1
|
Yapryntseva MA, Zhivotovsky B, Gogvadze V. Permeabilization of the outer mitochondrial membrane: Mechanisms and consequences. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167317. [PMID: 38909847 DOI: 10.1016/j.bbadis.2024.167317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Permeabilization of the outer mitochondrial membrane is а physiological process that can allow certain molecules to pass through it, such as low molecular weight solutes required for cellular respiration. This process is also important for the development of various modes of cell death. Depending on the severity of this process, cells can die by autophagy, apoptosis, or necrosis/necroptosis. Distinct types of pores can be opened at the outer mitochondrial membrane depending on physiological or pathological stimuli, and different mechanisms can be activated in order to open these pores. In this comprehensive review, all these types of permeabilization, the mechanisms of their activation, and their role in various diseases are discussed.
Collapse
Affiliation(s)
- Maria A Yapryntseva
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Vladimir Gogvadze
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
2
|
Hejtmánková A, Váňová J, Španielová H. Cell-penetrating peptides in the intracellular delivery of viral nanoparticles. VITAMINS AND HORMONES 2021; 117:47-76. [PMID: 34420585 DOI: 10.1016/bs.vh.2021.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-penetrating peptides (CPPs) are a promising tool for the intracellular delivery of cargo. Due to their ability to cross membranes while also cotransporting various cargoes, they offer great potential for biomedical applications. Several CPPs have been derived from viral proteins with natural roles in the viral replication cycle that require them to breach or fuse to cellular membranes. Additionally, the ability of viruses to cross membranes makes viruses and virus-based particles a convenient model for research on nanoparticle delivery and nanoparticle-mediated gene therapy. In this chapter, we aim to characterize CPPs derived from both structural and nonstructural viral proteins. Their function as enhancers of viral infection and transduction by viral nanoparticles as well as the main features of viral CPPs employed in intracellular cargo delivery are summarized to emphasize their potential use in nanomedicine.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Váňová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic.
| |
Collapse
|
3
|
Regulation of cardiomyocyte DNA damage and cell death by the type 2A protein phosphatase regulatory protein alpha4. Sci Rep 2021; 11:6293. [PMID: 33737606 PMCID: PMC7973735 DOI: 10.1038/s41598-021-85616-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/03/2021] [Indexed: 12/05/2022] Open
Abstract
The type 2A protein phosphatase regulatory protein alpha4 (α4) constitutes an anti-apoptotic protein in non-cardiac tissue, however it’s anti-apoptotic properties in the heart are poorly defined. To this end, we knocked down α4 protein expression (α4 KD) using siRNA in cultured H9c2 cardiomyocytes and confirmed the lack of DNA damage/cell death by TUNEL staining and MTT assay. However, α4 KD did increase the phosphorylation of p53 and ATM/ATR substrates, decreased the expression of poly ADP-ribose polymerase and associated fragments. Expression of anti-apoptotic proteins Bcl-2 and Bcl-xL was reduced, whereas expression of pro-apoptotic BAX protein did not change. Alpha4 KD reduced basal H2AX Ser139 phosphorylation, whereas adenoviral-mediated re-expression of α4 protein following α4 KD, restored basal H2AX phosphorylation at Ser139. The sensitivity of H9c2 cardiomyocytes to doxorubicin-induced DNA damage and cytotoxicity was augmented by α4 KD. Adenoviral-mediated overexpression of α4 protein in ARVM increased PP2AC expression and augmented H2AX Ser139 phosphorylation in response to doxorubicin. Furthermore, pressure overload-induced heart failure was associated with reduced α4 protein expression, increased ATM/ATR protein kinase activity, increased H2AX expression and Ser139 phosphorylation. Hence, this study describes the significance of altered α4 protein expression in the regulation of DNA damage, cardiomyocyte cell death and heart failure.
Collapse
|
4
|
Clostridium perfringens beta2 toxin induced in vitro oxidative damage and its toxic assessment in porcine small intestinal epithelial cell lines. Gene 2020; 759:144999. [DOI: 10.1016/j.gene.2020.144999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
5
|
Luo R, Yan Z, Yang Q, Huang X, Gao X, Wang P, Wang W, Xie K, Gun S. Inhibition of ssc-microRNA-140-5p ameliorates the Clostridium perfringens beta2 toxin-induced inflammatory response in IPEC-J2 cells via the ERK1/2 and JNK pathways by targeting VEGFA. Mol Immunol 2020; 127:12-20. [PMID: 32905904 DOI: 10.1016/j.molimm.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Piglet diarrhea and even death due to Clostridium perfringens (C. perfringens) type C infection have led to huge economic losses in the pig industry worldwide. C. perfringens beta2 (CPB2) toxin is the main virulence factor for this pathogen. MiR-140-5p can exacerbate toxin-induced toxicity of toxin to cells by promoting oxidative stress. However, the role of pig miR-140-5p (ssc-miR-140-5p) in piglet diarrhea caused by C. perfringens type C has not been studied. Here, we study investigated the function of ssc-miR-140-5p by generating an in vitro CPB2-induced injury model in intestinal porcine epithelial (IPEC-J2) cells. Our results revealed that transfection with an ssc-miR-140-5p inhibitor significantly increased the viability of CPB2-induced IPEC-J2 cells, decrease the release of lactate dehydrogenase (LDH) and reactive oxygen species (ROS), and inhibit inflammatory responses and apoptosis. In addition, vascular endothelial growth factor A (VEGFA) was identified as a direct target of ssc-miR-140-5p by luciferase reporter assay. Western blot analysis showed that inhibition of ssc-miR-140-5p could activate the ERK1/2 signaling pathway and inhibit the JNK signaling pathway. In summary, we showed that down-regulation of ssc-miR-140-5p ameliorated CPB2-induced inflammatory responses in IPEC-J2 cells via the ERK1/2 and JNK signaling pathways by targeting VEGFA.
Collapse
Affiliation(s)
- Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China.
| |
Collapse
|
6
|
Yi G, Li H, Li Y, Zhao F, Ying Z, Liu M, Zhang J, Liu X. The protective effect of soybean protein-derived peptides on apoptosis via the activation of PI3K-AKT and inhibition on apoptosis pathway. Food Sci Nutr 2020; 8:4591-4600. [PMID: 32884739 PMCID: PMC7455986 DOI: 10.1002/fsn3.1776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Soybean protein-derived peptides (SBP) are a rich source of various bioactive peptides with multiple health benefits. However, the prospective effects of SBP on human cells are still unclear. Therefore, this article investigated the effects of small molecular weight SBP on MG132-induced apoptosis in RAW264.7 cells. SBP inhibited MG132-induced apoptosis of RAW264.7 cells in a dose-dependent manner by flow cytometry. To further study its molecular mechanisms, Western blot analysis demonstrated that SBP could activate the PI3K-AKT pathway by increasing the phosphorylation of PI3K and AKT and inhibiting apoptosis pathway by downregulating the expressions of pro-apoptotic proteins of Bim, Bax, Fas, and Fasl and promoting the expressions of anti-apoptotic proteins of Bcl-xL and Bcl-2. These results indicated the protective effect of SBP on MG132-induced apoptosis in RAW264.7 cells.
Collapse
Affiliation(s)
- Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - You Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Fen Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Zhiwei Ying
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Menglan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University (BTBU)BeijingChina
| |
Collapse
|
7
|
Zhong Y, Li M, Zhang X, Chen L, Wang Y, Xu Y. Dissecting Chemical Composition and Cardioprotective Effects of Fuzhengkangfu Decoction against Doxorubicin-Induced Cardiotoxicity by LC-MS and Bioinformatics Approaches. ACS OMEGA 2020; 5:14051-14060. [PMID: 32566871 PMCID: PMC7301600 DOI: 10.1021/acsomega.0c01494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Cardiotoxicity of doxorubicin (DOX) has gained increasing attention in clinical application. Fuzhengkangfu (FZK) decoction, a traditional Chinese herbal formula of replenishing Qi strengthening spleen, has been used to treat various cardiovascular diseases. However, the chemical composition, the protective effects of FZK, and the underlying mechanisms are yet unclear. In this study, an high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method was established for the structural identification of constituents in FZK extracts. Target prediction and enrichment analysis of the identified ingredients were performed. The cell viability was measured via (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (MTT) assay. The protective effects of FZK on cell survival, mitochondrial membrane potential, intracellular calcium homeostasis, and cell apoptosis were detected. The level of relevant proteins was measured by Western blot. The effect of FZK on the antitumor activity of DOX was evaluated in HeLa cells. A total of 42 major chemical constituents were identified in FZK extracts by HPLC-MS. A comprehensive target prediction of these constituents retrieved 46 pathways, of which several key pathways were related to mitochondrial dysfunction, including metabolic pathways and calcium signaling pathways. Furthermore, FZK ameliorated DOX-induced H9C2 cell apoptosis and increased the Bcl-2/Bax ratio. Also, it moderated the loss of mitochondrial membrane potential and reduced the intracellular calcium overload, which are the major targets of DOX-induced injury. These results confirmed that FZK ameliorates DOX-induced cardiotoxicity via antiapoptotic and mitochondrial protection but does not affect the antitumor activity of DOX.
