1
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
2
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
3
|
Altamura G, Corteggio A, Pacini L, Conte A, Pierantoni GM, Tommasino M, Accardi R, Borzacchiello G. Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo. Virology 2016; 496:1-8. [PMID: 27236740 DOI: 10.1016/j.virol.2016.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/12/2016] [Accepted: 05/20/2016] [Indexed: 01/18/2023]
Abstract
Felis catus papillomavirus type 2 (FcaPV2) DNA is found in feline cutaneous squamous cell carcinomas (SCCs); however, its biological properties are still uncharacterized. In this study, we successfully expressed FcaPV2 E6 and E7 putative oncogenes in feline epithelial cells and demonstrated that FcaPV2 E6 binds to p53, impairing its protein level. In addition, E6 and E7 inhibited ultraviolet B (UVB)-triggered accumulation of p53, p21 and pro-apoptotic markers such as Cleaved Caspase3, Bax and Bak, suggesting a synergistic action of the virus with UV exposure in tumour pathogenesis. Furthermore, FcaPV2 E7 bound to feline pRb and impaired pRb levels, resulting in upregulation of the downstream pro-proliferative genes Cyclin A and Cdc2. Importantly, we demonstrated mRNA expression of FcaPV2 E2, E6 and E7 in feline SCC samples, strengthening the hypothesis of a causative role in the development of feline SCC.
Collapse
Affiliation(s)
- Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy.
| | - Annunziata Corteggio
- Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy.
| | - Laura Pacini
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France.
| | - Andrea Conte
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy.
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France.
| | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France.
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy.
| |
Collapse
|
4
|
Underbrink MP, Dupuis C, Wang J, Tyring SK. E6 proteins from low-risk human papillomavirus types 6 and 11 are able to protect keratinocytes from apoptosis via Bak degradation. J Gen Virol 2016; 97:715-724. [PMID: 26743580 DOI: 10.1099/jgv.0.000392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Infection of epithelial surfaces with low-risk human papillomavirus (HPV) types 6 and 11 causes troublesome clinical diseases, such as recurrent respiratory papillomatosis, that carry a significant cost burden to the healthcare system. Despite this, less has been studied at the molecular level for the low-risk HPV types when compared with their high-risk counterparts. Recent studies have shown the ability of the HPV E6 protein to degrade the pro-apoptotic family member Bak in high-risk and betapapillomavirus HPV types, which confers a cytoprotective advantage on E6-expressing cells. It is unknown whether low-risk E6 expression disrupts the apoptosis pathway and confers a cytoprotective advantage as a result of Bak degradation. We tested the abilities of 6E6 and 11E6 to degrade Bak and protect keratinocytes from UV-initiated apoptosis. Both low-risk 6E6 and 11E6 proteins were able to degrade activated Bak following UV treatment of keratinocytes. The degradation of Bak in 6E6- and 11E6-expressing cells occurred through the proteasomal pathway, and protected them from apoptosis, specifically through the intrinsic pathway to the same extent as their high-risk HPV16 E6 counterpart. In conclusion, we have found a new, critical and conserved function of low-risk HPV E6 proteins, i.e. the ability to degrade Bak, which gives them a cytoprotective advantage over normal, uninfected cells by specifically disrupting the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Michael P Underbrink
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Crystal Dupuis
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephen K Tyring
- Department of Dermatology, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Chen D, Gaborieau V, Zhao Y, Chabrier A, Wang H, Waterboer T, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Bencko V, Janout V, Foretova L, Mates IN, Szeszenia-Dabrowska N, Boffetta P, Pawlita M, Lathrop M, Gyllensten U, Brennan P, McKay JD. A systematic investigation of the contribution of genetic variation within the MHC region to HPV seropositivity. Hum Mol Genet 2015; 24:2681-8. [PMID: 25616963 DOI: 10.1093/hmg/ddv015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
