1
|
Yan M, Liu M, Davis AG, Stoner SA, Zhang DE. Single-cell RNA sequencing of a new transgenic t(8;21) preleukemia mouse model reveals regulatory networks promoting leukemic transformation. Leukemia 2024; 38:31-44. [PMID: 37838757 PMCID: PMC10776403 DOI: 10.1038/s41375-023-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
T(8;21)(q22;q22), which generates the AML1-ETO fusion oncoprotein, is a common chromosomal abnormality in acute myeloid leukemia (AML) patients. Despite having favorable prognosis, 40% of patients will relapse, highlighting the need for innovative models and application of the newest technologies to study t(8;21) leukemogenesis. Currently, available AML1-ETO mouse models have limited utility for studying the pre-leukemic stage because AML1-ETO produces mild hematopoietic phenotypes and no leukemic transformation. Conversely, overexpression of a truncated variant, AML1-ETO9a (AE9a), promotes fully penetrant leukemia and is too potent for studying pre-leukemic changes. To overcome these limitations, we devised a germline-transmitted Rosa26 locus AE9a knock-in mouse model that moderately overexpressed AE9a and developed leukemia with long latency and low penetrance. We observed pre-leukemic alterations in AE9a mice, including skewing of progenitors towards granulocyte/monocyte lineages and replating of stem and progenitor cells. Next, we performed single-cell RNA sequencing to identify specific cell populations that contribute to these pre-leukemic phenotypes. We discovered a subset of common myeloid progenitors that have heightened granulocyte/monocyte bias in AE9a mice. We also observed dysregulation of key hematopoietic transcription factor target gene networks, blocking cellular differentiation. Finally, we identified Sox4 activation as a potential contributor to stem cell self-renewal during the pre-leukemic stage.
Collapse
Affiliation(s)
- Ming Yan
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Nath P, Maiti D. A review of the mutagenic potential of N-ethyl-N-nitrosourea (ENU) to induce hematological malignancies. J Biochem Mol Toxicol 2022; 36:e23067. [PMID: 35393684 DOI: 10.1002/jbt.23067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
This review is intended to summarize the existing literature on the mutagenicity of N-ethyl-N-nitrosourea (ENU) in inducing hematological malignancies, including acute myeloid leukemia (AML) in mice. Blood or hematological malignancies are the most common malignant disorders seen in people of all age groups. Driven by a number of genetic alterations, leukemia rule out the normal proliferation and differentiation of hematopoietic stem cells (HSCs) and their progenitors in the bone marrow (BM) and severely affects blood functions. Out of all hematological malignancies, AML is the most aggressive type, with a high incidence and mortality rate. AML is found as either de novo or secondary therapeutic AML (t-AML). t-AML is a serious adverse consequence of alkylator chemotherapy to the cancer patient and alone constitutes about 10%-20% of all reported AML cases. Cancer patients who received alkylator chemotherapy are at an elevated risk of developing t-AML. ENU has a long history of use as a potent carcinogen that induces blood malignancies in mice and rats that are pathologically similar to human AML and t-AML. ENU, once entered into the body, circulates all over the body tissues and reaches BM. It creates an overall state of suppression within the BM by damaging the marrow cells, alkylating the DNA, and forming DNA adducts within the early and late hematopoietic stem and progenitor cells. The BM holds a weak DNA repair mechanism due to low alkyltransferase, and poly [ADP-ribose] polymerase (PARP) enzyme content often fails to obliterate those adducts, acting as a catalyst to bring genetic abnormalities, including point gene mutations as well as chromosomal alterations, for example, translocation and inversion. Taking advantage of ENU-induced immune-suppressed state and weak immune surveillance, these mutations remain viable and slowly give rise to transformed HSCs. This review also highlights the carcinogenic nature of ENU and the complex relation between the ENU's overall toxicity in the induction of hematological malignancies.
Collapse
Affiliation(s)
- Priyatosh Nath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| |
Collapse
|
3
|
Lu C. Decoding the function of an oncogenic transcription factor: finding the first responders. Mol Cell 2021; 81:418-420. [PMID: 33545056 DOI: 10.1016/j.molcel.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) are frequently altered in human diseases. Identifying the direct and immediate target genes of TFs is critical to understanding their role in pathophysiology. Stengel et al. (2020) applied chemogenetic and nascent transcriptome mapping technologies to define the core gene set regulated by AML1-ETO-an oncogenic TF fusion protein frequently found in acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Tijchon E, Yi G, Mandoli A, Smits JGA, Ferrari F, Heuts BMH, Wijnen F, Kim B, Janssen-Megens EM, Schuringa JJ, Martens JHA. The acute myeloid leukemia associated AML1-ETO fusion protein alters the transcriptome and cellular progression in a single-oncogene expressing in vitro induced pluripotent stem cell based granulocyte differentiation model. PLoS One 2019; 14:e0226435. [PMID: 31869378 PMCID: PMC6927605 DOI: 10.1371/journal.pone.0226435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect normal hematopoiesis. The analysis of human AMLs has mostly been performed using end-point materials, such as cell lines and patient derived AMLs that also carry additional contributing mutations. The molecular effects of a single oncogenic hit, such as expression of the AML associated oncoprotein AML1-ETO on hematopoietic development and transformation into a (pre-) leukemic state still needs further investigation. Here we describe the development and characterization of an induced pluripotent stem cell (iPSC) system that allows in vitro differentiation towards different mature myeloid cell types such as monocytes and granulocytes. During in vitro differentiation we expressed the AML1-ETO fusion protein and examined the effects of the oncoprotein on differentiation and the underlying alterations in the gene program at 8 different time points. Our analysis revealed that AML1-ETO as a single oncogenic hit in a non-mutated background blocks granulocytic differentiation, deregulates the gene program via altering the acetylome of the differentiating granulocytic cells, and induces t(8;21) AML associated leukemic characteristics. Together, these results reveal that inducible oncogene expression during in vitro differentiation of iPS cells provides a valuable platform for analysis of aberrant regulation in disease.
Collapse
Affiliation(s)
- Esther Tijchon
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Guoqiang Yi
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Amit Mandoli
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jos G. A. Smits
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Francesco Ferrari
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Branco M. H. Heuts
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Falco Wijnen
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Bowon Kim
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Eva M. Janssen-Megens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Joost H. A. Martens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
5
|
Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proc Natl Acad Sci U S A 2018; 116:890-899. [PMID: 30593567 DOI: 10.1073/pnas.1809327116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.
Collapse
|
6
|
Liu J, Lu W, Liu S, Wang Y, Li S, Xu Y, Xing H, Tang K, Tian Z, Rao Q, Wang M, Wang J. ZFP36L2, a novel AML1 target gene, induces AML cells apoptosis and inhibits cell proliferation. Leuk Res 2018. [PMID: 29518627 DOI: 10.1016/j.leukres.2018.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The t(8;21)(q22;q22) translocation generated the fusion protein AML1-ETO. AML1-ETO recruits histone deacetylase (HDAC) complex via its ETO part to repress AML1-mediated transactivation. Our previous study demonstrated that HDAC inhibitor phenylbutyrate (PB) could induce AML1-ETO positive leukemia cell line Kasumi-1 cells to undergo differentiation and apoptosis accompanied by significant changes in gene expression profile. ZFP36L2 was one of the up-regulated genes in Kasumi-1 cells induced by PB treatment. In this study, ZFP36L2 was found to express at a lower level in acute myeloid leukemia (AML) patients with t(8;21) compared to AML patients without t(8;21). In order to investigate the correlation between the expression of ZFP36L2 and AML1 or AML1-ETO, the putative AML1 binding sites in the enhancer/promoter region of ZFP36L2 gene were predicted through the bioinformatics analysis. And the biological function of ZFP36L2 in leukemic cells was further investigated. The results demonstrated that AML1 could transactivate ZFP36L2 significantly by binding on specific site of the ZFP36L2 promoter sequence. And overexpression of ZFP36L2 in leukemia cells could inhibit the cell proliferation, promote cell-cycle arrest in G0/G1 phase and induce the cell apoptosis. In conclusion, ZFP36L2 could be transactivated by AML1, which subsequently induced cell-cycle arrest and apoptosis of leukemia cells.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wenting Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Saisai Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
7
|
Sun Y, Chen BR, Deshpande A. Epigenetic Regulators in the Development, Maintenance, and Therapeutic Targeting of Acute Myeloid Leukemia. Front Oncol 2018. [PMID: 29527516 PMCID: PMC5829038 DOI: 10.3389/fonc.2018.00041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The importance of epigenetic dysregulation to acute myeloid leukemia (AML) pathophysiology has become increasingly apparent in recent years. Epigenetic regulators, including readers, writers, and erasers, are recurrently dysregulated by way of chromosomal translocations, somatic mutations, or genomic amplification in AML and many of these alterations are directly implicated in AML pathogenesis. Mutations in epigenetic regulators are often discovered in founder clones and persist after therapy, indicating that they may contribute to a premalignant state poised for the acquisition of cooperating mutations and frank malignancy. Apart from the proto-oncogenic impact of these mutations, the AML epigenome is also shaped by other epigenetic factors that are not mutated but co-opted by AML oncogenes, presenting with actionable vulnerabilities in this disease. Targeting the AML epigenome might also be important for eradicating AML leukemia stem cells, which can be critical for disease maintenance and resistance to therapy. In this review, we describe the importance of epigenetic regulators in AML. We also summarize evidence implicating specific epigenetic regulators in AML pathobiology and discuss emerging epigenome-based therapies for the treatment of AML in the clinic.
