1
|
Wong K, Di Cristofano F, Ranieri M, De Martino D, Di Cristofano A. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr Relat Cancer 2019; 26:425-436. [PMID: 30699064 PMCID: PMC6602869 DOI: 10.1530/erc-19-0011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer. Despite its low incidence, it accounts for a disproportionate number of thyroid cancer-related deaths, because of its resistance to current therapeutic approaches. Novel actionable targets are urgently needed to prolong patient survival and increase their quality of life. Loss and mutation of the RB1 tumor suppressor are rare events in ATC, which suggests that therapies directed at inhibiting the cyclin D/CDK4 complexes, responsible for RB phosphorylation and inactivation, might be effective in this tumor type. In fact, we found that the CDK4/6 inhibitor, palbociclib, strongly inhibits proliferation in all the RB1 wild type ATC cell lines tested. Efficacy was also observed in vivo, in a xenograft model. However, ATC cells rapidly developed resistance to palbociclib. Resistance was associated with increased levels of cyclin D1 and D3. To counter cyclin D overexpression, we tested the effect of combining palbociclib with the PI3K/mTOR dual inhibitor, omipalisib. Combined treatment synergistically reduced cell proliferation, even in cell lines that do not carry PI3K-activating mutations. More importantly, low-dose combination was dramatically effective in inhibiting tumor growth in a xenograft model. Thus, combined PI3K/mTOR and CDK4/6 inhibition is a highly promising novel approach for the treatment of aggressive, therapy-resistant thyroid cancer.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Di Cristofano
- A. Di Cristofano, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Room 302, Bronx, NY 10461., Tel: 718-678-1137,
| |
Collapse
|
2
|
Salvarredi LA, Thomasz L, Rossich LE, Saiselet M, Pisarev MA, Fusco A, Juvenal GJ. 2-Iodohexadecanal inhibits thyroid cell growth in part through the induction of let-7f microRNA. Mol Cell Endocrinol 2015; 414:224-32. [PMID: 26189788 DOI: 10.1016/j.mce.2015.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED It is well known that pituitary TSH exerts the major task in the regulation of thyroid function. However, this gland is capable of certain degree of autonomy, independently of TSH control. Iodine plays an important role in thyroid physiology and biochemistry. The thyroid is capable of producing different iodolipids such as 2-iodohexadecanal (2-IHDA). It was shown that this iodolipid mimic some of the inhibitory effects of excess iodide on several thyroid parameters. OBJECTIVES To identify the miRNAs regulated by 2-IHDA in rat thyroid cells and likely characterize their role in thyroid cell proliferation and function. RESULTS FRTL-5 cells were grown in the presence of TSH and treated with 2-IHDA. Among the miRNAs up-regulated by 2-IHDA we focused on miR-let-7f and miR-138. When we transfected the miRNAs, miR-let-7f but not miR-138 overexpression inhibited proliferation of FRTL 5 cells, while miR-let-7f inhibition restored cell growth in 2-IHDA treated cultures. Analysis of cell cycle by flow cytometric DNA analysis revealed that miR-let-7f inhibition reduced the percentage of 2-IHDA treated cells in G1 phase and an increased of the percentage of cells in S phase was observed upon anti-let-7f transfection. The expresion of Cyclin D1 and Cyclin D3 were reduced after the transfection of miR-let-7f and miR-138, respectively. In in vivo studies we observed that miR-let-7f and miR-138 were up regulated by 2-IHDA during goiter involution. CONCLUSION These results suggest that the inhibitory effects of 2-IHDA on FRTL-5 thyroid cell proliferation are mediated in part through the induction of let-7f microRNA.
Collapse
Affiliation(s)
- Leonardo A Salvarredi
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Argentina
| | - Luciano E Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Argentina
| | - Manuel Saiselet
- I.R.I.B.H.M., Université Libre de Bruxelles, Bruxelles, Belgium
| | - Mario A Pisarev
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Argentina; Department of Human Biochemistry, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Alfredo Fusco
- IEOS, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Guillermo J Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Argentina.