High-risk mucosal types of human papillomavirus (HPV) cause anogenital and oropharyngeal cancers, whereas cutaneous types (e.g. HPV8 and 77) are suspected to be involved in non-melanoma skin cancer. The antibody response to HPVs is a key determinant of protective immunity, but not all infected individuals seroconvert. Genetic variability of the host may have large impact on seroconversion. A previous genome-wide association study (GWAS) has identified a susceptibility locus (rs41270488) for HPV8 seropositivity within the major histocompatibility complex (MHC) region. To further study this locus, we imputed alleles at classical leukocyte antigen (HLA) loci using HLA*IMP:02 with a reference panel from the HapMap Project and the 1958 Birth Cohort, and conducted an integrated analysis among 4811 central European subjects to assess the contribution of classical HLA alleles and gene copy number variation (CNV) at the hypervariable DRB locus within the MHC region to HPV seropositivity at both the individual HPV type level and the phylogenetic species level. Our study provides evidence that the association noted between rs41270488 and HPV8 seropositivity is driven by two independent variants, namely DQB1*0301 [odds ratio (OR) = 1.51, 95% confidence interval (CI) = 1.36-1.68, P = 1.0 × 10(-14)] and DRB1*1101 (OR = 1.89, 95%CI = 1.57-2.28, P = 1.5 × 10(-11)) within the HLA class II region. Additionally, we identified two correlated alleles DRB1*0701 (OR = 1.67, 95%CI = 1.41-1.98, P = 2.6 × 10(-9)) and DQA1*0201 (OR = 1.67, 95%CI = 1.38-1.93, P = 1.7 × 10(-8)), to be associated with HPV77 seropositivity. Comparable results were observed through imputation using SNP2HLA with another reference panel from the Type 1 diabetes Genetics Consortium. This study provides support for an important role of HLA class II alleles in antibody response to HPV infection.
Collapse
Affiliation(s)
- Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden,
| | | | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Amélie Chabrier
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tim Waterboer
- Infections and Cancer Epidemiology Group, Division of Genome Modifications and Carcinogenesis
| | - David Zaridze
- Institute of Carcinogenesis, Cancer Research Centre, Moscow, Russia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Peter Rudnai
- National Institute of Environmental Health, Budapest, Hungary
| | | | - Vladimir Bencko
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ioan Nicolae Mates
- St Mary General and Esophageal Surgery Clinic, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Paolo Boffetta
- Mount Sinai Hospital, Icahn Medical Institute, New York, USA and
| | - Michael Pawlita
- Virus-Host Interactions of Polyoma and Papilloma Viruses Group, Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Lathrop
- Centre D'innovation Génome Québec et Université McGill, Montréal, Canada
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| | | | - James D McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
6
|
Zur Hausen H, de Villiers EM. Reprint of: cancer "causation" by infections--individual contributions and synergistic networks. Semin Oncol 2015; 42:207-22. [PMID: 25843727 DOI: 10.1053/j.seminoncol.2015.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The search for infectious agents playing a role in human carcinogenesis and their identification remain important issues. This could provide clues for a broader spectrum of cancers preventable by vaccination and accessible to specific therapeutic regimens. Yet, the various ways of interacting among different factors functioning synergistically and their different modes of affecting individual cells should bring to question the validity of the term "causation". It also should put a word of caution into all attempts to summarize criteria for "causality" of infectious agents in cancer development. At least in the opinion of these authors, we would be much better off avoiding these terms, replacing "causal factor" by "risk factor" and grading them according to their contribution to an individual's cancer risk.
Collapse
|
7
|
zur Hausen H, de Villiers EM. Cancer "causation" by infections--individual contributions and synergistic networks. Semin Oncol 2014; 41:860-75. [PMID: 25499643 DOI: 10.1053/j.seminoncol.2014.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The search for infectious agents playing a role in human carcinogenesis and their identification remain important issues. This could provide clues for a broader spectrum of cancers preventable by vaccination and accessible to specific therapeutic regimens. Yet, the various ways of interacting among different factors functioning synergistically and their different modes of affecting individual cells should bring to question the validity of the term "causation". It also should put a word of caution into all attempts to summarize criteria for "causality" of infectious agents in cancer development. At least in the opinion of these authors, we would be much better off avoiding these terms, replacing "causal factor" by "risk factor" and grading them according to their contribution to an individual's cancer risk.
