1
|
Jakhotia S, Kavvuri R, Raviraj S, Baishya S, Pasupulati AK, Reddy GB. Obesity-related glomerulopathy is associated with elevated WT1 expression in podocytes. Int J Obes (Lond) 2024; 48:1080-1091. [PMID: 38504059 DOI: 10.1038/s41366-024-01509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The prevalence of obesity is increasing worldwide at an alarming rate. In addition to the increased incidence of cardiovascular and metabolic diseases, obesity is the most potent risk factor for developing chronic kidney disease (CKD). Although systemic events such as hemodynamic factors, metabolic effects, and lipotoxicity were implicated in the pathophysiology of obesity-related glomerulopathy (ORG) and kidney dysfunction, the precise mechanisms underlying the association between obesity and CKD remain unexplored. METHODS In this study, we employed spontaneous WNIN/Ob rats to investigate the molecular events that promote ORG. Further, we fed a high-fat diet to mice and analyzed the incidence of ORG. Kidney functional parameters, micro-anatomical manifestations, and podocyte morphology were investigated in both experimental animal models. Gene expression analysis in the rodents was compared with human subjects by data mining using Nephroseq and Kidney Precision Medicine Project database. RESULTS WNIN/Ob rats were presented with proteinuria and several glomerular deformities, such as adaptive glomerulosclerosis, decreased expression of podocyte-specific markers, and effacement of podocyte foot process. Similarly, high-fat-fed mice also showed glomerular injury and proteinuria. Both experimental animal models showed increased expression of podocyte-specific transcription factor WT1. The altered expression of putative targets of WT1 such as E-cadherin, podocin (reduced), and α-SMA (increased) suggests elevated expression of WT1 in podocytes elicits mesenchymal phenotype. Curated data from CKD patients revealed increased expression of WT1 in the podocytes and its precursors, parietal epithelial cells. CONCLUSION WT1 is crucial during nephron development and has minimal expression in adult podocytes. Our study discovered elevated expression of WT1 in podocytes in obesity settings. Our analysis suggests a novel function for WT1 in the pathogenesis of ORG; however, the precise mechanism of WT1 induction and its involvement in podocyte pathobiology needs further investigation.
Collapse
Affiliation(s)
- Sneha Jakhotia
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, 500007, TS, India
| | - Rajesh Kavvuri
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | - Sumathi Raviraj
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | - Somorita Baishya
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | | | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, 500007, TS, India.
| |
Collapse
|
2
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
3
|
Abstract
Cholesterol is present within the cell nucleus, where it associates with chromatin, but to date, a direct role for cholesterol in nuclear processes has not been identified. We demonstrate that the transcriptional repressor brain acid soluble protein 1 (BASP1) directly interacts with cholesterol within the cell nucleus through a consensus cholesterol interaction motif. BASP1 recruits cholesterol to the promoter region of target genes, where it is required to mediate chromatin remodeling and transcriptional repression. Our work demonstrates that cholesterol plays a direct role in transcriptional regulation. Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1–cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression.
Collapse
|
4
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
5
|
Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 2015; 4:20-32. [PMID: 26835356 PMCID: PMC4729069 DOI: 10.3978/j.issn.2224-4336.2015.01.04] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies.
Collapse
|
6
|
Abstract
The WT1 (Wilms' tumour 1) gene encodes a zinc finger transcription factor and RNA-binding protein that direct the development of several organs and tissues. WT1 manifests both tumour suppressor and oncogenic activities, but the reasons behind these opposing functions are still not clear. As a transcriptional regulator, WT1 can either activate or repress numerous target genes resulting in disparate biological effects such as growth, differentiation and apoptosis. The complex nature of WT1 is exemplified by a plethora of isoforms, post-translational modifications and multiple binding partners. How WT1 achieves specificity to regulate a large number of target genes involved in diverse physiological processes is the focus of the present review. We discuss the wealth of the growing molecular information that defines our current understanding of the versatility and utility of WT1 as a master regulator of organ development, a tumour suppressor and an oncogene.