Collapse
Affiliation(s)
- Younguk Sun
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Bo-Rui Chen
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
8
|
Mandoli A, Singh AA, Prange KHM, Tijchon E, Oerlemans M, Dirks R, Ter Huurne M, Wierenga ATJ, Janssen-Megens EM, Berentsen K, Sharifi N, Kim B, Matarese F, Nguyen LN, Hubner NC, Rao NA, van den Akker E, Altucci L, Vellenga E, Stunnenberg HG, Martens JHA. The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. Cell Rep 2017; 17:2087-2100. [PMID: 27851970 DOI: 10.1016/j.celrep.2016.08.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023] Open
Abstract
The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells.
Collapse
Affiliation(s)
- Amit Mandoli
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Abhishek A Singh
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Koen H M Prange
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Esther Tijchon
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Marjolein Oerlemans
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Rene Dirks
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Menno Ter Huurne
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Albertus T J Wierenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Eva M Janssen-Megens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Kim Berentsen
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Nilofar Sharifi
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Bowon Kim
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Filomena Matarese
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Luan N Nguyen
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Nina C Hubner
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Nagesha A Rao
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Emile van den Akker
- Sanquin Research Department of Hematopoiesis, P.O. Box 9190, 1006 AD Amsterdam, the Netherlands
| | - Lucia Altucci
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica "Adriano Buzzati Traverso," Via P. Castellino 131, 80131 Napoli, Italy
| | - Edo Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Hendrik G Stunnenberg
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Joost H A Martens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands; Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, 80138 Napoli, Italy.
| |
Collapse
|
9
|
Yao C, Kobayashi M, Chen S, Nabinger SC, Gao R, Liu SZ, Asai T, Liu Y. Necdin modulates leukemia-initiating cell quiescence and chemotherapy response. Oncotarget 2017; 8:87607-87622. [PMID: 29152105 PMCID: PMC5675657 DOI: 10.18632/oncotarget.20999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating illness which carries a very poor prognosis, with most patients living less than 18 months. Leukemia relapse may occur because current therapies eliminate proliferating leukemia cells but fail to eradicate quiescent leukemia-initiating cells (LICs) that can reinitiate the disease after a period of latency. While we demonstrated that p53 target gene Necdin maintains hematopoietic stem cell (HSC) quiescence, its roles in LIC quiescence and response to chemotherapy are unclear. In this study, we utilized two well-established murine models of human AML induced by MLL-AF9 or AML1-ETO9a to determine the role of Necdin in leukemogenesis. We found that loss of Necdin decreased the number of functional LICs and enhanced myeloid differentiation in vivo, leading to delayed development of leukemia induced by MLL-AF9. Importantly, Necdin null LICs expressing MLL-AF9 were less quiescent than wild-type LICs. Further, loss of Necdin enhanced the response of MLL-AF9+ leukemia cells to chemotherapy treatment, manifested by decreased viability and enhanced apoptosis. We observed decreased expression of Bcl2 and increased expression of p53 and its target gene Bax in Necdin null leukemia cells following chemotherapy treatment, indicating that p53-dependent apoptotic pathways may be activated in the absence of Necdin. In addition, we found that loss of Necdin decreased the engraftment of AML1-ETO9a+ hematopoietic stem and progenitor cells in transplantation assays. However, Necdin-deficiency did not affect the response of AML1-ETO9a+ hematopoietic cells to chemotherapy treatment. Thus, Necdin regulates leukemia-initiating cell quiescence and chemotherapy response in a context-dependent manner. Our findings suggest that pharmacological inhibition of Necdin may hold potential as a novel therapy for leukemia patients with MLL translocations.
Collapse
Affiliation(s)
- Chonghua Yao
- Department of Rheumatism, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen Z Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Takashi Asai
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yan Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1-dependent manner. Blood 2017; 129:2782-2792. [PMID: 28381396 DOI: 10.1182/blood-2016-10-745034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
AML1-ETO (AE), a fusion oncoprotein generated by t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3-compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), which acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo. Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease.
Collapse
|
11
|
Regalo G, Förster S, Resende C, Bauer B, Fleige B, Kemmner W, Schlag PM, Meyer TF, Machado JC, Leutz A. C/EBPβ regulates homeostatic and oncogenic gastric cell proliferation. J Mol Med (Berl) 2016; 94:1385-1395. [PMID: 27522676 PMCID: PMC5143359 DOI: 10.1007/s00109-016-1447-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/24/2016] [Accepted: 07/17/2016] [Indexed: 12/26/2022]
Abstract
Abstract Cancer of the stomach is among the leading causes of death from cancer worldwide. The transcription factor C/EBPβ is frequently overexpressed in gastric cancer and associated with the suppression of the differentiation marker TFF1. We show that the murine C/EBPβ knockout stomach displays unbalanced homeostasis and reduced cell proliferation and that tumorigenesis of human gastric cancer xenograft is inhibited by knockdown of C/EBPβ. Cross-species comparison of gene expression profiles between C/EBPβ-deficient murine stomach and human gastric cancer revealed a subset of tumors with a C/EBPβ signature. Within this signature, the RUNX1t1 tumor suppressor transcript was down-regulated in 38 % of gastric tumor samples. The RUNX1t1 promoter was frequently hypermethylated and ectopic expression of RUNX1t1 in gastric cancer cells inhibited proliferation and enhanced TFF1 expression. These data suggest that the tumor suppressor activity of both RUNX1t1 and TFF1 are mechanistically connected to C/EBPβ and that cross-regulation between C/EBPβ-RUNX1t1-TFF1 plays an important role in gastric carcinogenesis. Key message C/EBPβ controls proliferation and differentiation balance in the stomach. Homeostatic differentiation/proliferation balance is altered in gastric cancer. RUNX1t1 is a C/EBPβ-associated tumor suppressor. RUNX1t1 negatively regulates C/EBPβ pro-oncogenic functions.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1447-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Goncalo Regalo
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Susann Förster
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Carlos Resende
- Institute of Pathology and Molecular Immunology of the University of Porto, 4200-465, Porto, Portugal
| | - Bianca Bauer
- Max-Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Barbara Fleige
- Institut für Gewebediagnostik Berlin am MVZ des HELIOS Klinikum, 13125, Berlin, Germany
| | - Wolfgang Kemmner
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Peter M Schlag
- Charité Comprehensive Cancer Centers, Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - Thomas F Meyer
- Max-Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - José C Machado
- Institute of Pathology and Molecular Immunology of the University of Porto, 4200-465, Porto, Portugal
| | - Achim Leutz
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
- Humboldt-University of Berlin, Institute of Biology, 10115, Berlin, Germany.
