1
|
Shen C, Pandey A, Enosi Tuipulotu D, Mathur A, Liu L, Yang H, Adikari NK, Ngo C, Jing W, Feng S, Hao Y, Zhao A, Kirkby M, Kurera M, Zhang J, Venkataraman S, Liu C, Song R, Wong JJL, Schumann U, Natoli R, Wen J, Zhang L, Kaakoush NO, Man SM. Inflammasome protein scaffolds the DNA damage complex during tumor development. Nat Immunol 2024; 25:2085-2096. [PMID: 39402152 DOI: 10.1038/s41590-024-01988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Inflammasome sensors activate cellular signaling machineries to drive inflammation and cell death processes. Inflammasomes also control the development of certain diseases independently of canonical functions. Here, we show that the inflammasome protein NLR family CARD domain-containing protein 4 (NLRC4) attenuated the development of tumors in the Apcmin/+ mouse model. This response was independent of inflammasome signaling by NLRP3, NLRP6, NLR family apoptosis inhibitory proteins, absent in melanoma 2, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1 and caspase-11. NLRC4 interacted with the DNA-damage-sensing ataxia telangiectasia and Rad3-related (ATR)-ATR-interacting protein (ATRIP)-Ewing tumor-associated antigen 1 (ETAA1) complex to promote the recruitment of the checkpoint adapter protein claspin, licensing the activation of the kinase checkpoint kinase-1 (CHK1). Genotoxicity-induced activation of the NLRC4-ATR-ATRIP-ETAA1 complex drove the tumor-suppressing DNA damage response and CHK1 activation, and further attenuated the accumulation of DNA damage. These findings demonstrate a noninflammatory function of an inflammasome protein in promoting the DNA damage response and mediating protection against cancer.
Collapse
Affiliation(s)
- Cheng Shen
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Abhimanu Pandey
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lixinyu Liu
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australian Capital Territory, Australia
| | - Haoyu Yang
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australian Capital Territory, Australia
| | - Nilanthi K Adikari
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Weidong Jing
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuwei Hao
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anyang Zhao
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Max Kirkby
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melan Kurera
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jing Zhang
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shweta Venkataraman
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
- Mater Pathology, Mater Hospital, South Brisbane, Queensland, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Laboratory, The School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Laboratory, The School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The Shine Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The Shine Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australian Capital Territory, Australia
| | - Liman Zhang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
2
|
Pusch FF, Dorado García H, Xu R, Gürgen D, Bei Y, Brückner L, Röefzaad C, von Stebut J, Bardinet V, Chamorro Gonzalez R, Eggert A, Schulte JH, Hundsdörfer P, Seifert G, Haase K, Schäfer BW, Wachtel M, Kühl AA, Ortiz MV, Wengner AM, Scheer M, Henssen AG. Elimusertib has Antitumor Activity in Preclinical Patient-Derived Pediatric Solid Tumor Models. Mol Cancer Ther 2024; 23:507-519. [PMID: 38159110 PMCID: PMC10985474 DOI: 10.1158/1535-7163.mct-23-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.
Collapse
Affiliation(s)
- Fabian F. Pusch
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heathcliff Dorado García
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robin Xu
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis Gürgen
- Experimental Pharmacology and Oncology (EPO), Berlin, Germany
| | - Yi Bei
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lotte Brückner
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Claudia Röefzaad
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jennifer von Stebut
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Bardinet
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | - Rocío Chamorro Gonzalez
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Hundsdörfer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Georg Seifert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kerstin Haase
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | | | | | - Anja A. Kühl
- iPATH.Berlin—Core Unit Immunopathology for Experimental Models, Charité Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | | | - Monika Scheer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Leung TCN, Lu SN, Chu CN, Lee J, Liu X, Ngai SM. Temporal Quantitative Proteomic and Phosphoproteomic Profiling of SH-SY5Y and IMR-32 Neuroblastoma Cells during All- Trans-Retinoic Acid-Induced Neuronal Differentiation. Int J Mol Sci 2024; 25:1047. [PMID: 38256121 PMCID: PMC10816102 DOI: 10.3390/ijms25021047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans-retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes and phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. Relative quantification of proteins and phosphopeptides with subsequent gene ontology analysis revealed that several biological processes, including cytoskeleton organization, cell division, chaperone function and protein folding, and one-carbon metabolism, were associated with ATRA-induced differentiation in both cell lines. Furthermore, kinase-substrate enrichment analysis predicted altered activities of several kinases during differentiation. Among these, CDK5 exhibited increased activity, while CDK2 displayed reduced activity. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Collapse
Affiliation(s)
- Thomas C. N. Leung
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Scott Ninghai Lu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Cheuk Ning Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Joy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Xingyu Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Koutova D, Maafi N, Muthna D, Kralovec K, Kroustkova J, Pidany F, Timbilla AA, Cermakova E, Cahlikova L, Rezacova M, Havelek R. Antiproliferative activity and apoptosis-inducing mechanism of Amaryllidaceae alkaloid montanine on A549 and MOLT-4 human cancer cells. Biomed Pharmacother 2023; 166:115295. [PMID: 37595426 DOI: 10.1016/j.biopha.2023.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
The isoquinoline alkaloids found in Amaryllidaceae are attracting attention due to attributes that can be harnessed for the development of new drugs. The possible molecular mechanisms by which montanine exerts its inhibitory effects against cancer cells have not been documented. In the present study, montanine, manthine and a series of 15 semisynthetic montanine analogues originating from the parent alkaloid montanine were screened at a single test dose of 10 μM to explore their cytotoxic activities against a panel of eight cancer cell lines and one non-cancer cell line. Among montanine and its analogues, montanine and its derivatives 12 and 14 showed the highest cytostatic activity in the initial single-dose screening. However, the native montanine exhibited the greatest antiproliferative activity against cancer cells, with a lower mean IC50 value of 1.39 µM, compared to the displayed mean IC50 values of 2.08 µM for 12 and 3.57 µM for 14. Montanine exhibited the most potent antiproliferative activity with IC50 values of 1.04 µM and 1.09 µM against Jurkat and A549 cell lines, respectively. We also evaluated montanine's cytotoxicity and cell death mechanisms. Our results revealed that montanine triggered apoptosis of MOLT-4 cells via caspase activation, mitochondrial depolarisation and Annexin V/PI double staining. The Western blot results of MOLT-4 cells showed that the protein levels of phosphorylated Chk1 Ser345 were upregulated with increased montanine concentrations. Our findings provide new insights into the mechanisms underlying the cytostatic, cytotoxic and pro-apoptotic activities of montanine alkaloids in lung adenocarcinoma A549 and leukemic MOLT-4 cancer cell types.
Collapse
Affiliation(s)
- Darja Koutova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Negar Maafi
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Darina Muthna
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Karel Kralovec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Jana Kroustkova
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Filip Pidany
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Abdul Aziz Timbilla
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Eva Cermakova
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Lucie Cahlikova
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
5
|
Yang J, Sun L, Liu X, Huang C, Peng J, Zeng X, Zheng H, Cen W, Xu Y, Zhu W, Wu X, Ling D, Zhang L, Wei M, Liu Y, Wang D, Wang F, Li Y, Li Q, Du Z. Targeted demethylation of the CDO1 promoter based on CRISPR system inhibits the malignant potential of breast cancer cells. Clin Transl Med 2023; 13:e1423. [PMID: 37740473 PMCID: PMC10517212 DOI: 10.1002/ctm2.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cysteine dioxygenase 1 (CDO1) is frequently methylated, and its expression is decreased in many human cancers including breast cancer (BC). However, the functional and mechanistic aspects of CDO1 inactivation in BC are poorly understood, and the diagnostic significance of serum CDO1 methylation remains unclear. METHODS We performed bioinformatics analysis of publicly available databases and employed MassARRAY EpiTYPER methylation sequencing technology to identify differentially methylated sites in the CDO1 promoter of BC tissues compared to normal adjacent tissues (NATs). Subsequently, we developed a MethyLight assay using specific primers and probes for these CpG sites to detect the percentage of methylated reference (PMR) of the CDO1 promoter. Furthermore, both LentiCRISPR/dCas9-Tet1CD-based CDO1-targeted demethylation system and CDO1 overexpression strategy were utilized to detect the function and underlying mechanism of CDO1 in BC. Finally, the early diagnostic value of CDO1 as a methylation biomarker in BC serum was evaluated. RESULTS CDO1 promoter was hypermethylated in BC tissues, which was related to poor prognosis (p < .05). The CRISPR/dCas9-based targeted demethylation system significantly reduced the PMR of CDO1 promotor and increased CDO1 expression in BC cells. Consequently, this leads to suppression of cell proliferation, migration and invasion. Additionally, we found that CDO1 exerted a tumour suppressor effect by inhibiting the cell cycle, promoting cell apoptosis and ferroptosis. Furthermore, we employed the MethyLight to detect CDO1 PMR in BC serum, and we discovered that serum CDO1 methylation was an effective non-invasive biomarker for early diagnosis of BC. CONCLUSIONS CDO1 is hypermethylated and acts as a tumour suppressor gene in BC. Epigenetic editing of abnormal CDO1 methylation could have a crucial role in the clinical treatment and prognosis of BC. Additionally, serum CDO1 methylation holds promise as a valuable biomarker for the early diagnosis and management of BC.