Collapse
Affiliation(s)
- Yigang Zhong
- Department
of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Miaofu Li
- Affiliated
Hangzhou Hospital of Nanjing Medical University, Hangzhou 310058, China
| | - Xiaohui Zhang
- Pharmaceutical
Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liuying Chen
- Zhejiang
Chinese Medical University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical
Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Xu
- Department
of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Affiliated
Hangzhou Hospital of Nanjing Medical University, Hangzhou 310058, China
| |
Collapse
|
8
|
Šinkorová Z, Filipová A, Vávrová J, Pejchal J, Andrejsová L, Jeličová M, Marek J, Havelek R, Seifrtová M, Řezáčová M, Tichý A. INVESTIGATION OF THE RADIOPROTECTIVE EFFECT OF ORTHOVANADATE IN MICE AFTER TOTAL BODY IRRADIATION. RADIATION PROTECTION DOSIMETRY 2019; 186:149-154. [PMID: 31711201 DOI: 10.1093/rpd/ncz192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The increasing risk of acute large-scale exposure of ionising irradiation on the population underlines the necessity of developing effective radioprotective and mitigating agents. The aim of this work was to investigate the effect of sodium orthovanadate pre-treatment on mice exposed to high doses of gamma rays (from 5 to 13 Gy). The determination of median lethal dose within 30 days confirmed that orthovanadate applied to total-body-irradiated mice intra-peritoneally has a radioprotective but not a mitigating effect. With orthovanadate pre-treatment, the composition of cellularity in the bone marrow improved substantially and the main lymphocyte populations restored during the first month after irradiation. These findings contribute to 'gap-filling' in radioprotective effects and demonstrate the importance of haematological parameters in radiation-response prediction.
Collapse
Affiliation(s)
- Zuzana Šinkorová
- Department of Radiobiology, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Jiřina Vávrová
- Department of Radiobiology, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Lenka Andrejsová
- Department of Radiobiology, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Marcela Jeličová
- Department of Radiobiology, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Jan Marek
- Biomedical Research Center, University Hospital, 500 05 Hradec Kralove, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic
| | - Martina Seifrtová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, University of Defence, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Kerkhofs M, Bultynck G, Vervliet T, Monaco G. Therapeutic implications of novel peptides targeting ER-mitochondria Ca 2+-flux systems. Drug Discov Today 2019; 24:1092-1103. [PMID: 30910738 DOI: 10.1016/j.drudis.2019.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023]
Abstract
Intracellular Ca2+-flux systems located at the ER-mitochondrial axis govern mitochondrial Ca2+ balance and cell fate. Multiple yet incurable pathologies are characterized by insufficient or excessive Ca2+ fluxes toward the mitochondria, in turn leading to aberrant cell life or death dynamics. The discovery and ongoing molecular characterization of the main interorganellar Ca2+ gateways have resulted in a novel class of peptide tools able to regulate relevant protein-protein interactions (PPIs) underlying this signaling scenario. Here, we review peptides, molecularly derived from Ca2+-flux systems or their accessory proteins. We discuss how they alter Ca2+-signaling protein complexes and modulate cell survival in light of their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim Vervliet
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Vervliet T, Gerasimenko JV, Ferdek PE, Jakubowska MA, Petersen OH, Gerasimenko OV, Bultynck G. BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discov 2018; 4:58. [PMID: 29760956 PMCID: PMC5945673 DOI: 10.1038/s41420-018-0054-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Biliary acute pancreatitis (AP) is a serious condition, which currently has no specific treatment. Taurolithocholic acid 3-sulfate (TLC-S) is one of the most potent bile acids causing cytosolic Ca2+ overload in pancreatic acinar cells (PACs), which results in premature activation of digestive enzymes and necrosis, hallmarks of AP. The inositol 1,4,5-trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) play major roles in intracellular Ca2+ signaling. Inhibition of these endoplasmic reticulum-located channels suppresses TLC-S-induced Ca2+ release and necrosis, decreasing the severity of AP. Anti-apoptotic B-cell lymphoma (Bcl)-2-family members, such as Bcl-2 and Bcl-XL, have emerged as important modulators of IP3Rs and RyRs. These proteins contain four Bcl-2 homology (BH) domains of which the N-terminal BH4 domain exerts critical roles in regulating intracellular Ca2+ release channels. The BH4 domain of Bcl-2, but not of Bcl-XL, binds to and inhibits IP3Rs, whereas both BH4 domains inhibit RyRs. Although clear cytoprotective effects have been reported for these BH4 domains, it remains unclear whether they are capable of inhibiting pathological Ca2+-overload, associated with AP. Here we demonstrate in PACs that the BH4 domains of Bcl-2 and Bcl-XL inhibit RyR activity in response to the physiological agonist cholecystokinin. In addition, these BH4 domains inhibit pathophysiological TLC-S-induced Ca2+ overload in PACs via RyR inhibition, which in turn protects these cells from TLC-S-induced necrosis. This study shows for the first time the therapeutic potential of BH4 domain function by inhibiting pathological RyR-mediated Ca2+ release and necrosis, events that trigger AP.
Collapse
Affiliation(s)
- Tim Vervliet
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signaling, KU Leuven, Leuven, 3000 Belgium
| | - Julia V. Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Pawel E. Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Monika A. Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Ole H. Petersen
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Oleg V. Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signaling, KU Leuven, Leuven, 3000 Belgium
| |
Collapse
|
11
|
Tang J, Huang C, Shu J, Zheng J, Ma D, Li J, Yang R. Azoreductase and Target Simultaneously Activated Fluorescent Monitoring for Cytochrome c Release under Hypoxia. Anal Chem 2018; 90:5865-5872. [DOI: 10.1021/acs.analchem.8b00554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jianru Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Caixia Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinyong Shu
- The First People Hospital of Yueyang, Yueyang, 414000, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dandan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410076, China
| |
Collapse
|
12
|
Xiao K, Zhao W, Zhou L, Chang DC. Alpha 5/6 helix domains together with N-terminus determine the apoptotic potency of the Bcl-2 family proteins. Apoptosis 2018; 21:1214-1226. [PMID: 27553060 DOI: 10.1007/s10495-016-1283-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A critical process in apoptosis is the permeabilization of the mitochondrial outer membrane (MOM). This process is known to be regulated by the multi-domain Bcl-2 family proteins. For example, the pro-apoptotic proteins Bax and Bak are responsible for forming pores at MOM. The anti-apoptotic proteins (including Bcl-2, Mcl-1 and Bcl-xL), on the other hand, can inhibit this pore-forming process. Interestingly, although these two subgroups of proteins perform opposite apoptotic functions, their structures are very similar. This raises two highly interesting questions: (1) Why do these structurally similar proteins play opposite roles in apoptosis? (2) What are the roles of different functional domains of a Bcl-2 family protein in determining its apoptotic property? In this study, we generated a series of deletion mutants and substitution chimera, and used a combination of molecular biology, bio-informatics and living cell imaging techniques to answer these questions. Our major findings are: (1) All of the Bcl-2 family proteins appear to possess an intrinsic pro-apoptotic property. (2) The N-termini of these proteins play an active role in suppressing their pro-apoptotic function. (3) The apoptotic potency is positively correlated with membrane affinity of the alpha 5/6 helix domains. (4) Charge distribution flanking the alpha 5/6 helices is also important for the apoptotic potency. These findings explain why different members of Bcl-2 family proteins with similar domain composition can function oppositely in the apoptotic process.