Collapse
|
8
|
Madeleine MM, Carter JJ, Johnson LG, Wipf GC, Davis C, Berg D, Nelson K, Daling JR, Schwartz SM, Galloway DA. Risk of squamous cell skin cancer after organ transplant associated with antibodies to cutaneous papillomaviruses, polyomaviruses, and TMC6/8 (EVER1/2) variants. Cancer Med 2014; 3:1440-7. [PMID: 24913986 PMCID: PMC4302694 DOI: 10.1002/cam4.280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022] Open
Abstract
Squamous cell skin cancer (SCSC) disproportionately affects organ transplant recipients, and may be related to increased viral replication in the setting of immune suppression. We conducted a nested case–control study among transplant recipients to determine whether SCSC is associated with antibodies to cutaneous human papillomaviruses (HPV), to genes associated with a rare genetic susceptibility to HPV (TMC6/TMC8), or to human polyomaviruses (HPyV). Cases (n = 149) had histologically confirmed SCSC, and controls (n = 290) were individually matched to cases on time since transplant, type of transplant, gender, and race. All subjects had serum drawn immediately prior to transplant surgery. Antibodies to 25 cutaneous HPVs and six HPyVs were assayed by detection of binding to virus-like particles, and 11 TMC6/8 variants were genotyped. After correction for multiple comparisons, only antibodies to HPV37 were associated with SCSC (OR 2.0, 95% CI 1.2–3.4). Common genetic variants of TMC6/8 were not associated with SCSC, but three variants in TMC8 (rs12452890, rs412611, and rs7208422) were associated with greater seropositivity for species 2 betapapillomaviruses among controls. This study suggests that some betaHPVs, but not polyomaviruses, may play a role in the excess risk of SCSC among transplant recipients.
Collapse
Affiliation(s)
- Margaret M Madeleine
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445:115-37. [PMID: 23711382 DOI: 10.1016/j.virol.2013.04.026] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on these proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression.
Collapse
Affiliation(s)
- Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
10
|
Abstract
Recurrent respiratory papillomatosis (RRP) is a rare, benign disease with no known cure. RRP is caused by infection of the upper aerodigestive tract with the human papillomavirus (HPV). Passage through the birth canal is thought to be the initial transmission event, but infection may occur in utero. HPV vaccines have helped to provide protection from cervical cancer; however, their role in the prevention of RRP is undetermined. Clinical presentation of initial symptoms of RRP may be subtle. RRP course varies, and current management focuses on surgical debulking of papillomatous lesions with or without concurrent adjuvant therapy.
Collapse
|
11
|
Noch E, Khalili K. Oncogenic viruses and tumor glucose metabolism: like kids in a candy store. Mol Cancer Ther 2012; 11:14-23. [PMID: 22234809 DOI: 10.1158/1535-7163.mct-11-0517] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oncogenic viruses represent a significant public health burden in light of the multitude of malignancies that result from chronic or spontaneous viral infection and transformation. Although many of the molecular signaling pathways that underlie virus-mediated cellular transformation are known, the impact of these viruses on metabolic signaling and phenotype within proliferating tumor cells is less well understood. Whether the interaction of oncogenic viruses with metabolic signaling pathways involves enhanced glucose uptake and glycolysis (both hallmark features of transformed cells) or dysregulation of molecular pathways that regulate oxidative stress, viruses are adept at facilitating tumor expansion. Through their effects on cell proliferation pathways, such as the PI3K and MAPK pathways, the cell cycle regulatory proteins p53 and ATM, and the cell stress response proteins HIF-1α and AMPK, viruses exert control over critical metabolic signaling cascades. Additionally, oncogenic viruses modulate the tumor metabolomic profile through direct and indirect interactions with glucose transporters, such as GLUT1, and specific glycolytic enzymes, including pyruvate kinase, glucose 6-phosphate dehydrogenase, and hexokinase. Through these pathways, oncogenic viruses alter the phenotypic characteristics and energy-use methods of transformed cells; therefore, it may be possible to develop novel antiglycolytic therapies to target these dysregulated pathways in virus-derived malignancies.