Collapse
|
7
|
Jang GW, Lee KT, Park JE, Kim H, Kim TH, Choi BH, Kim MJ, Lim D. Gene Expression Profiling in Hepatic Tissue of two Pig Breeds. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2012. [DOI: 10.5187/jast.2012.54.6.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Murugan S, Shan J, Kühl SJ, Tata A, Pietilä I, Kühl M, Vainio SJ. WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis. Exp Cell Res 2012; 318:1134-45. [DOI: 10.1016/j.yexcr.2012.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/07/2012] [Accepted: 03/10/2012] [Indexed: 01/19/2023]
|
9
|
Gokey NG, Lopez-Anido C, Gillian-Daniel AL, Svaren J. Early growth response 1 (Egr1) regulates cholesterol biosynthetic gene expression. J Biol Chem 2011; 286:29501-10. [PMID: 21712389 DOI: 10.1074/jbc.m111.263509] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The early growth response (EGR) family of transcription factors has been implicated in control of lipid biosynthetic genes. Egr1 is induced by insulin both in vitro and in vivo and is the most highly expressed family member in liver. In this study, we investigated whether Egr1 regulates cholesterol biosynthetic genes in liver. Using an insulin-sensitive liver cell line, we show that localization of Egr1 to cholesterol biosynthetic genes is induced by insulin treatment and that this localization precedes the induction of the genes. Reduction in Egr1 expression using targeted siRNA blunted the insulin-dependent induction of cholesterol genes. A similar reduction in squalene epoxidase expression was also observed in Egr1 null mice. In addition, application of chromatin immunoprecipitation (ChIP) samples to tiled gene microarrays revealed localization of Egr1 in promoter regions of many cholesterol gene loci. In vivo ChIP assays using liver tissue show that Egr1 localization to several cholesterol biosynthetic gene promoters is induced by feeding. Finally, analysis of plasma cholesterol in Egr1(-/-) mice indicated a significant decrease in serum cholesterol when compared with wild-type mice. Together these data point to Egr1 as a modulator of the cholesterol biosynthetic gene family in liver.
Collapse
Affiliation(s)
- Nolan G Gokey
- Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
10
|
Gannon AM, Kinsella BT. The Wilms' tumour suppressor protein WT1 acts as a key transcriptional repressor of the human thromboxane A2 receptor gene in megakaryocytes. J Cell Mol Med 2010; 13:4571-86. [PMID: 19067769 PMCID: PMC4515072 DOI: 10.1111/j.1582-4934.2008.00599.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In humans, the TPalpha and TPbeta isoforms of the thromboxane A2 receptor are transcriptionally regulated by distinct promoters, designated Prm1 and Prm3. Previous investigations identified two upstream repressor regions (URR) 1 and URR2 within Prm1. Herein, it was sought to characterize Prm1, identifying the factor(s) regulating URR1 and URR2 in human erythroleukaemia (HEL) 92.1.7 cells. Genetic reporter assays and 5' deletions confirmed the presence of URR1 and URR2 but also identified a third repressor, designated RR3, within the proximal 'core' promoter. Bioinformatic analysis revealed several GC elements representing putative sites for Egr1/Sp1/Wilms tumour (WT)1 within URR1, URR2 and RR3. While mutation of three GC elements within URR1 and of an adjacent GC element suggested that repressor binding occurs through a cooperative mechanism, repressors binding to the single GC elements within URR2 and RR3 act independently to regulate Prm1. While electrophoretic mobility shift assays and supershift assays demonstrated that each of the GC elements can bind Egr1 and WT1 in vitro, chromatin immunoprecipitations established that WT1 is the factor predominantly bound to each of the repressor regions in vivo. Additionally, ectopic expression of -KTS isoforms of WT1 decreased Prm1-directed gene expression and TPalpha mRNA expression. Collectively, these data establish WT1 as a critical repressor of Prm1, suppressing TPalpha expression in the platelet progenitor megakaryoblastic HEL cells.