Collapse
Affiliation(s)
- Kang Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research; Center for Marine Algal Biotechnology, College of Life Science and Oceanography; Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Wenrui Zhao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liying Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Donald Choy Chang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Monaco G, La Rovere R, Karamanou S, Welkenhuyzen K, Ivanova H, Vandermarliere E, Di Martile M, Del Bufalo D, De Smedt H, Parys JB, Economou A, Bultynck G. A double point mutation at residues Ile14 and Val15 of Bcl-2 uncovers a role for the BH4 domain in both protein stability and function. FEBS J 2017; 285:127-145. [PMID: 29131545 DOI: 10.1111/febs.14324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 09/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
B-cell lymphoma 2 (Bcl-2) protein is the archetype apoptosis suppressor protein. The N-terminal Bcl-2-homology 4 (BH4) domain of Bcl-2 is required for the antiapoptotic function of this protein at the mitochondria and endoplasmic reticulum (ER). The involvement of the BH4 domain in Bcl-2's antiapoptotic functions has been proposed based on Gly-based substitutions of the Ile14/Val15 amino acids, two hydrophobic residues located in the center of Bcl-2's BH4 domain. Following this strategy, we recently showed that a BH4-domain-derived peptide in which Ile14 and Val15 have been replaced by Gly residues, was unable to dampen proapoptotic Ca2+ -release events from the ER. Here, we investigated the impact of these mutations on the overall structure, stability, and function of full-length Bcl-2 as a regulator of Ca2+ signaling and cell death. Our results indicate that full-length Bcl-2 Ile14Gly/Val15Gly, in contrast to wild-type Bcl-2, (a) displayed severely reduced structural stability and a shortened protein half-life; (b) failed to interact with Bcl-2-associated X protein (BAX), to inhibit the inositol 1,4,5-trisphosphate receptor (IP3 R) and to protect against Ca2+ -mediated apoptosis. We conclude that the hydrophobic face of Bcl-2's BH4 domain (Ile14, Val15) is an important structural regulatory element by affecting protein stability and turnover, thereby likely reducing Bcl-2's ability to modulate the function of its targets, like IP3 R and BAX. Therefore, Bcl-2 structure/function studies require pre-emptive and reliable determination of protein stability upon introduction of point mutations at the level of the BH4 domain.
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Elien Vandermarliere
- Center for Medical Biotechnology, Department of Biochemistry, VIB-UGent, Ghent University, Belgium
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| |
Collapse
|
14
|
Pease-Raissi SE, Pazyra-Murphy MF, Li Y, Wachter F, Fukuda Y, Fenstermacher SJ, Barclay LA, Bird GH, Walensky LD, Segal RA. Paclitaxel Reduces Axonal Bclw to Initiate IP 3R1-Dependent Axon Degeneration. Neuron 2017; 96:373-386.e6. [PMID: 29024661 DOI: 10.1016/j.neuron.2017.09.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 01/23/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many cancer treatments. The hallmark of CIPN is degeneration of long axons required for transmission of sensory information; axonal degeneration causes impaired tactile sensation and persistent pain. Currently the molecular mechanisms of CIPN are not understood, and there are no available treatments. Here we show that the chemotherapeutic agent paclitaxel triggers CIPN by altering IP3 receptor phosphorylation and intracellular calcium flux, and activating calcium-dependent calpain proteases. Concomitantly paclitaxel impairs axonal trafficking of RNA-granules and reduces synthesis of Bclw (bcl2l2), a Bcl2 family member that binds IP3R1 and restrains axon degeneration. Surprisingly, Bclw or a stapled peptide corresponding to the Bclw BH4 domain interact with axonal IP3R1 and prevent paclitaxel-induced degeneration, while Bcl2 and BclxL cannot do so. Together these data identify a Bclw-IP3R1-dependent cascade that causes axon degeneration and suggest that Bclw-mimetics could provide effective therapy to prevent CIPN.
Collapse
Affiliation(s)
- Sarah E Pease-Raissi
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria F Pazyra-Murphy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yihang Li
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Franziska Wachter
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yusuke Fukuda
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sara J Fenstermacher
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lauren A Barclay
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gregory H Bird
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Loren D Walensky
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
15
|
Kollek M, Voigt G, Molnar C, Murad F, Bertele D, Krombholz CF, Bohler S, Labi V, Schiller S, Kunze M, Geley S, Niemeyer CM, Garcia-Saez A, Erlacher M. Transient apoptosis inhibition in donor stem cells improves hematopoietic stem cell transplantation. J Exp Med 2017; 214:2967-2983. [PMID: 28882984 PMCID: PMC5626392 DOI: 10.1084/jem.20161721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
During hematopoietic stem cell transplantation, a substantial number of donor cells are lost because of apoptotic cell death. Transplantation-associated apoptosis is mediated mainly by the proapoptotic BCL-2 family proteins BIM and BMF, and their proapoptotic function is conserved between mouse and human stem and progenitor cells. Permanent inhibition of apoptosis in donor cells caused by the loss of these BH3-only proteins improves transplantation outcome, but recipients might be exposed to increased risk of lymphomagenesis or autoimmunity. Here, we address whether transient inhibition of apoptosis can serve as a safe but efficient alternative to improve the outcome of stem cell transplantation. We show that transient apoptosis inhibition by short-term overexpression of prosurvival BCL-XL, known to block BIM and BMF, is not only sufficient to increase the viability of hematopoietic stem and progenitor cells during engraftment but also improves transplantation outcome without signs of adverse pathologies. Hence, this strategy represents a promising and novel therapeutic approach, particularly under conditions of limited donor stem cell availability.
Collapse
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Gesina Voigt
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Molnar
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Daniela Bertele
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Felix Krombholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sheila Bohler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schiller
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana Garcia-Saez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Gabellini C, Trisciuoglio D, Del Bufalo D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis 2017; 38:579-587. [PMID: 28203756 DOI: 10.1093/carcin/bgx016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 protein family is constituted by multidomain members originally identified as modulators of programmed cell death and whose expression is frequently misbalanced in cancer cells. The lead member Bcl-2 and its homologue Bcl-xL proteins are characterized by the presence of all four conserved BH domain and exert their antiapoptotic role mainly through the involvement of BH1, BH2 and BH3 homology domains, that mediate the interaction with the proapoptotic members of the same Bcl-2 family. The N-terminal BH4 domain of Bcl-2 and Bcl-xL is responsible for the interaction with other proteins that do not belong to Bcl-2 protein family. Beyond a classical role in inhibiting apoptosis, BH4 domain has been characterized as a crucial regulator of other important cellular functions attributed to Bcl-2 and Bcl-xL, including proliferation, autophagy, differentiation, DNA repair, cell migration, tumor progression and angiogenesis. During the last two decades a strong effort has been made to dissect the molecular pathways involved the capability of BH4 domain to regulate the canonical antiapoptotic and the non-canonical activities of Bcl-2 and Bcl-xL, creating the basis for the development of novel anticancer agents targeting this domain. Indeed, recent evidences obtained on in vitro and in vivo model of different cancer histotypes are confirming the promising therapeutic potential of BH4 domain inhibitors supporting their future employment as a novel anticancer strategy.
Collapse
Affiliation(s)
- Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy and.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
17
|
Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 2017; 87:50-63. [PMID: 27887988 DOI: 10.1016/j.peptides.2016.11.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Golnaz Mardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
The Antiapoptosis Effect of Glycyrrhizate on HepG2 Cells Induced by Hydrogen Peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6849758. [PMID: 27891207 PMCID: PMC5116359 DOI: 10.1155/2016/6849758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/25/2016] [Accepted: 09/28/2016] [Indexed: 01/26/2023]
Abstract
This study demonstrated that glycyrrhizate (GAS) could protect HEPG2 cells against damage and apoptosis induced by H2O2 (1600 μM, 4 h). Cell viability assay revealed that GAS was noncytotoxity at concentration 125 µg/mL, and GAS (5 μg/mL, 25 μg/mL, and 125 μg/mL) protected HepG2 cells against H2O2-induced cytotoxicity. H2O2 induced the HepG2 cells apoptosis, obvious morphologic changes were observed after Hochest 33258 staining, and more apoptotic cells were counted in flow cytometry assay compared to that of the natural group. Pretreatment GAS (5 μg/mL, 25 μg/mL, and 125 μg/mL) prior to H2O2 reverses the morphologic changes and reduced the apoptotic cells in HepG2 cells. GAS reduced the release of MDA, increased the activities of superoxide dismutase, and diminished the release of ALT and AST during oxidative stress in HepG2 cells. After Elisa kit detecting, GAS inhibited the caspase activity induced by H2O2, GAS decreased the level of caspase-3 and caspase-9 from mitochondria in dose-dependent manner. Western blot results showed that pretreatment GAS upregulated the expression of Bcl-2 and decreased the expression of Bax. These results reveal that GAS has the cytoprotection in HepG2 cells during ROS exposure by inhibiting the caspase activity in the mitochondria and influencing apoptogenic factors of the expression of Bax and Bcl-2.