| |
Collapse
|
3
|
Thomasz L, Coulonval K, Salvarredi L, Oglio R, Fusco A, Rossich L, Pisarev MA, Roger PP, Juvenal GJ. Inhibitory effects of 2-iodohexadecanal on FRTL-5 thyroid cells proliferation. Mol Cell Endocrinol 2015; 404:123-31. [PMID: 25657048 DOI: 10.1016/j.mce.2015.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/14/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED Although thyroid gland function is mainly under the control of pituitary TSH, other factors, such as iodine, play a role in this process. The thyroid is capable of producing different iodolipids such as 6-iodo-deltalactone and 2-iodohexadecanal (2-IHDA). It was shown that these iodolipids mimic some of the inhibitory effects of excess iodide on several thyroid parameters. OBJECTIVES To study the effect of 2-IHDA on cell proliferation and apoptosis in FRTL-5 cells. RESULTS FRTL-5 cells were grown in the presence of TSH and treated with increasing concentrations of KI and 2-IHDA (0.5, 5, 10 and 33 µM) for 24, 48 and 72 h. Whereas KI inhibited cell proliferation only at 33 µM after 72 h of treatment, 2-IHDA inhibited in a time and concentration dependent manner. Analysis of cell cycle by flow cytometric DNA analysis revealed an accumulation of cells in G1 phase induced by 2-IHDA. The expression of cyclin A, cyclin D1 and cyclin D3 were reduced after treatment with 2-IHDA whereas CDK4 and CDK6 proteins were not modified. 2-IHDA induced a dynamic change in cytoplasmic to nuclear accumulation of p21 and p27 causing these proteins to be accumulated mostly in the nucleus. We also observed evidence of a pro-apoptotic effect of 2-IHDA at highest concentrations. No significant effect of KI was observed. CONCLUSION These results suggest that the inhibitory effects of 2-IHDA on FRTL-5 thyroid cell proliferation are mediated by cell cycle arrest in G1/S phase and cell death by apoptosis.
Collapse
Affiliation(s)
- Lisa Thomasz
- Nuclear Biochemistry Division, National Atomic Energy Commission, Buenos Aires, Argentina
| | - Katia Coulonval
- I.R.I.B.H.M., Université Libre de Bruxelles, Bruxelles, Belgium
| | - Leonardo Salvarredi
- Nuclear Biochemistry Division, National Atomic Energy Commission, Buenos Aires, Argentina
| | - Romina Oglio
- Nuclear Biochemistry Division, National Atomic Energy Commission, Buenos Aires, Argentina
| | - Alfredo Fusco
- IEOS, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luciano Rossich
- Nuclear Biochemistry Division, National Atomic Energy Commission, Buenos Aires, Argentina
| | - Mario A Pisarev
- Nuclear Biochemistry Division, National Atomic Energy Commission, Buenos Aires, Argentina; Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Pierre P Roger
- I.R.I.B.H.M., Université Libre de Bruxelles, Bruxelles, Belgium
| | - Guillermo J Juvenal
- Nuclear Biochemistry Division, National Atomic Energy Commission, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Leone V, D'Angelo D, Pallante P, Croce CM, Fusco A. Thyrotropin regulates thyroid cell proliferation by up-regulating miR-23b and miR-29b that target SMAD3. J Clin Endocrinol Metab 2012; 97:3292-301. [PMID: 22730517 DOI: 10.1210/jc.2012-1349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT MicroRNA (miRNA or miR) have emerged as an important class of short endogenous RNA that act as post-transcriptional regulators of gene expression and have a critical role in cell proliferation and differentiation. OBJECTIVES The aim of this study was to elucidate the role of miRNA in the proliferation of differentiated thyroid cells that require TSH for their growth. DESIGN To elucidate the role of miRNA in thyroid cell proliferation, we have analyzed the miRNA expression profile of PC Cl 3 cells before and after the stimulation by TSH. RESULTS We report the identification of two specific miRNA (miR-23b and miR-29b) whose up-regulation by TSH is required for thyroid cell growth. We identified mothers against decapentaplegic homolog 3 (Smad3), a member of the TGF-β pathway that has an inhibitor role in thyroid follicular cell proliferation as a target of miR-23b and miR-29b. Functional studies demonstrated that the overexpression of miR-23b and miR-29b promotes thyroid cell growth. Interestingly, an increased expression of both these miRNA was also detected in experimental and human goiters. CONCLUSIONS These findings support the idea that the regulation of miRNA expression synergizes with the traditional proliferation pathways in promoting cell growth.