| |
Collapse
|
12
|
Shin TH, Brynczka C, Dayyani F, Rivera MN, Sweetser DA. TLE4 regulation of wnt-mediated inflammation underlies its role as a tumor suppressor in myeloid leukemia. Leuk Res 2016; 48:46-56. [PMID: 27486062 DOI: 10.1016/j.leukres.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/07/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
The presence of AML1-ETO (RUNX1-CBF2T1), a fusion oncoprotein resulting from a t(8;21) chromosomal translocation, has been implicated as a necessary but insufficient event in the development of a subset of acute myeloid leukemias (AML). While AML1-ETO prolongs survival and inhibits differentiation of hematopoietic stem cells (HSC), other contributory events are needed for cell proliferation and leukemogenesis. We have postulated that specific tumor suppressor genes keep the leukemic potential of AML1-ETO in check. In studying del(9q), one of the most common concomitant chromosomal abnormalities with t(8;21), we identified the loss of an apparent tumor suppressor, TLE4, that appears to cooperate with AML1-ETO to confer a leukemic phenotype. This study sought to identify the molecular basis of this cooperation. We show that the loss of TLE4 confers proliferative advantage to leukemic cells, simultaneous with an upregulation of a pro- inflammatory signature mediated through aberrant increases in Wnt signaling activity. We further demonstrate that inhibition of cyclooxygenase (COX) activity partly reverses the pro-leukemic phenotype due to TLE4 knockdown, pointing towards a novel therapeutic approach for myeloid leukemia.
Collapse
Affiliation(s)
- Thomas H Shin
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Christopher Brynczka
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Farshid Dayyani
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Miguel N Rivera
- Department of Pathology, Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02129, United States
| | - David A Sweetser
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Boston, MA 02114, United States.
| |
Collapse
|
13
|
Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R, Shi Y, Armstrong SA, Roeder RG. JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev 2016; 29:2123-39. [PMID: 26494788 PMCID: PMC4617977 DOI: 10.1101/gad.267278.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RUNX1-RUNX1T1 (formerly AML1-ETO), a transcription factor generated by the t(8;21) translocation in acute myeloid leukemia (AML), dictates a leukemic program by increasing self-renewal and inhibiting differentiation. Here we demonstrate that the histone demethylase JMJD1C functions as a coactivator for RUNX1-RUNX1T1 and is required for its transcriptional program. JMJD1C is directly recruited by RUNX1-RUNX1T1 to its target genes and regulates their expression by maintaining low H3K9 dimethyl (H3K9me2) levels. Analyses in JMJD1C knockout mice also establish a JMJD1C requirement for RUNX1-RUNX1T1's ability to increase proliferation. We also show a critical role for JMJD1C in the survival of multiple human AML cell lines, suggesting that it is required for leukemic programs in different AML cell types through its association with key transcription factors.
Collapse
Affiliation(s)
- Mo Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Nan Zhu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers University, Newark, New Jersey 07103, USA
| | - Benoit Laurent
- Division of Newborn Medicine, Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Rowena Eng
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Yang Shi
- Division of Newborn Medicine, Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott A Armstrong
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
14
|
Wampfler J, Federzoni EA, Torbett BE, Fey MF, Tschan MP. The RNA binding proteins RBM38 and DND1 are repressed in AML and have a novel function in APL differentiation. Leuk Res 2015; 41:96-102. [PMID: 26740055 DOI: 10.1016/j.leukres.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022]
Abstract
The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.
Collapse
Affiliation(s)
- Julian Wampfler
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Elena A Federzoni
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Martin F Fey
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Dequéant ML, Fagegaltier D, Hu Y, Spirohn K, Simcox A, Hannon GJ, Perrimon N. Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization. Proc Natl Acad Sci U S A 2015; 112:12974-9. [PMID: 26438832 PMCID: PMC4620889 DOI: 10.1073/pnas.1517729112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of time series profiling to identify groups of functionally related genes (synexpression groups) is a powerful approach for the discovery of gene function. Here we apply this strategy during Ras(V12) immortalization of Drosophila embryonic cells, a phenomenon not well characterized. Using high-resolution transcriptional time-series datasets, we generated a gene network based on temporal expression profile similarities. This analysis revealed that common immortalized cells are related to adult muscle precursors (AMPs), a stem cell-like population contributing to adult muscles and sharing properties with vertebrate satellite cells. Remarkably, the immortalized cells retained the capacity for myogenic differentiation when treated with the steroid hormone ecdysone. Further, we validated in vivo the transcription factor CG9650, the ortholog of mammalian Bcl11a/b, as a regulator of AMP proliferation predicted by our analysis. Our study demonstrates the power of time series synexpression analysis to characterize Drosophila embryonic progenitor lines and identify stem/progenitor cell regulators.
Collapse
Affiliation(s)
| | | | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Kerstin Spirohn
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Amanda Simcox
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Gregory J Hannon
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
16
|
Bokemeyer A, Eckert C, Meyr F, Koerner G, von Stackelberg A, Ullmann R, Türkmen S, Henze G, Seeger K. Copy number genome alterations are associated with treatment response and outcome in relapsed childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Haematologica 2013; 99:706-14. [PMID: 24241490 DOI: 10.3324/haematol.2012.072470] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The clinical heterogeneity among first relapses of childhood ETV6/RUNX1-positive acute lymphoblastic leukemia indicates that further genetic alterations in leukemic cells might affect the course of salvage therapy and be of prognostic relevance. To assess the incidence and prognostic relevance of additional copy number alterations at relapse of the disease, we performed whole genome array comparative genomic hybridization of leukemic cell DNA from 51 patients with first ETV6/RUNX1-positive relapse enrolled in and treated according to the relapse trials ALL-REZ of the Berlin-Frankfurt-Münster Study Group. Within this cohort of patients with relapsed ETV6/RUNX1-positive acute lymphoblastic leukemia, the largest analyzed for genome wide DNA copy number alterations to date, alterations were present in every ETV6/RUNX1-positive relapse and a high proportion of them occurred in recurrent overlapping chromosomal regions. Recurrent losses affected chromosomal regions 12p13, 6q21, 15q15.1, 9p21, 3p21, 5q and 3p14.2, whereas gains occurred in regions 21q22 and 12p. Loss of 12p13 including CDKN1B was associated with a shorter remission duration (P=0.009) and a lower probability of event-free survival (P=0.001). Distribution of X-chromosomal copy number alterations was gender-specific: whole X-chromosome loss occurred exclusively in females, gain of Xq only in males. Loss of the glucocorticoid receptor gene NR3C1 (5q31.3) was associated with a poor response to induction treatment (P=0.003), possibly accounting for the adverse prognosis of some of the ETV6/RUNX1-positive relapses.
Collapse
|
17
|
Mandoli A, Singh AA, Jansen PWTC, Wierenga ATJ, Riahi H, Franci G, Prange K, Saeed S, Vellenga E, Vermeulen M, Stunnenberg HG, Martens JHA. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia 2013; 28:770-8. [PMID: 24002588 DOI: 10.1038/leu.2013.257] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Different mechanisms for CBFβ-MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all resulting in transcriptional repression of RUNX1 target genes. Here, through genome-wide CBFβ-MYH11-binding site analysis and quantitative interaction proteomics, we found that CBFβ-MYH11 localizes to RUNX1 occupied promoters, where it interacts with TAL1, FLI1 and TBP-associated factors (TAFs) in the context of the hematopoietic transcription factors ERG, GATA2 and PU.1/SPI1 and the coregulators EP300 and HDAC1. Transcriptional analysis revealed that upon fusion protein knockdown, a small subset of the CBFβ-MYH11 target genes show increased expression, confirming a role in transcriptional repression. However, the majority of CBFβ-MYH11 target genes, including genes implicated in hematopoietic stem cell self-renewal such as ID1, LMO1 and JAG1, are actively transcribed and repressed upon fusion protein knockdown. Together these results suggest an essential role for CBFβ-MYH11 in regulating the expression of genes involved in maintaining a stem cell phenotype.
