1
|
van der Merwe NC, Buccimazza I, Rossouw B, Araujo M, Ntaita KS, Schoeman M, Vorster K, Napo K, Kotze MJ, Oosthuizen J. Clinical relevance of double heterozygosity revealed by next-generation sequencing of homologous recombination repair pathway genes in South African breast cancer patients. Breast Cancer Res Treat 2024; 207:331-342. [PMID: 38814507 PMCID: PMC11297091 DOI: 10.1007/s10549-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Genetically predisposed breast cancer (BC) patients represent a minor but clinically meaningful subgroup of the disease, with 25% of all cases associated with actionable variants in BRCA1/2. Diagnostic implementation of next-generation sequencing (NGS) resulted in the rare identification of BC patients with double heterozygosity for deleterious variants in genes partaking in homologous recombination repair of DNA. As clinical heterogeneity poses challenges for genetic counseling, this study focused on the occurrence and clinical relevance of double heterozygous BC in South Africa. METHODS DNA samples were diagnostically screened using the NGS-based Oncomine™ BRCA Expanded Research Assay. Data was generated on the Ion GeneStudio S5 system and analyzed using the Torrent Suite™ and reporter software. The clinical significance of the variants detected was determined using international variant classification guidelines and treatment implications. RESULTS Six of 1600 BC patients (0.375%) tested were identified as being bi-allelic for two germline likely pathogenic or pathogenic variants. Most of the variants were present in BRCA1/2, including two founder-related small deletions in three cases, with family-specific variants detected in ATM, BARD1, FANCD2, NBN, and TP53. The scientific interpretation and clinical relevance were based on the clinical and tumor characteristics of each case. CONCLUSION This study increased current knowledge of the risk implications associated with the co-occurrence of more than one pathogenic variant in the BC susceptibility genes, confirmed to be a rare condition in South Africa. Further molecular pathology-based studies are warranted to determine whether clinical decision-making is affected by the detection of a second pathogenic variant in BRCA1/2 and TP53 carriers.
Collapse
Affiliation(s)
- Nerina C van der Merwe
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa.
| | - Ines Buccimazza
- Genetics Unit, Inkosi Albert Luthuli General Hospital, Durban, South Africa
- Department of Surgery, Nelson R Mandela School of Medicine, Inkosi Albert Luthuli General Hospital, Durban, South Africa
| | - Bianca Rossouw
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Araujo
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kholiwe S Ntaita
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karin Vorster
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Kgabo Napo
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| |
Collapse
|
2
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, Hoeve NT, van Diest PJ, Raman V, Bishop AJ, Loeb DM. RNA helicase DDX3 regulates RAD51 localization and DNA damage repair in Ewing sarcoma. iScience 2024; 27:108925. [PMID: 38323009 PMCID: PMC10844834 DOI: 10.1016/j.isci.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J.R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, ter Hoeve N, van Diest PJ, Raman V, Bishop AJR, Loeb DM. RNA Helicase DDX3 Regulates RAD51 Localization and DNA Damage Repair in Ewing Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544474. [PMID: 37333164 PMCID: PMC10274875 DOI: 10.1101/2023.06.10.544474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Department of Radiology, Johns Hopkins University, Baltimore, MD
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD
| | - Alexander J. R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
4
|
Preferential Involvement of BRCA1/BARD1, Not Tip60/Fe65, in DNA Double-Strand Break Repair in Presenilin-1 P117L Alzheimer Models. Neural Plast 2022; 2022:3172861. [PMID: 35237315 PMCID: PMC8885292 DOI: 10.1155/2022/3172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, we showed that DNA double-strand breaks (DSBs) are increased by the Aβ42-amyloid peptide and decreased by all-trans retinoic acid (RA) in SH-SY5Y cells and C57BL/6J mice. The present work was aimed at investigating DSBs in cells and murine models of Alzheimer's disease carrying the preseniline-1 (PS1) P117L mutation. We observed that DSBs could hardly decrease following RA treatment in the mutated cells compared to the wild-type cells. The activation of the amyloidogenic pathway is proposed in the former case as Aβ42- and RA-dependent DSBs changes were reproduced by an α-secretase and a γ-secretase inhibitions, respectively. Unexpectedly, the PS1 P117L cells showed lower DSB levels than the controls. As the DSB repair proteins Tip60 and Fe65 were less expressed in the mutated cell nuclei, they do not appear to contribute to this difference. On the contrary, full-length BRCA1 and BARD1 proteins were significantly increased in the chromatin compartment of the mutated cells, suggesting that they decrease DSBs in the pathological situation. These Western blot data were corroborated by in situ proximity ligation assays: the numbers of BRCA1-BARD1, not of Fe65-Tip60 heterodimers, were increased only in the mutated cell nuclei. RA also enhanced the expression of BARD1 and of the 90 kDa BRCA1 isoform. The increased BRCA1 expression in the mutated cells can be related to the enhanced difficulty to inhibit this pathway by BRCA1 siRNA in these cells. Overall, our study suggests that at earlier stages of the disease, similarly to PS1 P117L cells, a compensatory mechanism exists that decreases DSB levels via an activation of the BRCA1/BARD1 pathway. This supports the importance of this pathway in neuroprotection against Alzheimer's disease.
Collapse
|
5
|
Zhu Q, Huang J, Huang H, Li H, Yi P, Kloeber JA, Yuan J, Chen Y, Deng M, Luo K, Gao M, Guo G, Tu X, Yin P, Zhang Y, Su J, Chen J, Lou Z. RNF19A-mediated ubiquitination of BARD1 prevents BRCA1/BARD1-dependent homologous recombination. Nat Commun 2021; 12:6653. [PMID: 34789768 PMCID: PMC8599684 DOI: 10.1038/s41467-021-27048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
BRCA1-BARD1 heterodimers act in multiple steps during homologous recombination (HR) to ensure the prompt repair of DNA double strand breaks. Dysfunction of the BRCA1 pathway enhances the therapeutic efficiency of poly-(ADP-ribose) polymerase inhibitors (PARPi) in cancers, but the molecular mechanisms underlying this sensitization to PARPi are not fully understood. Here, we show that cancer cell sensitivity to PARPi is promoted by the ring between ring fingers (RBR) protein RNF19A. We demonstrate that RNF19A suppresses HR by ubiquitinating BARD1, which leads to dissociation of BRCA1-BARD1 complex and exposure of a nuclear export sequence in BARD1 that is otherwise masked by BRCA1, resulting in the export of BARD1 to the cytoplasm. We provide evidence that high RNF19A expression in breast cancer compromises HR and increases sensitivity to PARPi. We propose that RNF19A modulates the cancer cell response to PARPi by negatively regulating the BRCA1-BARD1 complex and inhibiting HR-mediated DNA repair.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Huan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Peiqiang Yi
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of medicine, Shanghai, 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of medicine, Shanghai, 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Su
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Raimundo L, Calheiros J, Saraiva L. Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers (Basel) 2021; 13:cancers13143438. [PMID: 34298653 PMCID: PMC8303227 DOI: 10.3390/cancers13143438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chemical inhibition of central DNA damage repair (DDR) proteins has become a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated proteins constitute important targets for developing DNA repair inhibiting drugs. This review provides relevant insights on DDR biology and pharmacology, aiming to boost the development of more effective DDR targeted therapies. Abstract Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.
Collapse
|
8
|
Li W, Gu X, Liu C, Shi Y, Wang P, Zhang N, Wu R, Leng L, Xie B, Song C, Li M. A synergetic effect of BARD1 mutations on tumorigenesis. Nat Commun 2021; 12:1243. [PMID: 33623049 PMCID: PMC7902612 DOI: 10.1038/s41467-021-21519-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
To date, a large number of mutations have been screened from breast and ovarian cancer patients. However, most of them are classified into benign or unidentified alterations due to their undetectable phenotypes. Whether and how they could cause tumors remains unknown, and this significantly limits diagnosis and therapy. Here, in a study of a family with hereditary breast and ovarian cancer, we find that two BARD1 mutations, P24S and R378S, simultaneously exist in cis in surviving cancer patients. Neither of the single mutations causes a functional change, but together they synergetically impair the DNA damage response and lead to tumors in vitro and in vivo. Thus, our report not only demonstrates that BARD1 defects account for tumorigenesis but also uncovers the potential risk of synergetic effects between the large number of cis mutations in individual genes in the human genome.