Collapse
Affiliation(s)
- Vincenza Leone
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR (Consiglio Nazionale delle Ricerche), Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
5
|
Weng HY, Huang HL, Zhao PP, Zhou H, Qu LH. Translational repression of cyclin D3 by a stable G-quadruplex in its 5' UTR: implications for cell cycle regulation. RNA Biol 2012; 9:1099-109. [PMID: 22858673 DOI: 10.4161/rna.21210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Heng-You Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
6
|
Leone V, D'Angelo D, Ferraro A, Pallante P, Rubio I, Santoro M, Croce CM, Fusco A. A TSH-CREB1-microRNA loop is required for thyroid cell growth. Mol Endocrinol 2011; 25:1819-30. [PMID: 21816899 DOI: 10.1210/me.2011-0014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miRNA or miR) are an important class of regulators that participate in such biological functions as development, cell proliferation, differentiation, and apoptosis. The aim of this study was to elucidate the role of miRNA in cell proliferation using a unique cell system, namely thyroid cells that require thyrotropin for their growth. Here, we report the identification of a set of five specific miRNA (miR-1, miR-28-A, miR-290-5p, miR-296-3p, and miR-297a), whose down-regulation by thyrotropin is required for thyroid cell growth. In fact, overexpression of these miRNA negatively affects cell growth. We show that three of these miRNA target cAMP-responsive element binding protein (CREB)1, a thyrotropin-activated transcription factor, and that CREB1 binds the regulatory regions of the down-regulated miRNA. Hence, these data indicate that a synergistic loop involving thyrotropin, CREB1, and miRNA is required for thyroid cell proliferation.
Collapse
Affiliation(s)
- Vincenza Leone
- Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Roger PP, van Staveren WCG, Coulonval K, Dumont JE, Maenhaut C. Signal transduction in the human thyrocyte and its perversion in thyroid tumors. Mol Cell Endocrinol 2010; 321:3-19. [PMID: 19962425 DOI: 10.1016/j.mce.2009.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 11/19/2022]
Abstract
The study of normal signal transduction pathways regulating the proliferation and differentiation of a cell type allows to predict and to understand the perversions of these pathways which lead to tumorigenesis. In the case of the human thyroid cell, three cascades are mostly involved in tumorigenesis: The pathways and genetic events affecting them are described. Caveats in the use of models and the interpretation of results are formulated and the still pending questions are outlined.
Collapse
Affiliation(s)
- Pierre P Roger
- I.R.I.B.H.M., Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, B - 1070 Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
8
|
Blancquaert S, Wang L, Paternot S, Coulonval K, Dumont JE, Harris TE, Roger PP. cAMP-dependent activation of mammalian target of rapamycin (mTOR) in thyroid cells. Implication in mitogenesis and activation of CDK4. Mol Endocrinol 2010; 24:1453-68. [PMID: 20484410 DOI: 10.1210/me.2010-0087] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
How cAMP-dependent protein kinases [protein kinase A (PKA)] transduce the mitogenic stimulus elicited by TSH in thyroid cells to late activation of cyclin D3-cyclin-dependent kinase 4 (CDK4) remains enigmatic. Here we show in PC Cl3 rat thyroid cells that TSH/cAMP, like insulin, activates the mammalian target of rapamycin (mTOR)-raptor complex (mTORC1) leading to phosphorylation of S6K1 and 4E-BP1. mTORC1-dependent S6K1 phosphorylation in response to both insulin and cAMP required amino acids, whereas inhibition of AMP-activated protein kinase and glycogen synthase kinase 3 enhanced insulin but not cAMP effects. Unlike insulin, TSH/cAMP did not activate protein kinase B or induce tuberous sclerosis complex 2 phosphorylation at T1462 and Y1571. However, like insulin, TSH/cAMP produced a stable increase in mTORC1 kinase activity that was associated with augmented 4E-BP1 binding to raptor. This could be caused in part by T246 phosphorylation of PRAS40, which was found as an in vitro substrate of PKA. Both in PC Cl3 cells and primary dog thyrocytes, rapamycin inhibited DNA synthesis and retinoblastoma protein phosphorylation induced by TSH and insulin. Although rapamycin reduced cyclin D3 accumulation, the abundance of cyclin D3-CDK4 complexes was not affected. However, rapamycin inhibited the activity of these complexes by decreasing the TSH and insulin-mediated stimulation of activating T172 phosphorylation of CDK4. We propose that mTORC1 activation by TSH, at least in part through PKA-dependent phosphorylation of PRAS40, crucially contributes to mediate cAMP-dependent mitogenesis by regulating CDK4 T172-phosphorylation.