Collapse
|
19
|
Singh K, Briggs JM. Functional Implications of the spectrum of BCL2 mutations in Lymphoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:1-18. [PMID: 27543313 DOI: 10.1016/j.mrrev.2016.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022]
Abstract
Mutations in the translocated BCL2 gene are often detected in diffuse large B-cell lymphomas (DLBCLs), indicating both their significance and pervasiveness. Large series genome sequencing of more than 200 DLBCLs has identified frequent BCL2 mutations clustered in the exons coding for the BH4 domain and the folded loop domain (FLD) of the protein. However, BCL2 mutations are mostly contemplated to represent bystander events with negligible functional impact on the pathogenesis of DLBCL. BCL2 arbitrates apoptosis through a classic interaction between its hydrophobic groove forming BH1-3 domains and the BH3 domain of pro-apoptotic members of the BCL2 family. The effects of mutations are mainly determined by the ability of the mutated BCL2 to mediate apoptosis by this inter-member protein binding. Nevertheless, BCL2 regulates diverse non-canonical pathways that are unlikely to be explained by canonical interactions. In this review, first, we identify recurrent missense mutations in the BH4 domain and the FLD reported in independent lymphoma sequencing studies. Second, we discuss the probable consequences of mutations on the binding ability of BCL2 to non-BCL2 family member proteins crucial for 1) maintaining mitochondrial energetics and calcium hemostasis such as VDAC, IP3R, and RyR and 2) oncogenic pathways implicated in the acquisition of the 'hallmarks of cancer' such as SOD, Raf-1, NFAT, p53, HIF-1α, and gelsolin. The study also highlights the likely ramifications of mutations on binding of BCL2 antagonists and BH3 profiling. Based on our analysis, we believe that an in-depth focus on BCL2 interactions mediated by these domains is warranted to elucidate the functional significance of missense mutations in DLBCL. In summary, we provide an extensive overview of the pleiotropic functions of BCL2 mediated by its physical binding interaction with other proteins and the various ways BCL2 mutations would affect the normal function of the cell leading to the development of DLBCL.
Collapse
Affiliation(s)
- Khushboo Singh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - James M Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.
| |
Collapse
|
20
|
Krautwald S, Dewitz C, Fändrich F, Kunzendorf U. Inhibition of regulated cell death by cell-penetrating peptides. Cell Mol Life Sci 2016; 73:2269-84. [PMID: 27048815 PMCID: PMC4887531 DOI: 10.1007/s00018-016-2200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death.
Collapse
Affiliation(s)
- Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cellular Medicine, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| |
Collapse
|
21
|
Abstract
Although the molecular effectors of apoptotic cell death have been largely annotated over the past 30 years, leading to a strong biological understanding of this process and its importance in cell biology, cell death through necrosis has only recently been accepted as a similarly regulated process with definable molecular effectors. The mitochondria are important and central mediators of both apoptosis and regulated necrosis. In apoptosis, the B-cell leukemia/lymphoma 2 (Bcl-2) family members Bcl-2-associated protein x (Bax) and Bcl-2 homologues antagonist/killer (Bak) undergo oligomerization in the outer mitochondrial membrane resulting in the release of apoptosis inducing substrates and the activation of caspases and nucleases. In contrast, during necrosis the mitochondria become dysfunctional and maladaptive in conjunction with reactive oxygen species production and the loss of ATP production, in part through opening of the mitochondrial permeability transition pore. Although regulated necrosis is caspase-independent, recent evidence has shown that it still requires the apoptotic regulators Bax/Bak, which can regulate the permeability characteristics of the outer mitochondrial membrane in their nonoligomerized state. Here, we review the nonapoptotic side of Bcl-2 family, specifically the role of Bax/Bak in regulated necrotic cell death. We will also discuss how these Bcl-2 family member effectors could be part of a larger integrated network that ultimately decides the fate of a given cell somewhere within a molecular continuum between apoptosis and regulated necrosis.
Collapse
Affiliation(s)
- Jason Karch
- From the Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.K., J.D.M.); and Howard Hughes Medical Institute, Cincinnati, OH (J.D.M.)
| | - Jeffery D Molkentin
- From the Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.K., J.D.M.); and Howard Hughes Medical Institute, Cincinnati, OH (J.D.M.).
| |
Collapse
|
22
|
Glutamine Reduces the Apoptosis of H9C2 Cells Treated with High-Glucose and Reperfusion through an Oxidation-Related Mechanism. PLoS One 2015; 10:e0132402. [PMID: 26146991 PMCID: PMC4493145 DOI: 10.1371/journal.pone.0132402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/12/2015] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial overproduction of reactive oxygen species (ROS) in diabetic hearts during ischemia/reperfusion injury and the anti-oxidative role of glutamine have been demonstrated. However, in diabetes mellitus the role of glutamine in cardiomyocytes during ischemia/reperfusion injury has not been explored. To examine the effects of glutamine and potential mechanisms, in the present study, rat cardiomyoblast H9C2 cells were exposed to high glucose (33 mM) and hypoxia-reoxygenation. Cell viability, apoptosis, intracellular glutamine, and mitochondrial and intracellular glutathione were determined. Moreover, ROS formation, complex I activity, membrane potential and adenosine triphosphate (ATP) content were also investigated. The levels of S-glutathionylated complex I and mitochondrial apoptosis-related proteins, including cytochrome c and caspase-3, were analyzed by western blot. Data indicated that high glucose and hypoxia-reoxygenation were associated with a dramatic decline of intercellular glutamine and increase in apoptosis. Glutamine supplementation correlated with a reduction in apoptosis and increase of glutathione and glutathione reduced/oxidized ratio in both cytoplasm and mitochondria, but a reduction of intracellular ROS. Glutamine supplementation was also associated with less S-glutathionylation and increased the activity of complex I, leading to less mitochondrial ROS formation. Furthermore, glutamine supplementation prevented from mitochondrial dysfunction presented as mitochondrial membrane potential and ATP levels and attenuated cytochrome c release into the cytosol and caspase-3 activation. We conclude that apoptosis induced by high glucose and hypoxia-reoxygenation was reduced by glutamine supplementation, via decreased oxidative stress and inactivation of the intrinsic apoptotic pathway.
Collapse
|
23
|
Vervliet T, Lemmens I, Vandermarliere E, Decrock E, Ivanova H, Monaco G, Sorrentino V, Kasri NN, Missiaen L, Martens L, De Smedt H, Leybaert L, Parys JB, Tavernier J, Bultynck G. Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Sci Rep 2015; 5:9641. [PMID: 25872771 PMCID: PMC4397538 DOI: 10.1038/srep09641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/13/2015] [Indexed: 11/29/2022] Open
Abstract
Anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members target several intracellular Ca(2+)-transport systems. Bcl-2, via its N-terminal Bcl-2 homology (BH) 4 domain, inhibits both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), while Bcl-XL, likely independently of its BH4 domain, sensitizes IP3Rs. It remains elusive whether Bcl-XL can also target and modulate RyRs. Here, Bcl-XL co-immunoprecipitated with RyR3 expressed in HEK293 cells. Mammalian protein-protein interaction trap (MAPPIT) and surface plasmon resonance (SPR) showed that Bcl-XL bound to the central domain of RyR3 via its BH4 domain, although to a lesser extent compared to the BH4 domain of Bcl-2. Consistent with the ability of the BH4 domain of Bcl-XL to bind to RyRs, loading the BH4-Bcl-XL peptide into RyR3-overexpressing HEK293 cells or in rat hippocampal neurons suppressed RyR-mediated Ca(2+) release. In silico superposition of the 3D-structures of Bcl-2 and Bcl-XL indicated that Lys87 of the BH3 domain of Bcl-XL could be important for interacting with RyRs. In contrast to Bcl-XL, the Bcl-XL(K87D) mutant displayed lower binding affinity for RyR3 and a reduced inhibition of RyR-mediated Ca(2+) release. These data suggest that Bcl-XL binds to RyR channels via its BH4 domain, but also its BH3 domain, more specific Lys87, contributes to the interaction.