Collapse
Affiliation(s)
- Evan Noch
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
12
|
Interferon-β induces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity. PLoS One 2012; 7:e36909. [PMID: 22615843 PMCID: PMC3353995 DOI: 10.1371/journal.pone.0036909] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Interferon (IFN)-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV) and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.
Collapse
|
13
|
Paradisi A, Waterboer T, Sampogna F, Tabolli S, Simoni S, Pawlita M, Abeni D. Seropositivity for human papillomavirus and incidence of subsequent squamous cell and basal cell carcinomas of the skin in patients with a previous nonmelanoma skin cancer. Br J Dermatol 2011; 165:782-91. [PMID: 21561438 DOI: 10.1111/j.1365-2133.2011.10403.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Infection with human papillomaviruses (HPVs) is a risk factor for several epithelial cancers, but its relationship with keratinocyte tumours has not yet been established. Objective In this prospective study we investigated the possible role of different HPVs in the incidence of a subsequent nonmelanoma skin cancer (NMSC). METHODS One hundred and fifty-three patients with squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) enrolled in a previous case-control study were re-contacted, and a follow-up visit was offered. Demographic and clinical data, date of first NMSC presentation, Fitzpatrick skin type and history of NMSC during the follow-up period were ascertained. Recurrences and new second cancers were considered together as 'outcomes' in time-to-event analyses and in Cox proportional hazard models. RESULTS Clinical data were obtained in 107 patients. HPV seropositivity at baseline was strongly associated with the risk of developing a second SCC after 5 years for a number of beta and gamma HPV types. For example, HPV-24-seropositive patients with an SCC at baseline had a 4-fold increased risk of developing a subsequent SCC (hazard ratio 4·35, 95% confidence interval 1·2-15·6, P = 0·024). No association between serological status for any HPV type tested and an increased risk of BCC was found. CONCLUSIONS We observed a consistent pattern of a positive association between seropositivity for beta and gamma HPV types and the risk of a subsequent SCC in patients with a previous SCC. Our data corroborate the results of previous case-control studies and may spur further prospective studies on the causal role of HPVs in NMSC.
Collapse
Affiliation(s)
- A Paradisi
- Health Services Research Unit and Day Surgery Unit, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Tomlins C, Storey A. Cutaneous HPV5 E6 causes increased expression of Osteoprotegerin and Interleukin 6 which contribute to evasion of UV-induced apoptosis. Carcinogenesis 2010; 31:2155-64. [DOI: 10.1093/carcin/bgq200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Interaction between ultraviolet radiation and human papillomavirus. Cancer Treat Res 2009. [PMID: 19415201 DOI: 10.1007/978-0-387-78574-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology 2008; 384:324-34. [PMID: 19081593 DOI: 10.1016/j.virol.2008.11.017] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/03/2008] [Indexed: 02/07/2023]
Abstract
The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.
Collapse
Affiliation(s)
- Heather L Howie
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | |
Collapse
|
17
|
Simmonds M, Storey A. Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis. Int J Cancer 2008; 123:2260-6. [PMID: 18752251 DOI: 10.1002/ijc.23815] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UVB induced DNA damage is the major aetiological agent in NMSC development, but mounting evidence suggests a role for human papillomaviruses (HPV) from genus beta, including HPV 5 and HPV 8, in the development of NMSC on sun exposed body sites. We have previously shown that UVB activates Bak, an apoptogenic mitochondrial factor that, following an apoptotic stimulus, undergoes a conformational change that leads to pore formation in the mitochondrial membrane that releases apoptotic factors. The HPV E6 protein effectively inhibits UVB-induced apoptosis and targets Bak for proteolytic degradation. We have now identified the regions of the HPV5 E6 that are required to mediate Bak proteolysis and contribute toward the antiapoptotic activity of the protein. Interestingly, while wild-type HPV5 E6 does not bind or target p53 for proteolysis, we have isolated specific HPV5 E6 mutants that switch target specificity from Bak to p53 in a p53 codon 72 isoform-dependent manner. Furthermore, we demonstrate that the ability of wild-type HPV5 E6 to target Bak or specific E6 mutants to target p53 for proteolysis is not dependent on the E6-AP ubiquitin ligase.