Collapse
Affiliation(s)
- Wenjing Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Xiaoyang Gu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Chunhong Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Pan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Na Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rui Wu
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China.
| |
Collapse
|
9
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
10
|
Pilyugin M, André PA, Ratajska M, Kuzniacka A, Limon J, Tournier BB, Colas J, Laurent G, Irminger-Finger I. Antagonizing functions of BARD1 and its alternatively spliced variant BARD1δ in telomere stability. Oncotarget 2018; 8:9339-9353. [PMID: 28030839 PMCID: PMC5354735 DOI: 10.18632/oncotarget.14068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Previous reports have shown that expression of BARD1δ, a deletion-bearing isoform of BARD1, correlates with tumor aggressiveness and progression. We show that expression of BARD1δ induces cell cycle arrest in vitro and in vivo in non-malignant cells. We investigated the mechanism that leads to proliferation arrest and found that BARD1δ overexpression induced mitotic arrest with chromosome and telomere aberrations in cell cultures, in transgenic mice, and in cells from human breast and ovarian cancer patients with BARD1 mutations. BARD1δ binds more efficiently than BARD1 to telomere binding proteins and causes their depletion from telomeres, leading to telomere and chromosomal instability. While this induces cell cycle arrest, cancer cells lacking G2/M checkpoint controls might continue to proliferate despite the BARD1δ-induced chromosomal instability. These features of BARD1δ may make it a genome permutator and a driver of continuous uncontrolled proliferation of cancer cells.
Collapse
Affiliation(s)
- Maxim Pilyugin
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Pierre-Alain André
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Poland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Alina Kuzniacka
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Benjamin B Tournier
- Department of Neuropsychiatry, Vulnerability Biomarkers Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Julien Colas
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Geoff Laurent
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Irmgard Irminger-Finger
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia.,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Cimmino F, Formicola D, Capasso M. Dualistic Role of BARD1 in Cancer. Genes (Basel) 2017; 8:genes8120375. [PMID: 29292755 PMCID: PMC5748693 DOI: 10.3390/genes8120375] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
BRCA1 Associated RING Domain 1 (BARD1) encodes a protein which interacts with the N-terminal region of BRCA1 in vivo and in vitro. The full length (FL) BARD1 mRNA includes 11 exons and encodes a protein comprising of six domains (N-terminal RING-finger domain, three Ankyrin repeats and two C-terminal BRCT domains) with different functions. Emerging data suggest that BARD1 can have both tumor-suppressor gene and oncogene functions in tumor initiation and progression. Indeed, whereas FL BARD1 protein acts as tumor-suppressor with and without BRCA1 interactions, aberrant splice variants of BARD1 have been detected in various cancers and have been shown to play an oncogenic role. Further evidence for a dualistic role came with the identification of BARD1 as a neuroblastoma predisposition gene in our genome wide association study which has demonstrated that single nucleotide polymorphisms in BARD1 can correlate with risk or can protect against cancer based on their association with the expression of FL and splice variants of BARD1. This review is an overview of how BARD1 functions in tumorigenesis with opposite effects in various types of cancer.
Collapse
Affiliation(s)
- Flora Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy.
| | - Daniela Formicola
- IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy.
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy.
| |
Collapse
|
12
|
Pilyugin M, Descloux P, André PA, Laszlo V, Dome B, Hegedus B, Sardy S, Janes S, Bianco A, Laurent GJ, Irminger-Finger I. BARD1 serum autoantibodies for the detection of lung cancer. PLoS One 2017; 12:e0182356. [PMID: 28786985 PMCID: PMC5546601 DOI: 10.1371/journal.pone.0182356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Currently the screening for lung cancer for risk groups is based on Computed Tomography (CT) or low dose CT (LDCT); however, the lung cancer death rate has not decreased significantly with people undergoing LDCT. We aimed to develop a simple reliable blood test for early detection of all types of lung cancer based on the immunogenicity of aberrant forms of BARD1 that are specifically upregulated in lung cancer. METHODS ELISA assays were performed with a panel of BARD1 epitopes to detect serum levels of antibodies against BARD1 epitopes. We tested 194 blood samples from healthy donors and lung cancer patients with a panel of 40 BARD1 antigens. Using fitted Lasso logistic regression we determined the optimal combination of BARD1 antigens to be used in ELISA for discriminating lung cancer from healthy controls. Random selection of samples for training sets or validations sets was applied to validate the accuracy of our test. RESULTS Fitted Lasso logistic regression models predict high accuracy of the BARD1 autoimmune antibody test with an AUC = 0.96. Validation in independent samples provided and AUC = 0.86 and identical AUCs were obtained for combined stages 1-3 and late stage 4 lung cancers. The BARD1 antibody test is highly specific for lung cancer and not breast or ovarian cancer. CONCLUSION The BARD1 lung cancer test shows higher sensitivity and specificity than previously published blood tests for lung cancer detection and/or diagnosis or CT scans, and it could detect all types and all stages of lung cancer. This BARD1 lung cancer test could therefore be further developed as i) screening test for early detection of lung cancers in high-risk groups, and ii) diagnostic aid in complementing CT scan.
Collapse
Affiliation(s)
- Maxim Pilyugin
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, Medical Genetics and Laboratories, Geneva University Hospitals, Geneva, Switzerland
- * E-mail:
| | | | - Pierre-Alain André
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, Medical Genetics and Laboratories, Geneva University Hospitals, Geneva, Switzerland
| | - Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Balazs Hegedus
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- Molecular Oncology Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hunagary
| | - Sylvain Sardy
- Departement of Mathematics, University of Geneva, Geneva, Switzerland
| | - Samuel Janes
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, United Kingdom
| | - Andrea Bianco
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università del Molise, Campobasso, Italy
| | - Geoffrey J. Laurent
- Institute for Respiratory Health, University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Australia
| | - Irmgard Irminger-Finger
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, Medical Genetics and Laboratories, Geneva University Hospitals, Geneva, Switzerland
- Institute for Respiratory Health, University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Australia
| |
Collapse
|
13
|
Gass J, Tatro M, Blackburn P, Hines S, Atwal PS. BARD1 nonsense variant c.1921C>T in a patient with recurrent breast cancer. Clin Case Rep 2017; 5:104-107. [PMID: 28174632 PMCID: PMC5290515 DOI: 10.1002/ccr3.793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/21/2016] [Accepted: 12/04/2016] [Indexed: 12/29/2022] Open
Abstract
One of the strongest risk factors predisposing patients to breast cancer is a positive family history. In our study, we describe a patient diagnosed with multiple breast cancer tumors. Genetic analysis revealed a pathogenic variant in BARD1, which is associated with an increased risk of developing certain types of cancer.
Collapse
Affiliation(s)
- Jennifer Gass
- Center for Individualized Medicine Mayo Clinic 4500 San Pablo Road South Jacksonville Florida 32224 USA
| | - Madeline Tatro
- Center for Individualized Medicine Mayo Clinic 4500 San Pablo Road South Jacksonville Florida 32224 USA
| | - Patrick Blackburn
- Center for Individualized Medicine Mayo Clinic 4500 San Pablo Road South Jacksonville Florida 32224 USA
| | - Stephanie Hines
- Department of Medicine Division of Diagnostic & Consultative Medicine Mayo Clinic 4500 San Pablo Road South Jacksonville Florida 32224 USA
| | - Paldeep S Atwal
- Center for Individualized Medicine Mayo Clinic 4500 San Pablo Road South Jacksonville Florida 32224 USA; Department of Clinical Genomics Mayo Clinic 4500 San Pablo Road South Jacksonville Florida 32224 USA
| |
Collapse
|
14
|
BARD1 splice variants display mislocalization in breast cancer cells and can alter the apoptotic response to cisplatin. Cancer Lett 2016; 381:149-55. [PMID: 27477900 DOI: 10.1016/j.canlet.2016.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
Abstract
We previously showed that BARD1 is a shuttling protein with pro-apoptotic activity in MCF-7 breast cancer cells. BARD1 is expressed as splice variant isoforms in breast cancer. Here we characterized YFP-tagged BARD1 splice variants (beta, omega, phi, ΔRIN, epsilon) for subcellular localization and apoptotic efficacy. We found that loss of nuclear localization (NLS) or export (NES) sequences influenced cellular distribution. The beta and omega variants (+NLS/-NES) shifted exclusively to the nucleus. In contrast, BARD1-epsilon (-NLS/+NES) was mostly cytoplasmic. Variants that lacked both NLS and NES were evenly distributed. Interestingly, the more nuclear isoforms (omega and beta) were least apoptotic in MCF-7 cells as measured by FACS. The cytoplasmic localization of BARD1 isoforms correlated with increased apoptosis. This relationship held in cells exposed to low dose (5 µM) of cisplatin. At 20 µM cisplatin, the main observation was a protective effect by the omega isoform. Similar analyses of HCC1937 cells revealed less pronounced changes but a significant protective influence by BARD1-epsilon. Thus BARD1 variants differ in localization and apoptotic ability, and their expression profile may aid prediction of drug efficacy in breast cancer.