Collapse
Affiliation(s)
- Sara Blancquaert
- Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Troncone G, Volante M, Iaccarino A, Zeppa P, Cozzolino I, Malapelle U, Palmieri EA, Conzo G, Papotti M, Palombini L. Cyclin D1 and D3 overexpression predicts malignant behavior in thyroid fine-needle aspirates suspicious for Hurthle cell neoplasms. Cancer 2010; 117:522-9. [PMID: 19787802 DOI: 10.1002/cncy.20050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Thyroid fine-needle aspiration (FNA) samples that feature a follicular-patterned, monotonous Hurthle (oncocytic) cell population cannot be diagnosed reliably. The authors of this report recently identified cyclin D3 overexpression on histologic sections of Hurthle cell carcinoma. In this study, they assessed the diagnostic value of cyclin D3 immunohistochemistry added to routine cytology. METHODS Fifty-one FNA samples that were suspicious for Hurtle cell neoplasia and that had histologic follow-up (19 malignant cases) were examined. Cyclin D3 expression levels were evaluated in cell block preparations and were compared with levels of the closely related cyclin D1 protein. RESULTS Greater than 25% positive cells were used as the cutoff point, as suggested by previous studies. Cyclin D1 and cyclin D3 were highly specific (100% for both) and fairly accurate (75% and 92%, respectively) in distinguishing between benign and malignant oncocytic lesions; the positive predictive value (PPV) for each was 100%. However, both cyclins D1 and D3 had low sensitivity (32% and 79%, respectively) and low negative predictive value (NPV) (71% and 89%, respectively). In contrast, by adopting balanced receiver operating characteristic-derived positive cutoff values, cyclin D1 (>or=6.5%) and cyclin D3 (>or=7.5%) were found to be highly sensitive (100% for both) and accurate (90% and 94%, respectively); and the NPV was 100% for both. In contrast, cyclins D1 and D3 had low specificity (84% and 91%, respectively) and a low PPV (79% and 86%, respectively); however, these values improved in samples that were positive for both cyclins (sensitivity, 100%; specificity, 94%; PPV, 90%; NPV, 100%; and accuracy, 96%). CONCLUSIONS Cyclin D3 increased the suspicion of malignancy in indeterminate oncocytic lesions; its diagnostic performance depended on the cutoff point used and was enhanced further when combined with cyclin D1.
Collapse
Affiliation(s)
- Giancarlo Troncone
- Department of Biomorphological and Functional Science, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Effects of betulinic acid on proliferation and apoptosis in Jurkat cells and its in vitro mechanism. ACTA ACUST UNITED AC 2008; 28:634-8. [DOI: 10.1007/s11596-008-0604-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Indexed: 10/19/2022]
|
11
|
Rocha AS, Paternot S, Coulonval K, Dumont JE, Soares P, Roger PP. Cyclic AMP inhibits the proliferation of thyroid carcinoma cell lines through regulation of CDK4 phosphorylation. Mol Biol Cell 2008; 19:4814-25. [PMID: 18799615 PMCID: PMC2575166 DOI: 10.1091/mbc.e08-06-0617] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/06/2008] [Accepted: 09/04/2008] [Indexed: 11/11/2022] Open
Abstract
How cyclic AMP (cAMP) could positively or negatively regulate G1 phase progression in different cell types or in cancer cells versus normal differentiated counterparts has remained an intriguing question for decades. At variance with the cAMP-dependent mitogenesis of normal thyroid epithelial cells, we show here that cAMP and cAMP-dependent protein kinase activation inhibit S-phase entry in four thyroid carcinoma cell lines that harbor a permanent activation of the Raf/ERK pathway by different oncogenes. Only in Ret/PTC1-positive TPC-1 cells did cAMP markedly inhibit the Raf/ERK cascade, leading to mTOR pathway inhibition, repression of cyclin D1 and p21 and p27 accumulation. p27 knockdown did not prevent the DNA synthesis inhibition. In the other cells, cAMP little affected these signaling cascades and levels of cyclins D or CDK inhibitors. However, cAMP differentially inhibited the pRb-kinase activity and T172-phosphorylation of CDK4 complexed to cyclin D1 or cyclin D3, whereas CDK-activating kinase activity remained unaffected. At variance with current conceptions, our studies in thyroid carcinoma cell lines and previously in normal thyrocytes identify the activating phosphorylation of CDK4 as a common target of opposite cell cycle regulations by cAMP, irrespective of its impact on classical mitogenic signaling cascades and expression of CDK4 regulatory partners.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Sabine Paternot
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Katia Coulonval
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Jacques E. Dumont
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Pierre P. Roger
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| |
Collapse
|
12
|
García-Jiménez C, Santisteban P. Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes. Expert Rev Endocrinol Metab 2008; 3:473-491. [PMID: 30290436 DOI: 10.1586/17446651.3.4.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- a Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Pilar Santisteban
- b Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC, C/Arturo Duperier, 4, 28932 Madrid, Spain.