Collapse
Affiliation(s)
- Tim Vervliet
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Irma Lemmens
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elien Vandermarliere
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elke Decrock
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Vincenzo Sorrentino
- University of Siena, Molecular Medicine Section, Department of Molecular and Developmental Medicine, and Interuniversitary Institute of Myology, 53100 Siena, Italy
| | - Nael Nadif Kasri
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Department of Human Genetics, 6500HB Nijmegen, The Netherlands
| | - Ludwig Missiaen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Lennart Martens
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Luc Leybaert
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Jan B. Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Jan Tavernier
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| |
Collapse
|
24
|
Ilavenil S, Kim DH, Jeong YI, Arasu MV, Vijayakumar M, Prabhu PN, Srigopalram S, Choi KC. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells. ASIAN PAC J TROP MED 2015; 8:263-8. [DOI: 10.1016/s1995-7645(14)60328-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Santamaría B, Ucero AC, Benito-Martin A, Vicent MJ, Orzáez M, Celdrán A, Selgas R, Ruíz-Ortega M, Ortiz A. Biocompatibility Reduces Inflammation-Induced Apoptosis in Mesothelial Cells Exposed to Peritoneal Dialysis Fluid. Blood Purif 2015; 39:200-209. [DOI: 10.1159/000374103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022]
Abstract
Background/Aims: Peritonitis is a major complication that arises out of peritoneal dialysis (PD), leading to death and loss of mesothelium and peritoneal injury, which may impede PD. We studied the combined impact of inflammatory mediators and PD fluids on mesothelial cell death. Methods: Cultured human mesothelial cells. Results: Inflammatory cytokines (TNF-α and interferon-γ) cooperate with bioincompatible PD fluids containing high glucose degradation product (GDP) concentrations to promote mesothelial cell death. Thus, the inflammatory cytokine cocktail induced a higher rate of death in cells cultured in high GDP PD fluid than in low GDP PD fluid or cell culture medium (cell death expressed as % hypodiploid cells: TNF-α and interferon-γ in RPMI: 14.15 ± 1.68, TNF-α and interferon-γ in 4.25% low GDP PD fluid 13.16 ± 3.29, TNF-α and interferon-γ in 4.25% high GDP PD fluid 25.88 ± 2.18%, p < 0.05 vs. the other two groups). BclxL BH4 peptides, Apaf-1 inhibition or caspase inhibition failed to protect from apoptosis induced by the combination of inflammatory cytokines and bioincompatible PD fluids, although they protected from other forms of mesothelial cell apoptosis. Conclusion: Inflammation cooperates with high GDP PD fluids to promote mesothelial cell death, which is resistant to several therapeutic approaches. This information provides a framework for selection of PD fluid during peritonitis.
Collapse
|
26
|
Barclay LA, Wales TE, Garner TP, Wachter F, Lee S, Guerra RM, Stewart ML, Braun CR, Bird GH, Gavathiotis E, Engen JR, Walensky LD. Inhibition of Pro-apoptotic BAX by a noncanonical interaction mechanism. Mol Cell 2015; 57:873-886. [PMID: 25684204 DOI: 10.1016/j.molcel.2015.01.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/03/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022]
Abstract
BCL-2 is a negative regulator of apoptosis implicated in homeostatic and pathologic cell survival. The canonical anti-apoptotic mechanism involves entrapment of activated BAX by a groove on BCL-2, preventing BAX homo-oligomerization and mitochondrial membrane poration. The BCL-2 BH4 domain also confers anti-apoptotic functionality, but the mechanism is unknown. We find that a synthetic α-helical BH4 domain binds to BAX with nanomolar affinity and independently inhibits the conformational activation of BAX. Hydrogen-deuterium exchange mass spectrometry demonstrated that the N-terminal conformational changes in BAX induced by a triggering BIM BH3 helix were suppressed by the BCL-2 BH4 helix. Structural analyses localized the BH4 interaction site to a groove formed by residues of α1, α1-α2 loop, and α2-α3 and α5-α6 hairpins on the BAX surface. These data reveal a previously unappreciated binding site for targeted inhibition of BAX and suggest that the BCL-2 BH4 domain may participate in apoptosis blockade by a noncanonical interaction mechanism.
Collapse
Affiliation(s)
- Lauren A Barclay
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Franziska Wachter
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Susan Lee
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rachel M Guerra
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Michelle L Stewart
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Craig R Braun
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gregory H Bird
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Matsuzaki-Horibuchi S, Yasuda T, Sakaguchi N, Yamaguchi Y, Akashi M. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death. JOURNAL OF RADIATION RESEARCH 2015; 56:100-113. [PMID: 25359904 PMCID: PMC4572601 DOI: 10.1093/jrr/rru094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/21/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries.
Collapse
Affiliation(s)
- Shiori Matsuzaki-Horibuchi
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan Department of Traumatology and Critical Care Medicine, Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-city, Tokyo, 181-8611, Japan
| | - Takeshi Yasuda
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan
| | - Nagako Sakaguchi
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan
| | - Yoshihiro Yamaguchi
- Department of Traumatology and Critical Care Medicine, Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-city, Tokyo, 181-8611, Japan
| | - Makoto Akashi
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan
| |
Collapse
|
28
|
Wu J, Feng X, Zhang B, Li J, Xu X, Liu J, Wang X, Wang J, Tong X. Blocking the bFGF/STAT3 interaction through specific signaling pathways induces apoptosis in glioblastoma cells. J Neurooncol 2014; 120:33-41. [PMID: 25048528 DOI: 10.1007/s11060-014-1529-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/28/2014] [Indexed: 12/17/2022]
Abstract
We have reported that basic fibroblast growth factor (bFGF) demonstrates an intimate connection with signal transducer and activator of transcription 3 (STAT3) in malignant brain tumor cells. However, its mechanisms are still unclear. In this study, we used inhibitors to block specific signaling pathways, including JAK, PI3K/Akt, and Src pathways, to explore how bFGF mediates crosstalk with STAT3 in two glioblastoma(GBM) cell lines: U251 (mutant p53) and U87 (wild-type p53). Furthermore, we explored how the bFGF/STAT3 pathway affects GBM cell apoptosis. Our results suggest that bFGF can induce the activation of STAT3 mainly through the JAK and PI3K/Akt pathways, and that siRNA-mediated knockdown of STAT3 markedly reduces the bFGF levels in U251 cells. Our results also suggest that STAT3 knockdown increases the expression of pro-apoptotic genes and decreases the expression of anti-apoptotic genes, subsequently collapsing the mitochondrial membrane potentials in vitro and impairs tumor growth in vivo.
Collapse
Affiliation(s)
- Jingchao Wu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300060, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
30
|
Bukhari F, MacGillivray T, del Monte F, Hajjar RJ. Genetic maneuvers to ameliorate ventricular function in heart failure: therapeutic potential and future implications. Expert Rev Cardiovasc Ther 2014; 3:85-97. [PMID: 15723577 DOI: 10.1586/14779072.3.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene therapy to treat heart failure has evolved into a growing field of investigation yielding remarkable results in preclinical models. Whether these results will persist in clinical trials remains to be seen. However, researchers still face a number of obstacles that need to be overcome before this treatment can be employed effectively. Efforts are required to identify better vectors with minimal side effects and maximal efficiency and durability. There is also a need to develop less invasive and more effective techniques to deliver these vectors. This review will discuss different methods to achieve these goals, the various pathologic mechanisms that have been targeted so far and those with strong potential for use in the future.
Collapse
Affiliation(s)
- Fariya Bukhari
- University of Arizona, Department of Medicine, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
31
|
Saurabh K, Scherzer MT, Song A, Yip KW, Reed JC, Li C, Beverly LJ. Dissecting the in vivo leukemogenic potency of BCLxl. JOURNAL OF LEUKEMIA (LOS ANGELES, CALIF.) 2014; 2:158. [PMID: 26636115 DOI: 10.4172/2329-6917.1000158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of anti-apoptotic members of the BCL2 family has been found in all types of cancer. A member of the family, BCLxl (B-cell lymphoma extra-large), is known to be associated with the progression of leukemogenesis. In the present study, we focused on understanding the domains of BCLxl responsible for in vivo oncogenic potency. To this end, we utilized engineered BCLxl proteins with alternative transmembrane domains (TM) or chimeric BCLxl proteins containing domains from a less potent BCL2-like protein, BCLb. As expected, mice receiving MYC-only expressing bone marrow develop leukemia by 100 days, whereas co-expression of MYC with wild-type BCLxl led to aggressive myeloid leukemia with an average latency of ~25 days. Interestingly, mice injected with bone marrow co-expressing MYC and BCLxl targeted specifically to either mitochondria or ER also succumbed to leukemia with an average latency of ~25 days. Further, our study was extended to examine the role of the BH4 domain in driving potent leukemogenesis. Mice injected with bone marrow co-expressing MYC and BCLb succumb to leukemia in an average of ~55 days, but interestingly a BCLxl protein containing only the loop region of BCLb drove MYC-induced leukemogenesis with the same latency as wild-type BCLxl. These data suggest that the localization of exogenous BCLxl to either mitochondria or ER is not a steadfast dictator of in vivo oncogenic potency. Further, our findings suggest that the loop domain of BCLb and BCLxl is not responsible for dictating the in vivo leukemogeneic potency. This study provides further mechanistic details into the biochemical functions of BCLxl.