Collapse
|
15
|
Ozden O, Bishehsari F, Bauer J, Park SH, Jana A, Baik SH, Sporn JC, Staudacher JJ, Yazici C, Krett N, Jung B. Expression of an Oncogenic BARD1 Splice Variant Impairs Homologous Recombination and Predicts Response to PARP-1 Inhibitor Therapy in Colon Cancer. Sci Rep 2016; 6:26273. [PMID: 27197561 PMCID: PMC4873788 DOI: 10.1038/srep26273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/26/2016] [Indexed: 01/30/2023] Open
Abstract
BRCA1-associated RING domain protein 1 (BARD1) stabilizes BRCA1 protein by forming a heterodimeric RING-RING complex, and impacts function of BRCA1, including homologous recombination (HR) repair. Although colon cancer cells usually express wild type BRCA1, presence of an oncogenic BARD1 splice variant (SV) in select cancers may render BRCA1 dysfunctional and allow cells to become sensitive to HR targeting therapies. We previously reported association of loss of full-length (FL) BARD1 with poor prognosis in colon cancer as well as expression of various BARD1 SVs with unknown function. Here we show that loss of BARD1 function through the expression of a BARD1 SV, BARD1β, results in a more malignant phenotype with decreased RAD51 foci formation, reduced BRCA1 E3 ubiquitin ligase activity, and decreased nuclear BRCA1 protein localization. BARD1β sensitizes colon cancer cells to poly ADP ribose polymerase 1 (PARP-1) inhibition even in a FL BRCA1 background. These results suggest that expression of BARD1β may serve as a future biomarker to assess suitability of colon cancers for HR targeting with PARP-1 inhibitors in treatment of advanced colon cancer.
Collapse
Affiliation(s)
- Ozkan Ozden
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, 60612, U.S.A
| | - Jessica Bauer
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Seong-Hoon Park
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Arundhati Jana
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Seung Hyun Baik
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Judith C Sporn
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Jonas J Staudacher
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Cemal Yazici
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Nancy Krett
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| |
Collapse
|
16
|
New concepts on BARD1: Regulator of BRCA pathways and beyond. Int J Biochem Cell Biol 2016; 72:1-17. [DOI: 10.1016/j.biocel.2015.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
|
17
|
André PA, Prêle CM, Vierkotten S, Carnesecchi S, Donati Y, Chambers RC, Pache JC, Crestani B, Barazzone-Argiroffo C, Königshoff M, Laurent GJ, Irminger-Finger I. BARD1 mediates TGF-β signaling in pulmonary fibrosis. Respir Res 2015; 16:118. [PMID: 26415510 PMCID: PMC4587901 DOI: 10.1186/s12931-015-0278-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a rapid progressive fibro-proliferative disorder with poor prognosis similar to lung cancer. The pathogenesis of IPF is uncertain, but loss of epithelial cells and fibroblast proliferation are thought to be central processes. Previous reports have shown that BARD1 expression is upregulated in response to hypoxia and associated with TGF-β signaling, both recognized factors driving lung fibrosis. Differentially spliced BARD1 isoforms, in particular BARD1β, are oncogenic drivers of proliferation in cancers of various origins. We therefore hypothesized that BARD1 and/or its isoforms might play a role in lung fibrosis. METHODS We investigated BARD1 expression as a function of TGF-β in cultured cells, in mice with experimentally induced lung fibrosis, and in lung biopsies from pulmonary fibrosis patients. RESULTS FL BARD1 and BARD1β were upregulated in response to TGF-β in epithelial cells and fibroblasts in vitro and in vivo. Protein and mRNA expression studies showed very low expression in healthy lung tissues, but upregulated expression of full length (FL) BARD1 and BARD1β in fibrotic tissues. CONCLUSION Our data suggest that FL BARD1 and BARD1β might be mediators of pleiotropic effects of TGF-β. In particular BARD1β might be a driver of proliferation and of pulmonary fibrosis pathogenesis and progression and represent a target for treatment.
Collapse
Affiliation(s)
- Pierre-Alain André
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland. .,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Cecilia M Prêle
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
| | - Sarah Vierkotten
- Comprehensive Pneumology Center Ludwig Maximilians University, University Hospital Grosshadern and Helmholtz Zentrum München, Munich, Germany.
| | - Stéphanie Carnesecchi
- Department of Pediatrics and Pathology/Immunology, University of Geneva, Geneva, Switzerland.
| | - Yves Donati
- Department of Pediatrics and Pathology/Immunology, University of Geneva, Geneva, Switzerland.
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London, UK.
| | - Jean-Claude Pache
- Department of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland.
| | - Bruno Crestani
- INSERM, Unité 1152, University of Paris Diderot and Hopital Bichat, Paris, France.
| | | | - Melanie Königshoff
- Comprehensive Pneumology Center Ludwig Maximilians University, University Hospital Grosshadern and Helmholtz Zentrum München, Munich, Germany.
| | - Geoffrey J Laurent
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
| | - Irmgard Irminger-Finger
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland. .,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland. .,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
| |
Collapse
|
18
|
Tembe V, Martino-Echarri E, Marzec KA, Mok MT, Brodie KM, Mills K, Lei Y, DeFazio A, Rizos H, Kettle E, Boadle R, Henderson BR. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function. Cell Signal 2015; 27:1763-71. [DOI: 10.1016/j.cellsig.2015.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022]
|
19
|
RATAJSKA MAGDALENA, MATUSIAK MAGDALENA, KUZNIACKA ALINA, WASAG BARTOSZ, BROZEK IZABELA, BIERNAT WOJCIECH, KOCZKOWSKA MAGDALENA, DEBNIAK JAROSLAW, SNIADECKI MARCIN, KOZLOWSKI PIOTR, KLONOWSKA KATARZYNA, PILYUGIN MAXIM, WYDRA DARIUSZ, LAURENT GEOFF, LIMON JANUSZ, IRMINGER-FINGER IRMGARD. Cancer predisposing BARD1 mutations affect exon skipping and are associated with overexpression of specific BARD1 isoforms. Oncol Rep 2015; 34:2609-17. [DOI: 10.3892/or.2015.4235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/02/2015] [Indexed: 11/05/2022] Open
|
20
|
Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene 2014; 34:1-14. [PMID: 24441040 DOI: 10.1038/onc.2013.570] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Abstract
Alternative splicing has critical roles in normal development and can promote growth and survival in cancer. Aberrant splicing, the production of noncanonical and cancer-specific mRNA transcripts, can lead to loss-of-function in tumor suppressors or activation of oncogenes and cancer pathways. Emerging data suggest that aberrant splicing products and loss of canonically spliced variants correlate with stage and progression in malignancy. Here, we review the splicing landscape of TP53, BARD1 and AR to illuminate roles for alternative splicing in cancer. We also examine the intersection between alternative splicing pathways and novel therapeutic approaches.
Collapse
Affiliation(s)
- J Chen
- 1] Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA [2] Department of Neurology, University of California, San Francisco, CA, USA
| | - W A Weiss
- 1] Department of Neurology, University of California, San Francisco, CA, USA [2] Department of Neurological Surgery and Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
21
|
HDAC inhibitors repress BARD1 isoform expression in acute myeloid leukemia cells via activation of miR-19a and/or b. PLoS One 2013; 8:e83018. [PMID: 24349422 PMCID: PMC3859623 DOI: 10.1371/journal.pone.0083018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/29/2013] [Indexed: 01/23/2023] Open
Abstract
Over the past years BARD1 (BRCA1-associated RING domain 1) has been considered as both a BRCA1 (BReast Cancer susceptibility gene 1, early onset) interactor and tumor suppressor gene mutated in breast and ovarian cancers. Despite its role as a stable heterodimer with BRCA1, increasing evidence indicates that BARD1 also has BRCA1-independent oncogenic functions. Here, we investigate BARD1 expression and function in human acute myeloid leukemias and its modulation by epigenetic mechanism(s) and microRNAs. We show that the HDACi (histone deacetylase inhibitor) Vorinostat reduces BARD1 mRNA levels by increasing miR-19a and miR-19b expression levels. Moreover, we identify a specific BARD1 isoform, which might act as tumor diagnostic and prognostic markers.