| |
Collapse
|
13
|
Yeager N, Klein-Szanto A, Kimura S, Di Cristofano A. Pten Loss in the Mouse Thyroid Causes Goiter and Follicular Adenomas: Insights into Thyroid Function and Cowden Disease Pathogenesis. Cancer Res 2007; 67:959-66. [PMID: 17283127 DOI: 10.1158/0008-5472.can-06-3524] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation and silencing of the tumor suppressor PTEN are found in many different epithelial tumors, including thyroid neoplasia. Cowden Disease patients, who harbor germ-line PTEN mutations, often display thyroid abnormalities, including multinodular goiter and follicular adenomas, and are at increased risk of thyroid cancer. To gain insights into the role PTEN plays in thyroid function and disease, we have generated a mouse strain, in which Cre-mediated recombination is used to specifically delete Pten in the thyrocytes. We found that Pten mutant mice develop diffuse goiter characterized by extremely enlarged follicles, in the presence of normal thyroid-stimulating hormone and T4 hormone levels. Loss of Pten resulted in a significant increase in the thyrocyte proliferative index, which was more prominent in the female mice, and in increased cell density in the female thyroid glands. Surprisingly, goitrogen treatment did not cause a substantial increase of the mutant thyroid size and increased only to some extent the proliferation index of the female thyrocytes, suggesting that a relevant part of the thyroid-stimulating hormone-induced proliferation signals are funneled through the phosphatidylinositol-3-kinase (PI3K)/Akt cascade. Although complete loss of Pten was not sufficient to cause invasive tumors, over two thirds of the mutant females developed follicular adenomas by 10 months of age, showing that loss of Pten renders the thyroid highly susceptible to neoplastic transformation through mechanisms that include increased thyrocyte proliferation. Our findings show that constitutive activation of the PI3K/Akt cascade is sufficient to stimulate continuous autonomous growth and provide novel clues to the pathogenesis of Cowden Disease and sporadic nontoxic goiter.
Collapse
Affiliation(s)
- Nicole Yeager
- Human Genetics Program and Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
14
|
Troncone G, Iaccarino A, Russo M, Palmieri EA, Volante M, Papotti M, Viglietto G, Palombini L. Accumulation of p27(kip1) is associated with cyclin D3 overexpression in the oxyphilic (Hurthle cell) variant of follicular thyroid carcinoma. J Clin Pathol 2006; 60:377-81. [PMID: 16798934 PMCID: PMC2001124 DOI: 10.1136/jcp.2005.036012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The down regulation of protein p27(kip1) (p27) in most cases of thyroid cancer has relevant diagnostic and prognostic implications. However, the oxyphilic (Hurthle cell) variant of follicular thyroid carcinoma expresses more p27 than benign oxyphilic lesions do. AIM To evaluate the mechanism underlying this difference in expression of p27. METHODS Because high levels of cyclin D3 lead to p27 accumulation in cell lines and clinical samples of thyroid cancer, the immunocytochemical pattern of cyclin D3 in oxyphilic (n = 47) and non-oxyphilic (n = 70) thyroid neoplasms was investigated. RESULTS In the whole study sample, there was a significant correlation between p27 and cyclin D3 expression (Spearman's r: 0.64; p<0.001). The expression of cyclin D3 and p27 was significantly higher in the oxyphilic variant of follicular carcinomas than in non-oxyphilic carcinomas (p<0.001). In the former, cyclin D3 overexpression and p27 accumulation were observed in a median of 75% and 55% of cells, respectively. In co-immunoprecipitation experiments, the level of p27-bound cyclin D3 was much higher in oxyphilic neoplasias than in normal thyroids and other thyroid tumours. CONCLUSION These results show that increased p27 expression in the oxyphilic (Hurthle cell) variant of follicular thyroid carcinoma results from cyclin D3 overexpression.