Collapse
Affiliation(s)
- Jiaojiao Yang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Liyue Sun
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Xiao‐Yun Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Chan Huang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Junling Peng
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xinxin Zeng
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Hailin Zheng
- Department of Clinical LaboratorySun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Wenjian Cen
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Xia Xu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Weijie Zhu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xiao‐Yan Wu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Dongyi Ling
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Lu‐Lu Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Mingbiao Wei
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Ye Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Deshen Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Feng‐Hua Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Hong Li
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
| | - Ziming Du
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| |
Collapse
|
6
|
Williams KS, Secomb TW, El-Kareh AW. An autonomous mathematical model for the mammalian cell cycle. J Theor Biol 2023; 569:111533. [PMID: 37196820 DOI: 10.1016/j.jtbi.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
A mathematical model for the mammalian cell cycle is developed as a system of 13 coupled nonlinear ordinary differential equations. The variables and interactions included in the model are based on detailed consideration of available experimental data. A novel feature of the model is inclusion of cycle tasks such as origin licensing and initiation, nuclear envelope breakdown and kinetochore attachment, and their interactions with controllers (molecular complexes involved in cycle control). Other key features are that the model is autonomous, except for a dependence on external growth factors; the variables are continuous in time, without instantaneous resets at phase boundaries; mechanisms to prevent rereplication are included; and cycle progression is independent of cell size. Eight variables represent cell cycle controllers: the Cyclin D1-Cdk4/6 complex, APCCdh1, SCFβTrCP, Cdc25A, MPF, NuMA, the securin-separase complex, and separase. Five variables represent task completion, with four for the status of origins and one for kinetochore attachment. The model predicts distinct behaviors corresponding to the main phases of the cell cycle, showing that the principal features of the mammalian cell cycle, including restriction point behavior, can be accounted for in a quantitative mechanistic way based on known interactions among cycle controllers and their coupling to tasks. The model is robust to parameter changes, in that cycling is maintained over at least a five-fold range of each parameter when varied individually. The model is suitable for exploring how extracellular factors affect cell cycle progression, including responses to metabolic conditions and to anti-cancer therapies.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
7
|
Zhu L, Liu H, Dou Y, Luo Q, Gu L, Liu X, Zhou Q, Han J, Wang F. A Photoactivated Ru (II) Polypyridine Complex Induced Oncotic Necrosis of A549 Cells by Activating Oxidative Phosphorylation and Inhibiting DNA Synthesis as Revealed by Quantitative Proteomics. Int J Mol Sci 2023; 24:ijms24097756. [PMID: 37175463 PMCID: PMC10178167 DOI: 10.3390/ijms24097756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4'-pyrene-2,2':6',2''-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug.
Collapse
Affiliation(s)
- Li Zhu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
| | - Hui Liu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Dou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianxiong Zhou
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
8
|
Ng LY, Ma HT, Poon RYC. Cyclin A-CDK1 suppresses the expression of the CDK1 activator CDC25A to safeguard timely mitotic entry. J Biol Chem 2023; 299:102957. [PMID: 36717077 PMCID: PMC9986519 DOI: 10.1016/j.jbc.2023.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Cyclin A and CDC25A are both activators of cyclin-dependent kinases (CDKs): cyclin A acts as an activating subunit of CDKs and CDC25A a phosphatase of the inhibitory phosphorylation sites of the CDKs. In this study, we uncovered an inverse relationship between the two CDK activators. As cyclin A is an essential gene, we generated a conditional silencing cell line using a combination of CRISPR-Cas9 and degron-tagged cyclin A. Destruction of cyclin A promoted an acute accumulation of CDC25A. The increase of CDC25A after cyclin A depletion occurred throughout the cell cycle and was independent on cell cycle delay caused by cyclin A deficiency. Moreover, we determined that the inverse relationship with cyclin A was specific for CDC25A and not for other CDC25 family members or kinases that regulate the same sites in CDKs. Unexpectedly, the upregulation of CDC25A was mainly caused by an increase in transcriptional activity instead of a change in the stability of the protein. Reversing the accumulation of CDC25A severely delayed G2-M in cyclin A-depleted cells. Taken together, these data provide evidence of a compensatory mechanism involving CDC25A that ensures timely mitotic entry at different levels of cyclin A.
Collapse
Affiliation(s)
- Lau Yan Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hoi Tang Ma
- Department of Pathology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Randy Y C Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
SRSF10 stabilizes CDC25A by triggering exon 6 skipping to promote hepatocarcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:353. [PMID: 36539837 PMCID: PMC9764681 DOI: 10.1186/s13046-022-02558-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Alternative splicing (AS) events are extensively involved in the progression of diverse tumors, but how serine/arginine-rich splicing Factor 10 (SRSF10) behaves in hepatocellular carcinoma (HCC) has not been sufficiently studied. We aimed to determine SRSF10 associated AS mechanisms and their effects on HCC progression. METHODS The expression of SRSF10 in HCC tissues was examined, and the in vitro and in vivo functions of SRSF10 were investigated. The downstream AS targets were screened using RNA sequencing. The interaction between SRSF10 protein and exclusion of cell division cycle 25 A (CDC25A) mRNA was identified using RNA immunoprecipitation and crosslinking immunoprecipitation q-PCR. The effects of SRSF10 on CDC25A posttranslational modification, subcellular distribution, and protein stability were verified through coimmunoprecipitation, immunofluorescence, and western blotting. RESULTS SRSF10 was enriched in HCC tissues and facilitated HCC proliferation, cell cycle, and invasion. RNA sequencing showed that SRSF10 promotes exon 6 exclusion of CDC25A pre-mRNA splicing. As a crucial cell cycle mediator, the exon-skipped isoform CDC25A(△E6) was identified to be stabilized and retained in the nucleus due to the deletion of two ubiquitination (Lys150, Lys169) sites in exon 6. The stabilized isoform CDC25A(△E6) derived from AS had stronger cell cycle effects on HCC tumorigenesis, and playing a more significant role than the commonly expressed longer variant CDC25A(L). Interestingly, SRSF10 activated the carcinogenesis role of CDC25A through Ser178 dephosphorylation to cause nuclear retention. Moreover, CDC25A(△E6) was verified to be indispensable for SRSF10 to promote HCC development in vitro and in vivo. CONCLUSIONS We reveal a regulatory pattern whereby SRSF10 contributes to a large proportion of stabilized CDC25A(△E6) production, which is indispensable for SRSF10 to promote HCC development. Our findings uncover AS mechanisms such as CDC25A that might serve as potential therapeutic targets to treat HCC.
Collapse
|
10
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
11
|
Lara-Chica M, Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Ponce FJ, Moreno R, Morrison K, Di Vona C, Arató K, Jiménez-Jiménez C, Morrugares R, Schmitz ML, de la Luna S, de la Vega L, Calzado MA. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death Differ 2022; 29:105-117. [PMID: 34363019 PMCID: PMC8738746 DOI: 10.1038/s41418-021-00845-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin-Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.
Collapse
Affiliation(s)
- Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco J Ponce
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rita Moreno
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Kimberley Morrison
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
12
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
13
|
Jones ME, O'Connell TJ, Zhao H, Darzynkiewicz Z, Gupta A, Buchsbaum J, Shin E, Iacob C, Suslina N, Moscatello A, Schantz S, Tiwari R, Geliebter J. Androgen receptor activation decreases proliferation in thyroid cancer cells. J Cell Biochem 2021; 122:1113-1125. [PMID: 33876852 DOI: 10.1002/jcb.29934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2020] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
The American Cancer Society predicted more than 52 000 new cases of thyroid cancer in 2020, making it the most prevalent endocrine malignancy. Due to the approximately threefold higher incidence of thyroid cancer in women, we hypothesize that androgens and/or androgen receptors play a protective role and that thyroid cancer in men represents an escape from androgen-mediated cell regulation. The analysis of androgen receptor (AR) expression in patient tissue samples identified a 2.7-fold reduction in AR expression (p < 0.005) in papillary thyroid cancer compared with matched, normal tissue. An in vitro cell model was developed by stably transfecting AR into 8505C undifferentiated thyroid cancer cells (resulting in clone 84E7). The addition of DHT to the clone 84E7 resulted in AR translocation into the nucleus and a 70% reduction in proliferation, with a shift in the cell cycle toward G1 arrest. RNASeq analysis revealed significant changes in mRNA levels associated with proliferation, cell cycle, and cell cycle regulation. Furthermore, androgen significantly decreased the levels of the G1-associated cell cycle progression proteins cdc25a CDK6 CDK4 and CDK2 as well as increased the levels of the cell cycle inhibitors, p27 and p21. The data strongly suggest that DHT induces a G1 arrest in androgen-responsive thyroid cancer cells. Together, these data support our hypothesis that AR/androgen may play a protective, antiproliferative role and are consistent with younger men having a lower incidence of thyroid cancer than women.