Collapse
Affiliation(s)
- A Mandoli
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - A A Singh
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - P W T C Jansen
- Department of Molecular Cancer Research, UMC Utrecht, Utrecht, The Netherlands
| | - A T J Wierenga
- 1] Department of Hematology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands [2] Department of Laboratory Medicine University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - H Riahi
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - G Franci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - K Prange
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - S Saeed
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - E Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - M Vermeulen
- Department of Molecular Cancer Research, UMC Utrecht, Utrecht, The Netherlands
| | - H G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - J H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Long and short non-coding RNAs as regulators of hematopoietic differentiation. Int J Mol Sci 2013; 14:14744-70. [PMID: 23860209 PMCID: PMC3742271 DOI: 10.3390/ijms140714744] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 02/06/2023] Open
Abstract
Genomic analyses estimated that the proportion of the genome encoding proteins corresponds to approximately 1.5%, while at least 66% are transcribed, suggesting that many non-coding DNA-regions generate non-coding RNAs (ncRNAs). The relevance of these ncRNAs in biological, physiological as well as in pathological processes increased over the last two decades with the understanding of their implication in complex regulatory networks. This review particularly focuses on the involvement of two large families of ncRNAs, namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of hematopoiesis. To date, miRNAs have been widely studied, leading to a wealth of data about processing, regulation and mechanisms of action and more specifically, their involvement in hematopoietic differentiation. Notably, the interaction of miRNAs with the regulatory network of transcription factors is well documented whereas roles, regulation and mechanisms of lncRNAs remain largely unexplored in hematopoiesis; this review gathers current data about lncRNAs as well as both potential and confirmed roles in normal and pathological hematopoiesis.
Collapse
|
19
|
The rate of spontaneous mutations in human myeloid cells. Mutat Res 2013; 749:49-57. [PMID: 23748046 DOI: 10.1016/j.mrfmmm.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/09/2023]
Abstract
The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4×10(-7) (range ∼3.6-23×10(-7)) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis.
Collapse
|
20
|
ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood 2012; 120:4038-48. [PMID: 22983443 DOI: 10.1182/blood-2012-05-429050] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ERG and FLI1 are closely related members of the ETS family of transcription factors and have been identified as essential factors for the function and maintenance of normal hematopoietic stem cells. Here genome-wide analysis revealed that both ERG and FLI1 occupy similar genomic regions as AML1-ETO in t(8;21) AMLs and identified ERG/FLI1 as proteins that facilitate binding of oncofusion protein complexes. In addition, we demonstrate that ERG and FLI1 bind the RUNX1 promoter and that shRNA-mediated silencing of ERG leads to reduced expression of RUNX1 and AML1-ETO, consistent with a role of ERG in transcriptional activation of these proteins. Finally, we identify H3 acetylation as the epigenetic mark preferentially associated with ETS factor binding. This intimate connection between ERG/FLI1 binding and H3 acetylation implies that one of the molecular strategies of oncofusion proteins, such as AML1-ETO and PML-RAR-α, involves the targeting of histone deacetylase activities to ERG/FLI1 bound hematopoietic regulatory sites. Together, these results highlight the dual importance of ETS factors in t(8;21) leukemogenesis, both as transcriptional regulators of the oncofusion protein itself as well as proteins that facilitate AML1-ETO binding.
Collapse
|
21
|
Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2012; 6:248-62. [PMID: 22875638 DOI: 10.1007/s11684-012-0206-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
Abstract
The AML1-ETO fusion transcription factor is generated by the t(8;21) translocation, which is present in approximately 4%-12% of adult and 12%-30% of pediatric acute myeloid leukemia (AML) patients. Both human and mouse models of AML have demonstrated that AML1-ETO is insufficient for leukemogenesis in the absence of secondary events. In this review, we discuss the pathogenetic insights that have been gained from identifying the various events that can cooperate with AML1-ETO to induce AML in vivo. We also discuss potential therapeutic strategies for t(8;21) positive AML that involve targeting the fusion protein itself, the proteins that bind to it, or the genes that it regulates. Recently published studies suggest that a targeted therapy for t(8;21) positive AML is feasible and may be coming sometime soon.
Collapse
Affiliation(s)
- Megan A Hatlen
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
22
|
The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells. BMC Mol Biol 2012; 13:11. [PMID: 22443175 PMCID: PMC3364894 DOI: 10.1186/1471-2199-13-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 03/23/2012] [Indexed: 01/09/2023] Open
Abstract
Background MTG16, MTGR1 and ETO are nuclear transcriptional corepressors of the human ETO protein family. MTG16 is implicated in hematopoietic development and in controlling erythropoiesis/megakaryopoiesis. Furthermore, ETO homologue genes are 3'participants in leukemia fusions generated by chromosomal translocations responsible of hematopoietic dysregulation. We tried to identify structural and functional promoter elements of MTG16 and MTGR1 genes in order to find associations between their regulation and hematopoiesis. Results 5' deletion examinations and luciferase reporter gene studies indicated that a 492 bp sequence upstream of the transcription start site is essential for transcriptional activity by the MTG16 promoter. The TATA- and CCAAT-less promoter with a GC box close to the start site showed strong reporter activity when examined in erythroid/megakaryocytic cells. Mutation of an evolutionary conserved GATA -301 consensus binding site repressed promoter function. Furthermore, results from in vitro antibody-enhanced electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation indicated binding of GATA-1 to the GATA -301 site. A role of GATA-1 was also supported by transfection of small interfering RNA, which diminished MTG16 expression. Furthermore, expression of the transcription factor HERP2, which represses GATA-1, produced strong inhibition of the MTG16 promoter reporter consistent with a role of GATA-1 in transcriptional activation. The TATA-less and CCAAT-less MTGR1 promoter retained most of the transcriptional activity within a -308 to -207 bp region with a GC-box-rich sequence containing multiple SP1 binding sites reminiscent of a housekeeping gene with constitutive expression. However, mutations of individual SP1 binding sites did not repress promoter function; multiple active SP1 binding sites may be required to safeguard constitutive MTGR1 transcriptional activity. The observed repression of MTG16/MTGR1 promoters by the leukemia associated AML1-ETO fusion gene may have a role in hematopoietic dysfunction of leukemia. Conclusions An evolutionary conserved GATA binding site is critical in transcriptional regulation of the MTG16 promoter. In contrast, the MTGR1 gene depends on a GC-box-rich sequence for transcriptional regulation and possible ubiquitous expression. Our results demonstrate that the ETO homologue promoters are regulated differently consistent with hematopoietic cell-type- specific expression and function.
Collapse
|
23
|
Vas V, Wandhoff C, Dörr K, Niebel A, Geiger H. Contribution of an aged microenvironment to aging-associated myeloproliferative disease. PLoS One 2012; 7:e31523. [PMID: 22363661 PMCID: PMC3283638 DOI: 10.1371/journal.pone.0031523] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022] Open
Abstract
The molecular and cellular mechanisms of the age-associated increase in the incidence of acute myeloid leukemia (AML) remain poorly understood. Multiple studies support that the bone marrow (BM) microenvironment has an important influence on leukemia progression. Given that the BM niche itself undergoes extensive functional changes during lifetime, we hypothesized that one mechanism for the age-associated increase in leukemia incidence might be that an aged niche promotes leukemia progression. The most frequent genetic alteration in AML is the t(8;21) translocation, resulting in the expression of the AML1-ETO fusion protein. Expression of the fusion protein in hematopoietic cells results in mice in a myeloproliferative disorder. Testing the role of the age of the niche on leukemia progression, we performed both transplantation and in vitro co-culture experiments. Aged animals transplanted with AML1-ETO positive HSCs presented with a significant increase in the frequency of AML-ETO positive early progenitor cells in BM as well as an increased immature myeloid cell load in blood compared to young recipients. These findings suggest that an aged BM microenvironment allows a relative better expansion of pre-leukemic stem and immature myeloid cells and thus imply that the aged microenvironment plays a role in the elevated incidence of age-associated leukemia.