Collapse
Affiliation(s)
- G Troncone
- Dipartimento di Scienze Biomorfologiche e Funzionali, Università di Napoli Federico II, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Au AYM, McBride C, Wilhelm KG, Koenig RJ, Speller B, Cheung L, Messina M, Wentworth J, Tasevski V, Learoyd D, Robinson BG, Clifton-Bligh RJ. PAX8-peroxisome proliferator-activated receptor gamma (PPARgamma) disrupts normal PAX8 or PPARgamma transcriptional function and stimulates follicular thyroid cell growth. Endocrinology 2006; 147:367-76. [PMID: 16179407 DOI: 10.1210/en.2005-0147] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicular thyroid carcinomas are associated with a chromosomal translocation that fuses the thyroid-specific transcription factor paired box gene 8 (PAX8) with the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma). This study investigated the transcriptional mechanisms by which PAX8-PPARgamma regulates follicular thyroid cells. In HeLa cells, rat follicular thyroid (FRTL-5) cells, or immortalized human thyroid cells, PAX8-PPARgamma stimulated transcription from PAX8-responsive thyroperoxidase and sodium-iodide symporter promoters in a manner at least comparable with wild-type PAX8. In contrast, PAX8-PPARgamma failed to stimulate transcription from the thyroglobulin promoter and blocked the synergistic stimulation of this promoter by wild-type PAX8 and thyroid transcription factor-1. Unexpectedly, PAX8-PPARgamma transcriptional function on a PPARgamma-responsive promoter was cell-type dependent; in HeLa cells, PAX8-PPARgamma dominantly inhibited expression of the PPARgamma-responsive promoter, whereas in FRTL-5 and immortalized human thyroid cells PAX8-PPARgamma stimulated this promoter. In gel shift analyses, PAX8-PPARgamma bound a PPARgamma-response element suggesting that its transcriptional function is mediated via direct DNA contact. A biological model of PAX8-PPARgamma function in follicular thyroid cells was generated via constitutive expression of the fusion protein in FRTL-5 cells. In this model, PAX8-PPARgamma expression was associated with enhanced growth as assessed by soft agar assays and thymidine uptake. Therefore, PAX8-PPARgamma disrupts normal transcriptional regulation by stimulating some genes and inhibiting others, the net effect of which may mediate follicular thyroid cell growth and loss of differentiation that ultimately leads to carcinogenesis.
Collapse
Affiliation(s)
- Amy Y M Au
- Cancer Genetics Unit, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Glatt CM, Ouyang M, Welsh W, Green JW, Connor JO, Frame SR, Everds NE, Poindexter G, Snajdr S, Delker DA. Molecular characterization of thyroid toxicity: anchoring gene expression profiles to biochemical and pathologic end points. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1354-61. [PMID: 16203246 PMCID: PMC1281279 DOI: 10.1289/ehp.7690] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organic iodides have been shown to induce thyroid hypertrophy and increase alterations in colloid in rats, although the mechanism involved in this toxicity is unclear. To evaluate the effect that free iodide has on thyroid toxicity, we exposed rats for 2 weeks by daily gavage to sodium iodide (NaI). To compare the effects of compounds with alternative mechanisms (increased thyroid hormone metabolism and decreased thyroid hormone synthesis, respectively), we also examined phenobarbital (PB) and propylthiouracil (PTU) as model thyroid toxicants. Follicular cell hypertrophy and pale-staining colloid were present in thyroid glands from PB-treated rats, and more severe hypertrophy/colloid changes along with diffuse hyperplasia were present in thyroid glands from PTU-treated rats. In PB- and PTU-treated rats, thyroid-stimulating hormone (TSH) levels were significantly elevated, and both thyroxine and triiodothyronine hormone levels were significantly decreased. PB induced hepatic uridine diphosphate-glucuronyltransferase (UDPGT) activity almost 2-fold, whereas PTU reduced hepatic 5 -deiodinase I (5 -DI) activity to < 10% of control in support of previous reports regarding the mechanism of action of each chemical. NaI also significantly altered liver weights and UDPGT activity but did not affect thyroid hormone levels or thyroid pathology. Thyroid gene expression analyses using Affymetrix U34A GeneChips, a regularized t-test, and Gene Map Annotator and Pathway Profiler demonstrated significant changes in rhodopsin-like G-protein-coupled receptor transcripts from all chemicals tested. NaI demonstrated dose-dependent changes in multiple oxidative stress-related genes, as also determined by principal component and linear regression analyses. Differential transcript profiles, possibly relevant to rodent follicular cell tumor outcomes, were observed in rats exposed to PB and PTU, including genes involved in Wnt signaling and ribosomal protein expression.