Collapse
Affiliation(s)
- AnneMarie M Gannon
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
11
|
Hartkamp J, Carpenter B, Roberts SGE. The Wilms' tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 2010; 37:159-71. [PMID: 20122399 PMCID: PMC2815029 DOI: 10.1016/j.molcel.2009.12.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/25/2009] [Accepted: 10/27/2009] [Indexed: 10/25/2022]
Abstract
The Wilms' tumor suppressor protein WT1 functions as a transcriptional regulator of genes controlling growth, apoptosis, and differentiation. It has become clear that WT1 can act as an oncogene in many tumors, primarily through the inhibition of apoptosis. Here, we identify the serine protease HtrA2 as a WT1 binding partner and find that it cleaves WT1 at multiple sites following the treatment of cells with cytotoxic drugs. Ablation of HtrA2 activity either by chemical inhibitor or by siRNA prevents the proteolysis of WT1 under apoptotic conditions. Moreover, the apoptosis-dependent cleavage of WT1 is defective in HtrA2 knockout cells. Proteolysis of WT1 by HtrA2 causes the removal of WT1 from its binding sites at gene promoters, leading to alterations in gene regulation that enhance apoptosis. Our findings provide insights into the function of HtrA2 in the regulation of apoptosis and the oncogenic activities of WT1.
Collapse
Affiliation(s)
- Jörg Hartkamp
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
12
|
Wu HT, Allie N, Myer L, Govender D. Anaplastic nephroblastomas express transketolase-like enzyme 1. J Clin Pathol 2009; 62:460-3. [PMID: 19139037 DOI: 10.1136/jcp.2008.063966] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM Transketolase-like enzyme 1 (TKTL1) is a glycolytic enzyme that has been found to be upregulated in several tumours, and it is associated with tumour progression. Nephroblastoma is the commonest paediatric renal malignancy and has a good prognosis except for those with anaplasia. To the best of the authors' knowledge, the expression of TKTL1 in nephroblastomas has not been studied before and the aim of this study was to compare the immunoexpression of TKTL1 in anaplastic and non-anaplastic nephroblastomas. METHODS Twenty-eight patients who had nephrectomies for nephroblastomas were studied. Archival formalin-fixed paraffin-wax-embedded tissue sections were stained with monoclonal TKTL1 antibody. RESULTS Six of the 15 anaplastic nephroblastomas showed staining in 80-100% of the tumour (p = 0.36). None of the 13 non-anaplastic nephroblastomas showed TKTL1 staining in >80% of the tumour. CONCLUSION TKTL1 expression is associated with the presence of anaplasia and may be a mechanism via which anaplastic tumour cells thrive under different conditions. Glycolytic inhibitors may play a role in anaplastic nephroblastomas.
Collapse
Affiliation(s)
- H-T Wu
- Division of Anatomical Pathology, National Health Laboratory Services, Groote-Schuur Hospital /Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
| | | | | | | |
Collapse
|
13
|
Neubauer H, Clare SE, Wozny W, Schwall GP, Poznanovic S, Stegmann W, Vogel U, Sotlar K, Wallwiener D, Kurek R, Fehm T, Cahill MA. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res 2008; 10:R85. [PMID: 18922159 PMCID: PMC2614521 DOI: 10.1186/bcr2155] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 08/15/2008] [Accepted: 10/15/2008] [Indexed: 12/22/2022] Open
Abstract
Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of comedo type, PGRMC1 was expressed in glucose transporter 1 negative or positive poorly oxygenated cells surrounding the necrotic core, surrounded by a more distal halo of ER-positive cells. Conclusions PGRMC1 phosphorylation may be involved in the clinical differences that underpin breast tumors of differing ER status.