Collapse
Affiliation(s)
- Melanie E Jones
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Natural Sciences, United States Military Academy Preparatory School, West Point, New York, USA
| | - Timmy J O'Connell
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | | | - Anvita Gupta
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Joseph Buchsbaum
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Edward Shin
- Department of Otolaryngology, New York Eye and Ear, New York, New York, USA
| | - Codrin Iacob
- Department of Pathology, New York Eye and Ear, New York, New York, USA
| | - Nina Suslina
- Department of Otolaryngology, New York Eye and Ear, New York, New York, USA
| | | | - Stimson Schantz
- Department of Otolaryngology, New York Eye and Ear, New York, New York, USA
| | - Raj Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Otolaryngology, New York Medical College, Valhalla, New York, USA
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Otolaryngology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
14
|
Medda N, De SK, Maiti S. Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111752. [PMID: 33396077 DOI: 10.1016/j.ecoenv.2020.111752] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is a toxic heavy metal vastly dispersed all over the earth crust. It manifests several major adverse health issues to millions of arsenic exposed populations. Arsenic is associated with different types of cancer, cardiovascular disorders, diabetes, hypertension and many other diseases. On the contrary, arsenic (arsenic trioxide, As2O3) is used as a chemotherapeutic agent in the treatment of acute promyelocytic leukemia. Balance between arsenic induced cellular proliferations and apoptosis finally decide the outcome of its transformation rate. Arsenic propagates signals via cellular and nuclear pathways depending upon the chemical nature, and metabolic-fates of the arsenical compounds. Arsenic toxicity is propagated via ROS induced stress to DNA-repair mechanism and mitochondrial stability in the cell. ROS induced alteration in p53 regulation and some mitogen/ oncogenic functions determine the transformation outcome influencing cyclin-cdk complexes. Growth factor regulator proteins such as c-Jun, c-fos and c-myc are influenced by chronic arsenic exposure. In this review we have delineated arsenic induced ROS regulations of epidermal growth factor receptor (EGFR), NF-ĸβ, MAP kinase, matrix-metalloproteinases (MMPs). The role of these signaling molecules has been discussed in relation to cellular apoptosis, cellular proliferation and neoplastic transformation. The arsenic stimulated pathways which help in proliferation and neoplastic transformation ultimately resulted in cancer manifestation whereas apoptotic pathways inhibited carcinogenesis. Therapeutic strategies against arsenic should be designed taking into account all these factors.
Collapse
Affiliation(s)
- Nandita Medda
- Center for Life Sciences, Vidyasagar University, Midnapore-721102, West Bengal, India; Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore-721102, West Bengal, India
| | - Subrata Kumar De
- Professor, Dept. of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India; (on lien) Vice Chancellor, Mahatma Gandhi University, Purba Medinipur, 721628, West Bengal, India.
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore-721102, West Bengal, India.
| |
Collapse
|
15
|
Abstract
The DNA damage response (DDR) is a coordinated cellular response to a variety of insults to the genome. DDR initiates the activation of cell cycle checkpoints preventing the propagation of damaged DNA followed by DNA repair, which are both critical in maintaining genome integrity. Several model systems have been developed to study the mechanisms and complexity of checkpoint function. Here we describe the application of cell-free extracts derived from Xenopus eggs as a model system to investigate signaling from DNA damage, modulation of DNA replication, checkpoint activation, and ultimately DNA repair. We outline the preparation of cell-free extracts, DNA substrates, and their subsequent use in assays aimed at understanding the cellular response to DNA damage. Cell-free extracts derived from the eggs of Xenopus laevis remain a robust and versatile system to decipher the biochemical steps underlying this essential characteristic of all cells, critical for genome stability.
Collapse
|
16
|
Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 2020; 28:427-438. [PMID: 33130827 PMCID: PMC7862229 DOI: 10.1038/s41418-020-00648-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development. ![]()
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Li Nie
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Anti-Proliferative and Genotoxic Activities of the Helichrysum petiolare Hilliard & B.L. Burtt. Sci Pharm 2020. [DOI: 10.3390/scipharm88040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Helichrysum petiolare (Asteraceae family) is part of the Helichrysum genus which comprises of an estimated 600 species. Several parts of the plant have been used traditionally for the treatment of various ailments, such as cough, infection, asthma, chest problems, diabetes and wounds. Given its various chemical constituents with anticancer properties, there has been no scientific evidence of its usage for the treatment of cancer. This study aims to investigate the anti-proliferative and genotoxic activities of H. petiolare methanol extract. The cytotoxic effect and cell cycle analysis of mouse melanoma cells (B16F10) and human melanoma cells (MeWo) were assessed using the ImageXpress Micro XLS Widefield High-Content Analysis System. The genotoxic potential of the extract towards Vero cells was also assessed using the micronucleus assay. The extract displayed cytotoxicity towards B16F10 and MeWo skin melanoma cells, thereby showing a dose-dependent decrease in cell density. This was preceded by cell cycle arrest in B16F10 cells at the S phase and MeWo cell arrest at the early M phase with a significant increase in apoptosis in both cells. Furthermore, the extract displayed genotoxic potential at the tested concentrations (12.5–200 μg/mL). Overall, the results revealed that H. petiolare extract may have the potential to eradicate skin cancer.
Collapse
|
18
|
Tao L, He XY, Jiang YT, Lan R, Li M, Li ZM, Yang WF, Hong QH, Chu MX. Combined approaches to reveal genes associated with litter size in Yunshang black goats. Anim Genet 2020; 51:924-934. [PMID: 32986880 DOI: 10.1111/age.12999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/25/2023]
Abstract
Intensive artificial selection has been imposed in Yunshang black goats, the first black specialist mutton goat breed in China, with a breeding object of improving reproductive performance, which has contributed to reshaping of the genome including the characterization of SNP, ROH and haplotype. However, variation in reproductive ability exists in the present population. A WGS was implemented in two subpopulations (polytocous group, PG, and monotocous group, MG) with evident differences of litter size. Following the mapping to reference genome, and SNP calling and pruning, three approaches - GWAS, ROH analysis and detection of signatures of selection - were employed to unveil candidate genes responsible for litter size. Consequently, 12 candidate genes containing OSBPL8 with the minimum P-value were uncovered by GWAS. Differences were observed in the pattern of ROH between two subpopulations that shared similar low inbreeding coefficients. Two ROH hotspots and 12 corresponding genes emerged from ROH pool association analysis. Based on the nSL statistic, 15 and 61 promising genes were disclosed under selection for MG and PG respectively. Of them, some promising genes participate in ovarian function (PPP2R5C, CDC25A, ESR1, RPS26 and SERPINBs), seasonal reproduction (DIO3, BTG1 and CRYM) and metabolism (OSBPL8, SLC39A5 and SERPINBs). Our study pinpointed some novel promising genes influencing litter size, provided a comprehensive insight into genetic makeup of litter size and might facilitate selective breeding in goats.
Collapse
Affiliation(s)
- L Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - X Y He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y T Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - R Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - M Li
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Z M Li
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - W F Yang
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Q H Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - M X Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
19
|
Gao X, Wang Q, Wang Y, Liu J, Liu S, Liu J, Zhou X, Zhou L, Chen H, Pan L, Chen J, Wang D, Zhang Q, Shen S, Xiao Y, Wu Z, Cheng Y, Chen G, Kubra S, Qin J, Huang L, Zhang P, Wang C, Moses RE, Lonard DM, Malley BWO, Fares F, Zhang B, Li X, Li L, Xiao J. The REGγ inhibitor NIP30 increases sensitivity to chemotherapy in p53-deficient tumor cells. Nat Commun 2020; 11:3904. [PMID: 32764536 PMCID: PMC7413384 DOI: 10.1038/s41467-020-17667-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
A major challenge in chemotherapy is chemotherapy resistance in cells lacking p53. Here we demonstrate that NIP30, an inhibitor of the oncogenic REGγ-proteasome, attenuates cancer cell growth and sensitizes p53-compromised cells to chemotherapeutic agents. NIP30 acts by binding to REGγ via an evolutionarily-conserved serine-rich domain with 4-serine phosphorylation. We find the cyclin-dependent phosphatase CDC25A is a key regulator for NIP30 phosphorylation and modulation of REGγ activity during the cell cycle or after DNA damage. We validate CDC25A-NIP30-REGγ mediated regulation of the REGγ target protein p21 in vivo using p53-/- and p53/REGγ double-deficient mice. Moreover, Phosphor-NIP30 mimetics significantly increase the growth inhibitory effect of chemotherapeutic agents in vitro and in vivo. Given that NIP30 is frequently mutated in the TCGA cancer database, our results provide insight into the regulatory pathway controlling the REGγ-proteasome in carcinogenesis and offer a novel approach to drug-resistant cancer therapy.