Collapse
|
22
|
The BARD1 Cys557Ser variant and risk of familial breast cancer in a South-American population. Mol Biol Rep 2012; 39:8091-8. [DOI: 10.1007/s11033-012-1656-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
23
|
Zhang YQ, Bianco A, Malkinson AM, Leoni VP, Frau G, De Rosa N, André PA, Versace R, Boulvain M, Laurent GJ, Atzori L, Irminger-Finger I. BARD1: an independent predictor of survival in non-small cell lung cancer. Int J Cancer 2011; 131:83-94. [PMID: 21815143 DOI: 10.1002/ijc.26346] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022]
Abstract
BRCA1 mRNA overexpression is correlated with poor survival in NSCLC. However, BRCA1 functions depend on the interaction with BARD1 for its stability, nuclear localization and ubiquitin ligase activity. Expression of alternatively spliced BARD1 isoforms that lack the BRCA1-interaction domain was found upregulated and correlated with poor prognosis in breast and ovarian cancer. These BARD1 isoforms are essential for proliferation of cancer cells in vitro. We investigated whether BARD1 isoforms are expressed in NSCLC. While in lung tissues from healthy controls BARD1 expression was undetectable on the mRNA level and protein level, we found two novel isoforms in addition to previously identified mRNAs expressed in all NSCLC samples tested. Furthermore, the pattern of BARD1 isoform expression was similar in tumor and morphologically normal peri-tumor tissues, and only one novel isoform π was specifically upregulated in tumors. Immunohistochemistry revealed that all 100 NSCLC cases tested expressed isoform-specific BARD1 epitopes, while BARD1 expression was undetectable in biopsies from healthy controls. Statistical analysis showed that the expression of epitopes PVC and WFS, present on isoform π, or epitope WFS alone, expressed on isoforms π, κ and β, were significantly correlated with decreased patient survival. These findings were corroborated in a mouse model of chemically induced lung cancer. Immunostaining of mouse tumors showed that BARD1 epitopes PVC and WFS were specifically upregulated in invasive, but not in confined lung tumors. Thus, BARD1 isoforms might be involved in tumor initiation and invasive progression and might represent a novel prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, University Hospitals Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Song M, Hakala K, Weintraub ST, Shiio Y. Quantitative proteomic identification of the BRCA1 ubiquitination substrates. J Proteome Res 2011; 10:5191-8. [PMID: 21950761 DOI: 10.1021/pr200662b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mutation of the BRCA1 tumor suppressor gene predisposes women to hereditary breast and ovarian cancers. BRCA1 forms a heterodimer with BARD1. The BRCA1/BARD1 heterodimer has ubiquitin ligase activity, considered to play crucial roles in tumor suppression and DNA damage response. Nevertheless, relevant BRCA1 substrates are poorly defined. We have developed a new approach to systematically identify the substrates of ubiquitin ligases by identifying proteins that display an enhanced incorporation of His-tagged ubiquitin upon ligase coexpression; using this method, we identified several candidate substrates for BRCA1. These include scaffold attachment factor B2 (SAFB2) and Tel2 as well as BARD1. BRCA1 was found to enhance SAFB protein expression and induce Tel2 nuclear translocation. Identification of the ubiquitination substrates has been a major obstacle to understanding the functions of ubiquitin ligases. The quantitative proteomics approach we devised for the identification of BRCA1 substrates will facilitate the identification of ubiquitin ligase-substrate pairs.
Collapse
Affiliation(s)
- Meihua Song
- Department of Biochemistry, The University of Texas Health Science Center , San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
25
|
Lack of association between BARD1 Cys557Ser variant and breast cancer risk: a meta-analysis of 11,870 cases and 7,687 controls. J Cancer Res Clin Oncol 2011; 137:1463-8. [PMID: 21809034 DOI: 10.1007/s00432-011-1006-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 07/05/2011] [Indexed: 01/11/2023]
Abstract
PURPOSE The BRCA1-associated RING domain (BARD1) gene has been identified as a high-penetrance gene for breast cancer, whose germline and somatic mutations were reported in both non-BRCA1/2 hereditary site-specific and sporadic breast cancer cases. Some association studies suggested that the BRAD1 Cys557Ser variant might be associated with increased risk of breast cancer, but the results remain conflicting rather than conclusive. In order to derive a more precise estimation of the relationship, this meta-analysis was performed. METHODS Eligible studies were identified by searching several databases for relevant reports published before March 2011. In total, 14 studies (11,870 cases and 7,687 controls) were included in the present meta-analysis. The pooled odds ratio (OR) with 95% confidence interval (CI) for breast cancer risk associated with Cys557Ser carrier was estimated. RESULTS The carrier frequency of the Cys557Ser mutation was 3.85% (457/11,870) in patients with breast cancer and 3.29% (253/7,687) in healthy controls. When all studies were pooled into the meta-analysis, there was no evidence for significant association between Cys557Ser mutation and breast cancer risk (OR 1.14, 95% CI 0.94-1.34). In the subgroup analyses by design of experiment and family history with BRCA1/2 status (unselected cases, family history with non-BRCA1/2 cases, and family history with BRCA1/2-positive cases), no significant associations were found in any subgroup of population. CONCLUSIONS This meta-analysis strongly suggests that BARD1 Cys557Ser mutation is not associated with increased breast cancer risk.
Collapse
|
26
|
Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, Otsuka S, Sabaawy HE, Hart RP, Schachner M. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011; 33:1587-97. [PMID: 21447094 DOI: 10.1111/j.1460-9568.2011.07643.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) play important roles during development and also in adult organisms by regulating the expression of multiple target genes. Here, we studied the function of miR-133b during zebrafish spinal cord regeneration and show upregulation of miR-133b expression in regenerating neurons of the brainstem after transection of the spinal cord. miR-133b has been shown to promote tissue regeneration in other tissue, but its ability to do so in the nervous system has yet to be tested. Inhibition of miR-133b expression by antisense morpholino (MO) application resulted in impaired locomotor recovery and reduced regeneration of axons from neurons in the nucleus of the medial longitudinal fascicle, superior reticular formation and intermediate reticular formation. miR-133b targets the small GTPase RhoA, which is an inhibitor of axonal growth, as well as other neurite outgrowth-related molecules. Our results indicate that miR-133b is an important determinant in spinal cord regeneration of adult zebrafish through reduction in RhoA protein levels by direct interaction with its mRNA. While RhoA has been studied as a therapeutic target in spinal cord injury, this is the first demonstration of endogenous regulation of RhoA by a microRNA that is required for spinal cord regeneration in zebrafish. The ability of miR-133b to suppress molecules that inhibit axon regrowth may underlie the capacity for adult zebrafish to recover locomotor function after spinal cord injury.
Collapse
Affiliation(s)
- Young-Mi Yu
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ratajska M, Antoszewska E, Piskorz A, Brozek I, Borg Å, Kusmierek H, Biernat W, Limon J. Cancer predisposing BARD1 mutations in breast-ovarian cancer families. Breast Cancer Res Treat 2011; 131:89-97. [PMID: 21344236 DOI: 10.1007/s10549-011-1403-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/08/2011] [Indexed: 12/15/2022]
Abstract
The breast cancer susceptibility gene BARD1 (BRCA1-associated RING domain protein, MIM# 601593) acts with BRCA1 in DNA double-strand break (DSB) repair and also in apoptosis initiation. We screened 109 BRCA1/2 negative high-risk breast and/or ovarian cancer patients from North-Eastern Poland for BARD1 germline mutations using a combination of denaturing high-performance liquid chromatography and direct sequencing. We identified 16 different BARD1 sequence variants, five of which are novel. Three of them were suspected to be pathogenic, including a protein truncating nonsense mutation (c.1690C>T, p.Gln564X), a splice mutation (c.1315-2A>G) resulting in exon 5 skipping, and a silent change (c.1977A>G) which alters several exonic splicing enhancer motifs in exon 10 and results in a transcript lacking exons 2-9. Our findings suggest that BARD1 mutations may be regarded as cancer risk alleles and warrant further investigation to determine their actual contribution to non-BRCA1/2 breast and ovarian cancer families.
Collapse
Affiliation(s)
- Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Glycogen Synthase Kinase-3beta regulates Snail and beta-catenin during gastrin-induced migration of gastric cancer cells. J Mol Signal 2010; 5:9. [PMID: 20637111 PMCID: PMC2912299 DOI: 10.1186/1750-2187-5-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023] Open
Abstract
Background The gastrointestinal peptide hormone gastrin is known to regulate various cellular processes including proliferation, migration and metastasis in gastrointestinal (GI) cells. The studies described here were undertaken to elucidate in detail the signaling pathways mediating the migratory responses of amidated gastrin (G17) and to understand the involvement of the serine/threonine kinase Glycogen Synthase Kinase-3 beta (GSK3β) in this. Results Our results indicate that incubation of gastric cancer cells overexpressing CCK2 receptor (AGSE cells) with G17 results in a dose and time dependent increase of GSK3βSer9 phosphorylation, indicative of an inhibition of the kinase. Pretreatment with a pharmacological inhibitor of PI3Kinase pathway (Wortmannin) was unable to antagonize G17-induced GSK3βSer9 phosphorylation, suggesting that this might involve PI3Kinase-independent pathways. Treatment with G17 was also associated with increased Snail expression, and β-catenin nuclear translocation, both of which are GSK3β downstream targets. Pretreatment with a pharmacological inhibitor of GSK3β (AR-A014418) augmented Snail expression and β-catenin nuclear translocation in the absence of G17, whereas overexpression of a phosphorylation deficient mutant of GSK3β (S9A) abrogated Snail promoter induction. These suggested that G17 modulates Snail and β-catenin pathways via inhibiting GSK3β. In addition, overexpression of GSK3β wild type (WT) or S9A mutant inhibited G17-induced migration and MMP7 promoter induction. G17 studies designed following small interference RNA (siRNA)-mediated knockdown of Snail and β-catenin expression indicated a significant reduction of G-17-induced migration and MMP7 promoter induction following combined knockdown of both proteins. Conclusion Our studies indicate that inhibition of GSK3β is necessary to activate G17-induced migratory pathways in gastric cancer cells. Inhibition of GSK3β leads to an induction of Snail expression and β-catenin nuclear translocation, both of which participate to promote G17-induced migration.