Collapse
Affiliation(s)
- Virag Vas
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Corinna Wandhoff
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Karin Dörr
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Anja Niebel
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G, Hatlen MA, Vu L, Liu F, Xu H, Asai T, Xu H, Deblasio T, Menendez S, Voza F, Jiang Y, Cole PA, Zhang J, Melnick A, Roeder RG, Nimer SD. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 2011; 333:765-9. [PMID: 21764752 PMCID: PMC3251012 DOI: 10.1126/science.1201662] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The chromosomal translocations found in acute myelogenous leukemia (AML) generate oncogenic fusion transcription factors with aberrant transcriptional regulatory properties. Although therapeutic targeting of most leukemia fusion proteins remains elusive, the posttranslational modifications that control their function could be targetable. We found that AML1-ETO, the fusion protein generated by the t(8;21) translocation, is acetylated by the transcriptional coactivator p300 in leukemia cells isolated from t(8;21) AML patients, and that this acetylation is essential for its self-renewal-promoting effects in human cord blood CD34(+) cells and its leukemogenicity in mouse models. Inhibition of p300 abrogates the acetylation of AML1-ETO and impairs its ability to promote leukemic transformation. Thus, lysine acetyltransferases represent a potential therapeutic target in AML.
Collapse
MESH Headings
- Acetylation
- Animals
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Core Binding Factor Alpha 2 Subunit/chemistry
- Core Binding Factor Alpha 2 Subunit/metabolism
- E1A-Associated p300 Protein/antagonists & inhibitors
- E1A-Associated p300 Protein/metabolism
- Fetal Blood/cytology
- Gene Expression Profiling
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Lysine/metabolism
- Mice
- Mice, Inbred C57BL
- Mutant Proteins/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/metabolism
- Preleukemia/metabolism
- Preleukemia/pathology
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Processing, Post-Translational
- RUNX1 Translocation Partner 1 Protein
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lan Wang
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Gural
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiao-Jian Sun
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Xinyang Zhao
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Gang Huang
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Megan A. Hatlen
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ly Vu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Fan Liu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Haiming Xu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Takashi Asai
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Hao Xu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Tony Deblasio
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Silvia Menendez
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Francesca Voza
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Yanwen Jiang
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Philip A. Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jinsong Zhang
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Stephen D. Nimer
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
25
|
Oakford PC, James SR, Qadi A, West AC, Ray SN, Bert AG, Cockerill PN, Holloway AF. Transcriptional and epigenetic regulation of the GM-CSF promoter by RUNX1. Leuk Res 2010; 34:1203-13. [PMID: 20439113 DOI: 10.1016/j.leukres.2010.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
The RUNX1 gene, which is essential for normal hematopoiesis, is frequently rearranged by the t(8;21) chromosomal translocation in acute myeloid leukemia. The resulting RUNX1-ETO fusion protein contributes to leukemic progression by directing aberrant association of transcriptional cofactors and epigenetic modifiers to RUNX1 target genes. For example, the GM-CSF gene is activated by RUNX1, but is repressed by RUNX1-ETO. Here we show that RUNX1 normally cooperates with the histone acetyltransferase, CBP, to regulate GM-CSF expression at two levels. Firstly, it directs the establishment of a competent chromatin environment at the GM-CSF promoter prior to gene activation. It then participates in the transcriptional activation of the promoter in response to immune stimuli. In contrast, RUNX1-ETO, which cannot associate with CBP, is unable to transactivate the GM-CSF promoter and is associated with the generation of a repressive chromatin environment at the promoter.
Collapse
|
26
|
Abstract
To identify oncogenes in leukemias, we performed large-scale resequencing of the leukemia genome using DNA sequence arrays that determine approximately 9 Mbp of sequence corresponding to the exons or exon-intron boundaries of 5648 protein-coding genes. Hybridization of genomic DNA from CD34-positive blasts of acute myeloid leukemia (n=19) or myeloproliferative disorder (n=1) with the arrays identified 9148 nonsynonymous nucleotide changes. Subsequent analysis showed that most of these changes were also present in the genomic DNA of the paired controls, with 11 somatic changes identified only in the leukemic blasts. One of these latter changes results in a Met-to-Ile substitution at amino-acid position 511 of Janus kinase 3 (JAK3), and the JAK3(M511I) protein exhibited transforming potential both in vitro and in vivo. Further screening for JAK3 mutations showed novel and known transforming changes in a total of 9 out of 286 cases of leukemia. Our experiments also showed a somatic change responsible for an Arg-to-His substitution at amino-acid position 882 of DNA methyltransferase 3A, which resulted in a loss of DNA methylation activity of >50%. Our data have thus shown a unique profile of gene mutations in human leukemia.
Collapse
|
27
|
Dixon SJ, Stockwell BR. Identifying druggable disease-modifying gene products. Curr Opin Chem Biol 2009; 13:549-55. [PMID: 19740696 DOI: 10.1016/j.cbpa.2009.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 01/15/2023]
Abstract
Many disease genes encode proteins that are difficult to target directly using small molecule drugs. Improvements in libraries based on synthetic compounds, natural products, and other types of molecules may ultimately allow some challenging proteins to be successfully targeted; however, these developments alone are unlikely to be sufficient. A complementary strategy exploits the functional interconnectivity of intracellular networks to find druggable targets lying upstream, downstream, or in parallel to a disease-causing gene, where modulation can influence the disease process indirectly. These targets can be selected using prior knowledge of disease-associated pathways or identified using phenotypic chemical and genetic screens in model organisms and cells. These approaches should facilitate the identification of effective drug targets for many genetic disorders.
Collapse
Affiliation(s)
- Scott J Dixon
- Department of Biological Sciences, Columbia University, 614 Fairchild Center, MC2406, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | |
Collapse
|
28
|
Wang L, Huang G, Zhao X, Hatlen MA, Vu L, Liu F, Nimer SD. Post-translational modifications of Runx1 regulate its activity in the cell. Blood Cells Mol Dis 2009; 43:30-4. [PMID: 19386523 DOI: 10.1016/j.bcmd.2009.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/18/2022]
Abstract
In this report we review the current knowledge of the interaction of RUNX1(AML1) with serine/threonine kinases, lysine and arginine methyltransferases, lysine acetyltransferases, and histone deacetylases. We also discuss the effect of RUNX1-ETO fusion gene on DNA methylation. RUNX1 post-transcriptional modification can affect its role in influencing differentiation and self-renewal of hematopoietic cells. The goal of these studies is to develop targets for improved leukemia therapy.
Collapse
Affiliation(s)
- Lan Wang
- Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Multivalent binding of the ETO corepressor to E proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery. Mol Cell Biol 2009; 29:2644-57. [PMID: 19289505 DOI: 10.1128/mcb.00073-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
E proteins are a family of helix-loop-helix transcription factors that play important roles in cell differentiation and homeostasis. They contain at least two activation domains, AD1 and AD2. ETO family proteins and the leukemogenic AML1-ETO fusion protein are corepressors of E proteins. It is thought that ETO represses E-protein activity by interacting with AD1, which competes away p300/CBP histone acetyltransferases. Here we report that E proteins contain another conserved ETO-interacting region, termed DES, and that differential associations with AD1 and DES allow ETO to repress transcription through both chromatin-dependent and chromatin-independent mechanisms. At the chromatin level, AD1 and AD2 cooperatively recruit p300. ETO interacts with AD1 to abolish p300 recruitment and to allow HDAC-dependent silencing. At the post-chromatin-remodeling level, binding to DES enables ETO to directly inhibit activation of the basal transcription machinery. This novel repression mechanism is conserved in ETO family proteins and in the AML1-ETO fusion protein. In addition, the repression capacity exerted by each mechanism is differentially modulated by cross talk among various ETO domains and the AML1 domain of AML1-ETO. In particular, the oligomerization domain of ETO plays a major role in targeting ETO to the DES region and independently potentiates the TAFH domain-mediated AD1 interaction. The ability to exert repression at different levels not only may allow these corepressors to impose robust inhibition of signal-independent transcription but may also allow a rapid response to signals. In addition, our newly defined domain interactions and their interplays have important implications in effectively targeting both E-protein fusion proteins and AML1-ETO found in cancers.