Collapse
Affiliation(s)
- Hans Neubauer
- Department of Obstetrics and Gynecology, University of Tuebingen, Calwerstrasse, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Patek CE, Brownstein DG, Fleming S, Wroe C, Rose L, Webb A, Berry RL, Devenney PS, Walker M, Maddocks ODK, Lawrence NJ, Harrison DJ, Wood KM, Miles CG, Hooper ML. Effects on kidney disease, fertility and development in mice inheriting a protein-truncating Denys-Drash syndrome allele (Wt1tmT396). Transgenic Res 2007; 17:459-75. [PMID: 18040647 DOI: 10.1007/s11248-007-9157-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 11/06/2007] [Indexed: 12/01/2022]
Abstract
Denys-Drash syndrome (DDS) is caused by heterozygous mutations of the Wilms' tumour suppressor gene, WT1, characterised by early-onset diffuse mesangial sclerosis often associated with male pseudohermaphroditism and/or Wilms' tumourigenesis. Previously, we reported that the Wt1tmT396 allele induces DDS kidney disease in mice. In the present study heterozygotes (Wt1tmT396/+) were generated on inbred (129/Ola), crossbred (B6/129) and MF1 second backcross (MF1-N2) backgrounds. Whereas male heterozygotes on each background were fertile, inbred heterozygous females were infertile. Kidney disease (proteinuria and sclerosis) was not congenital and developed significantly earlier in inbred mice, although with variable onset. Disease onset in MF1-N2 stocks occurred later in Wt1tmT396/+ mice than reported previously for Wt1R394W/+ mice, and while no kidney disease has been reported in B6/129 Wt1+/- mice, B6/129 Wt1tmT396/+ mice were affected. Offspring of both male and female B6/129 and MF1-N2 Wt1tmT396/+ mice developed kidney disease, but its incidence was significantly higher in offspring of female heterozygotes. Wt1tmT396/tmT396 embryos exhibited identical developmental abnormalities to those reported for Wt1-/- embryos. The results indicate that the Wt1 (tmT396) allele does not predispose to Wilms' tumourigenesis or male pseudohermaphroditism, its effect on kidney disease and female fertility depends on genetic background, stochastic factors may affect disease onset, and disease transmission is subject to a partial parent-of-origin effect. Since the Wt1tmT396 allele has no detectable intrinsic functional activity in vivo, and kidney disease progression is affected by the type of Wt1 mutation, the data support the view that DDS nephropathy results from a dominant-negative action rather than WT1 haploinsufficiency or gain-of-function.
Collapse
Affiliation(s)
- Charles E Patek
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Caldon CE, Lee CSL, Sutherland RL, Musgrove EA. Wilms' tumor protein 1: an early target of progestin regulation in T-47D breast cancer cells that modulates proliferation and differentiation. Oncogene 2007; 27:126-38. [PMID: 17599043 DOI: 10.1038/sj.onc.1210622] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Progesterone regulates the proliferation and differentiation of normal mammary epithelium. In breast cancer cells, progesterone and its synthetic analogs, progestins, induce long-term growth inhibition and differentiation. However, the mechanisms responsible are not fully understood. When T-47D breast cancer cells were treated with the synthetic progestin ORG 2058 (16alpha-ethoxy-21-hydroxy-19-norpregn-4-en-3,20-dione), all isoforms of Wilms' tumor protein 1 (Wt1) mRNA and protein were rapidly downregulated. We reasoned that the decrease in Wt1 levels may contribute to the long-term antiproliferative and differentiative effects of progestins as proliferation and differentiation are known end points of Wt1 action. Consistent with this idea, Wt1 small interfering RNA led to a decrease in S phase and cyclin D1 levels, and increased Oil-Red-O staining, indicating increased lipogenesis. Conversely, overexpression of Wt1 attenuated the decrease in S phase induced by ORG 2058 at 48-96 h. This was accompanied by the sustained expression of cyclin D1 despite progestin treatment, and increased levels of retinoblastoma (Rb) phosphorylation at sites targeted by cyclin D1-Cdk4 (Ser249/Thr252). Wt1 overexpression also attenuated the ORG 2058-mediated increase in fatty acid synthase levels and reduced lipogenesis. Thus, Wt1 downregulation was sufficient to mimic the effects of progestin and was necessary for complete progestin-mediated proliferative arrest and subsequent differentiation. Furthermore, Wt1 overexpression modulated the effects of progestins but not anti-estrogens or androgens. These results indicate that Wt1 is an important early target of progestins that regulates both proliferation and differentiation in breast cancer cells.