Collapse
Affiliation(s)
- Xiao Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Qingwei Wang
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ying Wang
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Jiang Liu
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, P. R. China
| | - Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Prk, NC, 27709, USA
| | - Xingli Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Li Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Linian Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jiwei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Da Wang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, P. R. China
| | - Shihui Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yu Xiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Zhipeng Wu
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Syeda Kubra
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jun Qin
- The Joint Laboratory of Translational Medicine, National Center for Protein Sciences (Beijing) and Peking University Cancer Hospital, State Key Laboratory of Proteomics, Institute of Lifeomics, 102206, Beijing, China
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Pei Zhang
- Department of Pathology, The Second Chengdu Municipal Hospital, 610017, Chengdu, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O' Malley
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Fuad Fares
- Department of Human Biology. Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Xiaotao Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China.
| |
Collapse
|
20
|
Albendazole negatively regulates keratinocyte proliferation. Clin Sci (Lond) 2020; 134:907-920. [PMID: 32236445 DOI: 10.1042/cs20191215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased keratinocyte proliferation occurs in the skin of psoriatic patients and is supposed to play a role in the pathogenesis of this disorder. Compounds interfering with keratinocyte proliferation could be useful in the management of psoriatic patients. AIM To investigate whether albendazole, an anti-helmintic drug that regulates epithelial cell function in various systems, inhibits keratinocyte proliferation in models of psoriasis. METHODS Aldara-treated mice received daily topical application of albendazole. Keratinocyte proliferation and keratin (K) 6 and K16 expression were evaluated by immunohistochemistry and Western blotting and inflammatory cells/mediators were analysed by immunohistochemistry and real-time PCR. In human keratinocytes (HEKa and HaCaT) treated with albendazole, cell cycle and proliferation, keratins and cell cycle-associated factors were evaluated by flow cytometry, colorimetric assay and Western blotting respectively. RESULTS Aldara-treated mice given albendazole exhibited reduced epidermal thickness, decreased number of proliferating keratinocytes and K6/K16 expression. Reduction of CD3- and Ly6G-positive cells in the skin of albendazole-treated mice associated with inhibition of IL-6, TNF-α, IL-1β, IL-17A, IL-36, CCL17, CXCL1, CXCL2 and CXCL5 expression. Treatment of keratinocytes with albendazole reduced K6/K16 expression and reversibly inhibited cell growth by promoting accumulation of cells in S-phase. This phenomenon was accompanied by down-regulation of CDC25A, a phosphatase regulating progression of cell cycle through S-phase, and PKR-dependent hyper-phosphorylation of eIF2α, an inhibitor of CDC25 translation. In Aldara-treated mice, albendazole activated PKR, enhanced eIF2α phosphorylation and reduced CDC25A expression. CONCLUSIONS Data show that albendazole inhibits keratinocyte proliferation and exerts therapeutic effect in a murine model of psoriasis.
Collapse
|
21
|
Jing L, Wu G, Hao X, Olotu FA, Kang D, Chen CH, Lee KH, Soliman ME, Liu X, Song Y, Zhan P. Identification of highly potent and selective Cdc25 protein phosphatases inhibitors from miniaturization click-chemistry-based combinatorial libraries. Eur J Med Chem 2019; 183:111696. [DOI: 10.1016/j.ejmech.2019.111696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023]
|
22
|
Tan LTH, Chan CK, Chan KG, Pusparajah P, Khan TM, Ser HL, Lee LH, Goh BH. Streptomyces sp. MUM256: A Source for Apoptosis Inducing and Cell Cycle-Arresting Bioactive Compounds against Colon Cancer Cells. Cancers (Basel) 2019; 11:E1742. [PMID: 31698795 PMCID: PMC6896111 DOI: 10.3390/cancers11111742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
New and effective anticancer compounds are much needed as the incidence of cancer continues to rise. Microorganisms from a variety of environments are promising sources of new drugs; Streptomyces sp. MUM256, which was isolated from mangrove soil in Malaysia as part of our ongoing efforts to study mangrove resources, was shown to produce bioactive metabolites with chemopreventive potential. This present study is a continuation of our previous efforts and aimed to investigate the underlying mechanisms of the ethyl acetate fraction of MUM256 crude extract (MUM256 EA) in inhibiting the proliferation of HCT116 cells. Our data showed that MUM256 EA reduced proliferation of HCT116 cells via induction of cell-cycle arrest. Molecular studies revealed that MUM256 EA regulated the expression level of several important cell-cycle regulatory proteins. The results also demonstrated that MUM256 EA induced apoptosis in HCT116 cells mediated through the intrinsic pathway. Gas chromatography-mass spectrometry (GC-MS) analysis detected several chemical compounds present in MUM256 EA, including cyclic dipeptides which previous literature has reported to demonstrate various pharmacological properties. The cyclic dipeptides were further shown to inhibit HCT116 cells while exerting little to no toxicity on normal colon cells in this study. Taken together, the findings of this project highlight the important role of exploring the mangrove microorganisms as a bioresource which hold tremendous promise for the development of chemopreventive drugs against colorectal cancer.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; or (L.T.-H.T.); (H.-L.S.)
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Chim-Kei Chan
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Tahir Mehmood Khan
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science Lahore, Punjab 54000, Pakistan;
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; or (L.T.-H.T.); (H.-L.S.)
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; or (L.T.-H.T.); (H.-L.S.)
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science Lahore, Punjab 54000, Pakistan;
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bey-Hing Goh
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science Lahore, Punjab 54000, Pakistan;
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
23
|
Laudisi F, Cherubini F, Di Grazia A, Dinallo V, Di Fusco D, Franzè E, Ortenzi A, Salvatori I, Scaricamazza S, Monteleone I, Sakamoto N, Monteleone G, Stolfi C. Progranulin sustains STAT3 hyper-activation and oncogenic function in colorectal cancer cells. Mol Oncol 2019; 13:2142-2159. [PMID: 31361391 PMCID: PMC6763778 DOI: 10.1002/1878-0261.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent activation of Signal Transducer and Activator of Transcription (STAT)3 occurs in a high percentage of tumors, including colorectal cancer (CRC), thereby contributing to malignant cell proliferation and survival. Although STAT3 is recognized as an attractive therapeutic target in CRC, conventional approaches aimed at inhibiting its functions have met with several limitations. Moreover, the factors that sustain hyper-activation of STAT3 in CRC are not yet fully understood. The identification of tumor-specific STAT3 cofactors may facilitate the development of compounds that interfere exclusively with STAT3 activity in cancer cells. Here, we show that progranulin, a STAT3 cofactor, is upregulated in human CRC as compared to nontumor tissue/cells and its expression correlates with STAT3 activation. Progranulin physically interacts with STAT3 in CRC cells, and its knockdown with a specific antisense oligonucleotide (ASO) inhibits STAT3 activation and restrains the expression of STAT3-related oncogenic proteins, thus causing cell cycle arrest and apoptosis. Moreover, progranulin knockdown reduces STAT3 phosphorylation and cell proliferation induced by tumor-infiltrating leukocyte (TIL)-derived supernatants in CRC cell lines and human CRC explants. These findings indicate that CRC exhibits overexpression of progranulin, and suggest a role for this protein in amplifying the STAT3 pathway in CRC.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Fabio Cherubini
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | | | - Vincenzo Dinallo
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Davide Di Fusco
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Eleonora Franzè
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Angela Ortenzi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | | | - Silvia Scaricamazza
- IRCCS Fondazione Santa LuciaRomeItaly
- Department of BiologyUniversity of ‘Tor Vergata’RomeItaly
| | - Ivan Monteleone
- Department of Biomedicine and PreventionUniversity of ‘Tor Vergata’RomeItaly
| | - Naoya Sakamoto
- Department of Molecular PathologyHiroshima UniversityHiroshimaJapan
| | | | - Carmine Stolfi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| |
Collapse
|
24
|
Mei L, Zhang J, He K, Zhang J. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. J Hematol Oncol 2019; 12:43. [PMID: 31018854 PMCID: PMC6482552 DOI: 10.1186/s13045-019-0733-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background The ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase 1 (CHK1) pathway plays an essential role in suppressing replication stress from DNA damage and oncogene activation. Main body Preclinical studies have shown that cancer cells with defective DNA repair mechanisms or cell cycle checkpoints may be particularly sensitive to ATR inhibitors. Preclinical and clinical data from early-phase trials on three ATR inhibitors (M6620, AZD6738, and BAY1895344), either as monotherapy or in combination, were reviewed. Conclusion Data from ATR inhibitor-based combinational trials might lead to future expansion of this therapy to homologous recombination repair pathway-proficient cancers and potentially serve as a rescue therapy for patients who have progressed through poly ADP-ribose polymerase inhibitors.