Collapse
|
29
|
Irminger-Finger I. BARD1, a possible biomarker for breast and ovarian cancer. Gynecol Oncol 2009; 117:211-5. [PMID: 19959210 DOI: 10.1016/j.ygyno.2009.10.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/01/2009] [Accepted: 10/16/2009] [Indexed: 02/01/2023]
Abstract
Breast cancer is the leading cause of cancer death in women. Ovarian cancer, although less frequent, is detected very late, and survival is correlated to early detection. Therefore, better methods for early detection would help to increase the number of survivors. The incidence of young women diagnosed with breast cancer is increasing. These women and women who are at risk because of a family history of breast cancer would benefit from more accurate and less invasive screening methods than those in place today. A blood test based on BARD1, a protein that interacts with the breast cancer gene product BRCA1, is a promising candidate for fulfilling these conditions. The science behind BARD1 and its role in breast and ovarian cancer is explained in this article.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, University Hospitals Geneva, HUG Bld de la Cluse 30CH-1211 Geneva, Switzerland.
| |
Collapse
|
30
|
Venkitaraman AR. Linking the Cellular Functions ofBRCAGenes to Cancer Pathogenesis and Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:461-87. [DOI: 10.1146/annurev.pathol.3.121806.151422] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashok R. Venkitaraman
- Department of Oncology, University of Cambridge, and the Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Center, Cambridge CB2 0XZ, United Kingdom;
| |
Collapse
|
31
|
Ryser S, Dizin E, Jefford CE, Delaval B, Gagos S, Christodoulidou A, Krause KH, Birnbaum D, Irminger-Finger I. Distinct roles of BARD1 isoforms in mitosis: full-length BARD1 mediates Aurora B degradation, cancer-associated BARD1beta scaffolds Aurora B and BRCA2. Cancer Res 2009; 69:1125-34. [PMID: 19176389 DOI: 10.1158/0008-5472.can-08-2134] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The BRCA1-associated ring domain protein 1 (BARD1) interacts with BRCA1 via its RING finger domain. The BARD1-BRCA1 complex participates in DNA repair, cell cycle control, genomic stability, and mitotic spindle formation through its E3 ubiquitin ligase activity. Cancer cells express several BARD1 protein isoforms, including the RING finger-deficient variant BARD1beta. Here, we show that BARD1 has BRCA1-dependent and BRCA1-independent functions in mitosis. BARD1, but not BRCA1, localizes to the midbody at telophase and cytokinesis, where it colocalizes with Aurora B. The 97-kDa full-length (FL) BARD1 coimmunoprecipates with BRCA1, but the 82-kDa BARD1beta coimmunoprecipitates with Aurora B and BRCA2. We used selective small interfering RNAs to distinguish the functions of FL BARD1 and BARD1beta. Depletion of FL BARD1 had only minor effects on cell growth and did not abolish midbody localization of BARD1 staining, but resulted in massive up-regulation of Aurora B. In contrast, suppression of FL BARD1 and BARD1beta led to growth arrest and correlated with various mitotic defects and disappearance of midbody localization of BARD1 staining. Our data suggest a novel function of FL BARD1 in Aurora B ubiquitination and degradation, opposing a proproliferative function of BARD1beta in scaffolding Aurora B and BRCA2. Thus, loss of FL BARD1 and up-regulation of Aurora B, as observed in cancer cells, can be explained by an imbalance of FL BARD1 and BARD1beta.
Collapse
Affiliation(s)
- Stephan Ryser
- Department of Gynecology and Obstetrics, Molecular Gynecology and Obstetrics Laboratory, University Hospitals Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fox D, Le Trong I, Rajagopal P, Brzovic PS, Stenkamp RE, Klevit RE. Crystal structure of the BARD1 ankyrin repeat domain and its functional consequences. J Biol Chem 2008; 283:21179-86. [PMID: 18480049 DOI: 10.1074/jbc.m802333200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BARD1 is the constitutive nuclear partner to the breast and ovarian cancer-specific tumor suppressor BRCA1. Together, they form a heterodimeric complex responsible for maintaining genomic stability through nuclear functions involving DNA damage signaling and repair, transcriptional regulation, and cell cycle control. We report the 2.0A structure of the BARD1 ankyrin repeat domain. The structure includes four ankyrin repeats with a non-canonical C-terminal capping ankyrin repeat and a well ordered extended loop preceding the first repeat. Conserved surface features show an acidic patch and an acidic pocket along the surface typically used by ankyrin repeat domains for binding cognate proteins. We also demonstrate that two reported mutations, N470S and V507M, in the ankyrin repeat domain do not result in observable structural defects. These results provide a structural basis for exploring the biological function of the ankyrin repeat domain and for modeling BARD1 isoforms.
Collapse
Affiliation(s)
- David Fox
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
33
|
Li L, Ryser S, Dizin E, Pils D, Krainer M, Jefford CE, Bertoni F, Zeillinger R, Irminger-Finger I. Oncogenic BARD1 isoforms expressed in gynecological cancers. Cancer Res 2008; 67:11876-85. [PMID: 18089818 DOI: 10.1158/0008-5472.can-07-2370] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BARD1 is required for protein stability and tumor suppressor functions of BRCA1, which depend on the ubiquitin ligase activity of the BRCA1-BARD1 heterodimer. The NH(2)-terminal RING domains of both proteins act as interaction modules and form a ubiquitin ligase, which has functions in DNA repair, cell cycle checkpoint regulation, and mitosis. Interestingly, up-regulated expression of truncated BARD1 isoforms was found to be associated with poor prognosis in breast and ovarian cancers and, in a hormonally regulated fashion, in the human cytotrophoblast, a cell type with properties reminiscent of cancer cells. We therefore performed reverse transcription-PCR to determine the structure of BARD1 isoforms in cell lines derived from hormone-dependent and hormone-independent cancers. We found a specific combination of isoforms, generated by differential splicing and alternative transcription initiation, mostly lacking the BRCA1 interaction domain, in gynecologic but not hematologic cancer cell lines. To investigate the prevalence of BARD1 isoforms in tumors, we applied immunohistochemistry to ovarian cancers, using antibodies distinguishing full-length BARD1 and isoforms. Expression of NH(2) terminally truncated BARD1 was correlated with advanced stage of cancer, and expression of spliced isoforms was typical for clear cell carcinoma, the ovarian cancer with worst prognosis, suggesting a role of BARD1 isoforms in cancer progression. To challenge this hypothesis, we silenced BARD1 isoforms in ovarian cancer cells that lacked wild-type BARD1 by siRNA interference, which led to a complete proliferation arrest. Thus, BARD1 isoform expression is required for cancer cell proliferation, which is compatible with the notion that BARD1 isoforms act as cancer maintenance genes.
Collapse
Affiliation(s)
- Lin Li
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tembe V, Henderson BR. BARD1 Translocation to Mitochondria Correlates with Bax Oligomerization, Loss of Mitochondrial Membrane Potential, and Apoptosis. J Biol Chem 2007; 282:20513-22. [PMID: 17510055 DOI: 10.1074/jbc.m702627200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The breast cancer regulatory protein-1 (BRCA1)-associated RING domain 1 (BARD1) gene is mutated in a subset of breast/ovarian cancers. BARD1 functions as a heterodimer with BRCA1 in nuclear DNA repair. BARD1 also has a BRCA1-independent apoptotic activity. Here we investigated the link between cytoplasmic localization and apoptotic function of BARD1. We used immunofluorescence microscopy and deconvolution analysis to resolve BARD1 cytoplasmic staining patterns and detected endogenous BARD1 at mitochondria. BARD1 was also detected in mitochondrial cell fractions by immunoblotting. The targeting of BARD1 to mitochondria was modestly stimulated by DNA damage and did not require BRCA1 as indicated by RNA interference and peptide-competition experiments. Transiently expressed yellow fluorescence protein-BARD1 localized to mitochondria, and the targeting sequences were mapped to both the N and C terminus of BARD1. Ectopic yellow fluorescence protein-BARD1 induced apoptosis and loss of mitochondrial membrane potential in MCF-7 breast tumor cells. BARD1 apoptotic function was associated with stimulation of Bax oligomerization at mitochondria. This distinguishes it from BRCA1, which is pro-apoptotic but did not induce Bax oligomerization. The cancer-associated BARD1 splice-variant DeltaRIN (lacks the BRCA1 binding domain and ankyrin repeats) was recruited to mitochondria but did not stimulate apoptosis or alter membrane permeability. We propose that BARD1 has two main sites of action in its cellular response to DNA damage, the nucleus, where it promotes cell survival through DNA repair, and the mitochondria, where BARD1 regulates apoptosis.