Collapse
Affiliation(s)
- C E Caldon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
16
|
Kim HS, Kim MS, Hancock AL, Harper JCP, Park JY, Poy G, Perantoni AO, Cam M, Malik K, Lee SB. Identification of Novel Wilms' Tumor Suppressor Gene Target Genes Implicated in Kidney Development. J Biol Chem 2007; 282:16278-87. [PMID: 17430890 DOI: 10.1074/jbc.m700215200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Wilms' tumor suppressor gene (WT1) encodes a zinc finger transcription factor that is vital during development of several organs including metanephric kidneys. Despite the critical regulatory role of WT1, the pathways and mechanisms by which WT1 orchestrates development remain elusive. To identify WT1 target genes, we performed a genome-wide expression profiling analysis in cells expressing inducible WT1. We identified a number of direct WT1 target genes, including the epidermal growth factor (EGF)-family ligands epiregulin and HB-EGF, the chemokine CX3CL1, and the transcription factors SLUG and JUNB. The target genes were validated using quantitative reverse transcriptase-polymerase chain reaction, small interfering RNA knockdowns, chromatin immunoprecipitation, and luciferase reporter analyses. Immunohistochemistry of fetal kidneys confirmed that a number of the WT1 target genes had overlapping expression patterns with the highly restricted spatiotemporal expression of WT1. Finally, using an in vitro embryonic kidney culture assay, we found that the addition of recombinant epiregulin, amphiregulin, CX3CL1, and interleukin-11 significantly enhanced ureteric bud branching morphogenesis. Our genome-wide screen implicates WT1 in the transcriptional regulation of the EGF-family of growth factors as well as the CX3CL1 chemokine during nephrogenesis.
Collapse
Affiliation(s)
- Ho-Shik Kim
- Genetics of Development and Disease Branch, Microarray Core Facility, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bor YC, Swartz J, Morrison A, Rekosh D, Ladomery M, Hammarskjöld ML. The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev 2006; 20:1597-608. [PMID: 16738405 PMCID: PMC1482480 DOI: 10.1101/gad.1402306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Wilms' tumor 1 (WT1) gene plays an important role in mammalian urogenital development, and dysregulation of this gene is observed in many human cancers. Alternative splicing of WT1 RNA leads to the expression of two major protein isoforms, WT1(+KTS) and WT1(-KTS). Whereas WT1(-KTS) acts as a transcriptional regulator, no clear function has been ascribed to WT1(+KTS), despite the fact that this protein is crucial for normal development. Here we show that WT1(+KTS) functions to enhance expression from RNA possessing a retained intron and containing either a cellular or viral constitutive transport element (CTE). WT1(+KTS) expression increases the levels of unspliced RNA containing a CTE and specifically promotes the association of this RNA with polyribosomes. These studies provide further support for links between different steps in RNA metabolism and for the existence of post-transcriptional operons.
Collapse
Affiliation(s)
- Yeou-cherng Bor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
18
|
Roberts SGE. Transcriptional regulation by WT1 in development. Curr Opin Genet Dev 2005; 15:542-7. [PMID: 16099645 DOI: 10.1016/j.gde.2005.08.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 08/02/2005] [Indexed: 11/16/2022]
Abstract
The Wilms' tumour suppressor protein, WT1, plays a central role in the development of the genitourinary system and also other organs and tissues. WT1 can act as a transcriptional regulator or as an RNA processing factor in an isoform-dependent manner. The mechanisms that are used by WT1 to regulate transcription, and its associated target genes have been difficult to study, in part because the transcription function of WT1 is highly context-dependent. Recent studies have provided new insights into how WT1 achieves this specificity and have uncovered new target genes that are regulated by WT1 during development. In addition, ongoing studies of transgenic animals and analyses in kidney explant systems have revealed further roles for WT1 in development.
