 2016; 37:217-25. [PMID: 26194865 DOI: 10.1007/s13277-015-3772-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022] Open
Abstract
Endocytosis is the major regulator process of tyrosine kinase receptor (RTK) functional activities. Bridging integrator 1 (BIN1) is a key protein involved in RTK intracellular trafficking. Here, we report, by studying 34 patients with chronic myeloid leukemia (CML) at diagnosis, that BIN1 gene is downregulated in CML as compared to healthy controls, suggesting an altered endocytosis of RTKs. Rab interactor 1 (RIN1), an activator of BIN1, displayed a similar behavior. Treatment of 57 patients by tyrosine kinase inhibitors caused, along with BCR-ABL1 inactivation, an increase of BIN1 and RIN1 expression, potentially restoring endocytosis. There was a significant inverse correlation between BIN1-RIN1 and BCR-ABL1 expression. In vitro experiments on both CML and nontumorigenic cell lines treated with Imatinib confirmed these results. In order to provide another proof in favor of BIN1 and RIN1 endocytosis function in CML, we demonstrated that Imatinib induced, in K562 cell line, BIN1-RIN1 upregulation accompanied by a parallel AXL receptor internalization into cytoplasmic compartment. This study shows a novel deregulated mechanism in CML patients, indicating BIN1 and RIN1 as players in the maintenance of the abnormal RTK signaling in this hematological disease.
Collapse
|
2
|
Badger-Brown KM, Gillis LC, Bailey ML, Penninger JM, Barber DL. CBL-B is required for leukemogenesis mediated by BCR-ABL through negative regulation of bone marrow homing. Leukemia 2012; 27:1146-54. [DOI: 10.1038/leu.2012.331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Hansen N, Ågerstam H, Wahlestedt M, Landberg N, Askmyr M, Ehinger M, Rissler M, Lilljebjörn H, Johnels P, Ishiko J, Melo JV, Alexander WS, Bryder D, Järås M, Fioretos T. SOCS2 is dispensable for BCR/ABL1-induced chronic myeloid leukemia-like disease and for normal hematopoietic stem cell function. Leukemia 2012; 27:130-5. [PMID: 22824785 PMCID: PMC3542906 DOI: 10.1038/leu.2012.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Suppressor of cytokine signaling 2 (SOCS2) is known as a feedback inhibitor of cytokine
signaling and is highly expressed in primary bone marrow (BM) cells from patients with
chronic myeloid leukemia (CML). However, it has not been established whether SOCS2 is
involved in CML, caused by the BCR/ABL1 fusion gene, or important for normal
hematopoietic stem cell (HSC) function. In this study, we demonstrate that although
Socs2 was found to be preferentially expressed in long-term HSCs,
Socs2-deficient HSCs were indistinguishable from wild-type HSCs when challenged
in competitive BM transplantation experiments. Furthermore, by using a retroviral
BCR/ABL1-induced mouse model of CML, we demonstrate that SOCS2 is
dispensable for the induction and propagation of the disease, suggesting that the
SOCS2-mediated feedback regulation of the JAK/STAT pathway is deficient in
BCR/ABL1-induced CML.
Collapse
Affiliation(s)
- N Hansen
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Seo S, Nakamoto T, Takeshita M, Lu J, Sato T, Suzuki T, Kamikubo Y, Ichikawa M, Noda M, Ogawa S, Honda H, Oda H, Kurokawa M. Crk-associated substrate lymphocyte type regulates myeloid cell motility and suppresses the progression of leukemia induced by p210Bcr/Abl. Cancer Sci 2011; 102:2109-17. [PMID: 21848808 DOI: 10.1111/j.1349-7006.2011.02066.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The p210Bcr/Abl and p190Bcr/Abl fusion oncoproteins are known to cause chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL). Bcr/Abl phosphorylates several proteins that can lead to leukemogenesis. Crk-associated substrate lymphocyte type (Cas-L)/human enhancer of filamentation-1 (HEF1)/neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) is an adapter protein at focal adhesions known to be associated with solid tumor metastasis. Crk-associated substrate lymphocyte type has also been reported to be tyrosine phosphorylated by p190Bcr/Abl. We demonstrated that Cas-L was expressed in murine granulocytes, as well as in lymphocytes, and that Cas-L-deficient (Cas-L(-/-) ) granulocytes had increased migratory activity and decreased adhesiveness. To examine whether Cas-L was involved in leukemogenesis by p210Bcr/Abl, we generated Cas-L(-/-) p210Bcr/Abl transgenic mice. The mice displayed early development of myeloproliferative neoplasm seen in the chronic phase of CML, which resulted in the early death of the mice. Pathologically, increased infiltration of myeloid cells into several tissues was detected in the absence of Cas-L. In a hematopoietic reconstitution assay, Cas-L(-/-) p210Bcr/Abl transgenic cells showed a low population in the spleen, although only their myeloid cell population was normal. Thus, Cas-L seems to regulate the progression of CML in a negative way, presumably by attenuating extramedullary hyperplasia.