Collapse
Affiliation(s)
- Varsha Tembe
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | | |
Collapse
|
35
|
Creekmore AL, Ziegler YS, Bonéy JL, Nardulli AM. Estrogen receptor alpha regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence. Mol Cell Endocrinol 2007; 267:106-15. [PMID: 17275994 PMCID: PMC1933484 DOI: 10.1016/j.mce.2007.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/05/2007] [Accepted: 01/05/2007] [Indexed: 11/19/2022]
Abstract
We have used a chromatin immunoprecipitation (ChIP)-based cloning strategy to isolate and identify genes associated with estrogen receptor alpha (ERalpha) in MCF-7 human breast cancer cells. One of the gene regions isolated was a 288bp fragment from the ninth intron of the breast cancer 1 associated ring domain (BARD1) gene. We demonstrated that ERalpha associated with this region of the endogenous BARD 1 gene in MCF-7 cells, that ERalpha bound to three of five ERE half sites located in the 288bp BARD1 region, and that this 288bp BARD1 region conferred estrogen responsiveness to a heterologous promoter. Importantly, treatment of MCF-7 cells with estrogen increased BARD1 mRNA and protein levels. These findings demonstrate that ChIP cloning strategies can be utilized to successfully isolate regulatory regions that are far removed from the transcription start site and assist in identifying cis elements involved in conferring estrogen responsiveness.
Collapse
Affiliation(s)
- Amy L Creekmore
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
36
|
Karppinen SM, Barkardottir RB, Backenhorn K, Sydenham T, Syrjäkoski K, Schleutker J, Ikonen T, Pylkäs K, Rapakko K, Erkko H, Johannesdottir G, Gerdes AM, Thomassen M, Agnarsson BA, Grip M, Kallioniemi A, Kere J, Aaltonen LA, Arason A, Møller P, Kruse TA, Borg A, Winqvist R. Nordic collaborative study of the BARD1 Cys557Ser allele in 3956 patients with cancer: enrichment in familial BRCA1/BRCA2 mutation-negative breast cancer but not in other malignancies. J Med Genet 2006; 43:856-62. [PMID: 16825437 PMCID: PMC2563183 DOI: 10.1136/jmg.2006.041731] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/22/2006] [Accepted: 06/22/2006] [Indexed: 12/19/2022]
Abstract
BACKGROUND BARD1 was originally identified as a BRCA1-interacting protein but has also been described in tumour-suppressive functions independent of BRCA1. Several studies have indicated that the BARD1 gene is a potential target for germline changes predisposing to breast and ovarian cancer. The C-terminal Cys557Ser change has previously been uncovered to associate with an increased risk of breast cancer and was recently shown to result in defective apoptotic activities. AIM AND METHODS Conformation-sensitive gel electrophoresis, minisequencing, TaqMan assays, denaturing high-performance liquid chromatography analysis and DNA sequencing were used to investigate the prevalence of the Cys557Ser allele in a large Nordic case-control study cohort consisting of 2906 patients with breast or ovarian cancer, 734 with prostate cancer, 188 with colorectal cancer, 128 men with breast cancer, and 3591 controls from Finland, Iceland, Denmark, Sweden and Norway. RESULTS The frequency of the BARD1 Cys557Ser variant seemed to increase among patients from families with breast or ovarian cancer lacking BRCA1 or BRCA2 mutations: a significant difference was obtained compared with controls (6.8% v 2.7%; p<0.001; odds ratio (OR) 2.6; 95% confidence interval (CI) 1.7 to 4.0) and with patients from BRCA1/BRCA2 mutation-positive families (6.8% v 2.2%; p = 0.01; OR 3.2; 95% CI 1.2 to 8.3). In contrast, no major association with male breast, ovarian, colorectal or prostate cancer was observed. Additionally, a novel BARD1 allele resulting in Ser558Pro was identified in familial breast cancer cases. CONCLUSION These results provide further evidence that BARD1 Cys557Ser confers a slightly increased risk of breast cancer in women.
Collapse
Affiliation(s)
- S-M Karppinen
- Department of Clinical Genetics, Oulu University Hospital, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Huo X, Hu Z, Zhai X, Wang Y, Wang S, Wang X, Qin J, Chen W, Jin G, Liu J, Gao J, Wei Q, Wang X, Shen H. Common non-synonymous polymorphisms in the BRCA1 Associated RING Domain (BARD1) gene are associated with breast cancer susceptibility: a case-control analysis. Breast Cancer Res Treat 2006; 102:329-37. [PMID: 17028982 DOI: 10.1007/s10549-006-9332-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/05/2006] [Indexed: 11/29/2022]
Abstract
The BRCA1 Associated RING Domain (BARD1) gene has been identified as a high penetrance gene for breast cancer, whose germline and somatic mutations were reported in both non-BRCA1/2 hereditary site-specific and sporadic breast cancer cases. BARD1 plays a crucial role in tumor repression, along with its heterodimeric partner BRCA1. In the current study, we tested the hypothesis that common non-synonymous polymorphisms in BARD1 are associated with breast cancer susceptibility in a case-control study of 507 patients with incident breast cancer and 539 frequency-matched cancer-free controls in Chinese women. We genotyped all three common (minor allele frequency (MAF)>0.10) non-synonymous polymorphisms (Pro24Ser, Arg378Ser, and Val507Met) in BARD1. We found that the BARD1 Pro24Ser variant genotypes (24Pro/Ser and 24Ser/Ser) and Arg378Ser variant homozygote 378Ser/Ser were associated with a significantly decreased breast cancer risk, compared with their wild-type homozygotes, respectively. Furthermore, a significant locus-locus interaction was evident between Pro24Ser and Arg378Ser (P(int )= 0.032). Among the 378Ser variant allele carriers, the 24Pro/Pro wild-type homozygote was associated with a significantly increased breast cancer risk (adjusted OR=1.81, 95% CI=1.11-2.95), but the subjects having 24Pro/Ser or Ser/Ser variant genotypes had a significantly decreased risk (adjusted OR=0.74, 95% CI=0.56-0.99). In stratified analysis, this locus-locus interaction was more evident among subjects without family cancer history, those with positive estrogen receptor (ER) and individuals with negative progesterone receptor (PR). These findings indicate that the potentially functional polymorphisms Pro24Ser and Arg378Ser in BARD1 may jointly contribute to the susceptibility of breast cancer.
Collapse
Affiliation(s)
- Xiang Huo
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stacey SN, Sulem P, Johannsson OT, Helgason A, Gudmundsson J, Kostic JP, Kristjansson K, Jonsdottir T, Sigurdsson H, Hrafnkelsson J, Johannsson J, Sveinsson T, Myrdal G, Grimsson HN, Bergthorsson JT, Amundadottir LT, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K. The BARD1 Cys557Ser variant and breast cancer risk in Iceland. PLoS Med 2006; 3:e217. [PMID: 16768547 PMCID: PMC1479388 DOI: 10.1371/journal.pmed.0030217] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 03/09/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Most, if not all, of the cellular functions of the BRCA1 protein are mediated through heterodimeric complexes composed of BRCA1 and a related protein, BARD1. Some breast-cancer-associated BRCA1 missense mutations disrupt the function of the BRCA1/BARD1 complex. It is therefore pertinent to determine whether variants of BARD1 confer susceptibility to breast cancer. Recently, a missense BARD1 variant, Cys557Ser, was reported to be at increased frequencies in breast cancer families. We investigated the role of the BARD1 Cys557Ser variant in a population-based cohort of 1,090 Icelandic patients with invasive breast cancer and 703 controls. We then used a computerized genealogy of the Icelandic population to study the relationships between the Cys557Ser variant and familial clustering of breast cancer. METHODS AND FINDINGS The Cys557Ser allele was present at a frequency of 0.028 in patients with invasive breast cancer and 0.016 in controls (odds ratio [OR] = 1.82, 95% confidence interval [CI] 1.11-3.01, p = 0.014). The alleleic frequency was 0.037 in a high-predisposition group of cases defined by having a family history of breast cancer, early onset of breast cancer, or multiple primary breast cancers (OR = 2.41, 95% CI 1.22-4.75, p = 0.015). Carriers of the common Icelandic BRCA2 999del5 mutation were found to have their risk of breast cancer further increased if they also carried the BARD1 variant: the frequency of the BARD1 variant allele was 0.047 (OR = 3.11, 95% CI 1.16-8.40, p = 0.046) in 999del5 carriers with breast cancer. This suggests that the lifetime probability of a BARD1 Cys557Ser/BRCA2 999del5 double carrier developing breast cancer could approach certainty. Cys557Ser carriers, with or without the BRCA2 mutation, had an increased risk of subsequent primary breast tumors after the first breast cancer diagnosis compared to non-carriers. Lobular and medullary breast carcinomas were overrepresented amongst Cys557Ser carriers. We found that an excess of ancestors of contemporary carriers lived in a single county in the southeast of Iceland and that all carriers shared a SNP haplotype, which is suggestive of a founder event. Cys557Ser was found on the same SNP haplotype background in the HapMap Project CEPH sample of Utah residents. CONCLUSIONS Our findings suggest that BARD1 Cys557Ser is an ancient variant that confers risk of single and multiple primary breast cancers, and this risk extends to carriers of the BRCA2 999del5 mutation.