Collapse
Affiliation(s)
- Mark Simmonds
- Cancer Research UK, Skin Tumour Laboratory, ICMS, 4 Newark Street, London, United Kingdom
| | | |
Collapse
|
18
|
Reelfs O, Xu YZ, Massey A, Karran P, Storey A. Thiothymidine plus low-dose UVA kills hyperproliferative human skin cells independently of their human papilloma virus status. Mol Cancer Ther 2007; 6:2487-95. [PMID: 17876046 PMCID: PMC2423463 DOI: 10.1158/1535-7163.mct-07-0166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The thymidine analogue 4-thiothymidine (S(4)TdR) is a photosensitizer for UVA radiation. The UV absorbance spectrum of S(4)TdR and its incorporation into DNA suggests that it might act synergistically with nonlethal doses of UVA to selectively kill hyperproliferative or cancerous skin cells. We show here that nontoxic concentrations of S(4)TdR combine with nonlethal doses of UVA to kill proliferating cultured skin cells. Established cell lines with a high fraction of proliferating cells were more sensitive than primary keratinocytes or fibroblasts to apoptosis induction by S(4)TdR/UVA. Although S(4)TdR plus UVA treatment induces stabilization of p53, cell death, as measured by apoptosis or clonal survival, occurs to a similar extent in both p53 wild-type and p53-null backgrounds. Furthermore, different types of human papilloma virus E6 proteins, which protect against UVB-induced apoptosis, have little effect on killing by S(4)TdR/UVA. S(4)TdR/UVA offers a possible therapeutic intervention strategy that seems to be applicable to human papilloma virus-associated skin lesions.
Collapse
Affiliation(s)
- Olivier Reelfs
- Cancer Research UK, Institute for Cell and Molecular Science, Skin Tumour Laboratory, 4, Newark Street, London E1 2AT, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Akgül B, Ghali L, Davies D, Pfister H, Leigh IM, Storey A. HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Exp Dermatol 2007; 16:590-9. [PMID: 17576239 PMCID: PMC2423465 DOI: 10.1111/j.1600-0625.2007.00569.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses (HPV) have been associated with the development of non-melanoma skin cancer (NMSC) but the molecular mechanisms of the role of the virus in NMSC development are not clearly understood. Abnormal epithelial differentiation seen in malignant transformation of keratinocytes is associated with changes in keratin expression. The purpose of this study was to investigate the phenotype of primary human adult keratinocytes expressing early genes of HPV8 with specific reference to their differentiation and cell cycle profile to determine whether early genes of HPV8 lead to changes that are consistent with transformation. The expression of HPV8 early genes either individually or simultaneously caused distinct changes in the keratinocyte morphology and induced an abnormal keratin expression pattern, that included simple epithelial (K8, K18, K19), hyperproliferation-specific (K6, K16), basal-specific (K14, K15) and differentiation-specific (K1, K10) keratins. Our results indicate that expression of HPV8 early genes disrupts the normal keratin expression pattern in vitro. Expression of HPV8-E7 alone caused polyploidy that was associated with decreased expression of p21 and pRb. Expression of individual genes or in combination differentially influenced cell morphology and cell cycle distribution which might be important in HPV8-induced keratinocyte transformation.