Collapse
Affiliation(s)
- Kumar Saurabh
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Michael T Scherzer
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202 ; Department of Bioengineering, University of Louisville, Louisville, KY 40292
| | - Amy Song
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Kenneth W Yip
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037
| | - John C Reed
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037
| | - Chi Li
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202 ; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202 ; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202 ; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202 ; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202
| |
Collapse
|
32
|
Jonas EA. Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1168-78. [PMID: 24240091 DOI: 10.1016/j.bbadis.2013.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/23/2022]
Abstract
Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Dept. of Internal Medicine, P.O. Box 208001, Yale University School of Medicine, New Haven, CT 06520, USA; Dept. of Neurobiology, P.O. Box 208020, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Wang B, Tanaka K, Morita A, Ninomiya Y, Maruyama K, Fujita K, Hosoi Y, Nenoi M. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice. JOURNAL OF RADIATION RESEARCH 2013; 54:620-9. [PMID: 23349341 PMCID: PMC3709668 DOI: 10.1093/jrr/rrs140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/07/2012] [Accepted: 12/24/2012] [Indexed: 05/31/2023]
Abstract
Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice.
Collapse
Affiliation(s)
- Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Kaoru Tanaka
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Akinori Morita
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Yasuharu Ninomiya
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Kouichi Maruyama
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Kazuko Fujita
- School of Medicine, Faculty of Medicine, Toho University, Omorinishi 5-21-16, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshio Hosoi
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Mitsuru Nenoi
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
34
|
McNally MA, Soane L, Roelofs BA, Hartman AL, Hardwick JM. The N-terminal helix of Bcl-xL targets mitochondria. Mitochondrion 2013; 13:119-24. [PMID: 23333404 DOI: 10.1016/j.mito.2013.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 12/16/2012] [Accepted: 01/07/2013] [Indexed: 11/26/2022]
Abstract
Anti- and pro-apoptotic Bcl-2 family members regulate the mitochondrial phase of apoptotic cell death. The mitochondrial targeting mechanisms of Bcl-2 family proteins are tightly regulated. Known outer mitochondrial membrane targeting sequences include the C-terminal tail and central helical hairpin. Bcl-xL also localizes to the inner mitochondrial membrane, but these targeting sequences are unknown. Here we investigate the possibility that the N-terminus of Bcl-xL also contains mitochondrial targeting information. Amino acid residues 1-28 of Bcl-xL fused to EGFP are sufficient to target mitochondria. Although positive charges and helical propensity are required for targeting, similar to import sequences the N-terminus is not sufficient for efficient mitochondrial import.
Collapse
Affiliation(s)
- Melanie A McNally
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
35
|
Wang WC, Uen YH, Chang ML, Cheah KP, Li JS, Yu WY, Lee KC, Choy CS, Hu CM. Protective effect of guggulsterone against cardiomyocyte injury induced by doxorubicin in vitro. Altern Ther Health Med 2012; 12:138. [PMID: 22920231 PMCID: PMC3493356 DOI: 10.1186/1472-6882-12-138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/17/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Doxorubicin (DOX) is an effective antineoplastic drug; however, clinical use of DOX is limited by its dose-dependent cardiotoxicity. It is well known that reactive oxygen species (ROS) play a vital role in the pathological process of DOX-induced cardiotoxicity. For this study, we evaluated the protective effects of guggulsterone (GS), a steroid obtained from myrrh, to determine its preliminary mechanisms in defending against DOX-induced cytotoxicity in H9C2 cells. METHODS In this study, we used a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release measurements, and Hoechst 33258 staining to evaluate the protective effect of GS against DOX-induced cytotoxicity in H9C2 cells. In addition, we observed the immunofluorescence of intracellular ROS and measured lipid peroxidation, caspase-3 activity, and apoptosis-related proteins by using Western blotting. RESULTS The MTT assay and LDH release showed that treatment using GS (1-30 μM) did not cause cytotoxicity. Furthermore, GS inhibited DOX (1 μM)-induced cytotoxicity in a concentration-dependent manner. Hoechst 33258 staining showed that GS significantly reduced DOX-induced apoptosis and cell death. Using GS at a dose of 10-30 μM significantly reduced intracellular ROS and the formation of MDA in the supernatant of DOX-treated H9C2 cells and suppressed caspase-3 activity to reference levels. In immunoblot analysis, pretreatment using GS significantly reversed DOX-induced decrease of PARP, caspase-3 and bcl-2, and increase of bax, cytochrome C release, cleaved-PARP and cleaved-caspase-3. In addition, the properties of DOX-induced cancer cell (DLD-1 cells) death did not interfere when combined GS and DOX. CONCLUSION These data provide considerable evidence that GS could serve as a novel cardioprotective agent against DOX-induced cardiotoxicity.
Collapse
|
36
|
Inhibition of the Mitochondrial Permeability Transition for Cytoprotection: Direct versus Indirect Mechanisms. Biochem Res Int 2012; 2012:213403. [PMID: 22675634 PMCID: PMC3364550 DOI: 10.1155/2012/213403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/07/2012] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are fascinating organelles, which fulfill multiple cellular functions, as diverse as energy production, fatty acid β oxidation, reactive oxygen species (ROS) production and detoxification, and cell death regulation. The coordination of these functions relies on autonomous mitochondrial processes as well as on sustained cross-talk with other organelles and/or the cytosol. Therefore, this implies a tight regulation of mitochondrial functions to ensure cell homeostasis. In many diseases (e.g., cancer, cardiopathies, nonalcoholic fatty liver diseases, and neurodegenerative diseases), mitochondria can receive harmful signals, dysfunction and then, participate to pathogenesis. They can undergo either a decrease of their bioenergetic function or a process called mitochondrial permeability transition (MPT) that can coordinate cell death execution. Many studies present evidence that protection of mitochondria limits disease progression and severity. Here, we will review recent strategies to preserve mitochondrial functions via direct or indirect mechanisms of MPT inhibition. Thus, several mitochondrial proteins may be considered for cytoprotective-targeted therapies.
Collapse
|
37
|
Ulukaya E, Acilan C, Yilmaz Y. Apoptosis: why and how does it occur in biology? Cell Biochem Funct 2011; 29:468-80. [PMID: 21773978 DOI: 10.1002/cbf.1774] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/30/2011] [Accepted: 05/17/2011] [Indexed: 01/24/2023]
Abstract
The literature on apoptosis has grown tremendously in recent years, and the mechanisms that are involved in this programmed cell death pathway have been enlightened. It is now known that apoptosis takes place starting from early development to adult stage for the homeostasis of multicellular organisms, during disease development and in response to different stimuli in many different systems. In this review, we attempted to summarize the current knowledge on the circumstances and the mechanisms that lead to induction of apoptosis, while going over the molecular details of the modulator and mediators of apoptosis as well as drawing the lines between programmed and non-programmed cell death pathways. The review will particularly focus on Bcl-2 family proteins, the role of different caspases in the process of apoptosis, and their inhibitors as well as the importance of apoptosis during different disease states. Understanding the molecular mechanisms involved in apoptosis better will make a big impact on human diseases, particularly cancer, and its management in the clinics.
Collapse
Affiliation(s)
- Engin Ulukaya
- Medical School of Uludag University, Medical Biochemistry Department, Bursa, Turkey.
| | | | | |
Collapse
|
38
|
Iwata A, Morgan-Stevenson V, Schwartz B, Liu L, Tupper J, Zhu X, Harlan J, Winn R. Extracellular BCL2 proteins are danger-associated molecular patterns that reduce tissue damage in murine models of ischemia-reperfusion injury. PLoS One 2010; 5:e9103. [PMID: 20161703 PMCID: PMC2816997 DOI: 10.1371/journal.pone.0009103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/13/2010] [Indexed: 11/29/2022] Open
Abstract
Background Ischemia-reperfusion (I/R) injury contributes to organ dysfunction in a variety of clinical disorders, including myocardial infarction, stroke, organ transplantation, and hemorrhagic shock. Recent investigations have demonstrated that apoptosis as an important mechanism of cell death leading to organ dysfunction following I/R. Intracellular danger-associated molecular patterns (DAMPs) released during cell death can activate cytoprotective responses by engaging receptors of the innate immune system. Methodology/Principal Findings Ischemia was induced in the mouse hind limb by tourniquet or in the heart by coronary artery ligation. Reperfusion injury of skeletal or cardiac muscle was markedly reduced by intraperitoneal or subcutaneous injection of recombinant human (rh)BCL2 protein or rhBCL2-related protein A1 (BCL2A1) (50 ng/g) given prior to ischemia or at the time of reperfusion. The cytoprotective activity of extracellular rhBCL2 or rhBCL2A1 protein was mapped to the BH4 domain, as treatment with a mutant BCL2 protein lacking the BH4 domain was not protective, whereas peptides derived from the BH4 domain of BCL2 or the BH4-like domain of BCL2A1 were. Protection by extracellular rhBCL2 or rhBCL2A1 was associated with a reduction in apoptosis in skeletal and cardiac muscle following I/R, concomitant with increased expression of endogenous mouse BCL2 (mBCL2) protein. Notably, treatment with rhBCL2A1 protein did not protect mice deficient in toll-like receptor-2 (TLR2) or the adaptor protein, myeloid differentiation factor-88 (MyD88). Conclusions/Significance Treatment with cytokine-like doses of rhBCL2 or rhBCL2A1 protein or BH4-domain peptides reduces apoptosis and tissue injury following I/R by a TLR2-MyD88-dependent mechanism. These findings establish a novel extracellular cytoprotective activity of BCL2 BH4-domain proteins as potent cytoprotective DAMPs.