Collapse
MESH Headings
- Adult
- Age of Onset
- Aged
- Alleles
- Amino Acid Substitution
- Breast Neoplasms/ethnology
- Breast Neoplasms/genetics
- Carcinoma in Situ/ethnology
- Carcinoma in Situ/genetics
- Carcinoma, Ductal, Breast/ethnology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Intraductal, Noninfiltrating/ethnology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Lobular/ethnology
- Carcinoma, Lobular/genetics
- Carcinoma, Medullary/ethnology
- Carcinoma, Medullary/genetics
- Case-Control Studies
- Cluster Analysis
- Cohort Studies
- Female
- Founder Effect
- Gene Frequency
- Genes, BRCA2
- Genetic Predisposition to Disease
- Genotype
- Haplotypes
- Humans
- Iceland/epidemiology
- Middle Aged
- Mutation, Missense
- Neoplastic Syndromes, Hereditary/ethnology
- Neoplastic Syndromes, Hereditary/genetics
- Odds Ratio
- Point Mutation
- Polymorphism, Single Nucleotide
- Risk
- Sequence Deletion
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/physiology
Collapse
Affiliation(s)
- Simon N Stacey
- 1deCODE Genetics, Reykjavik, Iceland
- * To whom correspondence should be addressed. E-mail:
(SNS); E-mail:
(KS)
| | | | - Oskar T Johannsson
- 2Department of Oncology, National University Hospital, Reykjavik, Iceland
| | | | | | | | | | - Thora Jonsdottir
- 3Cancer Centre, National University Hospital, Reykjavik, Iceland
| | - Helgi Sigurdsson
- 2Department of Oncology, National University Hospital, Reykjavik, Iceland
- 3Cancer Centre, National University Hospital, Reykjavik, Iceland
| | - Jon Hrafnkelsson
- 2Department of Oncology, National University Hospital, Reykjavik, Iceland
| | - Jakob Johannsson
- 2Department of Oncology, National University Hospital, Reykjavik, Iceland
| | - Thorarinn Sveinsson
- 2Department of Oncology, National University Hospital, Reykjavik, Iceland
- 4Department of Radiation Physics, National University Hospital, Reykjavik, Iceland
| | - Gardar Myrdal
- 4Department of Radiation Physics, National University Hospital, Reykjavik, Iceland
| | | | | | | | | | | | | | - Kari Stefansson
- 1deCODE Genetics, Reykjavik, Iceland
- * To whom correspondence should be addressed. E-mail:
(SNS); E-mail:
(KS)
| |
Collapse
|
39
|
Sauer MK, Andrulis IL. Identification and characterization of missense alterations in the BRCA1 associated RING domain (BARD1) gene in breast and ovarian cancer. J Med Genet 2006; 42:633-8. [PMID: 16061562 PMCID: PMC1736120 DOI: 10.1136/jmg.2004.030049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND BRCA1 associated RING domain protein (BARD1) was originally identified due to its interaction with the RING domain of BRCA1. BARD1 is required for S phase progression, contact inhibition and normal nuclear division, as well as for BRCA1 independent, p53 dependent apoptosis. METHODS To investigate whether alterations in BARD1 are involved in human breast and ovarian cancer, we used single strand conformation polymorphism analysis and sequencing on 35 breast tumours and cancer cell lines and on 21 ovarian tumours. RESULTS Along with the G2355C (S761N) missense mutation previously identified in a uterine cancer, we found two other variants in breast cancers, T2006C (C645R) and A2286G (I738V). The T2006C (C645R) mutation was also found in one ovarian tumour. A variant of uncertain consequence, G1743C (C557S), was found to be homozygous or hemizygous in an ovarian tumour. Eleven variants of BARD1 were characterised with respect to known functions of BARD1. None of the variants appears to affect localisation or interaction with BRCA1; however, putative disease associated alleles appear to affect the stability of p53. These same mutations also appear to abrogate the growth suppressive and apoptotic activities of BARD1. CONCLUSIONS These activities allowed us to identify one of the rare variants (A2286G; I738V) as a neutral polymorphism rather than a detrimental mutation, and suggested that G1743C (C557S) is not a polymorphism but may contribute to the cancer phenotype.
Collapse
Affiliation(s)
- M K Sauer
- Fred A. Litwin Center for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.
| | | |
Collapse
|
40
|
Abstract
It has been over a decade since mutations in BRCA1 and BRCA2 were found to be associated with a small number of familial breast cancer cases. BRCA1 is a large protein that interacts with many other proteins that have diverse functions, so it has been a challenge to determine how defects in its function could lead to cancer. One particular protein, BARD1, seems to be an important regulator of the tumour-suppressor function of BRCA1, as well as acting as a tumour suppressor itself. BARD1 is indispensable for cell viability, so loss-of-function mutations are rare, but mutations and truncations that alter its function might be involved in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Biology of Aging Laboratory, Department of Geriatrics, Geneva University and University Hospitals, 30, Bloulevard de la Cluse, CH-1211 Geneva, Switzerland.
| | | |
Collapse
|
41
|
Tsuzuki M, Wu W, Nishikawa H, Hayami R, Oyake D, Yabuki Y, Fukuda M, Ohta T. A truncated splice variant of human BARD1 that lacks the RING finger and ankyrin repeats. Cancer Lett 2006; 233:108-16. [PMID: 15878232 DOI: 10.1016/j.canlet.2005.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 02/12/2005] [Accepted: 03/04/2005] [Indexed: 11/30/2022]
Abstract
BARD1 is a crucial partner of the breast and ovarian tumor suppressor BRCA1 required for ubiquitin ligase activity and for reciprocal stabilization in cells. We report here an alternatively spliced human BARD1 mRNA variant (BARD1DeltaRIN) isolated from a HeLa cell cDNA library. It is characterized by deletion of exons 2-6 that encode most of the RING finger domain and the entire span of ankyrin repeats. DeltaRIN transcript was detected in all breast cancer-cell lines studied although its protein expression level was low. DeltaRIN does not interact with BRCA1, whereas it interacts with and colocalizes with CstF-50 to cytoplasmic dots. Hence, a deletion variant of BARD1 occurs in cells and may play a distinct role with CstF-50.
Collapse
Affiliation(s)
- Makiko Tsuzuki
- Division of Breast and Endocrine Surgery, Department of Surgery, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu JY, Vlastos AT, Pelte MF, Caligo MA, Bianco A, Krause KH, Laurent GJ, Irminger-Finger I. Aberrant expression of BARD1 in breast and ovarian cancers with poor prognosis. Int J Cancer 2006; 118:1215-26. [PMID: 16152612 DOI: 10.1002/ijc.21428] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations in tumor-suppressor gene BARD1 have been found in inherited and spontaneous breast, ovarian and uterine cancers. BARD1 plays a critical role in DNA repair and ubiquitination as binding partner of BRCA1, with which it colocalizes to nuclear dots. Independently of BRCA1, BARD1 can induce p53-dependent apoptosis in response to genotoxic stress. Therefore, BARD1 or p53 might be defective in cancer cells spared from apoptosis. We investigated BARD1 and p53 expression in ovarian, breast and non-small-cell lung cancers. BARD1 expression was highly upregulated and cytoplasmic in most cancer cells, while weak nuclear staining was observed in the surrounding normal tissue. Maximal BARD1 expression was associated with the most malignant ovarian cancer, clear cell carcinoma. In breast cancer, BARD1 expression was correlated with poor differentiation and large tumor size, established factors of poor prognosis, as well as short disease-free survival. In contrast to breast and ovarian cancers, no correlation of BARD1 expression with either grade or stage could be determined for lung cancer. RT-PCR, performed on 10 ovarian cancers, revealed absence of the 5' portion of the BARD1 transcript in 7 tumors, and sequencing of the remaining 3 identified a missense mutation (A1291G) resulting in an amino acid change of glutamine 406 to arginine. These data suggest that genetic and epigenetic changes might lead to elevated cytoplasmic expression of BARD1 and that cytoplasmic BARD1 might be a poor prognostic factor for breast and ovarian cancers.