Collapse
|
30
|
Chung HJ, Chi HS, Cho YU, Lee EH, Jang S, Park CJ, Seo EJ. [Prognostic effect of cytoplasmic CD79a expression in acute myeloid leukemia with t(8;21)]. Korean J Lab Med 2008; 27:388-93. [PMID: 18160827 DOI: 10.3343/kjlm.2007.27.6.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although cytoplasmic CD79a (cytCD79a) is a highly lineage-specific marker of B lymphoid cells and plays an important role in the diagnosis of acute leukemia, its clinical significance is not fully understood. We aimed to investigate the relationship between cytCD79a positivity and survival probability, and to evaluate the prognostic value of cytCD79a expression in AML with t(8;21) (q22;q22). METHODS A total of 68 cases of AML with t(8;21)(q22;q22) were diagnosed based on conventional morphology, cytochemistry, flow cytometrty, and cytogenetic and molecular genetic analysis. Immunohistochemistry of cytCD79a was performed retrospectively. Laboratory and clinical findings were reviewed. RESULTS Five patients among 68 AML with t(8;21)(q22;q22) revealed cytCD79a positive reaction; scores for myeloid lineage/B-lymphoid lineage were 5/3-3.5. Among the five cytCD79a positive patients, only one patient was a child. Three patients were with refractory AML or relapsed, and two patients died within 10 months. Median survival time of cytCD79a positive group was shorter (8.0 months) than that (61.3 months) of cytCD79a negative group. The survival probability of the cytCD79a expression group was significantly lower than classical AML with t(8;21)(q22;q22) (P=0.0001). CONCLUSIONS These findings emphasize the necessity of investigating cytCD79a, especially in AML with t(8;21)(q22;q22), for a different clinical prognostic value.
Collapse
Affiliation(s)
- Hee-Jung Chung
- Department of Laboratory Medicine, University of Ulsan, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Gardini A, Cesaroni M, Luzi L, Okumura AJ, Biggs JR, Minardi SP, Venturini E, Zhang DE, Pelicci PG, Alcalay M. AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet 2008; 4:e1000275. [PMID: 19043539 PMCID: PMC2577924 DOI: 10.1371/journal.pgen.1000275] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/22/2008] [Indexed: 11/18/2022] Open
Abstract
A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more complex network, since the fusion protein has been shown to interact with a number of other transcription factors, in particular E-proteins, and may therefore target other sites on DNA. Genome-wide chromatin immunoprecipitation and expression profiling were exploited to identify AML1/ETO-dependent transcriptional regulation. AML1/ETO was found to co-localize with AML1, demonstrating that the fusion protein follows the binding pattern of the wild-type protein but does not function primarily by displacing it. The DNA binding profile of the E-protein HEB was grossly rearranged upon expression of AML1/ETO, and the fusion protein was found to co-localize with both AML1 and HEB on many of its regulated targets. Furthermore, the level of HEB protein was increased in both primary cells and cell lines expressing AML1/ETO. Our results suggest a major role for the functional interaction of AML1/ETO with AML1 and HEB in transcriptional regulation determined by the fusion protein.
Collapse
Affiliation(s)
- Alessandro Gardini
- Department of Experimental Oncology, IEO–European Institute of Oncology, Milan, Italy
| | - Matteo Cesaroni
- Department of Experimental Oncology, IEO–European Institute of Oncology, Milan, Italy
| | - Lucilla Luzi
- IFOM–FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Akiko J. Okumura
- Moores UCSD Cancer Center, Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Joseph R. Biggs
- Moores UCSD Cancer Center, Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Simone P. Minardi
- IFOM–FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Cogentech–Consortium for Genomic Technologies, Milan, Italy
| | | | - Dong-Er Zhang
- Moores UCSD Cancer Center, Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO–European Institute of Oncology, Milan, Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, IEO–European Institute of Oncology, Milan, Italy
- Cogentech–Consortium for Genomic Technologies, Milan, Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| |
Collapse
|
32
|
Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 2008; 41:87-95. [PMID: 18834952 DOI: 10.1016/j.biocel.2008.09.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/12/2022]
Abstract
Our current knowledge of the deregulation that occurs during the onset and progression of cancer and other diseases leads us to recognize both genetic and epigenetic alterations as being at the core of the pathological state. The epigenetic landscape includes a variety of covalent modifications that affect the methylation status of DNA but also the post-translational modifications of histones, and determines the structural features of chromatin that ultimately control the transcriptional outcome of the cell to accommodate developmental, proliferative or environmental requirements. MicroRNAs are small non-coding RNAs that regulate the expression of complementary messenger RNAs and function as key controllers in a myriad of cellular processes, including proliferation, differentiation and apoptosis. In the last few years, increasing evidence has indicated that a substantial number of microRNA genes are subjected to epigenetic alterations, resulting in aberrant patterns of expression upon the occurrence of cancer. In this review we discuss microRNA genes that are epigenetically modified in cancer cells, and the role that microRNAs themselves can have as chromatin modifiers.
Collapse
Affiliation(s)
- Sònia Guil
- Institut d'Investigacio Biomedica de Bellvitge, 08907 L'Hospitalet, Barcelona, Catalonia, Spain
| | | |
Collapse
|
33
|
Wang XS, Zhang JW. The microRNAs involved in human myeloid differentiation and myelogenous/myeloblastic leukemia. J Cell Mol Med 2008; 12:1445-55. [PMID: 18554315 PMCID: PMC3918060 DOI: 10.1111/j.1582-4934.2008.00386.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/05/2008] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, functional RNAs that interact with native coding mRNAs to cleave mRNA or repress translation. Several miRNAs contribute to normal haematopoietic processes and some miRNAs act both as tumour suppressors and oncogenes in the pathology of haematological malignancies. While most effort is engaged in identifying and investigating the target genes of miRNAs, miRNA gene promoter methylation or transcriptional regulation is another important field of investigation, since these two main mechanisms can form a regulatory circuit. This review focuses on recent researches on miRNAs with important roles in myeloid cells.
Collapse
Affiliation(s)
- Xiao-Shuang Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, The Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Wu Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, The Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, Allis CD, Tempst P, Nimer SD. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 2008; 22:640-53. [PMID: 18316480 DOI: 10.1101/gad.1632608] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RUNX1/AML1 is required for the development of definitive hematopoiesis, and its activity is altered by mutations, deletions, and chromosome translocations in human acute leukemia. RUNX1 function can be regulated by post-translational modifications and protein-protein interactions. We show that RUNX1 is arginine-methylated in vivo by the arginine methyltransferase PRMT1, and that PRMT1 serves as a transcriptional coactivator for RUNX1 function. Using mass spectrometry, and a methyl-arginine-specific antibody, we identified two arginine residues (R206 and R210) within the region of RUNX1 that interact with the corepressor SIN3A and are methylated by PRMT1. PRMT1- dependent methylation of RUNX1 at these arginine residues abrogates its association with SIN3A, whereas shRNA against PRMT1 (or use of a methyltransferase inhibitor) enhances this association. We find arginine-methylated RUNX1 on the promoters of two bona fide RUNX1 target genes, CD41 and PU.1 and show that shRNA against PRMT1 or RUNX1 down-regulates their expression. These arginine methylation sites and the dynamic regulation of corepressor binding are lost in the leukemia-associated RUNX1-ETO fusion protein, which likely contributes to its dominant inhibitory activity.
Collapse
Affiliation(s)
- Xinyang Zhao
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Abstract
There has been a remarkable explosion of knowledge into the molecular defects that underlie the acute and chronic leukemias, leading to the introduction of targeted therapies that can block key cellular events essential for the viability of the leukemic cell. Our understanding of the pathogenesis of the myelodysplastic syndromes (MDSs) has lagged behind, at least in part, because they represent a more heterogeneous group of disorders. The significant immunologic abnormalities described in this disease, coupled with the admixture of MDS stem or progenitor cells within the myriad types of dysplastic and normal cells in the bone marrow and peripheral blood, have made it difficult to molecularly characterize and model MDS. The recent availability of several, effective (ie, FDA-approved) therapies for MDS and newly described mouse models that mimic aspects of the human disease provide an opportune moment to try to leverage this new knowledge into a better understanding of and better therapies for MDS.