Collapse
|
17
|
Norris AJ, Griffey SM, Lucroy MD, Madewell BR. Cyclin D3 expression in normal fetal, normal adult and neoplastic feline tissue. J Comp Pathol 2005; 132:329-39. [PMID: 15893991 DOI: 10.1016/j.jcpa.2004.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 12/13/2004] [Indexed: 11/19/2022]
Abstract
Cyclin D3 is a tightly regulated cell cycle protein and member of the cyclin D family-a group of proteins that facilitates the progression of a cell through G(1) and into the S phase of the cell cycle. All cells use at least one of the cyclin D proteins for cell cycle regulation. In this study, feline tissues (normal fetal and adult, and neoplastic) were examined immunohistochemically for expression and topographical distribution of cyclin D3. Its distribution was similar to that in human tissues in health and neoplasia, and suggested a dual role of cyclin D3 in cell proliferation and differentiation. Immature lymphoid tissue and proliferating epithelial cells in health and neoplasia were immunoreactive for cyclin D3, whereas expression of the protein in other immunoreactive tissues reflected differentiated cell types. Immunoreactivity for cyclin D3 was particularly striking in germinal centre cells of normal lymph nodes and B-cell lymphomas, and in normal suprabasal epithelial cells of the skin and mucous membranes of the oropharynx and in squamous cell carcinomas at these sites.
Collapse
Affiliation(s)
- A J Norris
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
18
|
Chen K, Wei Y, Sharp GC, Braley-Mullen H. Balance of proliferation and cell death between thyrocytes and myofibroblasts regulates thyroid fibrosis in granulomatous experimental autoimmune thyroiditis (G-EAT). J Leukoc Biol 2004; 77:166-72. [PMID: 15536125 DOI: 10.1189/jlb.0904538] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Severe granulomatous experimental autoimmune thyroiditis (G-EAT), which progresses to fibrosis, is induced in DBA/1 mice by adoptive transfer of mouse thyroglobulin-primed and -activated spleen cells. There is extensive destruction of thyrocytes and inflammatory cell infiltration including T cells, macrophages, neutrophils, and myofibroblasts (myofbs). Suppression of transforming growth factor-beta (TGF-beta) and deficiency of interferon-gamma (IFN-gamma) inhibit fibrosis, and inflammation eventually resolves. Thyrocyte destruction in wild-type (WT) mice was a result of apoptosis, as many deoxynucleotide triphosphate nick-end labeling + apoptotic thyrocytes were present in these thyroids. The balance of apoptosis and proliferation between thyrocytes and myofbs may be important factors determining the outcome of inflammation to fibrosis versus resolution. Apoptosis and proliferation in thyrocytes versus myofbs were evaluated by dual-staining of cell-proliferating marker (Ki-67) or in situ cell death and cytokeratin or alpha-smooth muscle actin and were analyzed by confocal microscopy. Apoptotic and antiapoptotic molecules in G-EAT thyroids were detected by immunostaining. In WT thyroids, which develop fibrosis, only a few myofbs were apoptotic, and many myofbs were Ki-67+, Fas-associated death domain protein-like interleukin-1beta-converting enzyme-like inhibitory protein (FLIP)+, and Bcl-XL+. In contrast, proliferation was predominant on thyrocytes of IFN-gamma-/- mice or anti-TGF-beta-treated WT mice. These results indicate that apoptosis of inflammatory cells and regeneration of thyrocytes in IFN-gamma-/- mice and anti-TGF-beta-treated WT mice may limit development of fibrosis, whereas excessive proliferation of myofbs and loss of thyrocytes in WT mice may contribute to fibrosis.
Collapse
Affiliation(s)
- Kemin Chen
- Dept. of Internal Medicine, University of Missouri School of Medicine, M306 Medical Sciences, One Hospital Dr., Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
19
|
Lewis AE, Fikaris AJ, Prendergast GV, Meinkoth JL. Thyrotropin and Serum Regulate Thyroid Cell Proliferation through Differential Effects on p27 Expression and Localization. Mol Endocrinol 2004; 18:2321-32. [PMID: 15166254 DOI: 10.1210/me.2004-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.
Collapse
Affiliation(s)
- Aurélia E Lewis
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | |
Collapse
|