Collapse
Affiliation(s)
- Jian-Yu Wu
- Biology of Aging Laboratory, Department of Geriatrics, Geneva University Hospitals, Chemin de petit Bel Air 2, CH-1225 Chne-Bourg/Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bracker TU, Giebel B, Spanholtz J, Sorg UR, Klein-Hitpass L, Moritz T, Thomale J. Stringent Regulation of DNA Repair During Human Hematopoietic Differentiation: A Gene Expression and Functional Analysis. Stem Cells 2006; 24:722-30. [PMID: 16195417 DOI: 10.1634/stemcells.2005-0227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the lymphohematopoietic system, maturation-dependent alterations in DNA repair function have been demonstrated. Because little information is available on the regulatory mechanisms underlying these changes, we have correlated the expression of DNA damage response genes and the functional repair capacity of cells at distinct stages of human hematopoietic differentiation. Comparing fractions of mature (CD34-), progenitor (CD34+ 38+), and stem cells (CD34+ 38-) isolated from umbilical cord blood, we observed: 1) stringently regulated differentiation-dependent shifts in both the cellular processing of DNA lesions and the expression profiles of related genes and 2) considerable interindividual variability of DNA repair at transcriptional and functional levels. The respective repair phenotype was found to be constitutively regulated and not dominated by adaptive response to acute DNA damage. During blood cell development, the removal of DNA adducts, the resealing of repair gaps, the resistance to DNA-reactive drugs clearly increased in stem or mature compared with progenitor cells of the same individual. On the other hand, the vast majority of differentially expressed repair genes was consistently upregulated in the progenitor fraction. A positive correlation of repair function and transcript levels was found for a small number of genes such as RAD23 or ATM, which may serve as key regulators for DNA damage processing via specific pathways. These data indicate that the organism might aim to protect the small number of valuable slow dividing stem cells by extensive DNA repair, whereas fast-proliferating progenitor cells, once damaged, are rather eliminated by apoptosis.
Collapse
Affiliation(s)
- Tomke U Bracker
- Institute of Cell Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Vahteristo P, Syrjäkoski K, Heikkinen T, Eerola H, Aittomäki K, von Smitten K, Holli K, Blomqvist C, Kallioniemi OP, Nevanlinna H. BARD1 variants Cys557Ser and Val507Met in breast cancer predisposition. Eur J Hum Genet 2005; 14:167-72. [PMID: 16333312 DOI: 10.1038/sj.ejhg.5201542] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BARD1 (BRCA1-associated RING-domain 1) is a tumor suppressor whose protein product interacts with BRCA1, and in which rare somatic and germline mutations have been reported in breast, uterine, and endometrial cancers. We aimed to evaluate whether there are BARD1 genetic variants that contribute to breast cancer risk by screening the gene for germline alterations in 45 Finnish familial breast cancer patients and in seven patients with both breast and ovarian cancer. Two of the missense alterations identified (Cys557Ser and Val507Met) were recently suggested to associate with an increased breast cancer risk. We also analyzed these variants in large and independent series of familial and unselected breast cancer patients and healthy controls. No clearly deleterious mutations were detected in the initial mutation screening. No association of the Cys557Ser and breast cancer risk was observed as the variant was found altogether in 1.4% (16/1181) of familial and 2.2% (34/1565) of unselected breast cancer patients, and in 2.5% (27/1083) of healthy controls. The frequency of the Val-allele of the Val507Met variant was modestly higher among breast cancer patients than among healthy controls, although the difference did not reach statistical significance. No statistically significant association of the Cys557Ser or Val507Met variants with any clinicopathologic parameters was observed. These results suggest that the contribution of the BARD1 germline variants to breast cancer predisposition is very limited, and that neither Cys557Ser nor Val507Met have an effect on familial breast cancer susceptibility.
Collapse
Affiliation(s)
- Pia Vahteristo
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Feki A, Jefford CE, Berardi P, Wu JY, Cartier L, Krause KH, Irminger-Finger I. BARD1 induces apoptosis by catalysing phosphorylation of p53 by DNA-damage response kinase. Oncogene 2005; 24:3726-36. [PMID: 15782130 DOI: 10.1038/sj.onc.1208491] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The BRCA1-associated RING domain protein BARD1 acts with BRCA1 in double-strand break repair and ubiquitination. BARD1 plays a role as mediator of apoptosis by binding to and stabilizing p53, and BARD1-repressed cells are resistant to apoptosis. We therefore investigated the mechanism by which BARD1 induces p53 stability and apoptosis. The apoptotic activity of p53 is regulated by phosphorylation. We demonstrate that BARD1 binds to unphosphorylated and serine-15 phosphorylated forms of p53 in several cell types and that the region required for binding comprises the region sufficient for apoptosis induction. In addition, BARD1 binds to Ku-70, the regulatory subunit of DNA-PK, suggesting that the mechanism of p53-induced apoptosis requires BARD1 for the phosphorylation of p53. Upregulation of BARD1 alone is sufficient for stabilization of p53 and phosphorylation on serine-15, as shown in nonmalignant epithelial cells and ovarian cancer cells, NuTu-19, which are defective in apoptosis induction and express aberrant splice variants of BARD1. Stabilization and phosphorylation of p53 in NuTu-19 cells, as well as apoptosis, can be induced by the exogenous expression of wild-type BARD1, suggesting that BARD1, by binding to the kinase and its substrate, catalyses p53 phosphorylation.
Collapse
Affiliation(s)
- Anis Feki
- Biology of Aging Laboratory, Department of Geriatrics, University of Geneva, Chemin de Petit Bel Air 2, CH-1225 Geneva/Chêne-Bourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Schüchner S, Tembe V, Rodriguez JA, Henderson BR. Nuclear Targeting and Cell Cycle Regulatory Function of Human BARD1. J Biol Chem 2005; 280:8855-61. [PMID: 15632137 DOI: 10.1074/jbc.m413741200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The BARD1 gene is mutated in a subset of breast and ovarian cancers, implicating BARD1 as a potential tumor suppressor. BARD1 gains a ubiquitin E3 ligase activity when heterodimerized with BRCA1, but the only known BRCA1-independent BARD1 function is a p53-dependent proapoptotic activity stimulated by nuclear export to the cytoplasm. We described previously the nuclear-cytoplasmic shuttling of BARD1, and in this study, we identify the transport sequences that target BARD1 to the nucleus and show that they are essential for BARD1 regulation of the cell cycle. We used deletion mapping and mutagenesis to define two active nuclear localization signals (NLSs) present in human BARD1 that are not conserved in rodent BARD1. Site-directed mutagenesis of the primary bipartite NLS abolished BARD1 nuclear import and caused its cytoplasmic accumulation. Using flow cytometry and 5-bromo-2-deoxyuridine incorporation assays, we discovered that transiently expressed BARD1 can elicit a p53-independent cell cycle arrest in G1 phase, and that this was abrogated by mutation of the BARD1 NLS but not by mutation of the nuclear export signal. Thus, BARD1 regulation of the cell cycle is a nuclear event and may be linked to its induced expression during mitosis and its possible involvement in the DNA damage checkpoint.
Collapse
Affiliation(s)
- Stefan Schüchner
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Darcy Road, PO Box 412, Westmead, Sydney, New South Wales 2145, Australia
| | | | | | | |
Collapse
|
47
|
Feki A, Jefford CE, Jefford CE, Durand P, Harb J, Lucas H, Krause KH, Irminger-Finger I. BARD1 Expression During Spermatogenesis Is Associated with Apoptosis and Hormonally Regulated1. Biol Reprod 2004; 71:1614-24. [PMID: 15240424 DOI: 10.1095/biolreprod.104.029678] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The BRCA1-binding RING-finger domain protein BARD1 may act conjointly with BRCA1 in DNA repair and in ubiquitination, but it may also induce apoptosis in a BRCA1-independent manner. In this study, we have investigated BARD1 expression during spermatogenesis. In contrast with BRCA1, which is expressed only in meiotic spermatocytes and early round spermatids, BARD1 is expressed during all stages of spermatogenesis. However, while spermatogonia expressed full-length BARD1 mRNA, later stages of spermatocyte precursors express predominantly a novel, shorter splice form BARD1beta. BARD1beta lacks the BRCA1-interacting RING finger but maintains its proapoptotic activity. Consistently, BRCA1 can counteract the proapoptotic activity of full-length BARD1 but not of BARD1beta. Several lines of evidence suggest that BARD1 is involved in proapoptotic signaling in testis: i) both BARD1 isoforms are mostly found in cells that stain positive for TUNEL, Bax, and activated caspase 3; ii) BARD1beta, capable of inducing apoptosis even in the presence of BRCA1, is specifically expressed in BRCA1-positive later stages of spermatogenesis; iii) antiapoptotic hormonal stimulation leads to BARD1 downregulation; and iv) BARD1 expression is associated with human pathologies causing sterility due to increased germ cell death. Our data suggest that full-length BARD1 might be involved in apoptotic control in spermatogonia and primary spermatocytes, while a switch to the BRCA1-independent BARD1beta might be necessary to induce apoptosis in BRCA1-expressing meiotic spermatocytes and early round spermatids.
Collapse
Affiliation(s)
- Anis Feki
- Biology of Aging Laboratory, University Hospitals, CH-12225 Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|