Collapse
Affiliation(s)
- Lin Mei
- Hematology, Oncology and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, 1250 East Marshall Street, Richmond, VA, 23298, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University, James Cancer Hospital and Solove Research Institute, 460 west 10th Avenue, Columbus, OH, 43210, USA
| | - Kai He
- The James Thoracic Oncology Center, The Ohio State University Comprehensive Cancer Center, 494 Biomedical Research Tower, Columbus, OH, 43210, USA
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
25
|
Swanepoel B, Venables L, Olaru OT, Nitulescu GM, van de Venter M. In Vitro Anti-proliferative Activity and Mechanism of Action of Anemone nemorosa. Int J Mol Sci 2019; 20:ijms20051217. [PMID: 30862032 PMCID: PMC6429291 DOI: 10.3390/ijms20051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/17/2023] Open
Abstract
Anemone nemorosa is part of the Ranunculaceae genus Anemone (order Ranunculales) which comprises more than 150 species. Various parts of the plant have been used for the treatment of numerous medical conditions such as headaches, tertian agues, rheumatic gout, leprosy, lethargy, eye inflammation as well as malignant and corroding ulcers. The Anemone plants have been found to contain various medicinal compounds with anti-cancer, immunomodulatory, anti-inflammatory, anti-oxidant and anti-microbial activities. To date there has been no reported evidence of its use in the treatment of cancer. However, due to the reported abundance of saponins which usually exert anti-cancer activity via cell cycle arrest and the induction of apoptosis, we investigated the mode of cell death induced by an aqueous A. nemorosa extract by using HeLa cervical cancer cells. Cisplatin was used as a positive control. With a 50% inhibitory concentration (IC50) of 20.33 ± 2.480 µg/mL, treatment with A. nemorosa yielded a delay in the early mitosis phase of the cell cycle. Apoptosis was confirmed through fluorescent staining with annexin V-FITC. Apoptosis was more evident with A. nemorosa treatment compared to the positive control after 24 and 48 h. Tetramethylrhodamine ethyl ester staining showed a decrease in mitochondrial membrane potential at 24 and 48 h. The results obtained imply that A. nemorosa may have potential anti-proliferative properties.
Collapse
Affiliation(s)
- Bresler Swanepoel
- Department of Biochemistry and Microbiology, PO Box 77000, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Luanne Venables
- Department of Biochemistry and Microbiology, PO Box 77000, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania.
| | - George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania.
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, PO Box 77000, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| |
Collapse
|
26
|
Ciardo D, Goldar A, Marheineke K. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway. Genes (Basel) 2019; 10:E94. [PMID: 30700024 PMCID: PMC6410103 DOI: 10.3390/genes10020094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
DNA replication in eukaryotes is achieved by the activation of multiple replication origins which needs to be precisely coordinated in space and time. This spatio-temporal replication program is regulated by many factors to maintain genome stability, which is frequently threatened through stresses of exogenous or endogenous origin. Intra-S phase checkpoints monitor the integrity of DNA synthesis and are activated when replication forks are stalled. Their activation leads to the stabilization of forks, to the delay of the replication program by the inhibition of late firing origins, and the delay of G2/M phase entry. In some cell cycles during early development these mechanisms are less efficient in order to allow rapid cell divisions. In this article, we will review our current knowledge of how the intra-S phase checkpoint regulates the replication program in budding yeast and metazoan models, including early embryos with rapid S phases. We sum up current models on how the checkpoint can inhibit origin firing in some genomic regions, but allow dormant origin activation in other regions. Finally, we discuss how numerical and theoretical models can be used to connect the multiple different actors into a global process and to extract general rules.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | | | | |
Collapse
|
27
|
Signal transduction pathways and resistance to targeted therapies in glioma. Semin Cancer Biol 2019; 58:118-129. [PMID: 30685341 DOI: 10.1016/j.semcancer.2019.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Although surgical techniques and adjuvant therapies have undergone progressive development for decades, the therapeutic outcomes for treating glioblastoma (GBM) remain poor. The main reasons for the poor prognosis of gliomas are that limited tumor tissue that can be resected (to preserve brain functions) and that residual tumors are often resistant to irradiation and chemotherapy. Therefore, overcoming the resistance of residual tumors against adjuvant therapy is urgently needed for glioma treatment. Recent large cohort studies of genetic alterations in GBM demonstrated that both genetic information and intracellular molecular signaling are networked in gliomas and that such information may help clarify which molecules or signals serve essential roles in resistance against radiation or chemotherapy, highlighting them as potential novel therapeutic targets against refractory gliomas. In this review, we summarize the current understanding of molecular networks that govern glioma biology, mainly based on cohort studies or recent evidence, with a focus on how intracellular signaling molecules in gliomas associate with each other and regulate refractoriness against current therapy.
Collapse
|
28
|
Qi D, Hu L, Jiao T, Zhang T, Tong X, Ye X. Phosphatase Cdc25A Negatively Regulates the Antiviral Immune Response by Inhibiting TBK1 Activity. J Virol 2018; 92:e01118-18. [PMID: 30021902 PMCID: PMC6146813 DOI: 10.1128/jvi.01118-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 01/27/2023] Open
Abstract
The phosphatase Cdc25A plays an important role in cell cycle regulation by dephosphorylating its substrates, such as cyclin-dependent kinases. In this study, we demonstrate that Cdc25A negatively regulates RIG-I-mediated antiviral signaling. We found that ectopic expression of Cdc25A in 293T cells inhibits the activation of beta interferon (IFN-β) induced by Sendai virus and poly(I·C), while knockdown of Cdc25A enhances the transcription of IFN-β stimulated by RNA virus infection. The inhibitory effect of Cdc25A on the antiviral immune response is mainly dependent on its phosphatase activity. Data from a luciferase assay indicated that Cdc25A can inhibit TBK1-mediated activation of IFN-β. Further analysis indicated that Cdc25A can interact with TBK1 and reduce the phosphorylation of TBK1 at S172, which in turn decreases the phosphorylation of its downstream substrate IRF3. Consistently, knockdown of Cdc25A upregulates the phosphorylation of both TBK1-S172 and IRF3 in Sendai virus-infected or TBK1-transfected 293T cells. In addition, we confirmed that Cdc25A can directly dephosphorylate TBK1-S172-p. These results demonstrate that Cdc25A inhibits the antiviral immune response by reducing the active form of TBK1. Using herpes simplex virus 1 (HSV-1) infection, an IFN-β reporter assay, and reverse transcription-quantitative PCR (RT-qPCR), we demonstrated that Cdc25A can also inhibit DNA virus-induced activation of IFN-β. Using a vesicular stomatitis virus (VSV) infection assay, we confirmed that Cdc25A can repress the RIG-I-like receptor (RLR)-mediated antiviral immune response and influence the antiviral status of cells. In conclusion, we demonstrate that Cdc25A negatively regulates the antiviral immune response by inhibiting TBK1 activity.IMPORTANCE The RLR-mediated antiviral immune response is critical for host defense against RNA virus infection. However, the detailed mechanism for balancing the RLR signaling pathway in host cells is not well understood. We found that the phosphatase Cdc25A negatively regulates the RNA virus-induced innate immune response. Our studies indicate that Cdc25A inhibits the RLR signaling pathway via its phosphatase activity. We demonstrated that Cdc25A reduces TBK1 activity and consequently restrains the activation of IFN-β transcription as well as the antiviral status of nearby cells. We showed that Cdc25A can also inhibit DNA virus-induced activation of IFN-β. Taken together, our findings uncover a novel function and mechanism for Cdc25A in regulating antiviral immune signaling. These findings reveal Cdc25A as an important negative regulator of antiviral immunity and demonstrate its role in maintaining host cell homeostasis following viral infection.
Collapse
Affiliation(s)
- Dandan Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tong Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Tinghong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Tong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
FBXL14 abolishes breast cancer progression by targeting CDCP1 for proteasomal degradation. Oncogene 2018; 37:5794-5809. [PMID: 29973690 DOI: 10.1038/s41388-018-0372-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 01/10/2023]
Abstract
Understanding the molecular mechanisms that underlie the aggressive behavior and relapse of breast cancer may help in the development of novel therapeutic interventions. CUB-domain-containing protein 1 (CDCP1), a transmembrane adaptor protein, is highly maintained and required in the context of cellular metastatic potential in triple-negative breast cancer (TNBC). For this reason, gene expression levels of CDCP1 have been considered as a prognostic marker in TNBC. However, not rarely, transcript levels of genes do not reflect always the levels of proteins, due to the post-transcriptional regulation. Here we show that miR-17/20a control the FBXL14 E3 ligase, establishing FBXL14 as an upstream regulator of the CDCP1 pathway. FBXL14 acts as an novel interaction partner of CDCP1, and facilitates its ubiquitination and proteasomal degradation with an enhanced capacity to suppress CDCP1 protein stability that eventually prevents CDCP1 target genes involved in breast cancer metastasis. Our findings first time uncovers the regulatory mechanism of CDCP-1 protein stabilization, more predictable criteria than gene expression levels for prognosis of breast cancer patients.