Collapse
Affiliation(s)
- Baki Akgül
- Skin Tumour Laboratory, Cancer Research UK, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Madkan VK, Cook-Norris RH, Steadman MC, Arora A, Mendoza N, Tyring SK. The oncogenic potential of human papillomaviruses: a review on the role of host genetics and environmental cofactors. Br J Dermatol 2007; 157:228-41. [PMID: 17553059 DOI: 10.1111/j.1365-2133.2007.07961.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPVs), with over 100 genotypes, are a very complex group of human pathogenic viruses. In most cases, HPV infection results in benign epithelial proliferations (verrucae). However, oncogenic types of HPV may induce malignant transformation in the presence of cofactors. For example, over 99% of all cervical cancers and a majority of vulval, vaginal, anal and penile cancers are the result of oncogenic HPV types. Such HPV types have been increasingly linked to other epithelial cancers involving the skin, larynx and oesophagus. Although viral infection is necessary for neoplastic transformation, evidence suggests that host and environmental cofactors are also required. Research investigating HPV oncogenesis is complex and quite extensive. The inability to produce mature HPV virions in animal models has been a major limitation in fully elucidating the oncogenic potential and role of associated cofactors in promoting malignant transformation in HPV-infected cells. We have reviewed the literature and provide a brief account of the current understanding of HPV oncogenesis, emphasizing the role of genetic susceptibility, immune response, and environmental and infectious cofactors.
Collapse
Affiliation(s)
- V K Madkan
- Center for Clinical Studies, Studies & Department of Dermatology, University of Texas Health Sciences Center, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Mansour M, Touka M, Malena A, Indiveri C, Dong W, Gionfriddo I, Accardi R, Paradiso A, Sylla BS, Gabet AS, Tommasino M. Human papillomavirus type 77 E7 protein is a weak deregulator of cell cycle. Cancer Lett 2007; 246:274-81. [PMID: 16650526 DOI: 10.1016/j.canlet.2006.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
Human Papillomavirus type 77 is a skin type found in non-melanoma skin cancers of immuno-compromised individuals. Although, the HPV77 E6 oncoprotein has been well studied, nothing is known about E7. Studies on mucosal HPV types (e.g. HPV16) showed that E7 deregulates the cell cycle by binding to and promoting degradation of retinoblastoma protein (pRb). Here, we characterized the impact of HPV77 E7 on the cell cycle. We observed that HPV77 E7 associated with pRb with a lower affinity than HPV16 E7, promoting weakly its degradation. Although, HPV16 E7 led to cellular proliferation and accumulation of the cell cycle inhibitor p16(INK4a), both events were not clearly observed in HPV77 E7 cells. Together, these data indicate that HPV77 E7 does not efficiently deregulate the cell cycle, in contrast to several E7s of mucosal HPV types.
Collapse
Affiliation(s)
- Mariam Mansour
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ishida T, Sakaguchi I. Protection of Human Keratinocytes from UVB-Induced Inflammation Using Root Extract of Lithospermum erythrorhizon. Biol Pharm Bull 2007; 30:928-34. [PMID: 17473437 DOI: 10.1248/bpb.30.928] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UVB irradiation is an important inducer of biological changes in skin and can activate inflammatory reactions and apoptotic pathways, leading to skin damage. A root extract of Lithospermum erythrorhizon (SK), which has naphthoquinone pigments containing shikonin and shikonin derivatives, is known for its anti-inflammatory, anti-bacterial, and anti-tumor activity, and for its scavenging of reactive oxygen species. However, the effect of SK against UV damage is not clear. The aim of this study was to evaluate the efficacy of SK against UVB induced damage in normal human epidermal keratinocytes (NHEK). UVB-irradiated NHEK showed decreased cell viability, increased production of interleukin (IL)-1alpha, IL-6, IL-8, and tumor necrosis factor-alpha, and induced apoptosis. In an apoptosis pathway assay, UVB-irradiated NHEK showed increased caspase-3 activity, p53 and its phosphorylation at serine 15 compared with non-irradiated cells. All these effects induced by UVB irradiation were clearly inhibited by treatment with SK before and after UVB irradiation for 24 h. It is suggested that SK can protect epidermal cells against harmful effects of UVB irradiation and that SK treatment is probably beneficial for photoprotection of the skin.