Collapse
Affiliation(s)
- Akiko Iwata
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Vicki Morgan-Stevenson
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Barbara Schwartz
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Li Liu
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Joan Tupper
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xiaodong Zhu
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - John Harlan
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Robert Winn
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
39
|
Morita A, Yamamoto S, Wang B, Tanaka K, Suzuki N, Aoki S, Ito A, Nanao T, Ohya S, Yoshino M, Zhu J, Enomoto A, Matsumoto Y, Funatsu O, Hosoi Y, Ikekita M. Sodium orthovanadate inhibits p53-mediated apoptosis. Cancer Res 2010; 70:257-65. [PMID: 20048077 DOI: 10.1158/0008-5472.can-08-3771] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sodium orthovanadate (vanadate) inhibits the DNA-binding activity of p53, but its precise effects on p53 function have not been examined. Here, we show that vanadate exerts a potent antiapoptotic activity through both transcription-dependent and transcription-independent mechanisms relative to other p53 inhibitors, including pifithrin (PFT) alpha. We compared the effects of vanadate to PFTalpha and PFTmicro, an inhibitor of transcription-independent apoptosis by p53. Vanadate suppressed p53-associated apoptotic events at the mitochondria, including the loss of mitochondrial membrane potential, the conformational change of Bax and Bak, the mitochondrial translocation of p53, and the interaction of p53 with Bcl-2. Similarly, vanadate suppressed the apoptosis-inducing activity of a mitochondrially targeted temperature-sensitive p53 in stable transfectants of SaOS-2 cells. In radioprotection assays, which rely on p53, vanadate completely protected mice from a sublethal dose of 8 Gy and partially from a lethal dose of 12 Gy. Together, our findings indicated that vanadate effectively suppresses p53-mediated apoptosis by both transcription-dependent and transcription-independent pathways, and suggested that both pathways must be inhibited to completely block p53-mediated apoptosis.
Collapse
Affiliation(s)
- Akinori Morita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Choi D, Hwang KC, Lee KY, Kim YH. Ischemic heart diseases: Current treatments and future. J Control Release 2009; 140:194-202. [DOI: 10.1016/j.jconrel.2009.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 06/05/2009] [Accepted: 06/20/2009] [Indexed: 02/03/2023]
|
41
|
The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci U S A 2009; 106:14397-402. [PMID: 19706527 DOI: 10.1073/pnas.0907555106] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the presence of a BH4 domain distinguishes the antiapoptotic protein Bcl-2 from its proapoptotic relatives, little is known about its function. BH4 deletion converts Bcl-2 into a proapoptotic protein, whereas a TAT-BH4 fusion peptide inhibits apoptosis and improves survival in models of disease due to accelerated apoptosis. Thus, the BH4 domain has antiapoptotic activity independent of full-length Bcl-2. Here we report that the BH4 domain mediates interaction of Bcl-2 with the inositol 1,4,5-trisphosphate (IP3) receptor, an IP3-gated Ca(2+) channel on the endoplasmic reticulum (ER). BH4 peptide binds to the regulatory and coupling domain of the IP3 receptor and inhibits IP3-dependent channel opening, Ca(2+) release from the ER, and Ca(2+)-mediated apoptosis. A peptide inhibitor of Bcl-2-IP3 receptor interaction prevents these BH4-mediated effects. By inhibiting proapoptotic Ca(2+) signals at their point of origin, the Bcl-2 BH4 domain has the facility to block diverse pathways through which Ca(2+) induces apoptosis.
Collapse
|
42
|
Herba leonurine attenuates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells. Eur J Pharmacol 2009; 612:75-9. [PMID: 19356731 DOI: 10.1016/j.ejphar.2009.03.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 03/12/2009] [Accepted: 03/23/2009] [Indexed: 11/23/2022]
Abstract
Doxorubicin (DOX) is a highly effective antineoplastic drug. However, DOX-induced apoptosis in cardiomyocytes leads to irreversible degenerative cardiomyopathy and heart failure, which limits DOX clinical application. Leonurine is a special alkaloid for Herba leonuri, a traditional herb with cardioprotective effects. In current study, we investigated possible protective effects of Leonurine against DOX-induced cardiomyopathy in H9c2 cells. DOX-injured H9c2 cell model was made by application of 2 microM DOX. Leonurine was added to cells 2 h before DOX treatment. Pre-treated with Leonurine could attenuate DOX-induced apoptotic death of H9c2 cell, reduce MDA formation and intracellular Ca2+ overload. Leonurine also attenuated DOX-induced high expression of Bax, increased Bcl-2 expression in both protein and mRNA level. Myocardial mitochondrion is the target organelle of DOX-induced toxicity in cardiomyocytes. Leonurine moderated the dissipation of mitochondrial membrane potential (DeltaPsim) caused by DOX treatment. Our results indicated that Leonurine attenuated DOX-induced apoptosis in H9c2 cell by increasing anti-oxidant, anti-apoptotic ability and protecting mitochondrial function.
Collapse
|
43
|
Jonas EA. Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Exp Neurol 2009; 218:203-12. [PMID: 19341732 DOI: 10.1016/j.expneurol.2009.03.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/11/2009] [Accepted: 03/14/2009] [Indexed: 12/30/2022]
Abstract
Mitochondrial ion channels are involved in numerous cellular processes. Membrane pores and transporters regulate the influx and efflux of calcium, sodium, potassium, zinc and determine the membrane compartmentalization of numerous cytosolic metabolites. The permeability of the inner membrane to ions and solutes helps determine the membrane potential of the inner membrane, but the permeability of the outer membrane, controlled in part by VDAC and the BCL-2 family proteins, regulates the release of important signaling molecules that determine the onset of programmed cell death. BCL-2 family proteins have properties of ion channels and perform specialized physiological functions, for example, regulating the strength and pattern of synaptic transmission, in addition to their well known role in cell death. The ion channels of the inner and outer membranes may come together in a complex of proteins during programmed cell death, particularly during neuronal ischemia, where elevated levels of the divalents calcium and zinc activate inner membrane ion channel conductances. The variety of possible molecular participants within the ion channel complex may be matched only by the variety of different types of programmed cell death.