Collapse
|
36
|
Wang GP, Qi ZH, Chen FP. Treatment of acute myeloid leukemia by directly targeting both leukemia stem cells and oncogenic molecule with specific scFv-immunolipoplexes as a deliverer. Med Hypotheses 2008; 70:122-7. [PMID: 17566667 DOI: 10.1016/j.mehy.2007.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 11/26/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the suppression of normal hematopoiesis, chemotherapy is currently the most used method to treat AML. The standard chemotherapy results in a more than 50% complete remission rate in AML patients. However, treatment with drugs such as anthracyclines is associated with severe side effects and a high incidence of relapse, the long-term survival of AML is poor. The success of the treatment of acute promyelocytic leukemia with all trans retinoic acid and chronic myeloid leukemia with imatinib mesylate (Gleevec) has led to increased efforts to look for agents for AML targeted therapy. But, most of presented targeted therapy agents do only direct some oncogenic molecules involved in the leukemogenesis of AML, their anti-leukemic efficacy is unsatisfied. Thus, novel therapeutic approaches are required. In recent years, a leukemia stem cells (LSCs) origin for AML has been demonstrated, and some unique immunophenotype and specific molecular features of LSCs have also been identified. With the technique development of Immunoliposomes (antibody-coupled liposomes) and the recombination of the variable regions of heavy and light chains and their integration into a single polypeptide that offer the possibility of using single-chain antibody variable region fragments (scFv) for targeting purposes, here we put the hypothesis that treatment of AML by targeting both LSCs and oncogenic molecule participated in AML pathogenesis, with LSCs-specific scFv-immunolipoplexes as a deliverer, might be possible. If successfully using this approach in practice, LSCs might be selectively eradicated and AML might be cured.
Collapse
Affiliation(s)
- Guang Ping Wang
- Department of Hematology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.
| | | | | |
Collapse
|
37
|
Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12:457-66. [PMID: 17996649 DOI: 10.1016/j.ccr.2007.09.020] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/08/2007] [Accepted: 09/20/2007] [Indexed: 11/24/2022]
Abstract
Hematopoietic transcription factors are involved in chromosomal translocations, which generate fusion proteins contributing to leukemia pathogenesis. Analysis of patient's primary leukemia blasts revealed that those carrying the t(8;21) generating AML1/ETO, the most common acute myeloid leukemia-associated fusion protein, display low levels of a microRNA-223 (miR-223), a regulator of myelopoiesis. Here, we show that miR-223 is a direct transcriptional target of AML1/ETO. By recruiting chromatin remodeling enzymes at an AML1-binding site on the pre-miR-223 gene, AML1/ETO induces heterochromatic silencing of miR-223. Ectopic miR-223 expression, RNAi against AML1/ETO, or demethylating treatment enhances miR-223 levels and restores cell differentiation. Here, we identify an additional action for a leukemia fusion protein linking the epigenetic silencing of a microRNA locus to the differentiation block of leukemia.
Collapse
Affiliation(s)
- Francesco Fazi
- Department of Histology and Medical Embryology, University La Sapienza, Rome, 00161, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tonks A, Pearn L, Musson M, Gilkes A, Mills KI, Burnett AK, Darley RL. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 2007; 21:2495-505. [PMID: 17898786 DOI: 10.1038/sj.leu.2404961] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The t(8;21)(q22;q22) occurs frequently in acute myelogenous leukaemia and gives rise to the transcription factor fusion protein, RUNX1-RUNX1T1 (also known as AML1-ETO). To identify the genes dysregulated by the aberrant transcriptional activity of RUNX1-RUNX1T1, we used microarrays to determine the effect of this mutation on gene expression in human progenitor cells and during subsequent development. Gene signatures of these developmental subsets were very dissimilar indicating that effects of RUNX1-RUNX1T1 are highly context dependent. We focused on gene changes associated with the granulocytic lineage and identified a clinically relevant subset of these by comparison with 235 leukaemia patient transcriptional signatures. We confirmed the overexpression of a number of significant genes (Sox4, IL-17BR, CD200 and gamma-catenin). Further, we show that overexpression of CD200 and gamma-catenin is also associated with the inv(16) abnormality which like RUNX1-RUNX1T1 disrupts core binding factor activity. We investigated the functional significance of CD200 and gamma-catenin overexpression in normal human progenitor cells. The effect of IL17 on growth was also assessed. Individually, none of these changes were sufficient to recapitulate the effects of RUNX1-RUNX1T1 on normal development. These data provide the most comprehensive and pertinent assessment of the effect of RUNX1-RUNX1T1 on gene expression and demonstrate the highly context-dependent effects of this fusion gene.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Cell Line, Tumor/metabolism
- Cell Lineage
- Cells, Cultured/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Core Binding Factor Alpha 2 Subunit/physiology
- Desmoplakins/genetics
- Desmoplakins/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/genetics
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- High Mobility Group Proteins/biosynthesis
- High Mobility Group Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RUNX1 Translocation Partner 1 Protein
- Receptors, Interleukin-17/biosynthesis
- Receptors, Interleukin-17/genetics
- Recombinant Fusion Proteins/physiology
- SOXC Transcription Factors
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transcription, Genetic/genetics
- Translocation, Genetic
- gamma Catenin/genetics
- gamma Catenin/physiology
Collapse
Affiliation(s)
- A Tonks
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang S, Zhang Y, Soosairajah J, Kraft AS. Regulation of RUNX1/AML1 during the G2/M transition. Leuk Res 2007; 31:839-51. [PMID: 17023045 DOI: 10.1016/j.leukres.2006.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 08/22/2006] [Accepted: 08/26/2006] [Indexed: 10/24/2022]
Abstract
The acute myeloid leukemia 1 (AML1, RUNX1) transcription factor is a key regulator of hematopoietic differentiation both in embryonic stem cells and mature hematopoietic progenitors. The RUNX1 protein is thought to play a role in the control of progression through the cell cycle. We have shown that post-transcriptional regulation of RUNX1 activity occurs, in part, through phosphorylation. To investigate whether transit through the cell cycle is associated with changes in the phosphorylation of RUNX1, we have derived phospho-specific antibodies against three of the five major phosphorylation sites in the transcriptional activation domain of RUNX1, S276, S303 and S462. Using these antibodies we demonstrate that treatment of Jurkat T-cells with nocodazole, a G2/M blocking compound, causes an increase in phosphorylation of these three amino acids. By elutriating the Jurkat cells, we are able to demonstrate that these amino acids are normally phosphorylated at the G2/M phase of the cell cycle. Using in vivo inhibitors and in vitro assays this phosphorylation appears to be dependent on Cdk1. We find that RUNX1 degradation occurs at the G2/M-G1 transition and is regulated by both Cdc20 and phosphoryation, suggesting that the anaphase promoting complex plays a role in modifying the level of this protein. Regulation of the extent of phosphorylation of RUNX1 may play a role in controlling the degradation of the protein, implying that additional E3 ligases may also be involved.