Collapse
Affiliation(s)
- Sachiko Seo
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc Natl Acad Sci U S A 2010; 107:21683-8. [PMID: 21118980 DOI: 10.1073/pnas.1016311108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Arsenic, a curative agent for acute promyelocytic leukemia, induces cell apoptosis and degradation of BCR-ABL in chronic myelogenous leukemia (CML). We demonstrated that ubiquitination and degradation of BCR-ABL was mediated by c-CBL, a RING-type E3 ligase that was also shown to be involved in ubiquitination for many other receptor/protein tyrosine kinases. Our data showed that c-CBL protein was considerably up-regulated by arsenic sulfide (As(4)S(4)). Interestingly, arsenic directly bound the RING finger domain of c-CBL to inhibit its self-ubiquitination/degradation without interfering with the enhancement of ubiquitination and subsequent proteolysis of its substrate BCR-ABL. Degradation of BCR-ABL due to c-CBL induction as a result of arsenic treatment was also observed in vivo in CML mice. These findings provide insight into the molecular mechanisms of arsenic and further support its therapeutic applications in CML in combination with tyrosine kinase inhibitors and potentially also in other malignancies involving aberrant receptor/protein tyrosine kinase signaling.
Collapse
|
6
|
Johnson KJ, Griswold IJ, O'Hare T, Corbin AS, Loriaux M, Deininger MW, Druker BJ. A BCR-ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLoS One 2009; 4:e7439. [PMID: 19823681 PMCID: PMC2757918 DOI: 10.1371/journal.pone.0007439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 09/17/2009] [Indexed: 11/19/2022] Open
Abstract
The BCR-ABL tyrosine kinase is the defining feature of chronic myeloid leukemia (CML) and its kinase activity is required for induction of this disease. Current thinking holds that BCR-ABL forms a multi-protein complex that incorporates several substrates and adaptor proteins and is stabilized by multiple direct and indirect interactions. Signaling output from this highly redundant network leads to cellular transformation. Proteins known to be associated with BCR-ABL in this complex include: GRB2, c-CBL, p62(DOK), and CRKL. These proteins in turn, link BCR-ABL to various signaling pathways indicated in cellular transformation. In this study we show that a triple mutant of BCR-ABL with mutations of the direct binding sites for GRB2, CBL, p62(DOK) and CRKL, is defective for transformation of primary hematopoietic cells in vitro and in a murine CML model, while it retains the capacity to induce IL-3 independence in 32D cells. Compared to BCR-ABL, the triple mutant's ability to activate the MAP kinase and PI3-kinase pathways is severely compromised, while STAT5 phosphorylation is maintained, suggesting that the former are crucial for the transformation of primary cells, but dispensable for transformation of factor dependent cell lines. Our data suggest that inhibition of BCR-ABL-induced leukemia by disrupting protein interactions could be possible, but would require blocking of multiple sites.