Collapse
|
30
|
Wang JN, Zhang ZR, Che Y, Yuan ZY, Lu ZL, Li Y, Li N, Wan J, Sun HD, Sun N, Puno PT, He J. Acetyl-macrocalin B, an ent-kaurane diterpenoid, initiates apoptosis through the ROS-p38-caspase 9-dependent pathway and induces G2/M phase arrest via the Chk1/2-Cdc25C-Cdc2/cyclin B axis in non-small cell lung cancer. Cancer Biol Ther 2018; 19:609-621. [PMID: 29565730 DOI: 10.1080/15384047.2018.1449613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, and novel effective drugs against NSCLC are urgently needed. Isodon species are rich in ent-kaurane diterpenoids that have been reported to have antitumor bioactivity. Acetyl-macrocalin B (A-macB) is a novel ent-kaurane diterpenoid isolated from Isodon silvatica, and its antitumor efficacy against NSCLC and the underlying mechanisms were scrutinized in depth. The viability of cells treated with A-macB was detected by CCK-8 and colony formation assays. Apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms were investigated by detecting ROS and performing western blotting and verification experiments with specific inhibitors. The in vivo effect of A-macB was explored in a nude mouse xenograft model. A-macB effectively inhibited H1299 and A549 cell viability, triggered apoptosis and delayed cells in the G2/M phase. A-macB induced cellular ROS production and then activated the p38 MAPK-mediated, caspase 9-dependent apoptotic pathway. Both the ROS scavenger NAC and the specific p38 inhibitor SB203580 inactivated the function of p38 induced by A-macB, thus preventing cells from apoptosis. A-macB activated the Chk1/2-Cdc25C-Cdc2/cyclin B1 axis to induce G2/M phase arrest. AZD7762 abrogated the function of Chk1/2, abolished the G2/M delay and enhanced the cytotoxicity of A-macB. Moreover, A-macB efficiently suppressed tumor growth in a mouse xenograft model without noticeable toxicity to normal tissues. Having both efficacy and relative safety, A-macB is a potential lead compound that is worthy of further exploration for development as an anticancer agent.
Collapse
Affiliation(s)
- Jing-Nan Wang
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Zhi-Rong Zhang
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Yun Che
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Zu-Yang Yuan
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Zhi-Liang Lu
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Yuan Li
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Ning Li
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Jun Wan
- b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , Yunnan , People's Republic of China
| | - Han-Dong Sun
- b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , Yunnan , People's Republic of China
| | - Nan Sun
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Pema-Tenzin Puno
- b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , Yunnan , People's Republic of China
| | - Jie He
- a Department of Thoracic Surgery , National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| |
Collapse
|
31
|
BRE/BRCC45 regulates CDC25A stability by recruiting USP7 in response to DNA damage. Nat Commun 2018; 9:537. [PMID: 29416040 PMCID: PMC5803202 DOI: 10.1038/s41467-018-03020-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
BRCA2 is essential for maintaining genomic integrity. BRCA2-deficient primary cells are either not viable or exhibit severe proliferation defects. Yet, BRCA2 deficiency contributes to tumorigenesis. It is believed that mutations in genes such as TRP53 allow BRCA2 heterozygous cells to overcome growth arrest when they undergo loss of heterozygosity. Here, we report the use of an insertional mutagenesis screen to identify a role for BRE (Brain and Reproductive organ Expressed, also known as BRCC45), known to be a part of the BRCA1-DNA damage sensing complex, in the survival of BRCA2-deficient mouse ES cells. Cell viability by BRE overexpression is mediated by deregulation of CDC25A phosphatase, a key cell cycle regulator and an oncogene. We show that BRE facilitates deubiquitylation of CDC25A by recruiting ubiquitin-specific-processing protease 7 (USP7) in the presence of DNA damage. Additionally, we uncovered the role of CDC25A in BRCA-mediated tumorigenesis, which can have implications in cancer treatment. Loss of BRCA2 leads to cancer formation. Here, the authors use an insertional mutagenesis approach and identify a multiprotein complex consisting of BRE, USP7 and CDC25A that can support the survival of BRCA2-deficient cells.
Collapse
|
32
|
Affiliation(s)
- R M Gallucci
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK, 73126, U.S.A
| |
Collapse
|
33
|
Xie X, Xu Z, Wang C, Fang C, Zhao J, Xu L, Qian X, Dai J, Sun F, Xu D, He W. Tip60 is associated with resistance to X-ray irradiation in prostate cancer. FEBS Open Bio 2017; 8:271-278. [PMID: 29435417 PMCID: PMC5794467 DOI: 10.1002/2211-5463.12371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023] Open
Abstract
Tip60, an oncogene, accelerates cell growth by regulating androgen receptor translocation into the nucleus in prostate cancer. However, the mechanism of Tip60 in the response of prostate cancer to radiotherapy, and radioresistance, has not been studied. Using human prostate cancer samples and two human prostate cancer cell lines (LNCaP and DU145), Tip60 protein expression and the acetylation of ataxia telangiectasia mutant (ATM) were analysed by western blotting and immunoprecipitation. Tip60 was downregulated with small interfering RNA. Cells were irradiated using X‐rays at 0.25 Gy·min−1. Cell viability was assessed by the MTT assay. The expression of Tip60 protein was increased in radioresistant prostate cancer tissues in comparison with radiosensitive tissues, which was also confirmed in both irradiated DU145 and LNCaP cells. Furthermore, the acetylation of ATM was also upregulated in a time‐dependent manner after irradiation of both DU145 and LNCaP cells. Additionally, depletion of Tip60 decreased the survival of LNCaP and DU145 cells by inducing apoptosis, reduced the acetylation of ATM and decreased the expression of phosphorylated ATM, Chk2 and cdc25A in both DU145 and LNCaP cells after X‐ray irradiation. The results of this study demonstrated that the expression of Tip60 may be related to the radioresistance of prostate cancer and could serve as a promising predictive factor for prostate cancer patients receiving radiotherapy.
Collapse
Affiliation(s)
- Xin Xie
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Zhaoping Xu
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Chenghe Wang
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Chen Fang
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Juping Zhao
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Le Xu
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Xiaoqiang Qian
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Jun Dai
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Fukang Sun
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Danfeng Xu
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Wei He
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| |
Collapse
|
34
|
Accumulation of cytoplasmic CDC25A in cutaneous squamous cell carcinoma leads to a dependency on CDC25A for cancer cell survival and tumor growth. Cancer Lett 2017; 410:41-49. [DOI: 10.1016/j.canlet.2017.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/29/2023]
|
35
|
Di Fusco D, Laudisi F, Dinallo V, Monteleone I, Di Grazia A, Marafini I, Troncone E, Colantoni A, Ortenzi A, Stolfi C, Picardo M, Monteleone G. Smad7 positively regulates keratinocyte proliferation in psoriasis. Br J Dermatol 2017; 177:1633-1643. [DOI: 10.1111/bjd.15703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- D. Di Fusco
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - F. Laudisi
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - V. Dinallo
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - I. Monteleone
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - A. Di Grazia
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - I. Marafini
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - E. Troncone
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - A. Colantoni
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - A. Ortenzi
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - C. Stolfi
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - M. Picardo
- Cutaneous Physiopathology Laboratory and Metabolomic Center; San Gallicano Dermatological Institute; Rome Italy
| | - G. Monteleone
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| |
Collapse
|
36
|
Dai CH, Wang Y, Chen P, Jiang Q, Lan T, Li MY, Su JY, Wu Y, Li J. Suppression of the FA pathway combined with CHK1 inhibitor hypersensitize lung cancer cells to gemcitabine. Sci Rep 2017; 7:15031. [PMID: 29118324 PMCID: PMC5678185 DOI: 10.1038/s41598-017-15172-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/23/2017] [Indexed: 01/15/2023] Open
Abstract
The combination of platinum and gemcitabine is one of the standard regimens in the treatment of advanced lung squamous carcinoma (LSC). Resistance to gemcitabine is main barrier to the successful treatment of LSC. In this study, we showed that suppression of the Fanconi anemia (FA) pathway increased the sensitivity of two LSC cell lines SK-MES-1 and KLN205 to gemcitabine. Moreover, we found that the CHK1 pathway and the FA pathway are functionally compensatory in the repair of DNA damage in the LSC cell lines. Inactivation of one of the two pathways led to DNA damage, triggering compensatory activation of other pathway. Furthermore, we demonstrated that FANCD2 depletion combined with CHK1 inhibitor MK-8776 significantly potentiated the cytotoxicity of gemcitabine to the two LSC cell lines, compared to individual FANCD2 depletion or MK-8776 treatment. The enhanced effect of gemcitabine-chemosensitization was accompanied by loss of DNA repair function and accumulation of DNA single strand breaks and double strand breaks, in parallel with obvious increase of caspase-3 dependent apoptosis. Our results indicate that the enhancement effect of FANCD2 depletion combined with CHK1 inhibitor in sensitizing the LCS cells to gemcitabine supports the FA pathway and CHK1 as two therapeutic targets for improvement of anti-tumor regimens in treatment of LSC.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Qian Jiang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ting Lan
- Institute of Medical Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Yu Li
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Jin-Yu Su
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Institute of Medical Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian Li
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
37
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
38
|
Goto Y, Koyasu S, Kobayashi M, Harada H. The emerging roles of the ubiquitination/deubiquitination system in tumor radioresistance regarding DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties: Insight into the development of novel radiosensitizing strategies. Mutat Res 2017; 803-805:76-81. [PMID: 28778421 DOI: 10.1016/j.mrfmmm.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Radiation therapy is one of the first-line treatments for many cancers, with no less than half of cancer patients receiving it in the US. Despite the development of innovative and high-precision radiation therapy strategies, many patients still experience local tumor recurrence after the treatment, at least in part, due to the existence of radioresistant cells in malignant tumor tissues. Among the various biological processes known to induce radioresistance, a post-translational protein modification, ubiquitination, has received marked attention in recent years. Ubiquitination, in which highly conserved ubiquitin polypeptides are covalently attached to their target proteins, has long been recognized as a system to tag unnecessary proteins for 26S proteasome-dependent proteolysis. However, accumulating lines of evidence recently revealed that it acts as a signal molecule in diverse biological processes as well, and its functional disorder was found to cause not only tumor development and various diseases but also tumor radioresistance. The present review summarizes the latest knowledge about how the cancer-related disorder of the ubiquitination systems induces the radioresistance of cancer cells by influencing intrinsic pathways, each of which potentially affects the radioresistance/radiosensitivity of cells, such as DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties. In addition, this review aims to provide insights into how we can exploit the disorders in order to develop novel radiosensitizing strategies.