Collapse
Affiliation(s)
- Takahiro Ishida
- Institute of Cosmetic Sciences, Club Cosmetics Co Ltd, Ikoma, Nara, Japan.
| | | |
Collapse
|
23
|
|
24
|
Karagas MR, Nelson HH, Sehr P, Waterboer T, Stukel TA, Andrew A, Green AC, Bavinck JNB, Perry A, Spencer S, Rees JR, Mott LA, Pawlita M. Human Papillomavirus Infection and Incidence of Squamous Cell and Basal Cell Carcinomas of the Skin. ACTA ACUST UNITED AC 2006; 98:389-95. [PMID: 16537831 DOI: 10.1093/jnci/djj092] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although infection with human papillomaviruses (HPVs) is a major risk factor for several epithelial cancers, an etiologic relationship between HPV and keratinocyte cancers, such as squamous cell carcinomas (SCCs) and basal cell carcinomas (BCCs), remains unclear. METHODS In a population-based case-control study of 252 SCC case patients, 525 BCC case patients, and 461 control subjects, we used multiplex serology to detect antibodies in plasma samples against 16 HPV types from phylogenetic genera alpha, beta, and mu. Multiplex serology is a new method that is based on fluorescent bead technology and allows simultaneous detection of antibodies against up to 100 different in situ affinity-purified recombinant HPV proteins. Data on sun sensitivity, outdoor exposure, and other risk factors for keratinocyte cancers were collected through personal interviews. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated via unconditional logistic regression models. RESULTS Overall, we detected HPV antibodies more frequently in SCC patients than in control subjects (OR = 1.6, 95% CI = 1.2 to 2.3), but we found no difference in HPV seropositivity between BCC case patients and control subjects (OR = 0.8, 95% CI = 0.6 to 1.1). Among HPV types, seropositivity to HPV types in genus beta (OR = 1.5, 95% CI = 1.0 to 2.1), particularly HPV 5 (OR = 1.8, 95% CI = 1.0 to 3.1), was associated with SCC risk. Individuals with tumors on chronically sun exposed sites were more likely to be seropositive for beta HPV types than individuals with SCC at other anatomic sites. The highest SCC risk was associated with positivity for multiple HPV types and, among individuals seropositive for HPV beta, a tendency to sunburn; however, the associations had limited statistical precision. CONCLUSIONS Our findings support a role for HPV types from the genus beta in the pathogenesis of SCC.
Collapse
Affiliation(s)
- Margaret R Karagas
- Department of Community and Family Medicine, Center for Environmental Health Sciences, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Human papillomaviruses (HPVs) are DNA tumour viruses that induce hyperproliferative lesions in cutaneous and mucosal epithelia. The relationship between HPV and non-melanoma skin cancer (NMSC) is important clinically since NMSC is the most common form of malignancy among fair-skinned populations. It is well established that solar ultraviolet (UV) irradiation is the major risk factor for developing NMSC, but a pathogenic role for HPV in the development of NMSC has also been proposed. Recent molecular studies reveal a likely role for HPV infection in skin carcinogenesis as a co-factor in association with UV. This review summarizes the literature describing these data, highlights some of the important findings derived from these studies, and speculates on future perspectives.