Collapse
Affiliation(s)
- Kara J Johnson
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon, United States of America.
| | | | | | | | | | | | | |
Collapse
|
7
|
Jagani Z, Singh A, Khosravi-Far R. FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis. Biochim Biophys Acta Rev Cancer 2007; 1785:63-84. [PMID: 17980712 DOI: 10.1016/j.bbcan.2007.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/04/2007] [Accepted: 10/06/2007] [Indexed: 12/14/2022]
Abstract
Numerous studies have revealed that the BCR-ABL oncoprotein abnormally engages a multitude of signaling pathways, some of which may be important for its leukemogenic properties. Central to this has been the determination that the tyrosine kinase function of BCR-ABL is mainly responsible for its transforming potential, and can be targeted with small molecule inhibitors, such as imatinib mesylate (Gleevec, STI-571). Despite this apparent success, the development of clinical resistance to imatinib therapy, and the inability of imatinib to eradicate BCR-ABL-positive malignant hematopoietic progenitors demand detailed investigations of additional effector pathways that can be targeted for CML treatment. The promotion of cellular survival via the suppression of apoptotic pathways is a fundamental characteristic of tumor cells that enables resistance to anti-cancer therapies. As substrates of survival kinases such as Akt, the FoxO family of transcription factors, particularly FoxO3a, has emerged as playing an important role in the cell cycle arrest and apoptosis of hematopoietic cells. This review will discuss our current understanding of BCR-ABL signaling with a focus on apoptotic suppressive mechanisms and alternative approaches to CML therapy, as well as the potential for FoxO transcription factors as novel therapeutic targets.
Collapse
Affiliation(s)
- Zainab Jagani
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
8
|
Chen J, Yu WM, Daino H, Broxmeyer HE, Druker BJ, Qu CK. SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl. Blood 2006; 109:778-85. [PMID: 17003374 PMCID: PMC1785089 DOI: 10.1182/blood-2006-04-019141] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SHP-2 phosphatase forms a stable protein complex with and is heavily tyrosine-phosphorylated by the oncogenic tyrosine kinase Bcr-Abl. However, the role of SHP-2 in Bcr-Abl-mediated leukemogenesis is unclear. In the present report, we provide evidence that SHP-2 is required for hematopoietic cell transformation by Bcr-Abl. In vitro biological effects of Bcr-Abl transduction were diminished in SHP-2Delta/Delta hematopoietic cells, and the leukemic potential of Bcr-Abl-transduced SHP-2Delta/Delta cells in recipient animals was compromised. Further analyses showed that Bcr-Abl protein (p210) was degraded, and its oncogenic signaling was greatly decreased in SHP-2Delta/Delta cells. Treatment with proteasome inhibitors or reintroduction of SHP-2 restored p210 level in Bcr-Abl-transduced SHP-2Delta/Delta cells. Subsequent investigation revealed that SHP-2 interacted with heat shock protein 90, an important chaperone protein protecting p210 from proteasome-mediated degradation. The role of SHP-2 in the stability of p210 is independent of its catalytic activity. Blockade of SHP-2 expression in p210-expressing cells by antisense or small-interfering RNA approaches decreased p210 level, causing cell death. Inhibition of SHP-2 enzymatic activity by overexpression of catalytically inactive SHP-2 mutant did not destabilize p210 but enhanced serum starvation-induced apoptosis, suggesting that SHP-2 also plays an important role in downstream signaling of p210 kinase. These studies identified a novel function of SHP-2 and suggest that SHP-2 might be a useful target for controlling Bcr-Abl-positive leukemias.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Wen-Mei Yu
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Hanako Daino
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Hal E. Broxmeyer
- Walther Oncology Center and Department of Immunology and Microbiology, Indiana University School of Medicine, Indianapolis, IN
| | - Brian J. Druker
- Howard Hughes Medical Institute, Oregon Health & Science University Cancer Institute, Portland, OR
| | - Cheng-Kui Qu
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Correspondence: Cheng-Kui Qu,
Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106; e-mail:
| |
Collapse
|
9
|
Kharas MG, Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res 2005; 65:2047-53. [PMID: 15781610 DOI: 10.1158/0008-5472.can-04-3888] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The BCR-ABL oncogene is responsible for most cases of chronic myelogenous leukemia and some acute lymphoblastic leukemias. The fusion protein encoded by BCR-ABL possesses an aberrantly regulated tyrosine kinase activity. Imatinib mesylate (Gleevec, STI-571) is an inhibitor of ABL tyrosine kinase activity that has been remarkably effective in slowing disease progression in patients with chronic phase chronic myelogenous leukemia, but the emergence of imatinib resistance underscores the need for additional therapies. Targeting signaling pathways activated by BCR-ABL is a promising approach for drug development. The study of signaling components downstream of BCR-ABL and the related murine oncogene v-Abl has revealed a complex web of signals that promote cell division and survival. Of these, activation of phosphoinositide 3-kinase (PI3K) has emerged as one of the essential signaling mechanisms in ABL leukemogenesis. This review describes molecular mechanisms by which PI3K is activated and the downstream PI3K effectors that propagate the signal to promote myeloid and lymphoid transformation. Of particular recent interest is the mammalian target of rapamycin, a PI3K-regulated kinase that regulates protein synthesis and contributes to leukemogenesis.