Collapse
Affiliation(s)
- Yoko Goto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Applied Chemistry, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
39
|
Abstract
Ciclopirox olamine (CPX), an off-patent fungicide, has recently been identified as a novel anticancer agent. However, the molecular mechanism underlying its anticancer action remains to be elucidated. Here we show that CPX inhibits cell proliferation in part by downregulating the protein level of Cdc25A in tumor cells. Our studies revealed that CPX did not significantly reduce Cdc25A mRNA level or Cdc25A protein synthesis, but remarkably promoted Cdc25A protein degradation. This resulted in inhibition of G1-cyclin dependent kinases (CDKs), as evidenced by increased inhibitory phosphorylation of G1-CDKs. Since Cdc25A degradation is tightly related to its phosphorylation status, we further examined whether CPX alters Cdc25A phosphorylation. The results showed that CPX treatment increased the phosphorylation of Cdc25A (S76 and S82), but only Cdc25A-S82A mutant was resistant to CPX-induced degradation. Furthermore, ectopic expression of Cdc25A-S82A partially conferred resistance to CPX inhibition of cell proliferation. Therefore, our findings indicate that CPX inhibits cell proliferation at least in part by promoting Cdc25A degradation.
Collapse
|
40
|
Pal HC, Katiyar SK. Cryptolepine, a Plant Alkaloid, Inhibits the Growth of Non-Melanoma Skin Cancer Cells through Inhibition of Topoisomerase and Induction of DNA Damage. Molecules 2016; 21:E1758. [PMID: 28009843 PMCID: PMC6273109 DOI: 10.3390/molecules21121758] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 01/03/2023] Open
Abstract
Topoisomerases have been shown to have roles in cancer progression. Here, we have examined the effect of cryptolepine, a plant alkaloid, on the growth of human non-melanoma skin cancer cells (NMSCC) and underlying mechanism of action. For this purpose SCC-13 and A431 cell lines were used as an in vitro model. Our study reveals that SCC-13 and A431 cells express higher levels as well as activity of topoisomerase (Topo I and Topo II) compared with normal human epidermal keratinocytes. Treatment of NMSCC with cryptolepine (2.5, 5.0 and 7.5 µM) for 24 h resulted in marked decrease in topoisomerase activity, which was associated with substantial DNA damage as detected by the comet assay. Cryptolepine induced DNA damage resulted in: (i) an increase in the phosphorylation of ATM/ATR, BRCA1, Chk1/Chk2 and γH2AX; (ii) activation of p53 signaling cascade, including enhanced protein expressions of p16 and p21; (iii) downregulation of cyclin-dependent kinases, cyclin D1, cyclin A, cyclin E and proteins involved in cell division (e.g., Cdc25a and Cdc25b) leading to cell cycle arrest at S-phase; and (iv) mitochondrial membrane potential was disrupted and cytochrome c released. These changes in NMSCC by cryptolepine resulted in significant reduction in cell viability, colony formation and increase in apoptotic cell death.
Collapse
Affiliation(s)
- Harish C Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
41
|
Kollarovic G, Studencka M, Ivanova L, Lauenstein C, Heinze K, Lapytsko A, Talemi SR, Figueiredo AS, Schaber J. To senesce or not to senesce: how primary human fibroblasts decide their cell fate after DNA damage. Aging (Albany NY) 2016; 8:158-77. [PMID: 26830321 PMCID: PMC4761720 DOI: 10.18632/aging.100883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive DNA damage can induce an irreversible cell cycle arrest, called senescence, which is generally perceived as an important tumour-suppressor mechanism. However, it is unclear how cells decide whether to senesce or not after DNA damage. By combining experimental data with a parameterized mathematical model we elucidate this cell fate decision at the G1-S transition. Our model provides a quantitative and conceptually new understanding of how human fibroblasts decide whether DNA damage is beyond repair and senesce. Model and data imply that the G1-S transition is regulated by a bistable hysteresis switch with respect to Cdk2 activity, which in turn is controlled by the Cdk2/p21 ratio rather than cyclin abundance. We experimentally confirm the resulting predictions that to induce senescence i) in healthy cells both high initial and elevated background DNA damage are necessary and sufficient, and ii) in already damaged cells much lower additional DNA damage is sufficient. Our study provides a mechanistic explanation of a) how noise in protein abundances allows cells to overcome the G1-S arrest even with substantial DNA damage, potentially leading to neoplasia, and b) how accumulating DNA damage with age increasingly sensitizes cells for senescence.
Collapse
Affiliation(s)
- Gabriel Kollarovic
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maja Studencka
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Lyubomira Ivanova
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Claudia Lauenstein
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Kristina Heinze
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anastasiya Lapytsko
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Soheil Rastgou Talemi
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Sofia Figueiredo
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jörg Schaber
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
42
|
Lee E, Decker AM, Cackowski FC, Kana LA, Yumoto K, Jung Y, Wang J, Buttitta L, Morgan TM, Taichman RS. Growth Arrest-Specific 6 (GAS6) Promotes Prostate Cancer Survival by G 1 Arrest/S Phase Delay and Inhibition of Apoptosis During Chemotherapy in Bone Marrow. J Cell Biochem 2016; 117:2815-2824. [PMID: 27153245 PMCID: PMC5223280 DOI: 10.1002/jcb.25582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) is known to develop resistance to chemotherapy. Growth arrest-specific 6 (GAS6), plays a role in tumor progression by regulating growth in many cancers. Here, we explored how GAS6 regulates the cell cycle and apoptosis of PCa cells in response to chemotherapy. We found that GAS6 is sufficient to significantly increase the fraction of cells in G1 and the duration of phase in PCa cells. Importantly, the effect of GAS6 on G1 is potentiated during docetaxel chemotherapy. GAS6 altered the levels of several key cell cycle regulators, including the downregulation of Cyclin B1 (G2 /M phase), CDC25A, Cyclin E1, and CDK2 (S phase entry), while the upregulation of cell cycle inhibitors p27 and p21, Cyclin D1, and CDK4. Importantly, these changes became further accentuated during docetaxel treatment in the presence of GAS6. Moreover, GAS6 alters the apoptotic response of PCa cells during docetaxel chemotherapy. Docetaxel induced PCa cell apoptosis is efficiently suppressed in PCa cell culture in the presence of GAS6 or GAS6 secreted from co-cultured osteoblasts. Similarly, the GAS6-expressing bone environment protects PCa cells from apoptosis within primary tumors in vivo studies. Docetaxel induced significant levels of Caspase-3 and PARP cleavage in PCa cells, while GAS6 protected PCa cells from docetaxel-induced apoptotic signaling. Together, these data suggest that GAS6, expressed by osteoblasts in the bone marrow, plays a significant role in the regulation of PCa cell survival during chemotherapy, which will have important implications for targeting metastatic disease. J. Cell. Biochem. 117: 2815-2824, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eunsohl Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, 48109, Michigan
| | - Lulia A Kana
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan
| | - Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan
| | - Jingcheng Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109, Michigan
| | - Todd M Morgan
- Department of Urology, University of Michigan School of Medicine, Ann Arbor, 48109, Michigan
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109, Michigan.