Collapse
Affiliation(s)
- Baki Akgül
- Skin Tumour Laboratory, Cancer Research UK, London
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Slawomir Majewski
- Department of Dermatology and Venereology, Warsaw School of Medicine, Poland. majewski56@o2pl
| | | |
Collapse
|
27
|
Daher A, Simbulan-Rosenthal CM, Rosenthal DS. Apoptosis induced by ultraviolet B in HPV-immortalized human keratinocytes requires caspase-9 and is death receptor independent. Exp Dermatol 2006; 15:23-34. [PMID: 16364028 DOI: 10.1111/j.0906-6705.2005.00384.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultraviolet B (UVB) induces both apoptosis and skin cancer. We found that human keratinocytes (KC) immortalized by Human Papillomavirus (HPV)16 E6/E7 were sensitized to UVB-induced apoptosis, possibly representing a transient regression-prone precancerous stage equivalent to actinic keratosis. To further examine which caspases are apical and essential, we utilized retroviral constructs expressing dominant-negative caspase-9 (caspase-9-DN) or Fas-associated protein with death domain (FADD)-DN as well as caspase inhibitor peptides. Caspase-9-DN and zLEHD-fmk both suppressed caspase-9, -3, and -8 activity after UVB exposure, as well as proteolytic processing of procaspase-3 into its active form, DNA fragmentation factor 45 cleavage, and internucleosomal DNA fragmentation. By contrast, stable expression of FADD-DN in HPV-immortalized KC did not inhibit UVB-induced activation of caspases-9, -3, and -8 nor downstream apoptotic events, although inhibition of caspase-8 with zIETD-fmk attenuated apoptosis. This study indicates that caspase-9 activation is upstream of caspases-3 and -8 and that UVB-induced apoptosis in HPV-immortalized human KC is death receptor (DR) independent and requires both caspase-9 upstream and caspase-8 downstream for maximal apoptosis. These studies further indicate that cell type as well as transformation state determine the sensitivity and mode of cell death (DR vs. mitochondrial apoptotic pathways) in response to UVB and explain the high regression rates of premalignant lesions.
Collapse
Affiliation(s)
- Ahmad Daher
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | |
Collapse
|
28
|
Abstract
Exposure to UV radiation is recognized to suppress cell-mediated immunity and therefore could adversely affect the course of a viral infection. Rodent models of viral infection confirm this possibility but the situation in human subjects is not so clear, apart from two exceptions. These are herpes simplex, in which sunlight exposure can cause reactivation, and certain papillomavirus types in which sunlight exposure can lead to the development of nonmelanoma skin cancer. In both cases, there are UV response elements in the viral genomes that alter the normal interactions between the viruses and the host following exposure, and UV-induced effects on the immune response occur in addition. These complex mechanisms are discussed, and the situation regarding UV radiation and viral exanthems plus other viruses, including the retroviruses, summarized. Finally viral vaccination is considered in the context of UV exposure and the importance of the host's genetic background emphasized. Further research is required to evaluate whether sunlight can significantly affect the resistance to common viral infections and vaccines.
Collapse
Affiliation(s)
- Mary Norval
- Medical Microbiology, University of Edinburgh Medical School, Edinburgh, United Kingdom.
| |
Collapse
|
29
|
Purdie KJ, Surentheran T, Sterling JC, Bell L, McGregor JM, Proby CM, Harwood CA, Breuer J. Human papillomavirus gene expression in cutaneous squamous cell carcinomas from immunosuppressed and immunocompetent individuals. J Invest Dermatol 2005; 125:98-107. [PMID: 15982309 PMCID: PMC3042681 DOI: 10.1111/j.0022-202x.2005.23635.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidermodysplasia verruciformis (EV)-type human papillomavirus (HPV) DNA have been detected by PCR in squamous cell carcinomas (SCC) from both organ transplant recipients (OTR) and immunocompetent individuals. Their role in skin cancer remains unclear, and previous studies have not addressed whether the viruses are transcriptionally active. We have used in situ hybridization to investigate the transcriptional activity and DNA localization of HPV. EV-HPV gene transcripts were demonstrated in four of 11 (36%) OTR SCC, one of two (50%) IC SCC, and one of five (20%) OTR warts positive by PCR. Viral DNA co-localized with E2/E4 early region gene transcripts in the middle or upper epidermal layers. Non-EV cutaneous HPV gene transcripts were demonstrated in one of five (20%) OTR SCC and four of 10 (40%) OTR warts. In mixed infections transcripts for both types were detected in two of six (33%) cases. Our results provide evidence of EV-HPV gene expression in SCC; although only a proportion of tumors were positive, the similarly low transcriptional activity in warts suggests this is an underestimate. These observations, together with emerging epidemiological and functional data, provide further reason to focus on the contribution of EV-HPV types to the pathogenesis of cutaneous SCC.
Collapse
|