Collapse
Affiliation(s)
- Suiquan Wang
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
40
|
Moore MAS, Chung KY, Plasilova M, Schuringa JJ, Shieh JH, Zhou P, Morrone G. NUP98 Dysregulation in Myeloid Leukemogenesis. Ann N Y Acad Sci 2007; 1106:114-42. [PMID: 17442773 DOI: 10.1196/annals.1392.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nucleoporin 98 (NUP98) is a component of the nuclear pore complex that facilitates mRNA export from the nucleus. It is mapped to 11p15.5 and is fused to a number of distinct partners, including nine members of the homeobox family as a consequence of leukemia-associated chromosomal translocations. NUP98-HOXA9 is associated with the t(7;11)(p15;p15) translocation in acute myeloid leukemia (AML), myelodysplastic syndrome, and blastic crisis of chronic myeloid leukemia. Expression of NUP98-HOXA9 in murine bone marrow resulted in a myeloproliferative disease progressing to AML by 7-8 months. Transduction of NUP98 fusion genes into human CD34(+) cells confers a proliferative advantage in long-term cytokine-stimulated and stromal cocultures and in NOD-SCID engrafted mice, associated with a five- to eight-fold increase in hematopoietic stem cells. NUP98-HOXA9 expression inhibited erythroid and myeloid differentiation but enhanced serial progenitor replating. NUP98-HOXA9 upregulated a number of homeobox genes of the A and B cluster as well as MEIS1 and Pim-1, and downmodulated globin genes and C/EBPalpha. The HOXA9 component of the NUP98-HOXA9 fusion protein was protected from cullin-4A-mediated ubiquitination and subsequent proteasome-dependent degradation. In NUP98-HOX-transduced CD34(+) cells and cells from AML patients with t(7;11)(p15;p15) NUP98 was no longer associated with the nuclear pore complex but formed intranuclear aggregation bodies. Analysis of NUP98 allelic expression in AML and myelodysplastic syndrome showed loss of heterozygosity observed in 29% of the former and 8% of the latter. This was associated with poor prognosis.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD34/biosynthesis
- Cell Nucleus/metabolism
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 7
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Loss of Heterozygosity
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Nuclear Pore Complex Proteins/physiology
Collapse
Affiliation(s)
- M A S Moore
- Moore Laboratory, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ma LH, Liu H, Xiong H, Chen B, Zhang XW, Wang YY, Le HY, Huang QH, Zhang QH, Li BL, Chen Z, Chen SJ. Aberrant transcriptional regulation of the MLL fusion partner EEN by AML1-ETO and its implication in leukemogenesis. Blood 2006; 109:769-77. [PMID: 16990610 DOI: 10.1182/blood-2006-02-003517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The EEN (extra eleven nineteen) gene, located on chromosome 19p13, was cloned as a fusion with MLL from a patient with acute myeloid leukemia (AML) with translocation t(11;19)(q23;p13). In this study, we characterized the genomic structure of the EEN gene, including its 5′ regulatory region and transcription start site (TSS). We found that Sp1 could bind to the guanine-cytosine (GC)–stretch of the EEN promoter and was critical for the normal EEN expression, whereas the leukemia-associated fusion protein AML1-ETO could aberrantly transactivate the EEN gene through an AML1 binding site. Of note, overexpressed EEN showed oncogenic properties, such as transforming potential in NIH3T3 cells, stimulating cell proliferation, and increasing the activity of transcriptional factor AP-1. Retroviral transduction of EEN increased self-renewal and proliferation of murine hematopoietic progenitor cells. Moreover, Kasumi-1 and HL60-cell growth was inhibited with down-regulation of EEN by RNAi. These findings demonstrate that EEN might be a common target in 2 major types of AML associated with MLL or AML1 translocations, and overexpression of EEN may play an essential role in leukemogenesis.
Collapse
Affiliation(s)
- Li-Heng Ma
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Road II, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka SI, Hoshida Y, Nakazawa T, Harada Y, Tatsumi N, Tsuboi A, Kawakami M, Oka Y, Oji Y, Aozasa K, Kawase I, Sugiyama H. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 2005; 107:3303-12. [PMID: 16380455 DOI: 10.1182/blood-2005-04-1656] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AML1-ETO, a chimeric gene frequently detected in acute myelogenous leukemia (AML), inhibits the differentiation of myeloid progenitors by suppressing genes associated with myeloid differentiation and increases the replating ability of clonogenic myeloid progenitors. However, AML1-ETO alone cannot induce AML and thus additional genetic events are required for the onset of AML. The Wilms tumor gene (WT1), which has been identified as the gene responsible for Wilms tumor, is expressed at high levels in almost all human leukemias. In this study, we have generated transgenic mice (WT1-Tg) that overexpress WT1 in hematopoietic cells to investigate the effects of WT1 on AML1-ETO-associated leukemogenesis. AML1-ETO-transduced bone marrow (BM) cells from WT1-Tg mice exhibited inhibition of myeloid differentiation at more immature stages and higher in vitro colony-forming ability compared with AML1-ETO-transduced BM cells from wild-type mice. Most importantly, all of the mice that received a transplant of AML1-ETO-transduced BM cells from the WT1-Tg mice rapidly developed AML. These results demonstrate that AML1-ETO may exert its leukemogenic function in cooperation with the expression of WT1.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/methods
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RUNX1 Translocation Partner 1 Protein
- Transduction, Genetic
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- Sumiyuki Nishida
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Moore MAS. Converging pathways in leukemogenesis and stem cell self-renewal. Exp Hematol 2005; 33:719-37. [PMID: 15963848 DOI: 10.1016/j.exphem.2005.04.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/29/2005] [Indexed: 12/11/2022]
Abstract
Studies over the last 40 years have led to an understanding of the hierarchical organization of the hematopoietic system and the role of the pluripotential hematopoietic stem cell. Earlier recognition of the importance of bone marrow hematopoietic microenvironments has evolved into the recognition of specific niches that regulate stem cell pool size, proliferative status, mobilization, and differentiation. The discovery of the role of multiple hematopoietic growth factors and their receptors in the orchestration of stem cell self-renewal and differentiation has been followed by recognition of the importance of the Notch and Wnt pathways. The homeobox family of transcription factors serve as master regulators of development and are increasingly found to be critical regulators of hematopoiesis. In parallel with this understanding of normal hematopoiesis has come a recognition that stem cell dysregulation at various levels is involved in leukemogenesis. Furthermore, the progression from chronic leukemia or myelodysplasia to acute leukemia involves accumulation of at least two mutational events that lead to enhancement of stem cell proliferation, or acquisition of stem cell behavior by a progenitor cell, coupled with maturation inhibition. Translocations resulting in development of oncogenic fusion genes are found in AML and the transforming potential of two of these, AML1-ETO and NUP98-HOXA9, will be discussed. Secondary, constitutively activating mutations of the Flt3 and c-kit receptors and of K- and N-ras are found with high frequency in AML, and the transforming potential of mutated FLT3 and the role of STAT5A activation in human stem cell transformation will be reviewed.
Collapse
Affiliation(s)
- Malcolm A S Moore
- James Ewing Laboratory of Developmental Hematopoiesis, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
44
|
Maki K, Yamagata T, Asai T, Yamazaki I, Oda H, Hirai H, Mitani K. Dysplastic definitive hematopoiesis in AML1/EVI1 knock-in embryos. Blood 2005; 106:2147-55. [PMID: 15914564 DOI: 10.1182/blood-2004-11-4330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AML1/EVI1 chimeric gene is created by the t(3;21)(q26;q22) chromosomal translocation seen in patients with leukemic transformation of myelodysplastic syndrome or blastic crisis of chronic myelogenous leukemia. We knocked-in the AML1/EVI1 chimeric gene into mouse Aml1 genomic locus to explore its effect in developmental hematopoiesis in vivo. AML1/EVI1/+ embryo showed defective hematopoiesis in the fetal liver and died around embryonic day 13.5 (E13.5) as a result of hemorrhage in the central nervous system. The peripheral blood had yolk-sac-derived nucleated erythroblasts but lacked erythrocytes of the definitive origin. Although E12.5 fetal liver contained progenitors for macrophage only, E13.5 fetal liver contained multilineage progenitors capable of differentiating into dysplastic myelocyte and megakaryocyte. No erythroid progenitor was detected in E12.5 or E13.5 fetal liver. Hematopoietic progenitors from E13.5 AML1/EVI1/+ fetal liver were highly capable of self-renewal compared with those from wild-type liver. Maintained expression of PU.1 gene and decreased expression of LMO2 and SCL genes may explain the aberrant hematopoiesis in AML1/EVI1/+ fetal liver.
Collapse
Affiliation(s)
- Kazuhiro Maki
- Department of Hematology, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Di Croce L. Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet 2005; 14 Spec No 1:R77-84. [PMID: 15809276 DOI: 10.1093/hmg/ddi109] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The leukaemias, which are divided into chronic and acute forms, are malignant diseases of haematopoietic cells in which the proper balance between proliferation, differentiation and apoptosis is no longer operative. Genes, such as those of mixed-lineage leukaemia, AML1 and retinoic acid receptor alpha, have been found to be aberrantly fused to different partners, which often encode transcription factors or other chromatin modifying enzymes, in numerous types of acute lymphoid and myeloid leukaemias. These chimeric fusion oncoproteins, generated by reciprocal chromosomal translocations, are responsible for chromatin alterations on target genes whose expression is critical to stem cell development or lineage specification in haematopoiesis. Alterations in the 'histone code' or in the DNA methylation content occur as consequence of aberrant targeting of the corresponding enzymatic activities. Here, the author will review the most recent progress in the field, focusing on how fusion proteins generated by chromosomal translocation are responsible for chromatin alterations, gene deregulation and haematopoietic differentiation block and their implication for clinical treatment.
Collapse
Affiliation(s)
- Luciano Di Croce
- ICREA and Centre de Regulació Genòmica (CRG), Passeig Maritim 37-49, 08003 Barcelona, Spain.
| |
Collapse
|