| |
Collapse
|
43
|
Affiliation(s)
- Alan S.L. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Gigi C.G. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| |
Collapse
|
44
|
Lv M, Li Y, Tian X, Dai S, Sun J, Jin G, Jiang S. Lentivirus-mediated knockdown of NLK inhibits small-cell lung cancer growth and metastasis. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3737-3746. [PMID: 27895463 PMCID: PMC5117896 DOI: 10.2147/dddt.s87435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine kinase, has been recognized as a critical regulator of various cancers. In this study, we investigated the role of NLK in human small-cell lung cancer (SCLC), which is the most aggressive form of lung cancer. NLK expression was evaluated by quantitative real-time polymerase chain reaction in 20 paired fresh SCLC tissue samples and found to be noticeably elevated in tumor tissues. Lentivirus-mediated RNAi efficiently suppressed NLK expression in NCI-H446 cells, resulting in a significant reduction in cell viability and proliferation in vitro. Moreover, knockdown of NLK led to cell cycle arrest at the S-phase via suppression of Cyclin A, CDK2, and CDC25A, which could contribute to cell growth inhibition. Furthermore, knockdown of NLK decreased the migration of NCI-H446 cells and downregulated matrix metalloproteinase 9. Treatment with NLK short hairpin RNA significantly reduced SCLC tumor growth in vivo. In conclusion, this study suggests that NLK plays an important role in the growth and metastasis of SCLC and may serve as a potential therapeutic target for the treatment of SCLC.
Collapse
Affiliation(s)
| | | | - Xin Tian
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University
| | - Shundong Dai
- Department of Pathology, The First Affiliated Hospital, College of Basic Medical Sciences of China Medical University; Department of Pathology, Institute of Pathology and Pathophysiology
| | - Jing Sun
- Department of Immunology and Biotherapy, Liaoning Cancer Hospital and Institute
| | | | - Shenyi Jiang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
45
|
Devost D, Audet N, Zhou C, Kobayashi H, Bonin H, Lukashova V, Le Gouill C, Bouvier M, Hébert TE. Cellular and subcellular context determine outputs from signaling biosensors. Methods Cell Biol 2016; 132:319-37. [DOI: 10.1016/bs.mcb.2015.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
OLARU OCTAVIANTUDOREL, VENABLES LUANNE, VAN DE VENTER MARYNA, NITULESCU GEORGEMIHAI, MARGINA DENISA, SPANDIDOS DEMETRIOSA, TSATSAKIS ARISTIDISM. Anticancer potential of selected Fallopia Adans species. Oncol Lett 2015; 10:1323-1332. [PMID: 26622671 PMCID: PMC4533735 DOI: 10.3892/ol.2015.3453] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/02/2015] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to determine the anticancer potential of three species belonging to the Fallopia genus (Polygonaceae): Fallopia convolvulus (F. convolvulus, Fallopia dumetorum (F. dumetorum) and Fallopia aubertii (F. aubertii). For this purpose, crude extracts were obtained and characterized for their phenolic and flavonoid total content and examined for their anticancer activity on three tumor cell lines: breast cancer (MCF7), colon carcinoma (Caco-2) and cervical cancer (HeLa) cells. The cytotoxic potential of the three species was assessed by MTT assay, cell cycle analysis and by the evaluation of mitochondrial membrane potential (MMP). The acute toxicity of the extracts was evaluated using one in vitro cell model (Vero cells, an African Green monkey kidney cell line) and two invertebrate in vivo models (Daphnia magna and Artemia salina). The highest total phenolic and flavonoid content was found in the F. aubertii flower extracts. The cytotoxic effects of the extracts from F. aubertii and F. convolvulus on all three cell lines were examined at concentrations ranging from 3 to 300 µg/ml. G2/M cell cycle arrest was induced by all the extracts, and a significant increase in the subG1 cell population was observed. The hydroethanolic extract from the flowers of F. aubertii induced cell apoptosis more rapidly than the other extracts. The MMP indicates the involvement of the mitochondria in the induction of apoptosis. A positive correlation between the total phenolic content of the extracts and the IC50 values against the HeLa cells was also noted. None of the extracts exhibited significantly toxic effects. Considering the antitumor potential of F. aubertii and F. convolvulus, these two species may represent a good source of plant extracts with anticancer properties.
Collapse
Affiliation(s)
- OCTAVIAN TUDOREL OLARU
- Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - LUANNE VENABLES
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa
| | - MARYNA VAN DE VENTER
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa
| | - GEORGE MIHAI NITULESCU
- Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - DENISA MARGINA
- Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - DEMETRIOS A. SPANDIDOS
- Department of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - ARISTIDIS M. TSATSAKIS
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
47
|
Serine–Threonine Kinase 38 regulates CDC25A stability and the DNA damage-induced G2/M checkpoint. Cell Signal 2015; 27:1569-75. [DOI: 10.1016/j.cellsig.2015.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/10/2015] [Accepted: 04/26/2015] [Indexed: 12/19/2022]
|
48
|
Pozo-Molina G, Ponciano-Gómez A, Rivera-González GC, Hernández-Zavala A, Garrido E. Arsenic-induced S phase cell cycle lengthening is associated with ROS generation, p53 signaling and CDC25A expression. Chem Biol Interact 2015; 238:170-9. [PMID: 26148435 DOI: 10.1016/j.cbi.2015.06.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/24/2022]
Abstract
Cellular response to arsenic is strongly dependent on p53 functional status. Primarily arresting the cell cycle in G1 or G2/M phases, arsenic treatment also induces an increase in the S-phase time in wild-type p53 cells. In contrast, cells with a non-functional p53 display only a subtle increase in the S phase, indicating arsenic differentially affects the cell cycle depending on p53 status. Importantly, it has been reported that arsenic induces reactive oxygen species (ROS), a process counteracted by p53. To evaluate the participation of p53 in the lengthening of the S phase and the connection between the transient cell cycle arrest and oxidative stress, we evaluated the cell response to arsenic in MCF-7 and H1299 cells, and analyzed p53's role as a transcription factor in regulating genes involved in ROS reduction and S phase transition. Herein, we discovered that arsenic induced an increase in the population of S phase cells that was dependent on the presence and transcriptional activity of p53. Furthermore, for the first time, we demonstrate that arsenic activates p53-dependent transcription of ROS detoxification genes, such as SESN1, and by an indirect mechanism involving ATF3, genes that could be responsible for the S phase cell cycle arrest, such as CDC25A.
Collapse
Affiliation(s)
- Glustein Pozo-Molina
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico; Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Edo. de México, Mexico.
| | | | | | | | - Efraín Garrido
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico.
| |
Collapse
|
49
|
Neumann J, Yang Y, Köhler R, Giaisi M, Witzens-Harig M, Liu D, Krammer PH, Lin W, Li-Weber M. Mangrove dolabrane-type of diterpenes tagalsins suppresses tumor growth via ROS-mediated apoptosis and ATM/ATR-Chk1/Chk2-regulated cell cycle arrest. Int J Cancer 2015; 137:2739-48. [PMID: 26061604 PMCID: PMC4755134 DOI: 10.1002/ijc.29629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/20/2015] [Indexed: 01/18/2023]
Abstract
Natural compounds are an important source for drug development. With an increasing cancer rate worldwide there is an urgent quest for new anti‐cancer drugs. In this study, we show that a group of dolabrane‐type of diterpenes, collectively named tagalsins, isolated from the Chinese mangrove genus Ceriops has potent cytotoxicity on a panel of hematologic cancer cells. Investigation of the molecular mechanisms by which tagalsins kill malignant cells revealed that it induces a ROS‐mediated damage of DNA. This event leads to apoptosis induction and blockage of cell cycle progression at S‐G2 phase via activation of the ATM/ATR—Chk1/Chk2 check point pathway. We further show that tagalsins suppress growth of human T‐cell leukemia xenografts in vivo. Tagalsins show only minor toxicity on healthy cells and are well tolerated by mice. Our study shows a therapeutic potential of tagalsins for the treatment of hematologic malignancies and a new source of anticancer drugs. What's new? Mangroves of genus Ceriops, widespread and highly utilized in China, are of growing interest in anticancer drug development due to their production of potentially cytotoxic diterpenoids and triterpenoids. Here, a group dolabrane‐type diterpenes known as tagalsins isolated from the species C. tagal are shown to possess potent killing effects on cancer cells of hematologic origin. Cell death was associated with the production of reactive oxygen species and DNA damage. In vivo, tagalsins significantly delayed the development of human T‐cell leukemia in a murine xenograft model.
Collapse
Affiliation(s)
- Jennifer Neumann
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | - Rebecca Köhler
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Giaisi
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Witzens-Harig
- Medizinische Klinik V Hämatologie, Onkologie und Rheumatologie, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | - Peter H Krammer
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | - Min Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene 2015; 35:1025-38. [DOI: 10.1038/onc.2015.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/15/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
|