Collapse
Affiliation(s)
- Stefan G E Roberts
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
19
|
Najima Y, Yahagi N, Takeuchi Y, Matsuzaka T, Sekiya M, Nakagawa Y, Amemiya-Kudo M, Okazaki H, Okazaki S, Tamura Y, Iizuka Y, Ohashi K, Harada K, Gotoda T, Nagai R, Kadowaki T, Ishibashi S, Yamada N, Osuga JI, Shimano H. High mobility group protein-B1 interacts with sterol regulatory element-binding proteins to enhance their DNA binding. J Biol Chem 2005; 280:27523-32. [PMID: 16040616 DOI: 10.1074/jbc.m414549200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are transcription factors that are predominately involved in the regulation of lipogenic and cholesterogenic enzyme gene expression. To identify unknown proteins that interact with SREBP, we screened nuclear extract proteins with 35S-labeled SREBP-1 bait in Far Western blotting analysis. Using this approach, high mobility group protein-B1 (HMGB1), a chromosomal protein, was identified as a novel SREBP interacting protein. In vitro glutathione S-transferase pull-down and in vivo coimmunoprecipitation studies confirmed an interaction between HMGB1 and both SREBP-1 and -2. The protein-protein interaction was mediated through the helix-loop-helix domain of SREBP-1, residues 309-344, and the A box of HMGB1. Furthermore, an electrophoretic mobility shift assay demonstrated that HMGB1 enhances SREBPs binding to their cognate DNA sequences. Moreover, luciferase reporter analyses, including RNA interference technique showed that HMGB1 potentiates the transcriptional activities of SREBP in cultured cells. These findings raise the intriguing possibility that HMGB1 is potentially involved in the regulation of lipogenic and cholesterogenic gene transcription.
Collapse
Affiliation(s)
- Yuho Najima
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Wilms' tumour, or nephroblastoma, is a common childhood tumour that is intimately linked to early kidney development and is often associated with persistent embryonic renal tissue and other kidney abnormalities. WT1, the first gene found to be inactivated in Wilms' tumour, encodes a transcription factor that functions as both a tumour suppressor and a critical regulator of renal organogenesis. Our understanding of the roles of WT1 in tumour formation and organogenesis have advanced in parallel, providing a striking example of the intersection between tumour biology, cellular differentiation and normal organogenesis.
Collapse
Affiliation(s)
- Miguel N Rivera
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
21
|
Little M. Wilms' tumor: starting off the kidney all over again? PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:107-32. [PMID: 17153482 DOI: 10.1007/3-540-27671-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- M Little
- Institute for Molecular Bioscience, Level 4 North, Queensland Bioscience Precinct, The University of Queensland, St. Lucia, 4072, Qld, Australia
| |
Collapse
|
22
|
Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, Young RA, Bulyk ML. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet 2004; 36:1331-9. [PMID: 15543148 PMCID: PMC2692596 DOI: 10.1038/ng1473] [Citation(s) in RCA: 281] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 10/18/2004] [Indexed: 11/10/2022]
Abstract
We developed a new DNA microarray-based technology, called protein binding microarrays (PBMs), that allows rapid, high-throughput characterization of the in vitro DNA binding-site sequence specificities of transcription factors in a single day. Using PBMs, we identified the DNA binding-site sequence specificities of the yeast transcription factors Abf1, Rap1 and Mig1. Comparison of these proteins' in vitro binding sites with their in vivo binding sites indicates that PBM-derived sequence specificities can accurately reflect in vivo DNA sequence specificities. In addition to previously identified targets, Abf1, Rap1 and Mig1 bound to 107, 90 and 75 putative new target intergenic regions, respectively, many of which were upstream of previously uncharacterized open reading frames. Comparative sequence analysis indicated that many of these newly identified sites are highly conserved across five sequenced sensu stricto yeast species and, therefore, are probably functional in vivo binding sites that may be used in a condition-specific manner. Similar PBM experiments should be useful in identifying new cis regulatory elements and transcriptional regulatory networks in various genomes.
Collapse
Affiliation(s)
- Sonali Mukherjee
- Division of Genetics, Department of Medicine, Harvard Medical School; Boston; Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|