Collapse
Affiliation(s)
- Michael G Kharas
- Center for Immunology and Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA 92697-3900, USA
| | | |
Collapse
|
10
|
Abstract
Imatinib, a potent inhibitor of the oncogenic tyrosine kinase BCR-ABL, has shown remarkable clinical activity in patients with chronic myelogenous leukaemia (CML). However, this drug does not completely eradicate BCR-ABL-expressing cells from the body, and resistance to imatinib emerges. Although BCR-ABL remains an attractive therapeutic target, it is important to identify other components involved in CML pathogenesis to overcome this resistance. What have clinical trials of imatinib and studies using mouse models for BCR-ABL leukaemogenesis taught us about the functions of BCR-ABL beyond its kinase activity, and how these functions contribute to CML pathogenesis?
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides
- Cell Transformation, Neoplastic
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Genes, abl
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mice
- Oncogene Proteins v-abl/pharmacology
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-abl/pharmacology
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- Ruibao Ren
- Rosenstiel Basic Medical Sciences Research Center, MS029, Brandeis University, 415 South Street, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
11
|
Gaston I, Johnson KJ, Oda T, Bhat A, Reis M, Langdon W, Shen L, Deininger MW, Druker BJ. Coexistence of phosphotyrosine-dependent and -independent interactions between Cbl and Bcr-Abl. Exp Hematol 2004; 32:113-21. [PMID: 14725908 DOI: 10.1016/j.exphem.2003.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cbl is one of the major tyrosine-phosphorylated proteins in Bcr-Abl-expressing cells. A direct association between the SH2 domain of Bcr-Abl and tyrosine-phosphorylated Cbl has been demonstrated. The purpose of this study was to determine if and how unphosphorylated Cbl and Bcr-Abl may associate. Interactions between Cbl and Bcr-Abl were investigated in yeast two- and three-hybrid systems, gel overlay assays, and immunoprecipitates from mammalian cells expressing wild-type and the Y177F mutant of Bcr-Abl. No direct interaction between Bcr-Abl and unphosphorylated Cbl was observed. Bcr-Abl did, however, associate with Grb2, an adaptor protein that binds tyrosine 177 of Bcr-Abl. Additionally, Grb2 interacted with Cbl. In a yeast three-hybrid assay, Grb2 mediated an interaction between Cbl and Bcr-Abl that was dependent on a functional Grb2 binding site. This interaction was confirmed in vitro using purified proteins. In cells expressing Bcr-Abl with a mutation in the Grb2 binding site, binding of Cbl to Bcr-Abl was significantly reduced, but Cbl tyrosine phosphorylation was maintained. Imatinib treatment of these cells further reduced but did not abrogate Cbl binding, reflecting residual kinase activity. Multiple phosphotyrosine-dependent and -independent interactions stabilize the interaction between Cbl and Abl. Grb2 or another, yet unidentified, protein may mediate an initial interaction between Cbl and Bcr-Abl that is independent of Cbl tyrosine phosphorylation. Following this initial interaction, Cbl can then become tyrosine phosphorylated and interact with the SH2 domain of Bcr-Abl, further stabilizing the complex.
Collapse
Affiliation(s)
- Isabelle Gaston
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Ore. 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|