Collapse
Affiliation(s)
- Elizabeth Ann Jonas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 2009; 157:195-206. [PMID: 19309362 PMCID: PMC2697800 DOI: 10.1111/j.1476-5381.2009.00057.x] [Citation(s) in RCA: 664] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of new potent therapeutic molecules that do not reach the clinic due to poor delivery and low bioavailability have made of delivery a key stone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs). CPPs were first discovered based on the potency of several proteins to enter cells. Numerous CPPs have been described so far, which can be grouped into two major classes, the first requiring chemical linkage with the drug for cellular internalization and the second involving formation of stable, non-covalent complexes with drugs. Nowadays, CPPs constitute very promising tools for non-invasive cellular import of cargo and have been successfully applied for in vitro and in vivo delivery of therapeutic molecules varying from small chemical molecule, nucleic acids, proteins, peptides, liposomes and particles. This review will focus on the structure/function and cellular uptake mechanism of CPPs in the general context of drug delivery. We will also highlight the application of peptide carriers for the delivery of therapeutic molecules and provide an update of their clinical evaluation. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009
Collapse
Affiliation(s)
- Frederic Heitz
- Centre de Recherches de Biochimie Macromoléculaire, UMR 5237, CNRS, UM-1, UM-2, CRBM-Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, Montpellier, France
| | | | | |
Collapse
|
45
|
McDunn JE, Muenzer JT, Dunne B, Zhou A, Yuan K, Hoekzema A, Hilliard C, Chang KC, Davis CG, McDonough J, Hunt C, Grigsby P, Piwnica-Worms D, Hotchkiss RS. An anti-apoptotic peptide improves survival in lethal total body irradiation. Biochem Biophys Res Commun 2009; 382:657-62. [PMID: 19303399 DOI: 10.1016/j.bbrc.2009.03.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 11/19/2022]
Abstract
Cell penetrating peptides (CPPs) have been used to deliver the anti-apoptotic Bcl-xL-derived BH4 peptide to prevent injury-induced apoptosis both in vitro and in vivo. Here we demonstrate that the nuclear localization sequence (NLS) from the SV40 large T antigen has favorable properties for BH4 domain delivery to lymphocytes compared to sequences based on the HIV-1 TAT sequence. While both TAT-BH4 and NLS-BH4 protected primary human mononuclear cells from radiation-induced apoptotic cell death, TAT-BH4 caused persistent membrane damage and even cell death at the highest concentrations tested (5-10 microM) and correlated with in vivo toxicity as intravenous administration of TAT-BH4 caused rapid death. The NLS-BH4 peptide has significantly attenuated toxicity compared to TAT-BH4 and we established a dosing regimen of NLS-BH4 that conferred a significant survival advantage in a post-exposure treatment model of LD90 total body irradiation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Antigens, Polyomavirus Transforming/pharmacology
- Apoptosis/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Humans
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Nuclear Localization Signals/genetics
- Nuclear Localization Signals/metabolism
- Nuclear Localization Signals/pharmacology
- Peptides/pharmacology
- Protein Structure, Tertiary
- Whole-Body Irradiation
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
- bcl-X Protein/pharmacology
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Jonathan E McDunn
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hisatomi T, Ishibashi T, Miller JW, Kroemer G. Pharmacological inhibition of mitochondrial membrane permeabilization for neuroprotection. Exp Neurol 2009; 218:347-52. [PMID: 19303007 DOI: 10.1016/j.expneurol.2009.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 01/09/2023]
Abstract
Recent data have provided important clues about the molecular mechanisms underlying certain neurodegenerative diseases. Most cell death in vertebrates proceeds via the mitochondrial pathway of apoptosis. Mitochondria contain proapoptotic factors such as cytochrome c and AIF in their intermembrane space. Furthermore, mitochondrial membrane permeabilization (MMP) is a critical event during apoptosis, representing the "point of no return" of the lethal process. Modern medicine is developing an increasing number of drugs for neurodegenerative disease, but no neuroprotective treatment has yet been established. While current treatments temporarily alleviate symptoms, they do not halt disease progression. This paper briefly reviews the pharmacological inhibition of mitochondrial membrane permeabilization for neuroprotection.
Collapse
Affiliation(s)
- Toshio Hisatomi
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
47
|
Apoptosis induction by Bcl-2 proteins independent of the BH3 domain. Biochem Pharmacol 2008; 76:1612-9. [DOI: 10.1016/j.bcp.2008.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/08/2008] [Accepted: 08/13/2008] [Indexed: 02/02/2023]
|
48
|
Rong YP, Barr P, Yee VC, Distelhorst CW. Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:971-8. [PMID: 19056433 DOI: 10.1016/j.bbamcr.2008.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 01/03/2023]
Abstract
Bcl-2 is the founding member of a large family of apoptosis regulating proteins. Bcl-2 is a prime target for novel therapeutics because it is elevated in many forms of cancer and contributes to cancer progression and therapy resistance based on its ability to inhibit apoptosis. Bcl-2 interacts with proapoptotic members of the Bcl-2 family to inhibit apoptosis and small molecules that disrupt this interaction have already entered the cancer therapy arena. A separate function of Bcl-2 is to inhibit Ca2+ signals that promote apoptosis. This function is mediated through interaction of the Bcl-2 BH4 domain with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel. A novel peptide inhibitor of this interaction enhances proapoptotic Ca2+ signals. In preliminary experiments this peptide enhanced ABT-737 induced apoptosis in chronic lymphocytic leukemia cells. These findings draw attention to the BH4 domain as a potential therapeutic target. This review summarizes what is currently known about the BH4 domain of Bcl-2, its interaction with the IP3R and other proteins, and the part it plays in Bcl-2's anti-apoptotic function. In addition, we speculate on how the BH4 domain of Bcl-2 can be targeted therapeutically not only for diseases associated with apoptosis resistance, but also for diseases associated with accelerated cell death.
Collapse
Affiliation(s)
- Yi-Ping Rong
- Department of Medicine, Comprehensive Cancer Center and University Hospital of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
49
|
Vidavalur R, Penumathsa SV, Thirunavukkarasu M, Zhan L, Krueger W, Maulik N. Sildenafil augments early protective transcriptional changes after ischemia in mouse myocardium. Gene 2008; 430:30-7. [PMID: 19013509 DOI: 10.1016/j.gene.2008.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022]
Abstract
Recently, targeting cyclic-GMP specific phosphodiesterase-5 (PDE5) has attracted much interest in several cardiopulmonary diseases, in particular myocardial ischemia (MI). Although multiple mechanisms were postulated for these beneficial effects at cellular level, early transcriptional changes were unknown. The aim of present study was to examine gene expression profiles in response to MI after 24 h of ischemia in murine model and compare transcriptional modulation by sildenafil, a popular phosphodiesterase 5 (PDE5) inhibitor. Mice were divided into four groups: Control sham (C), Sildenafil sham (S), Control MI (CMI) and Sildenafil MI (SMI). Sildenafil was given at a dose of 0.7 mg/kg intraperitoneally 30 min before LAD occlusion. cDNA microarray analysis of peri-infarct tissue was done using a custom cloneset and employing a looped dye swap design. Replicate signals were median averaged and normalized using LOWESS algorithm. R/MAANOVA analysis was used and false discovery rate corrected permutation p-values <0.005 were employed as significance thresholds. 156 genes were identified as significantly regulated demonstrating fold difference >1.5 in at least one of the four groups. 52 genes were significantly upregulated in SMI compared to CMI. For a randomly chosen subset of genes (9), microarray data were confirmed through real time RT-PCR. The differentially expressed genes could be classified into following groups based on their function: phosphorylation/dephosphorylation, apoptosis, differentiation, ATP binding. Our results suggest that sildenafil treatment might regulate early genetic reprogramming strategy for preservation of the ischemic myocardium.
Collapse
Affiliation(s)
- Ramesh Vidavalur
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center; 263 Farmington Avenue, Farmington, CT 06030-1110, USA
| | | | | | | | | | | |
Collapse
|
50
|
Santamaría B, Benito–Martin A, Ucero AC, Reyero A, Selgas R, Ruiz–Ortega M, Egido J, Ortiz A. Bcl-xL Prevents Peritoneal Dialysis Solution-Induced Leukocyte Apoptosis. Perit Dial Int 2008. [DOI: 10.1177/089686080802805s10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conventional glucose-containing peritoneal dialysis solutions (PDS) with a high glucose degradation product content accelerate leukocyte apoptosis and impair peritoneal defense. Mononuclear cells are less sensitive than neutrophils to PDS-induced apoptosis, suggesting that they may express antiapoptotic molecules. Since apoptosis induced by PDS requires Bax, we explored the role of an antiapoptotic protein of the same family, Bcl-xL, in PDS-induced apoptosis in cultured peripheral blood mononuclear cells and monocytic THP-1 cells. In these cells, conventional PDS decreased the expression of Bcl-xL protein with a temporal pattern compatible with their lethal effect. Inhibition of Bcl-xL also induced mononuclear cell apoptosis. A cell-permeable TAT-BH4 peptide that contains the BH4 domain of Bcl-xL prevented mononuclear cell apoptosis induced by PDS. These data suggest that Bcl-xL protects mononuclear cells from apoptosis induced by bioincompatible PDS and that Bcl-xL-like molecules should be explored to prolong leukocyte survival and potentiate peritoneal defense during peritonitis.
Collapse
Affiliation(s)
- Beatriz Santamaría
- Dialysis Unit Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica
| | - Alberto Benito–Martin
- Dialysis Unit Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica
| | - Alvaro Conrado Ucero
- Dialysis Unit Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica
| | - Ana Reyero
- Dialysis Unit Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ruiz–Ortega
- Laboratory of Cellular Biology in Renal Diseases, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Egido
- Dialysis Unit Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica
| | - Alberto Ortiz
- Dialysis Unit Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica
| |
Collapse
|